ETHYLENE CHAIN GROWTH IN CATALYTIC DEHYDRATION OF BIO-ETHANOL USING VARIOUS GROUPS OF METAL CATALYSTS

Bandith Chokcharoenchai

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2015

0

.

· I28368605

.....

Thesis Title:	Ethylene Chain Growth in Catalytic Dehydration of	
	Bio-Ethanol Using Various Groups of Metal Catalysts	
By:	Bandith Chokcharoenchai	
Program:	Petrochemical Technology	
Thesis Advisor:	Assoc. Prof. Sirirat Jitkarnka	

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

0

(Assoc. Prof. Sirirat Jitkarnka)

MUL

(Assoc. Prof. Apanee Luengnaruemitchai)

B. Am

(Asst. Prof. Bussarin Ksapabutr)

ABSTRACT

5671003063: Petrochemical Technology Program Bandith Chokcharoenchai : Ethylene Chain Growth in Catalytic
Dehydration of Bio-ethanol Using Various Groups of Metal Catalysts. Thesis Advisor: Assoc. Prof. Sirirat Jitkarnka 148 pp.
Keywords: Bio-ethanol/ Ethanol dehydration/ Ethylene/ Oligomerization/ Fischer-Tropsch/ Polymerization/

Metal catalysts that have been widely used to produce aliphatic long-chain hydrocarbons were selected based on two group of reactions; that are Fischer-Tropsch synthesis (FT) and Olefin polymerization (OPR) for the catalytic dehydration of bio-ethanol. Moreover, γ -Al₂O₃ has been found as the simple, but suitable support for ethylene production in ethanol dehydration because of its acidity and physical property, Therefore, the effect of metal-promoted catalysts were examined in the catalytic dehydration of bioethanol, aiming to investigate the possibility of ethylene oligomerization and chain growth form the product. The change of oxidation state of metals was also investigated for its effect on bio-ethanol dehydration products. As a result, all metal-promoted catalysts tended to have possibility to promote ethylene oligomerization, but they had different ability. Fischer-Tropsch-type catalysts; that are, Co and Fe catalysts, promoted similar pathways of ethylene chain growth through ethylene aromatization. Consequently, the hydrocarbon products were all aromatics. On the other hand, the growth of ethylene by using olefin polymerization-type catalysts can be divided into two different pathways. Ni ,Cu, and Pd catalysts tend to promote ethylene chain growth via cyclization and dehydrogenation. However, Cr catalysts seem to promote the growth of ethylene through oligomerization, cyclization, and dehydrogenation. In addition, the hydrocarbons obtained from using FT-type catalysts were all aromatics. However, the hydrocarbons obtained from using the OPR-type catalysts were composed of non-aromatics and aromatics.

3.

บทคัดย่อ

บัณฑิต โชคเจริญชัย : การศึกษาการเชื่อมต่อกันของโมเลกุลเอทิลีนในปฏิกิริยาคีไฮเดร ชันของเอทานอลชีวภาพ โดยใช้ตัวเร่งปฏิกิริยาจากโลหะหลายกลุ่ม (Ethylene Chain Growth in Catalytic Dehydration of Bio-ethanol Using Various Groups of Metal Catalysts) อ. ที่ปรึกษา : รศ. ดร. ศิริรัตน์ จิตการค้า 148 หน้า

ตัวเร่งปฏิกิริยาโลหะที่นำมาใช้กันอย่างแพร่หลายในการผลิตสารประกอบ ้ไฮโครคาร์บอนเส้นตรงและเป็นสายยาวนั้น ได้ถูกเลือกมาจากสองกลุ่มปฏิกิริยานั่นคือ กระบวน ฟิชเซอร์ โทรป และ โอเลฟินพอลิเมอร์ไรเซชัน เพื่อใช้ในกระบวนการคืไฮเครชันของเอทานอลใน งานวิจัยนี้นอกจากนี้แกรมม่าอะลูมิน่าเป็นตัวรองรับอย่างง่ายที่มีความเหมาะที่จะใช้ในการผลิตเอ ทิลีนจากปฏิกิรยาคีไฮเครชันของเอทานอลชีวภาพ เพราะมีสมบัติความเป็นกรคและลักษณะทาง กายภาพที่เหมาะสม คังนั้นในงานวิจัยนี้เป็นการศึกษาผลของตัวเร่งปฏิกิริยาโลหะในรูปแบบของ ้โลหะและโลหะออกไซด์ในปฏิกิรยาดีไฮเครชั้นของเอทานอลชีวภาพ โดยมีจุดประสงค์เพื่อที่จะ ศึกษาความเป็นไปได้ของการเกิดเอทิลีนโอลิโกเมอไรเซชันและการเชื่อมต่อกันของโมเลกลเอ ้ทิลึนในผลิตภัณฑ์ไฮโครคาร์บอน จากผลการศึกษาพบว่าตัวเร่งปฏิกิริยาบนตัวรองรับทุกชนิคนั้น มีความสามารถในการกระตุ้นปฏิกิริยาเอทิลีนโอลิโกเมอไรเซชันได้ แต่ความสามารถในการ กระตุ้นนั้นไม่เท่ากัน ตัวเร่งปฏิกิริยาโคบอลและไอรอนในกลุ่มฟีชเชอร์โทรปทั้งในรูปของโลหะ และ โลหะออกไซค์นั้น โคยพบว่าตัวเร่งปฏิกิริยาจากกลุ่มฟิชเชอร์ โทรปที่ประกอบไปค้วยโคร์บอล และ ใอรอนจะ ให้เส้นทางในการต่อกันของเอทิลีนที่เหมือนกัน คือผ่านปฏิกิรยาเอทิลีนอะ โรมาไท เซชัน ผลิตภัณฑ์ที่ได้นั้นจะเป็นสารอะโรมาติกส์ทั้งหมด ในทางตรงกันข้าม การเชื่อมต่อกันของเอ ทิลีนที่ใช้ตัวเร่งปฏิกิริยาจากกลุ่มโอเลฟินพอร์ลิเมอร์ไรเซชันนั้นสามารถแบ่งออกได้เป็นสอง เส้นทางที่แตกต่างกัน กล่าวคือ ตัวเร่งปฏิกิริยา โลหะและ โลหะออกไซค์ของทั้งนิกเกิล ทองแคง และ พาเลเดียมนั้น ให้เส้นทางในการต่อกันของเอทิลีนที่คล้ายกัน คือผ่านปฏิกิริยาไซไคลเซชัน และดีไฮโครจีเนชัน แต่ตัวเร่งปฏิกิรยาโครเมียมนั้น จะให้เส้นทางที่แตกต่างกันออกไป โดยการ เชื่อมต่อกันของเทิลีนนั้นผ่านปฏิกิริยาโอลิโกเมอไรเซชัน ไซไคลเซชัน และคีไฮโครจีเนชัน นอกจากนี้การเชื่อมต่อกันของโมเลกุลเอทิลีนนั้นยังสามารถงำแนกออกได้เป็นสองเส้นทาง คือ ้ตัวเร่งปฏิกิริยาในกลุ่มฟิชเชอร์ โทรปนั้นจะให้ผลิตภัณฑ์ที่เป็นสารอะโรมาติกส์ทั้งหมด อย่างไรก์ ้ตาม ตัวเร่งปฏิกิริยาในกลุ่มโอเลฟินพอลิเมอร์ไรเซชันจะให้ผลิตภัณฑ์ที่ประกอบไปด้วยสารอะโร มาติกส์และ ไม่ใช่อะ โรมาติกส์

ACKNOWLEDGEMENTS

This research work has not been possible to complete without the assistance and supports of following individuals and organizations.

Firstly, I would like to express my gratitude to my advisor, Assoc. Prof. Sirirat Jitkamka who had always cared and paid attention to my research work since the beginning, giving the valuable suggestions, attentive encouragement, beneficial recommendations and all the helpful supports in my research work.

Secondly, I also would like to thank to the thesis committees, Assoc. Prof. Apanee Luengnaruemitchai and Asst. Prof. Bussarin Ksapabutr for their important suggestions and recommendation in my research work.

Moreover, my appreciation also extends to Sapthip Company Limited for providing bio-ethanol used as the feed in this research work.

I am grateful for the scholarship and funding supported by the Petroleum and Petrochemical College, Chulalongkorn University, the Center of Excellence on Petrochemical, and Materials Technology, The Ratchadapisek Sompoch Endowment Fund (2013), Chulalongkom University (CU-56-900-FC) and The Thailand Research Fund (IRG5780012).

Special appreciation is given to all The Petroleum and Petrochemical College's staffs, who kindly helped with the analytical instruments and gave the good suggestion in this research work.

I would like to thank all my friends for their friendly cheerful and their support and help.

Lastly, I would like to take this opportunity to give appreciation to my family for their invaluable support and encouragement at all time.

ο

TABLE OF CONTENTS

Title Page		i
Abstract (in English)	÷	iii
Abstract (in Thai)		iv
Acknowledgements		v
Table of Contents		vi
List of Tables		xii
List of Figures		XV

CHAPTER

Ι	INTRODUCTION		1
II	BACKGROUND AND LITERATURE REVIEW		3
	2.1 Catalytic Dehydration of Bio-ethanol to		
	Non-aromatic Hydrocarbons		3
	2.2 Catalysts for Catalytic Dehydration of Bio-ethanol		4
	2.3 Oligomerization of Ethylene		6
	2.4 Metal Catalysts for Fisher-Tropsch Process	o	7
	2.4.1 Cobalt Catalysts		7
	2.4.2 Iron Catalysts		8
	2.5 Metal Catalysts for Olefins Polymerization Reaction		10
	2.5.1 Nickel-based Catalysts		11
	2.5.2 Copper-based Catalysts		12
	2.5.3 Chromium-based Catalysts		13
	2.5.4 Palladium-based Catalysts		14
III	EXPERIMENTAL		17
	3.1 Materials		17
	3.2 Equipment		17
	3.3 Chemicals and Solvents		18

٥

-

CHAPTER

σ

.

3.4	Experimental Procedures	18
	3.4.1 Catalyst Preparation *	18
	3.4.2 Catalysts Characterization	19
	3.4.3 Catalytic Reaction	19
	3.4.4 Product Analysis	20

IVCo₃O₄/γ-Al₂O₃ AS A CATALYST FOR GREEN CHEMICALS
PRODUCTION VIA CATALYTIC DEHYDRATION OF
BIO-ETHANOL224.1Abstract224.2Introduction224.3Experiment23

4.3	Expe	riment	23
	4.3.1	Catalyst Preparation	23
	4.3.2	Catalytic Testing	24
	4.3.3	Product Analysis	24
	4.3.4	Catalyst Characterization	24
4.4	Resul	ts and Discussion	25
	4.4.1	Catalyst Characterization	25
	4.4.2	Effect of Alumina on The Catalytic Dehydration of	
		Bio-ethanol	27
	4.4.3	Effect of Co ₃ O ₄ on γ-Al ₂ O ₃	28
4.5	Conc	lusions	31
4.6	Refer	ences	31

+

~

\mathbf{V}	ETHANOL TRANSFORMATION DURING CATALYTIC			
	DEHYDRATION OF BIO-ETHANOL USING COBALT CATALYSTS: EFFECT OF DIFFERENT OXIDATION			
	STATES	33		
	5.1 Abstract	33		
	5.2 Introduction	33		
	5.3 Experimental	36		
	5.3.1 Catalyst Preparation	36		
	5.3.2 Catalytic Dehydration of Bio-ethanol	36		
	5.3.3 Product Analysis	36		
	5.3.4 Catalyst Characterization	37		
	5.4 Results and Discussion	37		
	5.4.1 Catalyst Characterization	37		
	5.4.2 Catalytic Dehydration of Bio-ethanol	41		
	5.4.3 Oxygenate Compounds Production	48		
	5.4.4 Effect of Oxidation State of Co	49		
0	5.5 Conclusions	52		
	5.6 References	54		
VI	ENVIRONMENTAL FRIENDLY ROUTE FOR			
	HYDROCARBON AND OXYGENATE PRODUCTION			
	USING Fe- AND Fc2O3-PROMOTED γ-ALUMINA			
	CATALYSTS IN CATALYTIC ETHANOL			
	DEHYDRATION	57		
	6.1 Abstract	57		
	6.2 Introduction	57		
	6.3 Experimental	59		
	6.3.1 Catalyst Preparation	59		

6.3.2 Catalytic Dehydration of Bio-ethanol 59

•

76

76

	6.3.3 Product Analysis	60
	6.3.4 Catalyst Characterization	60
6.4	Results and Discussion	61
	6.4.1 Characterization of Catalysts	61
	6.4.2 Activity of Iron-modified Catalysts	64
	6.4.3 Oxygenate Compounds Production	71
	6.4.4 Effect of Oxidation State of Iron	72
6.5	Conclusions	74
6.6	References	74

VII GREEN HYDROCARBON PRODUCTIONS FROM THE CATALYTIC DEHYDRATION OF BIO-ETHANOL USING Ni, Cu, AND Pd CATALYSTS 7.1 Abstract

7.2	Introduction	
7.3	Experimental	78
	7.3.1 Catalyst Preparation	78
	7.3.2 Catalytic Dehydration of Bio-ethanol	79
	7.3.3 Product Analysis	79
	7.3.4 Catalyst Characterization	80
7.4	Catalyst Characterization	80
	7.4.1 XRD	80
	7.4.2 Surface Composition	81
	7.4.3 Physical Properties	87
7.5	Product Yields and Gas Composition	88
	7.5.1 Product Yields	88
	7.5.2 Gas Composition	89

-

CHAPTER

....

7.6 Liquid Products	90
7.6.1 Liquid Product Distribution	90
7.6.2 Hydrocarbon Compositions	92
7.6.3 Oxygenate Compositions	95
7.7 Effect of Oxidation States	101
7.8 Pathways of Ethanol Transformation	103
7.9 Conclusions	104
7.10 References	105

VIII	Cr-MODIFIED γ-ALUMINA CATALYSTS FOR				
	BIO-CHEMICAL PRODUCTION VIA CATALYTIC				
	DEHYDRATION OF BIO-ETHANOL	108			
	8.1 Abstract	108			
	8.2 Introduction	108			
	8.3 Experimental	110			
	8.3.1 Catalyst Preparation	110			
	8.3.2 Catalytic Testing	110			
	8.3.3 Product Analysis	111			
	8.3.4 Catalyst Characterization	111			
	8.4 Results and Discussion	112			
	8.4.1 Catalyst Characterization	112			
	8.4.2 Catalytic Activity of Cr-modified Catalysts	115			
	8.4.3 Oxygenate Compounds Production	122			
	8.4.4 Effect of Oxidation State of Cr	123			
	8.5 Conclusions	124			
	8.6 References	125			

PAGE

CH	A	PT	E	R
----	---	----	---	---

0

128

REFERENCES 130

APPENDICES		141
Appendix A	Product Distribution	141
Appendix B	Amount of Element Loading (wt%)	145
Appendix C	X-ray Diffraction Patterns	146

CURRICULUM VITAE 148

•

LIST OF TABLES

TABLE

4.1	Physical properties of alumina and cobalt-promoted alumina	26
4.2	Gaseous product distribution from bio-ethanol dehydration	28
4.3	Liquid product distribution from bio-ethanol dehydration	29
5.1	Binding energies (eV) of cobalt on fresh and spent catalysts	38
5.2	Physical properties of cobalt-modified catalysts	40
5.3	Product yields from ethanol dehydration	42
5.4	Gaseous product distribution obtained from bio-ethanol	44
	dehydration	
5.5	Oxygenates and hydrocarbons found in liquid product (wt%)	44
5.6	Compositions of hydrocarbons (wt%) obtained from using	
	Co catalysts	44
5.7	Liquid product distribution from using cobalt catalyst	49
6.1	Binding energies (eV) and the surface components of iron-	
	and iron oxide-modified alumina surface	62
6.2	Physical properties of Fe-modified catalysts	64
6.3	Product yields obtained from using Fe-modified catalysts	64
6.4	Oxygenates and hydrocarbons found from using Fe catalysts	65
6.5	Gaseous products distribution from using Fe-modified	
	catalysts	66
6.6	Compositions of hydrocarbons (wt%) obtained from using	
	Fe-modified catalysts	66
6.7	Compositions in oxygenate compounds from using Fe-	
	modified catalysts	68
7.1	Catalyst pretreatment conditions	79
7.2	2-theta of each elements on alumina surface	81
7.3	Binding energies (eV) of Ni-, Cu-, and Pd-modified catalysts	84
7.4	Physical Properties of un-modified and modified catalysts	87

0

-

xii

TABLE		PAGE
7.5	Product yields obtained from using Ni-, Cu-, and Pd-	
	modified catalysts •	88
7.6	Gas product composition obtained from bio-ethanol	
	dehydration	90
7.7	Liquid product distribution obtained from bio-ethanol	
	dehydration	92
7.8	Composition of hydrocarbons obtained from using Ni-	
	modified catalysts	93
7.9	Composition of hydrocarbons obtained from using Cu-	
	modified catalysts	93
7.10	Composition of hydrocarbons obtained from using Pd-	
	modified catalysts	94
8.1	Binding energies (eV) of chromium on fresh and spent	
	catalysts	112
8.2	Physical properties of Cr-modified catalysts	115
8.3	Product yields obtained from using Cr-modified catalysts	116
8.4	Liquid product distribution obtained from using Cr catalysts	117
8.5	Compositions of oxygenates (wt%) from using Cr-modified	
	catalysts	119
Al	Product distribution over metallic Co and Co ₃ O ₄ -modified	
	Al ₂ O ₃	139
A2	Compositions of hydrocarbons obtained from using Pd-	
	modified catalysts	140
A3	Product distribution over metallic Ni and NiO-modified	
	Al_2O_3	141
A4	Product distribution over metallic Cu and Cu ₂ O-modified	142
	Al ₂ O ₃	

1.0

σ

xiii

TABL	E	PAGE
A5	Product distribution over metallic Pd and PdO-modified	
	Al ₂ O ₃ ·	143
A6	Product distribution over metallic Cr and CrO3-modified	
	Al_2O_3	144
B1	Amount of element loading (wt%)	145

: 1

•

E

LIST OF FIGURES

FIGURE

IGURE		PAG
2.1	Selected pathways of ethanol transformation to larger	
	hydrocarbons.	3
2.2	Structure of HZSM-5 zeolite.	5
2.3	Ethylene oligomerization pathway using Ni/Al-MCM-41.	6
2.4	Polymerization mechanism.	10
2.5	Chromium (III) complex catalyst.	14
2.6	Pyrazole palladium (II) synthesis.	15
3.1	Schematic of experimental set-up: 1 = Flow meter, 2 =	
	Pressure gauge, 3 = Syringe pump, 4 = Upper electric	
	furnace, 5 = Lower electric furnace, 6 = U-tube reactor, 7=	
	Catalytic layer, 8 = Thermocouple, 9 = Temperature	
	programmed controller, 10 =Cooling unit, 11 = Gas	
	chromatograph.	20
4.1	XRD pattern of alumina (bottom) and Cobalt-promoted	
	alumina (top).	26
4.2	Co 2p _{3/2} XPS spectra of (A) fresh and (b) spent 5wt%	
	cobalt oxide-promoted γ-alumina.	27
4.3	Compositions of Phenols (A) and Ketones (B) found in	
	oxygenate compounds (wt%) from using Co ₃ O ₄ /Al ₂ O ₃ .	29
4.4	Reaction pathways of ethanol to 2-pentanone	30
5.1	XRD pattern of (A) Al_2O_3 , (B) Co_3O_4/Al_2O_3 , and (C)	
	Co/Al ₂ O ₃ .	38
5.2	XPS spectra of (a) fresh Co/Al_2O_3 , (b) spent Co/Al_2O_3 , (c)	
	fresh Co_3O_4/Al_2O_3 , and (d) spent Co_3O_4/Al_2O_3 .	39
5.3	Surface composition of cobalt-modified catalysts.	40

PAGE

F	FIGURE		PAGE	
5.4 Possible products obtained from		Possible products obtained from the catalytic dehydration		
		of bio-ethanol.		41
	5.5	(a) Liquid product distribution, and (b) Compositions of		
		hydrocarbons (wt%) obtained from using Co-modified		
		catalysts.		43
	5.6	Compositions of oxygenate compounds (wt%) found in		
		liquid product: (A) Al ₂ O ₃ , (B) Co/Al ₂ O ₃ , and		
		(C) $\operatorname{Co_3O_4/Al_2O_3}$.		45
	5.7	Compositions of Phenols (wt%) in oxygenate compounds:		
		(A) Al_2O_3 , (B) Co/Al_2O_3 , and (C) Co_3O_4/Al_2O_3 .		46
	5.8	Compositions of ketones (wt%) found in oxygenate		
		compounds (A) Al_2O_3 , (B) Co/Al_2O_3 , and (C)		
		Co_3O_4/Al_2O_3		47
	5.9	Ethanol transformation pathways using Co-modified		
		catalysts: (A) Ethanol dehydration and (B) Ethanol		
		dehydrogenation.		51
	5.10	Aromatic formation from ethylene.		51
	5.11	Reaction pathways of ethanol to pentanones.		53
	6.1	XRD pattern of (A) Al_2O_3 , (B) Fe_2O_3/Al_2O_3 , and (C)		
		Fe/Al_2O_3 .		61
	6.2	XPS spectra of (a) fresh Fe/Al ₂ O ₃ , (b) spent Fe/Al ₂ O ₃ , (c)		
		fresh Fe_2O_3/Al_2O_3 , and (d) spent Fe_2O_3/Al_2O_3 .		63
	6.3	Surface compositions of iron- and iron oxide-modified		
		alumina catalysts.		63
	6.4	(a) Liquid product distribution, and (b) Compositions of		
		oxygenate compounds (wt%) using Fe-modified catalysts.		67

xvi

FIGURE

PAGE

6.5	Carbon number distribution in oils from using Fe-modified	
	catalysts.	68
6.6	Compositions of phenols (wt%) found in oxygenate	
	compounds:(A) Al_2O_3 , (B) Fe/Al_2O_3 , and (C) Fe_2O_3/Al_2O_3 .	69
6.7	Compositions of ketones (wt%) found in oxygenate	
	compounds:(A) Al_2O_3 , (B) Fe/Al_2O_3 , and (C) Fe_2O_3/Al_2O_3 .	70
6.8	Mechanism of acetaldehyde formation.	73
6.9	Transformation of aldor species to acetone.	73
6.10	Ethanol transformation pathways from using Fe-modified	
	catalysts.	73
7.1	XRD patterns of commercial γ -Al ₂ O ₃ , Ni-, Cu-, and Pd-	
	modified catalysts.	81
7.2	XPS spectra of (a) Ni-, (b) Cu-, (c) Pd-modified catalysts.	85
7.3	Surface compositions of iron- and iron oxide-deposited	
	alumina surface.	86
7.4	Product yields obtained from using Ni-, Cu-, and Pd-	
	modified catalysts.	88
7.5	Possible products obtained from the catalytic dehydration	
	of bio-ethanol.	89
7.6	Gaseous product compositions obtained from using Ni-,	
	Cu-, and Pd-modified catalysts.	90
7.7	Liquid product distribution obtained from using Ni-, Cu-,	
	and Pd-modified catalysts.	91
7.8	Compositions of hydrocarbons obtained from using Ni-,	
	Cu-, and Pd-modified catalysts.	92
7.9	Ethylene chain growth using Ni-, Cu-, and Pd-modified	
	catalysts.	94

σ

FIGURE

7.10	Compositions of oxygenate compounds (wt%) found in		
	liquid product.	95	
7.11	Compositions of phenols (wt%) found in oxygenate		
	compounds using Ni-, Cu-, and Pd-modified catalysts.	99	
7.12	Compositions of ketones (wt%) found in oxygenate		
	compounds using Ni-, Cu-, and Pd-modified catalysts.	100	
7.13	Ethanol transformation pathways using Ni-, Cu-, and Pd-		
	modified catalysts.	104	
8.1	XRD patterns of commercial y-Al2O3, Ni-, Cu-, and Pd-		
	modified catalysts.	112	
8.2	XPS spectra of (a) fresh Fe/Al ₂ O ₃ , (b) spent Fe/Al ₂ O ₃ , (c)		
	fresh Fe_2O_3/Al_2O_3 , and (d) spent Fe_2O_3/Al_2O_3 .	113	
8.3	Surface composition of chromium-modified catalysts.	113	
8.4	Gaseous product distributions obtained from using Cr-		
	modified catalysts.	116	
8.5	Carbon number distribution in oils from using Cr-modified		
	catalysts.	117	
8.6	Liquid product distributions (wt%) from using Cr-modified		
	catalysts	117	
8.7	Ethanol transformation pathways using Cr-modified		
	catalysts.	119	
8.8	Ethylene chain growth using Cr-modified catalysts.	119	
8.9	Compositions of phenols (wt%) found in liquid products:		
	(A) Al ₂ O ₃ , (B) Cr/Al ₂ O ₃ , and (C) CrO ₃ /Al ₂ O ₃ .	120	
8.10	Compositions of ketones (wt%) found in liquid products:		
	(A) Al_2O_3 , (B) Cr/Al_2O_3 , and (C) CrO_3/Al_2O_3 .	121	
8.11	Reaction pathways of ethanol to oxygenate compounds.	123	
8.12	OH group formation over metal oxide surface.	124	

-

FIGURE			PAGE
	12		
Cl	XRD pattern of Ni-modified catalysts.		146
C2	XRD pattern of Cu-modified catalysts.		146
C3	XRD pattern of Cu-modified catalysts.	٥	147

o

o

•