CO₂ ABSORPTION: SOLUBILITY OF CO₂ IN 2–AMINO-2-METHYL-1-PROPANOL SOLVENT PROMOTED BY PIPERAZINE AND MONOETHANOLAMINE BLENDS

Mr. Chikezie Ndubuisi Nwaoha

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole

2015

I28368332

Thesis Title:	$\rm CO_2$ Absorption: Solubility of $\rm CO_2$ in 2-Amino-2-Methyl-1-
	Propanol Solvent Promoted by Piperazine and Monoethano-
	lamine Blends
By:	Chikezie Ndubuisi Nwaoha
Program:	Petroleum Technology
Thesis Advisors:	Assoc. Prof. Chintana Saiwan
	Prof. Paitoon Tontiwachwuthikul

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

...College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Chile Laum

(Assoc. Prof. Chintana Saiwan)

(Prof. Paitoon Tontiwachwuthikul)

Witipat Siemanurel

(Asst. Prof. Kitipat Siemanond)

(Dr. Teeradet Supap)

ABSTRACT

5673037063:	Petroleum Technology Program
	Chikezie Ndubuisi Nwaoha: CO ₂ Absorption: Solubility of CO ₂ in 2-
	Amino-2-Methyl-1-Propanol Solvent Promoted by Piperazine and
	Monoethanolamine Blends.
	Thesis Advisors: Assoc. Prof. Chintana Saiwan, and Prof. Paitoon
	Tontiwachwuthikul 147 pp.
Keywords:	Carbon dioxide solubility/ 2-amino-2-methyl-1-propanol/
	Piperazine/ Absorption working capacity/ Monoethanolamine/
	ProMax [®] 3.2/ Reboiler duty

This research work investigates the solubility data of carbon dioxide (CO_2) in a novel ternary blend of aqueous 2-amino-2-methyl-1-propanol (AMP) promoted by piperazine (PZ) and monoethanolamine (MEA) blends have been experimentally analysed at 20 °C, 40 °C, and 60 °C at CO₂ partial pressures between 2 kPa and 100 kPa. At 40 °C and 93.93 kPa CO₂ partial pressure, the concentrations of PZ and MEA promoters were varied between 0.5 M - 1 M and 2 M - 4 M, respectively, while the AMP concentration was kept at 2 M. The various concentrations of the ternary blend possessed superiority in both the equilibrium CO₂ loading (6.9 % to 19 %) and absorption working capacity (13.8 % to 48.3 %) compared to the conventional 5 M MEA. The effects of MEA and PZ concentrations, and H₂O-Amine molar ratio in terms of H₂O/PZ was also studied, and the solvent combination of 2 M AMP - 0.5 M PZ - 3 M MEA was selected for further equilibrium CO₂ loading analysis considering its very minimal potential of forming solid precipitates. The results were reported as a function of CO₂ partial pressures at the investigated temperatures. In addition, the energy penalty during regeneration was predicted using a validated ProMax[®] 3.2 CO₂ capture plant simulation. The simulation results indicated that the ternary blend solutions higher than 5 M had energy reductions between 5.3 % - 26.3 % compared to 5 M MEA (at the same condition).

บทคัดย่อ

ชิกเกะซี อัวฮาร์: ค่าการละลายของแก๊สคาร์บอนไดออกไซด์ในดัวทำละลาย 2-อะมิโน-2-เมทิล-1-โพรพานอล กระตุ้นโดยสารผสมระหว่างไพเปอราซีนและมอนอเอทาโนลามีน (CO₂ Absorption: Solubility of CO₂ in 2-Amino-2-Methyl-1-Propanol Solvent Promoted by Piperazine and Monoethanolamine Blends) รศ.คร. จินตนา สายวรรณ์ และ ศ.คร. ไพฑูรย์ ตันดิ-เวชวุฒิกุล

ในการวิจัยนี้ได้มีการพิสจน์ข้อมูลด้านการละลายของแก๊สคาร์บอนไดออกไซด์ ในสาร ละลาย ผสม 2-อะมิโน-2-เมทิล-1-โพรพานอล กระตุ้นโดยไพเปอราซีนและมอนอเอทาโนลามีน โดยการทดลองการวัดค่าการละลายดังกล่าวได้มีการวิเคราะห์ที่อุณหภูมิ 20 40 และ 60 องศา เซลเซียส ที่ความย่อยระหว่าง 2 กิโลพาสคัล และ 100 กิโลพาสคัล โดยแปรเปลี่ยนค่าความเข้มข้น ของไพเปอราซีนที่ 0.5 - 1 โมลาร์ และมอนอเอทาโนลามีนที่ 2 – 4 โมลาร์ ในขณะที่ความเข้มข้น ของ 2-อะมิโน-2-เมทิล-1-โพรพานอล อยู่ที่ 2 โมลาร์ ความเข้มข้นที่แปรเปลี่ยนไปของสารผสมทั้ง สามทำให้ที่มีสมบัติบางประการที่ดีขึ้น เช่น ในเชิงสมบัติในการดักจับแก๊สคาร์บอนไดออกไซด์ (CO, loading) เพิ่มขึ้นจาก 6.9 เป็น 19 เปอร์เซ็นต์ และสมบัติความจุในการดูคซับ (absorption working capacity) เพิ่มขึ้นจาก 13.8 เป็น 48.3 เปอร์เซ็นต์ เมื่อเปรียบเทียบกับมอนอเอทาโนลามีน ที่ความเข้มข้น 5 โมลาร์ ในงานวิจัยนี้ได้มีการศึกษาอิทธิพลของความเข้มข้นของมอนอเอทาโนลีน และเพพพาลาซีนในอัตราส่วนระหว่างน้ำต่อไพเปอราซีนและน้ำต่อ 2-อะมิโน-2-เมทิล-1-โพรพา ้นอลที่มีผลต่อการเกิดตะกอนของของแข็ง ซึ่งผลปรากฏว่าความเข้มข้นของสารละลายผสมทั้งสาม ที่ 2 โมลาของ 2-อะมิโน-2-เมทิล-1-โพรพานอล 0.5 โมลาร์ของไพเปอราซีนและ 3 โมลาร์ของ มอนอเอทาโนลามีนถูกใช้เป็นตัวซึ้วัดสมบัติในการดักงับแก๊สคาร์บอนไดออกไซด์ (CO, loading) เนื่องจาก ณ สภาวะดังกล่าวส่งผลต่อการตกตะกอนของของแข็งในระบบน้อยที่สุด ผลของ งานวิจัยนี้ได้เสนอในรูปแบบของความดันย่อยของแก๊สการ์บอนไดออกไซด์ที่อุณหภูมิที่ต่างๆ ใช้ในการจำลองการคักจับแก๊ส โปรแกรมโปรแมกซ์เวอร์ชัน 3.2 (ProMax[™] 3.2) ้คาร์บอนไดออกไซด์เพื่อทำนายผลของพลังงานที่ต้องการใช้ในส่วนนำสารละลายผสมกลับมาใช้ ใหม่ ผลในแง่ของแบบจำลองระบุว่าสารละลายผสมทั้งสามที่ความเข้มข้นมากกว่า 5 โมลาร์ สามารถลดพลังงานในส่วนของการนำสารละลายกลับใช้ไหม่ได้ 5.3 ถึง 26.3 เปอร์เซ็นต์ เมื่อ เปรียบเทียบกับความเข้มข้น 5 โมลาร์ของมอนอเอทาโนลามีนที่สภาวะเดียวกัน

ACKNOWLEDGEMENTS

First of all, I would like to thank my thesis advisors Assoc. Prof. Chintana Saiwan and Prof. Paitoon Tontiwachwuthikul for the great opportunity offered to me as a member of the research group and to learn about CO₂ capture using potential new solvent blends. I am also grateful to Dr. Teeradet Supap who was part of our research meetings for his valuable contributions from the start to finish of my research work. Without their support, it would have been near impossible to achieve all the experimental and simulation results presented in this work. Their follow-up and motivation in this research project is highly appreciated.

I am grateful for the partial scholarship and partial funding of the thesis work provided by the Petroleum and Petrochemical College.

My sincere appreciation also goes to some Engineers of Bryan Research and Engineering, USA (BR&E), licensors of ProMax[®] for their constant availability and constructive discussions during the period of simulation work: Mr. Martin D. Pieronek, Mr. Peter Krouskop and Mr. Jared Peterson.

I also thank Asst. Prof. Kitipat Siemanond, a member of my thesis committee for his participation and interest in appraising my research work.

I also wish to thank all my colleagues (MSc and PhD students) who contributed in one way or the other towards the achievement of this research work.

I also extend profound gratitude to all the staffs of the Petroleum and Petrochemical College for their entire support during the period of my studies and research.

Finally, my heartfelt thanks goes to my entire family members, my father Chief Edison Nwaoha, my mother Mrs. Josephine Nwaoha and step-mother Dame Eunice Nwaoha, my sisters Mrs. Chioma Nwofor and Mrs. Ijeoma Nwankwo, my brothers Mr. Kelechi Nwaoha and Dr. Iheanyi Nwaoha for their wonderful encouragement, love and prayers which sustained me during the tough periods of my studies and research work. I also extend my appreciation to my in-laws Prof. Okey Nwofor and Mr. Tochukwu Augustine Nwankwo for their backing and assistance.

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	V
Table of Contents	vi
List of Tables	x
List of Figures	xi
Abbreviations	xv
List of Symbols	xvi

CHAPTER

I	INTRODUCTION	1
II	THEORETICAL BACKGROUND	
	AND LITERATURE REVIEW	4
	2.1 Sources of CO ₂ Capture	4
	2.1.1 Post-combustion Capture	7
	2.1.2 Pre-combustion Capture	8
	2.1.3 Oxyfuel Combustion	8
	2.1.4 Industrial Separation	8
	2.2 CO ₂ Separation and Capture Technologies	10
	2.2.1 Absorption Process	11
	2.2.2 Adsorption Process	12
	2.2.3 Cryogenic Process	12
	2.2.4 Membrane	17
	2.3 Chemical Absorption	15
	2.3.1 Alkanolamine Solutions	16

PA	GE
----	----

	2.3.2 Sterically Hindered Amines	24
	2.3.3 Polyamines	25
	2.3.4 Blended/Mixed Amines	29
	2.3.5 Hybrid Solvents	32
	2.4 Amine Problems	32
	2.4.1 Degradation	32
	2.4.2 Vaporization Losses	33
	2.4.3 Solvent Reactivity	34
	2.4.4 Corrosion	34
	2.4.5 Environmental Impact	35
	2.4.6 Regeneration Energy	35
	2.5 Related Works	37
III	EXPERIMENTAL	40
	3.1 Materials and Equipment	40
	3.1 Materials and Equipment3.1.1 Materials	40 40
	3.1 Materials and Equipment3.1.1 Materials3.1.2 Equipment	40 40 40
	3.1 Materials and Equipment3.1.1 Materials3.1.2 Equipment3.1.3 Software	40 40 40 41
	 3.1 Materials and Equipment 3.1.1 Materials 3.1.2 Equipment 3.1.3 Software 3.2 Experimental Procedures 	40 40 40 41 41
	 3.1 Materials and Equipment 3.1.1 Materials 3.1.2 Equipment 3.1.3 Software 3.2 Experimental Procedures 3.2.1 Experimental Set-up 	40 40 40 41 41 41
	 3.1 Materials and Equipment 3.1.1 Materials 3.1.2 Equipment 3.1.3 Software 3.2 Experimental Procedures 3.2.1 Experimental Set-up 3.2.2 Solution Preparation Analysis 	40 40 40 41 41 41 41 43
	 3.1 Materials and Equipment 3.1.1 Materials 3.1.2 Equipment 3.1.3 Software 3.2 Experimental Procedures 3.2.1 Experimental Set-up 3.2.2 Solution Preparation Analysis 3.2.3 Solvent Concentration Analysis 	40 40 40 41 41 41 41 43 45
	 3.1 Materials and Equipment 3.1.1 Materials 3.1.2 Equipment 3.1.3 Software 3.2 Experimental Procedures 3.2.1 Experimental Set-up 3.2.2 Solution Preparation Analysis 3.2.3 Solvent Concentration Analysis 3.2.4 Hydrochloric Acid Preparation and Standardization 	40 40 40 41 41 41 41 43 45 46
	 3.1 Materials and Equipment 3.1.1 Materials 3.1.2 Equipment 3.1.3 Software 3.2 Experimental Procedures 3.2.1 Experimental Set-up 3.2.2 Solution Preparation Analysis 3.2.3 Solvent Concentration Analysis 3.2.4 Hydrochloric Acid Preparation and Standardization 3.2.5 CO₂ Loading Analysis αCO₂ 	40 40 41 41 41 41 43 45 46 47
	 3.1 Materials and Equipment 3.1.1 Materials 3.1.2 Equipment 3.1.3 Software 3.2 Experimental Procedures 3.2.1 Experimental Set-up 3.2.2 Solution Preparation Analysis 3.2.3 Solvent Concentration Analysis 3.2.4 Hydrochloric Acid Preparation and Standardization 3.2.5 CO₂ Loading Analysis αCO₂ 3.2.6 Displacement Solution Preparation 	40 40 41 41 41 41 43 45 46 47 49
IV	 3.1 Materials and Equipment 3.1.1 Materials 3.1.2 Equipment 3.1.3 Software 3.2 Experimental Procedures 3.2.1 Experimental Set-up 3.2.2 Solution Preparation Analysis 3.2.3 Solvent Concentration Analysis 3.2.4 Hydrochloric Acid Preparation and Standardization 3.2.5 CO₂ Loading Analysis αCO₂ 3.2.6 Displacement Solution Preparation 	40 40 40 41 41 41 41 43 45 46 47 49 51
IV	 3.1 Materials and Equipment 3.1.1 Materials 3.1.2 Equipment 3.1.3 Software 3.2 Experimental Procedures 3.2.1 Experimental Set-up 3.2.2 Solution Preparation Analysis 3.2.3 Solvent Concentration Analysis 3.2.4 Hydrochloric Acid Preparation and Standardization 3.2.5 CO₂ Loading Analysis αCO₂ 3.2.6 Displacement Solution Preparation RESULTS AND DISCUSSION 4.1 Validation of Experimental Set-up 	40 40 40 41 41 41 41 43 45 46 47 49 51 51

 \mathbf{V}

2	4.2 CO ₂ Solubility and Absorption Working Capacity in	
	Single Solvents	52
	4.2.1 CO ₂ Solubility in AMP	53
	4.2.2 CO ₂ Solubility in PZ	54
	4.2.3 CO ₂ Solubility in MEA	55
4	4.3 CO ₂ Solubility in AMP-PZ Binary Blends	57
4	4.4 AMP-PZ-MEA Temary Blends	59
	4.4.1 Chemical Equilibria of AMP-PZ-MEA	59
	4.4.2 CO ₂ Solubility in AMP-PZ-MEA Ternary Blends	61
4	4.5 CO ₂ Solubility in Novel 2 M AMP - 0.5 M PZ -	
	3 M MEA	69
	4.6 CO ₂ Capture Plant Simulation	71
	4.6.1 Simulation using ProMax 3.2	71
	4.6.2 The MEA Base Case and Validation	72
	4.6.3 AMP - PZ - MEA vs MEA Simulation	76
	CONCLUSIONS AND RECOMENDATIONS	80
	5.1 Conclusions	80
	5.2 Recommendations	82
	REFERENCES	84
	APPENDICES	102
	Appendix A Amine Solution Preparation Calculation	102
	Appendix B Hydrochloric (HCl) Acid Preparation and	
	Standardization	105
	Appendix C Amine Solution Concentration Calculation	108
	Appendix D Carbon Dioxide (CO ₂) Loading Calculation	112
	Appendix E Carbon Dioxide (CO ₂) Partial Pressure	
	Calculation	114

CHAPTER

PAGE

Appendix F H ₂ O/PZ Molar Ratio Calculation	116
Appendix G Process Simulation Result Datas of Base Case	
(5 M MEA) and the Ternary Blends	119
Appendix H Equilibrium Curve and Reproducibility of	
Experimental Results	135
Appendix I Reducing Sources of Error during Experimental	
Analysis	138
Appendix J CO ₂ Solubility in AMP – PZ – DETA – MEA	
Quaternary (Quad-Solvent) Blends	142
CURRICIU UM VITAF	147

ix

LIST OF TABLES

TABLE

2.1	Merits and de-merits of CO ₂ capture sources	9
2.2	Comparison of CO ₂ separation and capture technologies	14
2.3	Most common types of primary amines	19
2.4	Most common types of secondary amines	20
2.5	Most common types of tertiary amines	21
2.6	Properties of alkanolamines	23
2.7	Sterically hindered amines	25
2.8	Skeletal structure of other polyamines	28
2.9	Several proposed CO ₂ capture process configurations	37
3.1	Properties of AMP, PZ and MEA	44
4.1	Visual and tests observations for the different AMP-PZ-	
	MEA concentrations at 40 $^{\circ}$ C and 93.93 kPa CO ₂ partial	
	pressure before and after CO ₂ loading	63
4.2	Flue gas composition	73
4.3	Base case validation for 5 M (30 wt %) MEA	75
4.4	Cyclic capacity prediction and comparison of the amine	
	solution using ProMax 3.2	77
A 1	Properties of AMP, PZ and MEA	102
BI	Required properties of HCl and Na ₂ CO ₃	105
Jl	Skeletal structure of other DETA	142

LIST OF FIGURES

FIGURE

2.1	Annual CO ₂ emissions by fuel type.	4
2.2	2012 CO_2 emissions by sector.	5
2.3	Schematic of a carbon capture storage and utilization	
	System.	6
2.4	Sources of CO ₂ capture.	7
2.5	Schematic of CO_2 separation and capture technologies.	11
2.6	Simplified membrane unit.	13
2.7	Typical process flow diagram of CO_2 chemical absorption.	16
2.8	Several routes to an improved solvent mixture for CO_2	
	capture.	38
3.1	Diagram of the experimental set-up.	43
3.2	Pure 2-amino-2-methyl-1-propanol, AMP (99 wt%).	45
3.3	Schematic of chittick apparatus.	49
4.1	Results of validation using 5 M (30 wt%) MEA vs Shen &	
	Li, 1992; 3.1 M (30 wt%) DEA vs Seo & Hong, 1996; and	
	3 M AMP vs Roberts & Mather, 1988 at 40 °C.	51
4.2	Precipitation of rich solution of 4 M AMP after it was	
	cooled to 20 °C for over 200 hours.	53
4.3	CO2 solubility (mol CO2/mol amine) and absorption	
	working capacity (aWC, mol CO_2/L of solution) of $2-4$	
	M AMP at 40 °C and 93.93 kPa CO ₂ partial pressure.	54
4.4	Solubility of CO_2 (mol CO_2 /mol amine) and absorption working	
	capacity (aWC, mol CO ₂ /L amine solution) in different	
	concentrations of PZ at temperature and CO_2 partial pressure of	
	40 °C and 93.93 kPa respectively.	55

FIGURE

4.5	Non-precipitation of rich solution of 16.5 M MEA (99	
	wt %) after it was cooled at 20 $^{\circ}$ C for over 480 hours.	56
4.6	Solubility of CO_2 (mol CO_2 /mol amine) and absorption	
	working capacity (aWC, mol CO ₂ /L amine solution) in	
	different MEA concentrations at temperature and CO_2	
	partial pressure of 40 $^{\circ}$ C and 93.93 kPa respectively.	56
4.7	CO_2 Solubility (mol CO_2 /mol amine) and absorption	
	working capacity (aWC, mol CO2/L amine solution) of	
	AMP – PZ blends at 40 $^{\circ}C$ and 93.93 kPa CO ₂ partial	
	pressure.	58
4.8	Rich solution of 3 M AMP – 1.5 M PZ it was cooled at 20	
	°C for over 480 hours.	58
4.9	CO_2 solubility (mol CO_2 /mol amine) and absorption	
	working capacity (aWC, mol CO2/L amine solution) of	
	different concentrations of ternary AMP-PZ-MEA blends	
	at 40 °C and 93.93 kPa CO ₂ partial pressure.	62
4.10	Non-precipitation of rich solution of the highly	
	concentrated (6 $-$ 7 M) ternary blends after they were	
	cooled at 20 °C for over 480 hours.	64
4.11	Water-Amine molar ratios in terms of H ₂ O/PZ.	66
4.12	Equilibrium CO ₂ loading in 2 M AMP – 0.5 M PZ – 3 M	
	MEA.	70
4.13	A typical CO ₂ capture process configuration.	73
4.14	Temperature profile of the base case (30 wt% MEA)	
	Simulation.	76
4.15	Reboiler duty comparisons between the base 5 M MEA, 3	
	M AMP – 1.5 M PZ and the ternary AMP-PZ-MEA	
	blends.	78

FIGURE

5.1	Proposed Individual solvent selection and their	
	concentration in tri-solvent blends.	81
Gl	Absorber process data information's for the simulation.	119
G2a	Absorber stage data summary and results for the base case	
	simulation.	120
G2b	Absorber stage data hardware general results for the base	
	case simulation.	121
G2c	Absorber stage data structured hardware results for the	
	base case simulation.	122
G3	Absorber convergence specification.	123
G4	Stripper process data information's for the simulation.	123
G5a	Stripper Stage Data Summary and Results for the base case	
	simulation.	124
G5b	Stripper stage data hardware general results for the base	
	case simulation.	125
G5c	Stripper stage data structured hardware results for the base	
	case simulation.	126
G6	Stripper specifications for the simulations.	127
G7	Stripper convergence specification for the simulations.	127
G8	Simulation results for the base case 5 M MEA.	128
G9	Simulation results for 2 M AMP – 0.5 M PZ – 2.5 M	
	MEA.	129
G10	Simulation results for 2 M AMP – 0.5 M PZ – 3 M MEA.	130
GII	Simulation results for 2 M AMP – 1 M PZ – 2 M MEA.	131
G12	Simulation results for 2 M AMP – 1 M PZ – 2.5 M MEA.	132
G13	Simulation results for 2 M AMP – 1 M PZ – 3 M MEA.	133
G14	Simulation results for 2 M AMP - 1 M PZ - 4 M MEA.	134
Hl	CO_2 Equilibrium graph for 2 M AMP – 0.5 M PZ – 3 M	
	MEA at 25 – 60 °C and 100 % CO ₂ .	135

FIGURE

H2	Reproducibility results of 2 M AMP – 0.5 M PZ – 3 M	
	MEA at 25 – 60 °C and 100 % CO ₂ .	136
I1	Sources of error during experimental analysis.	138
I2	CO_2 equilibrium graph for 2 M AMP – 0.5 M PZ – 3 M	
	MEA at $25 - 60$ °C and 100% CO ₂ .	139
J1	CO ₂ solubility (mol CO ₂ /mol amine) and absorption	
	working capacity (aWC, mol CO ₂ /L amine solution) of	
	different concentrations of quartenary AMP-PZ-DETA-	
	MEA Blends at 40 $^{\circ}$ C and 93.93 kPa CO ₂ partial pressure	
	compared to 5 M MEA, 3 M AMP $- 1.5$ M PZ and AMP-	
	PZ-MEA ternary blends.	143
J2	Rich solution of 2 M AMP $- 0.5$ M PZ $- 1$ M DETA $- 1.5$	
	M MEA showing the color change.	139
J3	Rich solution of 1.5 M AMP – 0.5 M PZ – 1.5 M DETA –	
	1.5 M MEA showing the color change.	145

ABBREVIATIONS

AAD =		Absolute average deviation
AEP	=	N-2-aminoethyl-piperazine
AMP	=	2-amino-2-methyl-1-propanol
aWC	=	Absorption working capacity
CC	=	Cyclic capacity
DEA	=	Diethanolamine
DETA	=	Diethylenetriamine
DGA	=	Diglycolamine
DIPA	=	Diisopropanolamine
EDA	=	Ethylenediamine
E-ELR	=	Electrolytic extended long range
E-NRTL	, =	Electrolytic non-random two liquid
HSS	=	Heat stable salts
L/G	=	Liquid/gas flow rate ratio
MEA	=	Monoethanolamine
MAPA	=	3-methylaminopropylamine
MDEA	=	Methyldiethanolamine
MSDS	=	Material safety data sheet
PE	=	2-piperidineethanol
PZ	=	Piperazine
RE	=	Regeneration efficiency
TEPA	=	Tetraethylenepentamine

TETA = Triethylenetetramine

LIST OF SYMBOLS

Ar	=	Argon
CO_2	=	Carbon dioxide
COS	=	Carbonyl sulphide
CS_2	=	Carbon disulphide
H ₂ O	=	Water
H_2S	=	Hydrogen sulphide
HCI	=	Hydrochloric acid
М	=	mol/L or kmol/m ³
Ν	=	Amino group
N ₂	=	Nitrogen
Na ₂ CO ₃	-	Sodium carbonate
NO _x	=	Nitrogen oxides
O ₂	=	Oxygen
OH-	Ξ	Hydroxyl group
P_{CO2}	=	Partial pressure of CO ₂ , kPa
Q _{reg}	=	Energy of regeneration
Q_{sen}	=	Sensible heat
Q_{dcs}	=	Heat of desorption
Q_{vap}	=	Latent heat of vaporization
SO_x	=	Sulphur oxides
SO_2	=	Sulphur dioxide

Greek Letters

$$\alpha CO_2 = CO_2$$
 loading, mol CO_2 /mol amine