ETHYLENE EPOXIDATION IN A LOW-TEMPERATURE PARALLEL PLATE DIELECTRIC BARRIER DISCHARGE SYSTEM WITH TWO DIELECTRIC LAYERS

Weerayut Dulyalaksananon

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2013

I 28372177

550994

Thesis Title:	Ethylene Epoxidation in a Low-Temperature Parallel Plate
	Dielectric Barrier Discharge System with Two Dielectric Layers
By:	Mr. Weerayut Dulyalaksananon
Program:	Petrochemical Technology
Thesis Advisors:	Prof. Sumaeth Chavadej

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Chavadej' Sumaith

(Prof. Sumaeth Chavadej)

nanoch of

(Assoc. Prof. Pramoch Rangsunvigit)

Veerapat Tantayahom

(Dr. Veerapat Tantayakom)

ABSTRACT

 5471031063: Petrochemical Technology Program
 Weerayut Dulyalaksananon: Ethylene Epoxidation in a Low-Temperature Parallel Plate Dielectric Barrier Discharge System with Two Dielectric Layers
 Thesis Advisor: Prof. Sumaeth Chavadej 62 pp.

Keywords: Epoxidation/ Ethylene oxide/ Dielectric barrier discharge/ C₂H₄ Feed position

Ethylene oxide, which is an important petrochemical substrate in chemical industry, is used as an intermediate in the manufacture of various useful chemicals such as polyethylene glycol, polyethylene oxide, detergents, and solvents. In commercial processes, ethylene oxide was generated by the ethylene epoxidation reaction under high temperature operation, which results in high energy consumption. The objective of this work was to determine the optimum condition for the maximum ethylene oxide selectivity by using a low-temperature parallel plate dielectric barrier discharge (DBD) system, with two glass plates as dielectric barriers under ambient temperature and pressure to produce active oxygen species prior to reacting with ethylene in order to maximize ethylene oxide production. The effects of applied voltage, input frequency, and O₂/C₂H₄ feed molar ratio, as well as ethylene feed position, on ethylene epoxidation activity were examined. The DBD system with two rough glass plates was found to provide the highest EO selectivity of 68.15 % and the highest EO yield of 10.88 %, at 23 kV, 500 Hz, an O_2/C_2H_4 feed molar ratio of 1:5, and an ethylene feed position fraction of 0.5, which gave twice as much as EO selectivity in a DBD system with a single smooth dielectric glass plate.

บทคัดย่อ

วีระยุทธ ดุลยลักษณานนท์: ปฏิกิริยาอีพอกซิเดชันของเอธิลีนภายใต้ระบบพลาสมาอุณหภูมิต่ำ ชนิดใดอิเล็กทริกแบร์ริเออดิสชาร์จโดยใช้แผ่นใดอิเล็กทริกสองแผ่น (Ethylene Epoxidation in a Low-Temperature Parallel Plate Dielectric Barrier Discharge System with Two Dielectric Layers) อ. ที่ปรึกษา: ศ. ดร. สุเมธ ชวเดช 62 หน้า

เอธิลีนออกไซด์ซึ่งเป็นสารตั้งต้นทางปีโครเคมีที่สำคัญในหลากหลายอุตสาหกรรมทาง เคมี ถูกใช้เป็นดัวกลางในการผลิตผลิตภัณฑ์ในอุตสาหกรรมหลายชนิด เช่น พอลิเอธิลีน, พอลิเอธี ลีนออกไซด์, ผงซักฟอก, และดัวทำละลาย ในกระบวนการเชิงพาณิชย์ เอธิลีนออกไซด์ถูกทำให้ เกิดขึ้นจากปฏิกิริยาเอธิลีนอีพอกซิเดชันภายใด้การให้อุณหภูมิสูง ซึ่งส่งผลให้เกิดการใช้พลังงาน สูง งานวิจัยนี้จึงสนใจหาสภาวะที่เหมาะสมต่อการผลิตเอธิลีนออกไซด์โดยระบบพลาสมา อุณหภูมิต่ำชนิดไดอิเล็กทริกแบร์ริเออดิสชาร์จโดยใช้แผ่นใดอิเล็กทริกที่เป็นกระจกผิวขรุขระสอง แผ่นภายใต้อุณหภูมิห้อง และความดันบรรยากาศ เพื่อที่จะทำให้เกิดออกซิเจนที่ว่องไวก่อนการทำ ปฏิกิริยากับเอธิลีนในการผลิตเอธิสินออกไซด์ โดยจะสึกษาผลกระทบจากการเปลี่ยนแปลงก่าของ ความต่างศักย์ไฟฟ้า, ความถิ่ไฟฟ้าที่ป้อนเข้าไป, อัตราส่วนโดยโมลของออกซิเจนต่อเอธิลีน, และ ดำแหน่งการป้อนเอธิลีนในปฏิกิริยาเอธิลีนอีพอกซิเดชัน ระบบไดอิเล็กทริกแบร์ริเออดิสชาร์จโดย ใช้แผ่นไดอิเล็กทริกที่เป็นกระจกผิวขรุขระสองแผ่นให้ก่าการเลือกเกิดเอธิลีนออกไซด์มากที่สุด เป็น 68.15 % และให้ก่าปริมาณผลิตผลสูงสุดเป็น 10.88 % ที่ภายใต้สภาวะที่เหมาะสมซึ่ง คือ ความต่างศักย์ไฟฟ้าเป็น 23 กิโลโวลต์, ความถิ่ไฟฟ้าเป็น 500 เฮิรด์ช. อัตราส่วนโดยโมลของ ออกซิเจนต่อเอธิลีนเป็น 1:5, และสัดส่วนของตำแหน่งการป้อนก๊าซเอธิลีนเป็น 0.5 ซึ่งมากกว่า การใช้แผ่นกระจกผิวเรียบแผ่นเดียวเป็นแผ่นใดอิเล็กทริกถึงสองเท่า

ACKNOWLEDGEMENTS

This research project would not have been possible without the support of many people. First, the author wishes to express my profound gratitude and deep regards to my advisor, Prof. Sumaeth Chavadej who is abundantly helpful and offered invaluable assistance, support and guidance. Deepest gratitude is also due to the members of the supervisory committee, Assoc. Prof. Pramoch Rangsunvigit and Dr. Veerapat Tantayakom. If the author is without whose knowledge and assistance, this study will not have been successful.

In addition, the author would also like to convey thanks to the Petroleum and Petrochemical College, Chulalongkorn University, Thailand and the Center of Excellence on Petrochemical and Materials Technology, Thailand for providing the fund and laboratory facilities. Special thanks also to Ms. Thitiporn Suttikul and all my PPC friends for creative suggestions and encouragement.

Last, the author wishes to express my love and gratitude to my families for their understanding and cheerfulness, through the duration of my studies.

TABLE OF CONTENTS

		PAGE
Title F	Page	i
Abstra	uct (in English)	iii
Abstra	uct (in Thai)	iv
Ackno	owledgements	v
Table	of Contents	vi
List of	Tables	viii
List of	Figures	ix
PTER		
I	INTRODUCTION	1
II	THEORECTICAL BACKGROUND AND LITERATURE	
	REVIEW	3
	2.1 Basic Principles of Plasma	3
	2.1.1 Generation of Plasma	5
	2.1.1.1 Thermal Plasma	6
	2.1.1.2 Non-Thermal Plasma	7
	2.2 Applications of Non-Thermal Plasma	18
III	METHODOLOGY	29
	3.1 Materials	29
	3.2 Dielectric Material Characterization	29
	3.3 Reaction Activity Measurement	31
	3.4 Power Supply Unit	35
	3.5 Experiment Procedure	36
	Title F Abstra Abstra Ackno Table List of PTER I II	Title Page Abstract (in English) Abstract (in Thai) Acknowledgements Table of Contents List of Tables 2.1 Basic Principles of Plasma 2.1.1.1 Thermal Plasma 2.1.1.2 Non-Thermal Plasma 2.1 Applications of Non-Thermal Plasma 2.1 Dielectric Material Characterization 3.3 Reaction Activity Measurement 3.4 Power Supply Unit 3.5 Experiment Procedure

CHAPTER

PAGE

IV	RESULTS AND DISCUSSION	37
	4.1 Dielectric Material Characterization	37
	4.2 Reaction Activity Performance	40
	4.2.1 Effect of Applied Votage	40
	4.2.2 Effect of Input Frequency	45
	4.2.3 Effect of O ₂ /C ₂ H ₄ Feed Molar Ratio	49
	4.2.4 Effect of C_2H_4 Feed Position Fraction	51
	4.3 Glass Plate Activity Comparison	51
\mathbf{V}	CONCLUSIONS AND RECOMMENDATIONS	54
	5.1 Conclusions	54
	5.2 Recommendations	54
	REFERENCES	55
	CURRICULUM VITAE	62

LIST OF TABLES

TABLE		PAGE	
2.1	Collision mechanisms in the plasma	6	
3.1	The detailed dimensions of the parallel DBD reactor	33	

LIST OF FIGURES

FIGU	GURE	
2.1	Phase of matter consists of solid, liquid, gas, and the forth	
	state named "plasma"	3
2.2	Schematic view of a discharge	4
2.3	Various types of discharge classified according to temporal	
	behaviour, pressure, and electrode geometry	7
2.4	The glow discharge with homogeneous electrodes can be	
	operated at low pressure	8
2.5	Schematic drawing of Microwave discharge	9
2.6	Schematic diagram of a capacitively-coupled plasma (CCP)	
	plasma source with an equivalent electrical circuit	10
2.7	Phases of gliding arc evolution	10
2.8	The mechanism of generated discharges	12
2.9	The mechanism of generated discharges by applying	
	sinusoidal voltage in DBD	13
2.10	Schematic for dielectric barrier discharge reactor	14
2.11	Schematic diagrams of parallel-plate DBD plasma source	
	configurations	14
2.12	Schematic diagrams of cylindrical DBD plasma source	
	configurations.	15
2.13	The corona discharge generated by inhomogeneous	
	electrodes	15
2.14	Schematic of various forms of corona discharge depending	
	upon applied voltage at constant electrode geometrical	
	configuration	17
3.1	Schematics of SEM procedure	29
3.2	Schematics of AFM procedure	30
3.3	Schematics of XRF procedure	31

FIGURE

PAGE

3.4	Schematics of experimental setup for ethylene	
	epoxidation reaction using parallel DBD	32
3.5	Parallel DBD reactor configurations	32
3.6	Block diagram of the power supply unit	35
4.1	XRF result from the smooth-surfaced glass	38
4.2	XRF result from the rough-surfaced glass	39
4.3	Surface images on the rough-surfaced glass from AFM	40
4.4	Surface images on rough glass from SEM	40
4.5	$\mathrm{C}_2\mathrm{H}_4$ and O_2 conversions as a function of an applied	
	voltage at an O_2/C_2H_4 feed molar ratio of 0.2:1, an input	
	frequency of 500 Hz, an C_2H_4 feed position fraction of	
	0.5, and total feed flow rate of 50 cm^3/min	41
4.6	C_2H_4O yield as a function of an applied voltage at an	
	O_2/C_2H_4 feed molar ratio of 0.2:1, an input frequency of	
	500 Hz, an C_2H_4 feed position fraction of 0.5, and total	
	feed flow rate of 50 cm ³ /min	42
4.7	CH ₄ , C ₂ H ₄ O, C ₂ H ₆ , C ₃ H ₈ , H ₂ , CO, and CO ₂ selectivities	
	as a function of an applied voltage at an O_2/C_2H_4 feed	
	molar ratio of 0.2:1, an input frequency of 500 Hz, an	
	C_2H_4 feed position fraction of 0.5, and total feed flow	
	rate of 50 cm ³ /min	44
4.8	C_2H_4O and C_2H_4 power consumptions as a function of an	
	applied voltage at an O_2/C_2H_4 feed molar ratio of 0.2:1,	
	an input frequency of 500 Hz, an C_2H_4 feed position	
	fraction of 0.5, and total feed flow rate of 50 cm^3/min	45

Х

FIGURE

4.9	C_2H_4 and O_2 conversions as a function of an input	
	frequency at an applied voltage of 23 kV, an O_2/C_2H_4	
	feed molar ratio of 0.2:1, an C_2H_4 feed position fraction	
	of 0.5, and total feed flow rate of 50 cm ³ /min	46
4.10	CH ₄ , C ₂ H ₄ O, C ₂ H ₆ , C ₃ H ₈ , H ₂ , CO, and CO ₂ selectivities	
	as a function of an input frequency at an applied voltage	
	of 23 kV, an O_2/C_2H_4 feed molar ratio of 0.2:1, an C_2H_4	
	feed position fraction of 0.5, and total feed flow rate of	
	50 cm ³ /min	47
4.11	C ₂ H ₄ O yield as a function of an input frequency at an	
	applied voltage of 23 kV, an O_2/C_2H_4 feed molar ratio of	
	0.2:1, an C_2H_4 feed position fraction of 0.5, and total feed	
	flow rate of 50 cm ³ /min	48
4.12	C_2H_4O and C_2H_4 power consumption as a function of an	
	input frequency at an applied voltage of 23 kV, an	
	O_2/C_2H_4 feed molar ratio of 0.2:1, an C_2H_4 feed position	
	fraction of 0.5, and total feed flow rate of 50 cm^3/min	49
4.13	C_2H_4O yield as a function of an O_2/C_2H_4 feed molar ratio	
	at an applied voltage of 23 kV, an input frequency of 500	
	Hz, an C_2H_4 feed position fraction of 0.5, and total feed	
	flow rate of 50 cm ³ /min	50
4.14	C ₂ H ₄ O yield as a function of an C ₂ H ₄ feed position	
	fraction at an applied voltage of 23 kV, an input	
	frequency of 500 Hz, an O_2/C_2H_4 feed molar ratio of	
	0.2:1, and total feed flow rate of 50 cm^3/min	51
4.15	Comparisons of EO selectivity and yield of DBD system	
	with single and double glass plates	52
4.16	Comparisons of power consumption of produced EO and	
	converted ethylene in DBD system	53

PAGE