REFERENCES

- Aboudheira, A., Tontiwachwuthikul, P., Chakma, A., and Idem, R. (2003) Kinetics of the reactive absorption of carbon dioxide in high CO₂-loaded, concentrated aqueous monoethanolamine solutions. <u>Chemical Engineering</u> Science, 50, 1071–1079.
- Aaron, D. and Tsouris, C. (2005) Separation of CO₂ from flue gas: A review. <u>Separation Science and Technology</u>, 40(1-3), 321-348.
- Abu-Zahra, M.R.M., Schneiders, L.H.J., Niederer, J.P.M., Feron, P.H.M., and Versteeg, G.F. (2007) CO₂ capture from power plants: Part I. A parametric study of the technical performance based on monoethanolamine. <u>International Journal of Greenhouse Gas Control</u>, 1(1), 37-46.
- Adeosun, A. and Abu-Zahra, M.R.M. (2013) Evaluation of amine-blend solvent systems for CO₂ post-combustion capture applications. <u>Energy Procedia</u>, 37, 211-218.
- Adeosun, A., El Hadri, N., Goetheer, E., and Abu-Zahra, M.R.M. (2013) Absorption of CO₂ by amine blends solution: An experimental evaluation. <u>International</u> <u>Journal of Engineering and Science</u>, 3(9), 12-23.
- Ali, B.S. and Aroua, M.K. (2004) Effect of piperazine on CO₂ loading in aqueous solutions of MDEA at low pressure. <u>International Journal of</u> <u>Thermophysics</u>, 25(6), 1863-1870.
- Alie, C., Backham, L., Croiset, E., and Douglas, P.L. (2005) Simulation of CO₂ capture using MEA scrubbing: A flow sheet decomposition method. <u>Energy</u> <u>Conversion and Management</u>, 46, 475–487.
- Aronu, U.E., Hoff, K.A., and Svendsen, H.F. (2011) CO₂ Capture solvent selection by combined absorption-desorption analysis. <u>Chemical Engineering</u> <u>Research and Design</u>, 89, 1197–1203.
- Association of Official Agricultural Chemists. (1945). <u>Official and Tentative</u> <u>Methods of Analysis</u>. 6th ed. (pp. 208-209; 888-892). Washington D.C.: AOAC.

- Austgen, G.M., Rochelle, G, T., and Chen, C-C. (1991) Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems. 2. Representation of H₂S and CO₂ solubility in aqueous MDEA and CO₂ solubility in aqueous mixtures of MDEA with MEA or DEA. <u>Industrial & Engineering Chemistry</u> <u>Research</u>, 30(3), 543-555.
- Balsora, H.K. and Mondal, M.K. (2011) Solubility of CO₂ in an aqueous blend of diethanolamine and trisodium phosphate. <u>Journal of Chemical &</u> <u>Engineering Data</u>, 56, 4691–4695.
- Barth, D., Tondre, C., and Delpeuch, J.J. (1984) Kinetics and Mechanism of the reactions of carbon dioxide with alkanolamines: A discussion concerning the cases of MDEA and DEA. <u>Chemical Engineering Science</u>, 39, 1753-1757.
- Benamor, A., Baharun, A., Noor, U.Z.M., Aroua, M.K., and Aroussi, A. (2012, March 5-7) Absorption of carbon dioxide into piperazine activated diethanolamine solutions. Paper presented at <u>3rd International Gas</u> <u>Processing Symposium</u>, Doha, Qatar.
- Bishnoi, S. (2000) CO₂ Absorption and solution equilibrium in piperazine activated methyldiethanolamine. Ph.D. Dissertation, University of Texas, Texas, USA.
- Bishnoi, S. and Rochelle, G.T. (2000) Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility. <u>Chemical</u> <u>Engineering Science</u>, 55, 5531–5543.
- Blauwhoff, P.M.M., Versteeg, G.F., and van Swaaij, W.P.M. (1984) A study on the reaction between CO₂, and alkanolamines in aqueous solutions. <u>Chemical</u> <u>Engineering Science</u>. 39, 207-225.

Bottoms, R.R. (1930) U.S. Patent 1783901 A.

- Brúder, P. and Svendsen, H.F. (2012) Capacity and kinetics of solvents for postcombustion CO₂ capture. <u>Energy Procedia</u>, 23, 45 – 54.
- Brúder, P., Grimstvedt, A., Mejdell, T., and Svendsen, H.F. (2011) CO₂ capture into aqueous solutions of piperazine activated 2-amino-2-methyl-1-propanol. <u>Chemical Engineering Science</u>, 66, 6193–6198.

- Bryan Research & Engineering (BR&E). "Amine Sweetening." BRE. 2013. 23 June 2014 <<u>http://www.bre.com/</u>>
- Caplow, M. (1968) Kinetics of carbamate formation and breakdown. Journal of the <u>American Chemical Society</u>, 90(24), 6795 – 6803.
- Chakma, A. (1999) Formulated solvents: New opportunities for energy efficient separation of acid gases. <u>Energy Sources</u>, 21, 51-62.
- Chakravarty, T., Phukan, U.K., and Weiland, R.H. (1985) Reaction of acid gases with mixtures of amines. <u>Chemical Engineering Progress</u>, 81, 32-36.
- Chen, C.C. and Evans, L.B. (1986) A local composition model for the excess gibbs energy of aqueous electrolyte systems. <u>AIChE Journal</u>, 32(3), 444-454.
- Cheng, H-H., Lai, C-C., and Tan, C-S. (2013) Thermal regeneration of alkanolamine solutions in a rotating packed Bed. <u>International Journal of Greenhouse Gas</u> <u>Control</u>, 16, 206–216.
- Choi, W-J., Seo, J-B., Jang, S-Y., Jung, J-H., and Oh, K-J. (2009) Removal characteristics of CO₂ using aqueous MEA/AMP solutions in the absorption and regeneration process. <u>Journal of Environmental Sciences</u>, 21, 907–913.
- Chowdhury, F.A., Yamada, H., Higashii, T., Goto, K., and Onoda, M. (2013) CO₂ capture by tertiary amine absorbents: A performance comparison study. <u>Industrial & Engineering Chemistry Research</u>, 52, 8323–8331.
- Chowdhury, F.A., Okabe, H., Shimizu, S., Onoda, M., and Fujioka, Y. (2009) Development of novel tertiary amine absorbents for CO₂ capture. <u>Energy</u> <u>Procedia</u>, 1, 1241–1248.
- Closmann, F., Nguyen, T., and Rochelle, G.T. (2009) MDEA/piperazine as a solvent for CO₂ capture. <u>Energy Procedia</u>, 1, 1351–1357.
- Conway, W., Fernandes, D., Beyad, Y., Burns, R., Lawrance, G., Puxty, G., and Maeder, M. (2013) Reactions of CO₂ with aqueous piperazine solutions: Formation and decomposition of mono- and dicarbamic acids/carbamates of piperazine at 25.0 °C. <u>The Journal of Physical Chemistry A</u>, 117, 806-813.
- Crooks, J. E. and Donnellan, J.P. (1990) Kinetics of the reaction between carbon dioxide and tertiary amines. <u>The Journal of Organic Chemistry</u>, 55, 1372.

- Crooks, J.E. and Donnellan, J.P. (1989) Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution. <u>Journal of the</u> <u>Chemical Society, Perkin Transactions 2</u>, 4, 331–333.
- Dang, H. and Rochelle, G.T. (2003) CO₂ absorption rate and solubility in monoethanolamine/piperazine/water. <u>Separation Science and Technology</u>, 38(2), 337-357.
- Danckwerts, P.V. (1979) The reaction of CO₂ with ethanolamines. <u>Chemical</u> <u>Engineering Science</u>, 34, 443–446.
- da Silva, E.F. and Svendsen, H.F. (2004) Ab initio study of the reaction of carbamate formation from CO₂ and alkanolamines. <u>Industrial & Engineering</u> <u>Chemistry Research</u>, 43, 3413–3418.
- Dash, S.K., Samanta, A.N., and Bandyopadhyay, S.S. (2014) Simulation and parametric study of post combustion CO₂ capture process using (AMP + PZ) blended solvent. <u>International Journal of Greenhouse Gas Control</u>, 21, 130–139.
- Dash, S.K. and Bandyopadhyay, S.S. (2013) Carbon dioxide capture: Absorption of carbon dioxide in piperazine activated concentrated aqueous 2-amino-2methyl-1-propanol. Journal of Clean Energy Technologies, 1(3), 184 – 188.
- Davis, J. (2009) Thermal degradation of aqueous amines used for carbon dioxide capture. Ph.D. Dissertation, University of Texas, Texas, USA.
- Dawodu, O.F. and Meisen, A. (1994) Solubility of carbon dioxide in aqueous mixtures of alkanolamines. <u>Journal of Chemical & Engineering Data</u>, 39, 548-552.
- Dell'Era, C., Uusi-Kyyny, P., Pokki, J-P., Pakkanen, M., and Alopacus, V. (2010)
 Solubility of carbon dioxide in aqueous solutions of diisopropanolamine and methyldiethanolamine. Fluid Phase Equilibria, 293, 101–109.
- Derks, P.W.J., Hogendoorn, J.A., and Versteeg, G.F. (2010) Experimental and theoretical study of the solubility of carbon dioxide in aqueous blends of piperazine and N-methyldiethanolamine. <u>The Journal of Chemical</u> <u>Thermodynamics</u>, 42, 151–163.

- Derks, P.W.J., Kleingeld, C., van Aken, C., Hogendoorn, J.A., and Versteeg, G.F. (2006) Kinetics of absorption of carbon dioxide in aqueous piperazine solutions. <u>Chemical Engineering Science</u>, 61, 6837–6854.
- Desideri, U. and Paolucci, A. (1999). Performance modeling of a carbon dioxide removal system for power plant. <u>Energy Conversion & Management</u>, 40(18), 1899–1915.
- Dey, A. and Aroonwilas, A. (2009) CO₂ absorption into MEA-AMP blend: Mass transfer and absorber height index. <u>Energy Procedia</u>, 1, 211–215.
- Donaldson, T. L. and Nguyen Y. N. (1980) Carbon dioxide reaction kinetics and transport in aqueous amine membranes. <u>Industrial & Engineering Chemistry</u> <u>Fundamentals</u>, 19, 260 - 266.
- Du, Y., Li, L., Namjoshi, O., Voice, A.K., Fine, N.A., Rochelle, G.T. (2013) Aqueous piperazine/N-(2-aminoethyl)piperazine for CO₂ capture. <u>Energy</u> <u>Procedia</u>, 37, 1621-1638.
- Dugas, R. and Rochelle, G.T. (2009) Absorption and desorption rates of carbon dioxide with monoethanolamine and piperazine. <u>Energy Procedia</u>, 1, 1163– 1169.
- Erik, L. (2007, October) Aspen HYSYS simulation of CO₂ removal by amine absorption from a gas based power plant. Paper presented at <u>SIMS2007</u> <u>Conference</u>, Gøteborg, Norway.
- Ermatchkov, V. and Maurer, G. (2011) Solubility of carbon dioxide in aqueous solutions of N-methyldiethanolamine and piperazine: Prediction and correlation. <u>Fluid Phase Equilibria</u>, 302, 338–346.
- Ermatchkov, V., Kamps, A. P-S., and Maurer, G. (2003) Chemical equilibrium constants for the formation of carbamates in (carbon dioxide + piperazine + water) from ¹H-NMR-spectroscopy. <u>The Journal of</u> <u>Chemical Thermodynamics.</u>, 35, 1277–1289.
- Esmaeili, H. and Roozbehani, B. (2014) Pilot-scale experiments for post-combustion CO₂ capture from gas fired power plants with a novel solvent. <u>International Journal of Greenhouse Gas Control</u>, 30, 212–215.

- Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H., and Srivastava, R.D. (2008) Advances in CO₂ capture technology—The U.S. Department of Energy's carbon sequestration program. <u>International Journal of Greenhouse Gas</u> <u>Control</u>, 2, 9–20.
- Filburn, T., Helble, J.J., and Weiss, R.A. (2005) Development of supported ethanolamines and modified ethanolamines for CO₂ capture. <u>Industrial &</u> <u>Engineering Chemistry Research</u>, 44, 1542-1546.
- Freeman, S.A., Chen, X., Nguyen, T., Rafique, H., Xu, Q., and Rochelle, G.T. (2013) Piperazine/N-methylpiperazine/N,N'-dimethylpiperazine as an aqueous solvent for carbon dioxide capture. <u>Oil & Gas Science and Technology</u> – <u>Rev. IFP Energies Nouvelles</u>, 1-12.
- Freeman, S.A., (2011) Thermal degradation and oxidation of aqueous piperazine for carbon dioxide capture. Ph.D. Dissertation, University of Texas, Texas, USA.
- Freeman, S.A., Davis, J., and Rochelle, G.T. (2010a) Degradation of aqueous piperazine in carbon dioxide capture. <u>International Journal of Greenhouse</u> <u>Gas Control</u>, 4, 756–761.
- Freeman, S.A., Dugas, R., Wagener, D.D., Nguyen, T., and Rochelle, G.T. (2010b) Carbon dioxide capture with concentrated aqueous piperazine. <u>International</u> <u>Journal of Greenhouse Gas Control</u>, 4, 119–124.
- Freeman, S.S., Dugas, R., Wagener, D.D.V., Nguyen, T., and Rochelle, G.T. (2009) Carbon dioxide capture with concentrated, aqueous piperazine. <u>Energy</u> <u>Procedia</u>, 1, 1489–1496.
- Gelowitz, D., Supap, T., Abdulaziz, N., Sema. T., Idem, R., and Tontiwachwuthikul,
 P. (2013) Post-combustion CO₂ capture: pilot plant operating issues. <u>Carbon</u> <u>Management</u>, 4(2), 1-17.
- Gao, H., Zhou, L., Liang, Z.H., Idem, R., Fu, K., Sema, T., and Tontiwachwuthikul,
 P. (2014) Comparative studies of heat duty and total equivalent work
 of a new heat pump distillation with split flow process, conventional split
 flow process, and conventional baseline process for CO₂ capture using
 monoethanolamine. International Journal of Greenhouse Gas Control, 24, 87–97.

- Gas Processors Suppliers Association (GPSA). (2004) <u>Engineering Data Book.</u> 12th ed. Tulsa: GPSA.
- Gjernes, E., Helgesen, L.I., and Maree, Y. (2013) Health and environmental impact of amine based post combustion CO₂ capture. <u>Energy Procedia</u>, 37, 735– 742.
- Glasscock, D.A., Critchfield, J. E. and Rochelle, G.T. (1991) CO₂ absorption/desorption in mixtures of methyldiethanolamine with monoethanolamine or diethanolamine. <u>Chemical Engineering Science</u>, 46, 2829-2845.
- Gupta, M., da Silva, F, E., Hartono, A., and Svendsen, H.F. (2013, September)
 Theoretical calculation of enthalpy of reactions involved in PZ-CO₂-H₂O
 system at infinite dilution. Paper presented at <u>IEAGHG 2nd Post Combustion</u> <u>Capture Conference (PCCC2)</u>, Bergen, Norway.
- Hagewiesche, D.P., Ashour, S.S., Al-Ghawas, H.A., and Sandall, O.C. (1995)
 Absorption of carbon dioxide into aqueous blends of monoethanolamine and
 N-methyldiethanolamine. <u>Chemical Engineering Science</u>, 50, 1071–1079.
- Haghtalab A., Eghbali, H., and Shojaeian, A. (2014) Experiment and modeling solubility of CO₂ in aqueous solutions of diisopropanolamine + 2-amino-2-methyl-1-propanol + piperazine at high pressures. <u>The Journal of Chemical Thermodynamics</u>, 71, 71–83.
- Haghtalab, A. and Izadi, A. (2014) Measurement solubility of carbon dioxide +
 hydrogen sulfide into aqueous blends of alkanolamines at high pressure.
 <u>Fluid Phase Equilibria</u>, 1-28.
- Halmann, M. and Steinberg, M. (1998) <u>Greenhouse Gas Carbon Dioxide Mitigation:</u> <u>Science and Technology</u>. London: CRC Press.
- Hartono, A., da Silva, E.F., and Svendsen, H.F. (2009) Kinetics of carbon dioxide absorption in aqueous solution of diethylenetriamine (DETA). <u>Chemical</u> <u>Engineering Science</u>, 64, 3205 – 3213.
- Hartono, A., Hoff, K.A., Mejdell, T., and Svendsen, H.F. (2011) Solubility of carbon dioxide in aqueous 2.5 M of diethylenetriamine (DETA) Solution. <u>Energy</u> <u>Procedia</u>, 4, 179–186.

- Henni, A., Hromek, J.J., Tontiwachwuthikul, P., and Chakma, A. (2003) Volumetric properties and viscosities for aqueous AMP solutions from 25 °C to 70°C. <u>Journal of Chemical and Engineering Data</u>. 48(3), 551-556.
- Horwitz W. (1975) Baking powders and baking chemicals. In W. Horwitz (Ed.),
 <u>Association of Official Analytical Chemists Methods.</u> 12th ed.
 Gaithersburg: Association of Official Analytical Chemists.
- Ibrahim, A.Y., Ashour F.H., Ghallab, A.O., and Ali, M. (2014) Effects of piperazine on carbon dioxide removal from natural gas using aqueous methyldiethanolamine. <u>Journal of Natural Gas Science and Engineering</u>, 21, 894–899.
- Idem, R., Tontiwachwuthikul, P., Gelowitz, D., and Wilson, M. (2011) Latest research on fundamental studies of CO₂ capture process technologies at the international test centre for CO₂ capture. <u>Energy Procedia</u>, 4, 1707–1712.
- International Energy Agency (IEA). (2014) CO₂ emissions from fuel combustion highlights. <u>IEA Statistics</u>, 2014 Edition, pp. 1-112. Paris: OECD/IEA
- International Energy Agency (IEA). (2013) <u>Technology Roadmap: Carbon Capture</u> <u>and Storage</u>. Paris: OECD/IEA.
- Jassim, M.S. and Rochelle, G.T. (2006) Innovation absorber/stripper configuration for CO₂ capture by aqueous monoethanolamine. <u>Industrial and Engineering</u> <u>Chemistry Research</u>, 45(8), 2465–2472.
- Kale, C., Tönnies, I., Hasse, H., and Górak, A. (2011, 29 May 01 June) Simulation of reactive absorption: Model validation for CO₂-MEA system. Paper presented at <u>21st European Symposium on Computer Aided Process</u>
 <u>Engineering ESCAPE</u>, European Federation of Chemical Engineering, Thessaloniki, Greece.
- Kangwanwatana, W., Saiwan, C., and Tontiwachwuthikul, P. (2013) Study of CO₂ adsorbent modified with piperazine. <u>Chemical Engineering Transactions</u>, 35, 403-408.
- Karimi, M.I., Hillestad, M., and Svendsen, H.F. (2011) Capital costs and energy considerations of different alternative stripper configurations for post combustion CO₂ capture. <u>Chemical Engineering Research and Design</u>, 89(8), 1229–1236.

- Kennard, M.L. and Meisen, A. (1985) Mechanisms and kinetics of DEA degradation. <u>Industrial & Engineering Chemistry Fundamentals</u>, 24, 129-140.
- Kierzkowska-Pawlak, H. and Chacuk, A. (2010) Kinetics of carbon dioxide absorption into aqueous MDEA solutions. <u>Ecological Chemistry and Engineering S</u>, 17(4), 463-475.
- Kohl, A. and Nielsen, R. (1997) Gas Purification. 5th ed. Texas: Gulf Publishing.
- Kundu, M., and Bandyopadhyay, S.S. (2006) Solubility of CO₂ in water + diethanolamine + *N*-methyldiethanolamine. <u>Fluid Phase Equilibria</u>, 248, 158–167.
- Laddha, S.S. and Danckwerts, P.V. (1981) Reaction of CO₂ with ethanolamines: Kinetics from gas-absorption. <u>Chemical Engineering Science</u>, 36, 479 – 482.
- Li, B., Duan, Y., Luebke, D., and Morreale, B. (2013) Advances in CO₂ capture technology: A patent review. <u>Applied Energy</u>, 102, 1439–1447.
- Liang, Z.H., Sanpasertparnich, T., Tontiwachwuthikul, P., Gelowitz, D., and Idem,
 R. (2011) Design, modeling & simulation of post-combustion CO₂ capture systems. <u>Carbon Management</u>, 2(3), 265-288.
- Liang, Z. (2010) Optimization of post-combustion amine-based carbon dioxidecapture process to minimize heat requirements for solvent regeneration.Ph.D. Dissertation, University of Regina, Regina, Canada.
- Little, R.J., Versteeg, G.F., and van Swaaij, W.P.M. (1992) Kinetics of CO₂ with primary and secondary amines in aqueous solutions – I. Zwitterion deprotonation kinetics for DEA and DIPA in aqueous blends of alkanolamines. <u>Chemical Engineering Science</u>, 47(8), 2027–2035.
- Little, R.J., van Swaaij, W.P.M., and Versteeg, G.F. (1990) Kinetics of carbon dioxide with tertiary amines in aqueous solution. <u>AIChE Journal</u>, 36(11), 1633–1640.
- Luis, P. and Van der Bruggen, B. (2013) The role of membranes in post-combustion CO₂ capture. <u>Greenhouse Gases: Science and Technology</u>. 3(5), 313–337.
- Ma, X., Kim, I., Beck, R., Knuutila, H., and Andreassen, J-P. (2011) Precipitation of piperazine in aqueous piperazine solutions with and without CO₂ loadings.
 <u>Industrial & Engineering Chemistry Fundamentals</u>, 51, 12126-12134.

- Ma'mun, S., Svendsen, H.F. Hoff, K.A and Juliussen, O. (2007) Selection of new absorbents for carbon dioxide capture. <u>Energy Conversion and</u> <u>Management</u>, 48, 251–258.
- Mandal, B.P., Biswas, A.K. and Bandyopadhyay, S.S. (2003) Absorption of carbon dioxide into aqueous blends of 2-amino-2-methyl-1-propanol and diethanolamine. <u>Chemical Engineering Science</u>, 58, 4137 – 4144.
- Mandal, B.P., Guha, M., Biswas, A.K., and Bandyopadhyay, S.S. (2001) Removal of carbon dioxide by absorption in mixed amines: modeling of absorption in aqueous MDEA/MEA and AMP/MEA solutions. <u>Chemical Engineering</u> <u>Science</u>, 56, 6217–6224.
- Maneeintr, K., Idem, R.O., Tontiwachwuthikul, P and Wee, A.G.H. (2009) Synthesis, solubilities, and cyclic capacities of amino alcohols for CO₂ capture from flue gas streams. <u>Energy Procedia</u>, 1, 1327–1334.
- Metz, B., Davidson, O., deConinck, H., Loos, M., and Meyer, L. (2005) IPCC special report on carbon dioxide capture and storage. Cambridge: Cambridge University Press.
- Mohebi, S., Mousavi, S.M., and Kiani, S. (2009) Modeling and simulation of sour gas membrane-absorption system: Influence of operational parameters on species removal. Journal of Natural Gas Science and Engineering, 1(6), 195-204.
- Mokhatab, S., Poe, W.A., and Speight, J.G. (2012) Natural Gas Sweetening. In S.
 Mokhatab, W.A. Poe, and J.G. Speight (Eds.), <u>Handbook of Natural Gas</u> <u>Transmission and Processing</u> (pp. 253-290). Oxford: Gulf Professional Publishing.
- Mondal, M.K., Balsora, H.K., Varshney, P. (2012) Progress and trends in CO₂ capture/separation technologies: A review. <u>Energy</u>, 46, 431-441.
- Mondal, M.K. (2009) Solubility of carbon dioxide in an aqueous blend of diethanolamine and piperazine. <u>Journal of Chemical & Engineering</u> <u>Data</u>, 54(9), 2381–2385.
- Mudhasakul, S., Ku, H., and Douglas, P.L. (2013) A simulation model of a CO₂ absorption process with methyldiethanolamine solvent and piperazine as an activator. <u>International Journal of Greenhouse Gas Control</u>, 15, 134–141.

- Nainar, M. and Veawab, A. (2009a) Corrosion in CO₂ capture process using blended monoethanolamine and piperazine. <u>Industrial & Engineering Chemistry</u> <u>Research</u>, 48, 9299–9306.
- Nainar, M. and Veawab, A. (2009b) Corrosion in CO₂ capture unit using MEApiperazine blends. <u>Energy Procedia</u>, 1, 231–235.
- Najibi, H. and Maleki, N. (2013) Equilibrium solubility of carbon dioxide in Nmethyldiethanolamine + piperazine aqueous solution: Experimental measurement and prediction. <u>Fluid Phase Equilibria</u>, 354, 298–303.
- National Energy Technology Laboratory. (2013) DOE/NETL Advanced Carbon Dioxide Capture R&D Program: Technology Update. 3rd ed. U.S.A.: U.S. Department of Energy.
- Nguyen, T., Marcus Hilliard, M., and Rochelle, G.T. (2010) Amine volatility in CO₂ capture. <u>International Journal of Greenhouse Gas Control</u>, 4, 707–715.
- Nonthanasin, T., Henni, A., and Saiwan, C. (2013) Solubility of carbon dioxide in five promising ionic liquids. <u>Chemical Engineering Transactions</u>, 35, 1417-1422.
- Olajire, A.A. (2010) CO₂ capture and separation technologies for end-of-pipe applications A review. <u>Energy</u>, 35, 2610-2628.
- Optimized Gas Treating, Inc. (2008) Piperazine Why it's used and how it works. <u>The Contactor</u>[™], 2(4), 1-2.
- Oyenckan, B.A. and Rochelle, G.T. (2007) Alternative stripper configurations for CO₂ capture by aqueous amines. <u>AIChE Journal</u>, 53(12), 3144 3154.
- Peeters, A.N.M., Faaij, A.P.C., and Turkenburg, W.C. (2007) Techno-economic analysis of natural gas combined cycles with post-combustion CO₂ absorption, including a detailed evaluation of the development potential. <u>International Journal of Greenhouse Gas Control</u>, 1, 396–410.
- Pei, Z., Yao, S., Jianwen, W., Wei, Z., and Qing, Y. (2008) Regeneration of 2amino-2-methyl-1-propanol used for carbon dioxide absorption. <u>Journal of</u> <u>Environmental Sciences</u>, 20, 39 - 44.

- Peters, L., Hussain, A., Follmann, M., Melin, T., and Hagg, M.B. (2011) CO₂ removal from natural gas by employing amine absorption and membrane technology—A technical and economical analysis. <u>Chemical Engineering</u> Journal, 172, 952–960.
- Pires, J.C.M., Martins, F.G., Alvim-Ferraz, M.C.M., Simões, M. (2011) Recent developments on carbon capture and storage: An overview. <u>Chemical</u> <u>Engineering Research and Design</u>, 89, 1446–1460.
- Pitzer, K. S. and J. J. Kim. (1974) Thermodynamics of electrolytes IV. Activity and osmotic coefficients for mixed electrolytes. <u>Journal of the American</u> <u>Chemical Society</u>, 96(18), 5701-5707.
- Plaza, J.M. and Rochelle, G. (2011) Modeling pilot plant results for CO₂ capture by aqueous piperazine. <u>Energy Procedia</u>, 4, 1593–1600.
- Plaza, J.M., Chen, E., and Rochelle, G.T. (2010) Absorber intercooling in CO₂ absorption by piperazine-promoted potassium carbonate. <u>AIChE Journal</u>, 56(4), 905–914.
- Polasek, J. and Bullin, J.A. "Selecting amines for sweetening units." BRE. 2006. 20 November 2014 http://www.bre.com/portals/0/technicalarticles/Selecting%20Amines%20f or%20Sweetening%20Units.pdf>
- Quang, D.V., Rabindran, A.V., Hadri, N.E., and Abu-Zahra, M.R.M. (2013) Reduction in the regeneration energy of CO₂ capture process by impregnating amine solvent onto precipitated silica. <u>European Scientific</u> <u>Journal</u>, 9(30), 82–102.
- Rao, A.B. and Rubin, E.S. (2006) Identifying cost-effective CO₂ control levels for amine based CO₂ capture systems. <u>Industrial & Engineering Chemistry</u> <u>Research.</u> 45(8), 2421–2429.
- Rao, A.B. and Rubin, E.S. (2002) A technical, economical, and environmental assessment of amine based CO₂ capture technology for power plant greenhouse gas control. <u>Environmental Science and Technology</u>, 36(20), 4467–4475.

- Rayer, A.V., Sumon, K.Z., Henni, A., and Tontiwachwuthikul, P. (2011) Kinetics of the reaction of carbon dioxide (CO₂) with cyclic amines using the stoppedflow technique. <u>Energy Procedia</u>, 4, 140–147.
- Razi, N., Svendsen, H.F., and Bolland, O. (2013) Cost and energy sensitivity analysis of absorber design in CO₂ capture with MEA. <u>International Journal of</u> <u>Greenhouse Gas Control</u>, 19, 331–339.
- Reynolds, A.J., Verheyen, T.V., Adeloju, S.B., Meulemen, E., and Feron, P. (2012) Towards commercial scale post-combustion capture of CO₂ with monoethanolamine solvent: key considerations for solvent management and environmental impacts. <u>Environmental Science & Technology</u>, 46(7), 3643-3654.
- Rinker, E.B., Ashour, S., and Sandall, O.C. (1995) Kinetics and modelling of carbon dioxide absorption into aqueous solutions of N-methyldiethanolamine. <u>Chemical Engineering Science</u>, 50(5), 755–768.
- Roberts, B.E. and Mather, A.E. (1988) Solubility of CO₂ and H₂S in a hindered amine solution. <u>Chemical Engineering Communications</u>, 64, 105-111.
- Saha, A.K., Bar.dyopadhyay, S.S., and Biswas, A.K. (1996) Kinetics of absorption of CO₂ into aqueous solutions of 2-amino-2-methyl-1-propanol. <u>Chemical</u> <u>Engineering Science</u>, 50(22), 3587–3598.
- Rochelle, G., Chen, E., Freeman, S., Van Wagener, D., Xu, Q., and Voice A. (2011)
 Aqueous piperazine as a new standard for CO₂ capture technology.
 <u>Chemical Engineering Journal</u>, 171, 725–733.
- Rochelle, G.T. and Oyenekan, B.A. (2008) US Patent US 2008/0127831.
- Rolker, J. and Seiler, M. (2011) Industrial Progress: New energy-efficient absorbents for the CO₂ separation from natural gas, syngas and flue gas. <u>Advances in</u> <u>Chemical Engineering and Science</u>, 1, 280-288.
- Rubin, E.S, Mantripragada, H., Marks, A., Versteeg, P., and Kitchin, J. (2012) The outlook for improved carbon capture technology. <u>Progress in Energy and</u> <u>Combustion Science</u>, 38, 630-671.
- Rubin, E.S. (2008) CO₂ capture and transport. <u>Elements</u>, 4(5), 311–317.

- Saiwan, C., Supap, T., Idem, R.O., and Tontiwachwuthikul, P. (2011) Corrosion and prevention in post-combustion CO₂ capture systems. <u>Carbon Management</u>, 2(6), 659-675.
- Samanta, A. and Bandyopadhyay, S.S. (2009) Absorption of carbon dioxide into aqueous solutions of piperazine activated 2-amino-2-methyl-1-propanol. <u>Chemical Engineering Science</u>, 64, 1185–1194.
- Samanta, A., and Bandyopadhyay, S.S. (2007) Kinetics and modeling of carbon dioxide absorption into aqueous solutions of piperazine. <u>Chemical</u> <u>Engineering Science</u>, 62, 7312–7319.
- Sartori, G. and Savage, D. W. (1983) Sterically hindered amines for CO₂ removal from gases. <u>Industrial & Engineering Chemistry Fundamentals</u>, 22, 239-249.
- Sema, T., Naami, A., Fu, K., Edali, M., Liu, H., Shi, H., Liang, Z., Idem, R., and Tontiwachwuthikul, P. (2012) Comprehensive mass transfer and reaction kinetics studies of CO₂ absorption into aqueous solutions of blended MDEA–MEA. <u>Chemical Engineering Journal</u>, 209, 501–512.
- Seo, D-J. and Hong W-H. (1996) Solubilities of carbon dioxide in aqueous mixtures of diethanolamine and 2-amino-2-methyl-1-propanol. <u>Journal of Chemical</u> <u>& Engineering Data</u>, 41, 258-260.
- Sexton, A.J. (2008) Amine oxidation in CO₂ capture processes. Ph.D. Dissertation, The University of Texas, Texas, USA.
- Sharma, M.M. (1964) Absorption of CO₂ and COS in alkaline and amine solutions, Ph.D. Dissertation, University of Cambridge, Cambridge, United Kingdom.
- Sharma, M.M. (1965) Kinetics of reactions of carbonyl sulphide and carbon dioxide with amines and catalysis by bronsted bases of the hydrolysis of COS. Transactions of the Faraday Society, 61, 681–688.
- Shen, K.P. and Li, M.H. (1992) Solubility of carbon dioxide in aqueous mixtures of monocthanolamine with methyldiethanolamine. <u>Journal of Chemical &</u> <u>Engineering Data</u>, 1, 96-100.

- Shi, H., Naami, A., Idem, R., and Tontiwachwuthikul, P. (2014) Catalytic and noncatalytic solvent regeneration during absorption based CO₂ capture with single and blended reactive amine solvents. <u>International Journal of</u> <u>Greenhouse Gas Control</u>, 26, 39–50.
- Shimekit, B. and Mukhtar, H. (2012) Natural gas purification technologies Major advances for CO₂ separation and future directions. In A-M. Hamid (Ed.), <u>Advances in Natural Gas Technology</u> (pp. 235-270). Rijeka: InTech.
- Siemieniec, M., Kierzkowska-Pawlak, H., and Chacuk, A. (2011) Reaction kinetics of carbon dioxide in aqueous diethanolamine solutions in the temperature range of 293 – 313 K using the stopped-flow technique. <u>Ecological</u> <u>Chemistry and Engineering S</u>, 18(3), 1-12.
- Singh, P., Niederer, J.P.M., Versteeg, G.F. (2009) Structure and activity relationships for amine-based CO₂ absorbents-II. <u>Chemical Engineering Research and</u> Design, 87, 135–144.
- Singh, D., Croiset, E., Douglas, P.L., and Douglas, M.A. (2003) Techno-economic study of CO₂ capture from an existing coal-fired power plant: MEA scrubbing vs. O₂/CO₂ recycle combustion. <u>Energy Conversion and</u> <u>Management</u>, 44, 3073–3091.
- Spigarelli, B.P. and Kawatra, S.K. (2013) Opportunities and challenges in carbon dioxide capture. Journal of CO₂ Utilization, 1, 69-87.
- Supap, T., Saiwan, C., Idem, R., and Tontiwachwuthikul, P. (2011) Solvent management: Solvent stability and amine degradation in CO₂ capture process. <u>Carbon Management</u>, 2(5), 551-566.
- Sutar, P.N., Jha, A., Vaidya, P.D., and Kenig, E.Y. (2012) Secondary amines for CO₂ capture: A kinetic investigation using N-ethylmonoethanolamine. <u>Chemical</u> <u>Engineering Journal</u>, 207-208, 718–724.
- Teng, T.J. and Mather, A.E. (1990) Solubility of CO₂ in an AMP Solution. <u>Journal of</u> <u>Chemical & Engineering Data</u>, 35, 410-411.
- Thitakamol, B., Veawab, A., and Aroonwilas, A. (2007) Environmental impacts of absorption-based CO₂ capture unit for post-combustion treatment of flue gas from coal-fired power plant. <u>International Journal of Greenhouse Gas</u> <u>Control.</u> 1, 318–342.

- Tomcej, R.A. and Otto, F.D. (1989) Absorption of CO₂, and N₂O into aqueous solutions of methyldiethanolamine. <u>AIChE Journal</u>, 35(5), 861-864.
- Tong, D., Maitland, G.C., Trusler, J.P.M., and Fennell, P.S. (2013) Solubility of carbon dioxide in aqueous blends of 2-amino-2-methyl-1-propanol and piperazine. <u>Chemical Engineering Science</u>, 101(20), 851–864.
- Tontiwachwuthikul, P., Liang, H., Idem, R., Gelowitz, D., Sema, T., and Naami, A. (2012, October) Future generations of carbon capture technologies. Paper Presented at <u>Qatar CCS Workshop</u>, Gas Processing Center, Doha, Qatar.
- Tontiwachwuthikul, P., Idem, R., and Gelowitz, D. et al (2011) Recent progress and new development of post-combustion carbon-capture technology using reactive solvents. <u>Carbon Management</u>, 2, 261-263.
- Tontiwachwuthikul, P., Wee, A.G.H., Idem, R.O., Maneeintr, K., Fan, G.-J., Veawab, A., Henni, A., Aroonwilas, A., and Chakma, A. (2008) U.S. <u>Patent</u> 20080050296 A1.
- Tontiwachwuthikul, P., Melsen, A., and Lim, C.J. (1991) Solubility of CO₂ in 2amino-2-methyl-1-propanol solutions. Journal of Chemical & Engineering Data, 36, 130-133.
- Vahidi, M., Zoghi, A.T., Moshtari, B., and Nonahal, B. (2013) Equilibrium solubility of carbon dioxide in an aqueous mixture of N-methyldiethanolamine and diisopropanolamine: An experimental and modelling study. <u>Journal of</u> <u>Chemical & Engineering Data</u>, 58, 1963-1968.
- Vaidya, P.D. and Kenig, E.Y. (2007) CO₂-alkanolamine reaction kinetics: A review of recent studies. <u>Chemical Engineering & Technology</u>, 30(11), 1467–1474.
- Vaidya, P.D. and Kenig, E.Y. (2010) Termolecular kinetic model for CO₂ alkanolamine reactions: An overview. <u>Chemical Engineering &</u> <u>Technology</u>, 33(10), 1577–1581.
- Versteeg, G.G. and van Swaaij, W.P.M. (1988) On the kinetics between CO₂ and alkanolamines both in aqueous and non-aqueous solutions: Primary and secondary amines. <u>Chemical Engineering Science</u>, 43, 573–585.
- Wang, M., Lawal, A., Stephenson, P., Sidders, J., and Ramshaw, C. (2011) Postcombustion CO₂ capture with chemical absorption: A state-of-the-art review. <u>Chemical Engineering Research and Design</u>, 89, 1609–1624.

- Weiland, R. H., Dingman, J.C., Cronin, D.B., and Browning, G.J. (1998) Density and viscosity of some partially carbonated aqueous alkanolamine solutions and their blends. Journal of Chemical and Engineering Data, 43(3), 378-382.
- Xu, S., Wang, Y.W., Otto, F.D., and Mather, A.E. (1992) Representation of equilibrium solubility properties of CO₂ with aqueous solutions of 2-amino-2-methyl-I-propanol. <u>Chemical Engineering and Processing</u>, 31, 7-12.
- Xu, S., Wang, Y.W., Otto, F.D., Mather, A.E. (1996) Kinetics of the reaction of carbon dioxide with 2-amino-2-methyl-1-propanol solutions. <u>Chemical</u> <u>Engineering Science</u>, 51(6), 841–850.
- Xu, G.W., Zhang, C.F., Qin, A.J., Gao, W.H., and Liu, H.B. (1998) Gas-liquid equilibrium in a CO₂-MDEA-H₂O system and the effect of piperazine on it. <u>Industrial & Engineering Chemistry Research</u>, 37, 1473-1477.
- Yang, Z., Soriano, A.N., Caparanga, A.R., and Li, M. (2010) Equilibrium solubility of carbon dioxide in (2-amino-2-methyl-1-propanol + piperazine + water). <u>The Journal of Chemical Thermodynamics</u>, 42, 659–665.
- Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R.B., Bland, A.E., and Wright, I. (2008) Progress in carbon dioxide separation and capture: A review. <u>Journal</u> <u>of Environmental Sciences</u>, (20), 1, 14–27.
- Yildirim, O., Kiss, A.A., Hüser, N., Leßmann, K., and Kenig, E.Y. (2012) Reactive absorption in chemical process industry: A review on current activities. <u>Chemical Engineering Journal</u>, 213, 371–391.
- Younas, O. and Banat, F. (2014) Parametric sensitivity analysis on a GASCO's acid gas removal plant using ProMax simulator. <u>Journal of Natural Gas Science</u> <u>and Engineering</u>, 18, 247-253.
- Yu, W.-C., Astarita, G., and Savage, D.W. (1985) Kinetics of carbon dioxide absorption in solutions of methyldiethanolamine. <u>Chemical Engineering</u> <u>Science</u>, 40(8), 1585-1590.
- Yu, C-H., Huang, C-H., and Tan C-S. (2012a) A review of CO₂ capture by absorption and adsorption. <u>Aerosol and Air Quality Research</u>, 12, 745–769.
- Yu, C-H., Cheng, H-H., and Tan, C-S. (2012b) CO₂ capture by alkanolamine solutions containing diethylenetriamine and piperazine in a rotating packed bed. <u>International Journal of Greenhouse Gas Control</u>, 9, 136–147.

- Zhang, X., Fu, K., Liang, Z., Rongwong, W., Yang, Z., Idem, R., and Tontiwachwuthikul, P. (2014) Experimental studies of regeneration heat duty for CO₂ desorption from diethylenetriamine (DETA) solution in a stripper column packed with Dixon ring random packing. <u>Fuel</u>, 136, 261– 267.
- Zhou, S., Chen, X., Nguyen, T., Voice, A.K., and Rochelle, G.T. (2010) Aqueous ethylenediamine for CO₂ capture. <u>ChemSusChem</u>, 3(8), 913-918.
- Zoghi, A.T., Feyzi, F., and Zarrinpashneh, S. (2012) Experimental investigation on the effect of addition of amine activators to aqueous solutions of Nmethyldiethanolamine on the rate of carbon dioxide absorption.
 <u>International Journal of Greenhouse Gas Control</u>, 7, 12–19.

APPENDICES

Appendix A Amine Solution Preparation Calculations

The solution concentration for the experimental analysis of the ternary AMP-PZ-MEA blend is discussed in this subsection. The properties of each solvent stock solution as provided in the material safety data sheet (MSDS) is highlighted in Table A1 below;

Table A1 Properties of AMP, PZ and MEA

	AMP	PZ	MEA
Molecular Weight (g/mol)	89.14	86.14	61.08
Purity (wt%)	99	99	99
Density (g/L)	930		1012
Calculated Molar Concentration (mole/L, M)	10.3		16.5

The molarity (molar concentration) of the stock solution of each solvent (available in liquid form: AMP and MEA) was calculated using the general formula seen in Equation A1.

$$Molarity (mol/L) = \frac{purity (wt\%) \times density (g/L)}{molecular weight (g/mol) \times 100}$$
A1

The ternary blend solution was prepared based on molarity basis (moles/L or $kmol/m^3$ or M). The preparation followed the correlation described in Equation A2.

Mass of Solv.
$$(g) = Solv. Conc. \left(\frac{mole}{L}\right) \times Solution Vol. (L) \times MW \left(\frac{g}{mole}\right)$$
 A2

 $MW = Molecular Weight of solvent, \left(\frac{g}{mole}\right)$

Example A1:

Preparing 500 mL of 2 M AMP - 0.5 M PZ - 3 M MEA solution.

Calculation:

From Equation A2 it is noticed that the unit of the sample solution is in liters (L) and moreso the concentration is based on 'how many moles of the solvent is present in the sample solution'. Therefore, 500 mL will be converted to 'L' which gives 0.5 L. The

AMP;

Mass of PZ (g) = 2
$$\left(\frac{mole}{L}\right) \times 0.5 (L) \times 89.14 \left(\frac{g}{mole}\right)$$

Mass of PZ = 89.14 g

PZ;

Mass of PZ (g) = 0.5
$$\left(\frac{mole}{L}\right) \times 0.5$$
 (L) × 86.14 $\left(\frac{g}{mole}\right)$
Mass of PZ = 21.53 g

MEA;

Mass of PZ (g) =
$$3\left(\frac{mole}{L}\right) \times 0.5$$
 (L) $\times 61.08\left(\frac{g}{mole}\right)$
Mass of PZ = 91.62 g

Its very important to note that all the mass of each individual solvent should be weighed out separately, and when mixing them do not add 500 mL of water. First add all the solvents, then add about 250 mL of water and allow a homogenous mixture to occur. Then fill the volumetric flask with water to the 500 mL mark. This will guarantee the exact concentration of each solvent. In this case one of the solvents (PZ) is in solid form, and this will add some volume to the blended solution. If 500 mL of water is added with

the mass of all solvents, the final solution volume will exceed 500 mL and as such give a different concentration of each solvent.

Appendix B Hydrochloric (HCl) Acid Preparation and Standardization

Hydrochloric acid (HCl) is integral in the experimental analysis because its used as a titrant to determine amine solution concentration and for the CO_2 loading analysis. The Table B1 shows the properties of the HCl stock solution as indicated in the MSDS (Material Safety Data Sheet);

Table B1 Required properties of HCl and Na₂CO₃

	HCl	Na ₂ CO ₃
Molecular Weight (g/mol)	36.46	105.99
Purity (%)	37	
Density (g/L)	1190	
Calculated Molar Concentration (mole/L, M)	12.1	

HCI Preparation;

The simple dilution formula (Equation B1) is used to dilute the stock solution to the desired final concentration. In this case 1 M of HCl is prepared.

$$V_{1} = \frac{C_{2} \times V_{2}}{C_{1}}$$

$$V_{1} = Volume of Stock Solution required, mL$$

$$C_{1} = Concentration of Stock Solution, M$$

$$V_{2} = Volume of Final Solution, mL$$

$$c_{2} = Concentration of Final Solution, M$$

The molar concentration of HCl was calculated using the informations on Table B1 and the Equation A1.

 $V_1 = ? mL$ $C_1 = 12.1 M$

$$V_2 = 1000, mL$$
$$c_2 = 1 M$$

$$V_1 = \frac{1 \times 1000}{12.9} = 82.6 \, mL \approx 83 \, mL$$

Therefore, to prepare 1000 mL (1 L) of 1 M HCl, 83 mL of the HCl stock solution will be mixed with 917 mL of distilled water.

HCl Standardization;

This prepared 1 M HCl must be standardized before its used during the experimental analysis. This will confirm the exact concentration in 2 decimal places. In practice, and most often, the prepared HCl will not be exactly 1 M. It could be within the accepted accuracy of ± 0.05 M.

The standardization is done using sodium carbonate (Na₂CO₃) according to the reaction in Equation B2 below;

$$Na_2CO_3 + 2HCl \rightarrow 2NaCl + CO_2 + H_2O$$
 B2

Datas from a simple titration using a known mass of Na_2CO_3 is used to standardize the HCl using Equation B3.

$$\text{HCl Conc.} = \left(\frac{g_{Na_2CO_3} \times 1000}{\frac{MW_{Na_2CO_3} \times V_{HCL_Endpoint}}{2}}\right) B3$$

 $g_{Na_2CO_3} = Mass of weighed Na_2CO_3, g$ $MW_{Na_2CO_3} = Molecular weight of Na_2CO_3, g/mol$ $V_{HCl_Endpoint} = Volume of HCl at endpoint, mL$ Considering the 1.05 g of Na_2CO_3 was weighed out and the volume of HCl at endpoint is 19.4 mL, then the actual concentration of the HCl is;

HCl Conc. =
$$\left[\frac{1.05 \times 1000}{\left(\frac{105.99}{2}\right) \times 19.4}\right] = 1.02 \text{ M}$$

Note: This standardized HCl concentration (1.02 M) is to be used for calculation during the experimental analysis. This standardization should be done atleast twice to confirm the concentration. If in any case the concentration of the 2 standardization differs by \pm 0.05, the average of the 2 concentrations should be used for calculations.

Appendix C Amine Solution Concentration Calculation

Once the desired concentration of the ternary blend is prepared as described in Appendix A, a simple titration using standardized HCl as described in Appendix B is used to confirm the actual concentration of the blend. Methyl orange is used as the indicator. Citing the complexity of the blend, a derived correlation below is used to calculate the ternary blend concentration;

Use only when;

1). Solvent sample size to titrate is 1 mL

- 2). HCl concentration is 1 M
- 3). Amine solution concentration is 2 M AMP 0.5 M PZ 3 M MEA

A + D = Salt	<i>C</i> 1
B + D = Salt	С2
C + D = Salt	СЗ

AMP (amine with 1 N so it is 1:1 ratio) $M_A \times V = M_D \times V_{D1}$

MEA (amine with 1 N so it is 1:1 ratio) $M_B \times V = M_D \times V_{D2}$

PZ (amine with 2 N so it is 1:2 ratio) $M_C \times V = (M_D \times V_{D3})/2$

 $2 M_C \times V = M_D \times V_{D3}$

$$(C4) + (C5) + (C6), V = 1 mL and M_D = 1 M$$

$$M_A + M_B + 2 M_C = V_{D1} + V_{D2} + V_{D3} = V_{HCl_Endpoint} C8$$

*C*4

С5

С6

Molar ratio;
$$\frac{M_A}{M_B} = \frac{2}{3}$$
 and $\frac{M_A}{M_C} = \frac{2}{0.5}$ C9

$$M_A + \left(\frac{3 M_A}{2}\right) + 2 \left(\frac{0.5 M_A}{2}\right) = V_{HCl_Endpoint} \times M_D$$
C10

$$M_A + \left(\frac{3 M_A}{2}\right) + 0.5 M_A = V_{HCl_Endpoint} \times M_D$$
C11

$$1.5 M_A + \left(\frac{3 M_A}{2}\right) = V_{HCL_Endpoint} \times M_D$$
C12

$$3 M_A + 3 M_A = 2 (V_{HCl_Endpoint} \times M_D)$$
C13

$$6 M_A = 2 \left(V_{HCl_Endpoint} \times M_D \right)$$
C14

$$3 M_A = V_{HCL_Endpoint} \times M_D$$
^{C15}

$$M_A = \frac{V_{HCl_Endpoint} \times M_D}{3}$$
 C16

$$M_B = \frac{3 \times V_{HCL_Endpoint} \times M_D}{6}$$

$$M_{C} = \frac{0.5 \times V_{HCl_Endpoint} \times M_{D}}{6}$$
C18

$$M_{A+B+C} = M_A + M_B + M_C C19$$

- M_A = Molar concentration of AMP, (M or moles/L)
- M_B = Molar concentration of MEA, (M or moles/L)
- M_c = Molar concentration of PZ, (M or moles/L)
- M_D = Molar concentration of HCl, (M or moles/L)
- V = Amine solution sample volume, (mL)

$$V_{HCl_Endpoint} = V_{D1} + V_{D2} + V_{D3}$$
, (mL)

 M_{A+B+C} = Total Amine solution concentration, (M or moles/L)

Note: Since PZ contains 2 amino groups it was accounted for in the correlation (C6 and C7). This procedure can be used to derive new correlations for sample volume more than 1 mL, other polyamines (2, 3 or more amino groups) and different blends (binary, ternary, quartenary).

Example C1;

Data's collected during the titration of the amine solution to determine its concentration is presented below;

$$M_{A} = ? M$$

$$M_{B} = ? M$$

$$M_{C} = ? M$$

$$M_{A+B+C} = ? M$$

$$M_{D} = 1 M$$

$$V = 1 mL$$

$$V_{HCl_Endpoint} = 6.05 mL$$

Using Equations C16-19;

$$M_{A} = \frac{V_{HCL_Endpoint} \times M_{D}}{3} = \frac{6.05 \times 1}{3} = 2.02 M$$

$$M_{B} = \frac{3 \times V_{HCL_Endpoint} \times M_{D}}{6} = \frac{3 \times 6.05 \times 1}{6} = 3.03 M$$

$$M_{C} = \frac{0.5 \times V_{HCL_Endpoint} \times M_{D}}{6} = \frac{0.5 \times 6.05 \times 1}{6} = 0.50 M$$

$$M_{A+B+C} = M_{A} + M_{B} + M_{C} = 2.02 + 3.03 + 0.5 = 5.55 M$$

Note: To limit the sources of error during and after the experimental analysis, it is imperative to keep the deviation (absolute average deviation, %AAD) of the amine solution concentration to ± 2.5 %.

The %AAD of the desired and measured concentration for each solvent was calculated. The general formula (Equation 20) for calculating standard deviation;

$$(\%AAD) = \left(\frac{C_{measured} - C_{desired}}{C_{measured}}\right) \times 100$$
C20

 $C_{measured}$ = Measured solvent concentration, M $C_{desired}$ = Desired solvent concentration, M

For the analyzed concentration above, the %AAD for the solvents are below;

<u>AMP</u>

$$(\%AAD) = \left(\frac{2.02 - 2}{2.02}\right) \times 100 = 0.99\%$$

MEA

$$(\%AAD) = \left(\frac{3.03 - 3}{3.03}\right) \times 100 = 0.99\%$$

PZ

$$(\% AAD) = \left(\frac{0.5 - 0.5}{0.5}\right) \times 100 = 0.0\%$$

Appendix D Carbon Dioxide (CO₂) Loading Calculation

The procedure to determine CO_2 loading of each solubility run is described in Section 3.2.5 and the correlation for its calculation is highlighted in the Equation D1.

$$\alpha CO_2 = \frac{\left[\frac{(V_{CO2} - V_{HCl})(P)(273 \text{ K})}{(760 \text{ mmHg})(T)}\right]}{C_1 V_1 A} D1$$

 $\alpha CO_2 = amine \ solution \ CO_2 \ loading, mol \ CO_2/mol \ amine \\ T = room \ temperature \ (K) \\ P = barometric \ pressure \ (mmHg) \\ C_1 = rich \ amine \ solution \ concentration \ (M) \\ V_1 = amine \ solution \ sample \ volume \ (mL) \\ A = conversion \ constant \ (22.41 \ L/mole) \\ V_{CO2} = volume \ of \ CO_2 \ collected \ in \ gas \ burette \ (mL) \\ V_{HCl} = volume \ of \ acid \ titrant \ at \ end \ point \ (mL)$

Note: The rich amine concentration is calculated using the correlation (M_{A+B+C}) as described in Appendix C.

Sample Calculation:

The data below are from CO₂ solubility in 2 M AMP -0.5 M PZ – 3 M MEA at 25 °C and 100 % CO₂ (93.93 kPa CO₂ partial pressure).

$$\alpha CO_2 = ? mol CO_2/mol amine$$

 $T = 297K$
 $P = 760 mmHg$
 $C_1 = ? M$
 $V_1 = 1 mL$
 $A = 22.41 L/mole$

 $V_{CO2} = 98 mL$ $V_{HCl} = 6.05 mL$

Using the datas gotten from the titration analysis (Chittick Apparatus), the concentration of the rich amine solution is first calculated;

$$M_{D} = HCl \ concentration = 1.02 \ M$$

$$M_{A}(AMP) = \frac{V_{HCl_Endpoint} \times M_{D}}{3} = \frac{6.05 \times 1.02}{3} = 2.05 \ M$$

$$M_{B}(MEA) = \frac{3 \times V_{HCl_Endpoint} \times M_{D}}{6} = \frac{3 \times 6.05 \times 1.02}{6} = 3.08 \ M$$

$$M_{C}(PZ) = \frac{0.5 \times V_{HCl_Endpoint} \times M_{D}}{6} = \frac{0.5 \times 6.05 \times 1.02}{6} = 0.51 \ M$$

$$C_{1} = M_{A} + M_{B} + M_{C} = 2.05 + 3.08 + 0.51 = 5.64 \ M$$

Note: The amine concentration to use for this calculation must be the rich amine solution concentration and not the lean amine solution concentration.

$$\alpha CO_2 = \frac{\left[\frac{(98-6.05)(760)(273)}{(760)(297)}\right]}{(5.64)(1)(22.41)} = 0.668 = 0.67 \text{ mol } CO_2/\text{mol amine}$$

Note: For more précised accuracy, the CO_2 loading should be approximated to 2 decimal places.

Appendix E Carbon Dioxide (CO₂) Partial Pressure Calculation

The experimental set-up consists of a saturation chamber to complete the flue gas simulation ($CO_2 + N_2 + H_2O$). Therefore, the CO_2 composition upstream of the saturator would not be the same at the saturator downstream. The presence of water vapor will be accounted for and hence determine the actual CO_2 partial pressure of the flue gas going to the absorption reactor (Equation E1).

$$P_{CO_2} = N_{CO_2} \left(P_{Total} - P_{H_2O} \right)$$
 E1

 $P_{CO_2} = CO_2$ Partial Pressure, kPa $N_{CO_2} = CO_2$ Mole Fraction $P_{Total} = Total$ Pressure of System, kPa $P_{H_2O} = H_2O$ Vapor Pressure, kPa

The water vapor pressure is dependent of temperature and not dependent on the pressure or volume of water. The water vapor pressures at different temperatures are listed below;

 $P_{CO_2} @ 25^{\circ}C = 3.16 \ kPa$ $P_{CO_2} @ 40^{\circ}C = 7.37 \ kPa$ $P_{CO_2} @ 60^{\circ}C = 19.91 \ kPa$ $P_{CO_2} @ 100^{\circ}C = 101.3 \ kPa$

The correlation shown in Equation E1 was used to determine the CO₂ partial pressures at different temperatures during the experimental analysis.

Sample Calculation at 25 °C;

 $P_{CO_2} = ? kPa$ $N_{CO_2} = 1.0 (100 \%)$

$$P_{Total} = 101.3 \ kPa$$

 $P_{H_20} = 3.16 \ kPa$
 $P_{CO_2} = 1 \ (101.3 - 3.16) = 98.14 \ kPa$

Appendix F H₂O/PZ Molar Ratio Calculation

Citing Section 4.4.2.1.1, when PZ is part of the amine blends, it's important that all the crystals of PZ dissolves in the amine solution without stirring or heating. According to the study of Bishnoi (2000) the solubility of PZ concentration in water was 1.64 M and 1.88 M at 20 °C and 25 °C respectively. The water concentrations (Equation F1) of 1.64 M PZ and 1.88 M PZ was calculated and used to determine their H_2O/PZ molar ratios. The calculated H_2O/PZ molar ratios was then used as a benchmark for the bi-solvent and tri-solvent blends.

$$H_2O \ Conc. \ in \ amine \ solution = \frac{H_2O \ Vol. \ (mL) \times H_2O \ Conc. \ (M)}{Amine \ Soln. \ Vol. \ (mL)}$$
F1

Preparing 20 mL of 1.88 M PZ

 $1 \text{ M PZ} = 1.88 \times 0.02 \times 86.14 = 3.24 \text{ g}$

Using a mass balance, 3.24 g of PZ was added in a calibrated beaker and mixed some volume of water until all the PZ crystals to dissolve. Extra was was then added to make up the final volume to 20 mL. In this case, the volume of water added to the 3.24 g of PZ was 17 mL. To confirm that 17 mL of water can dissolve all the PZ crystals (3.24 g) without stirring, 17 mL of water was added in separate calibrated beaker containing 3.24 g of PZ crystals. It was confirmed that all the PZ crystals completely dissolved. The concentration of the aqueous PZ solution was also confirmed using the titration technique as described in Appendix B. Using Equation F1, the water concentration in 1.8 M PZ was calculated as seen below;

$$H_2O$$
 Conc. in PZ solution = $\frac{17 \times 55.5}{20}$ = 47.2 M

The next step is to correlate the H_2O/PZ molar ratio which was determined using Equation F2.

Therefore, the H₂O/PZ molar ratio is;

 $\frac{H_2O \ molar \ conc.}{PZ \ molar \ conc.} = \frac{47.2}{1.88} = 25.1$

The same procedure was used in calculating the H_2O/PZ molar ratio of 1.64 M PZ which was 29.5. A sample calculation for the tri-solvent blends is shown below;

Preparing 20 mL of 2 M AMP - 1 M PZ - 3 M MEA

 $2 \text{ M AMP} = 2 \times 0.02 \times 89.14 = 3.56 \text{ g} = 4 \text{ mL}$ $1 \text{ M PZ} = 1 \times 0.02 \times 86.14 = 1.72 \text{ g}$ $3 \text{ M MEA} = 3 \times 0.02 \times 61.08 = 3.66 \text{ g} = 3.7 \text{ mL}$

The same procedure used in preparing the 1.88 M PZ was used for all the trisolvent blends. For this particular amine blend 10.7 mL of water was the final volume of water added. The water concentration in the blended amine solution is calculated using Equation F1.

 H_2O Conc. in amine solution = $\frac{10.7 \times 55.5}{20}$ = 29.7 M

The H₂O/PZ molar ratio for 2 M AMP – 1 M PZ – 3 M MEA was calculated below;.

$$\frac{H_20 \text{ molar conc.}}{PZ \text{ molar conc.}} = \frac{29.7}{1} = 29.7$$

Note: Since PZ is in crystal form, the additional volume it adds in the amine solution was studied. This is necessary because all solids add a certain volume when preparing solutions. It was seen that on preparing 20 mL of 1 M PZ, the equivalent mass of PZ was 1.72 g and the required volume of distilled water was 18.4 mL. This means that 1.72 g of PZ exerted about 1.6 mL to the solution. On the other hand, when 20 mL of 1.5 M PZ was prepared, the equivalent mass of PZ was 2.58 g and the required volume of distilled water was 17.6 mL. This also means that 2.58 g of PZ added 2.4 mL to the solution. This was integral in understanding the equivalent volume of water required when preparing the ternary solutions, since AMP and MEA can be added to the amine solution as liquids. With this information about the volume exerted by PZ, the H₂O/PZ molar ratios of the aqueous amines solutions can be predicted prior to preparing the amine solutions. This was als confirmed when preparing PZ concentrations of 1.64 M and 1.88 M.

Appendix G Process Simulation Result Datas of Base Case (5 M MEA) and the Ternary Blends

The simulation results for the base case (5 M MEA) and all the ternary blends are presented below (Figures G1 - G10). For the base case MEA all the results are presented, but for the ternary blends only the major datas are presented.

<u>5 M MEA</u>

Name	Absorber

Connections	Process Data	Stage Data	Specifications	Convergence	Analyses	Flots	Streams	Notes
Num	ber of Stages			17				
Degi	rees of Freedon	n		0				
Colu	mn Type		TSWEE	T Kinetics				
Flas	h Type			VLE				
Colu	mn Add-ons			None				
Calc	ulate Column Hy	/draulics	V					
Effic	iency Phase		L	ight Liquid				
Ther	mal Efficiency		J					
Main	Liquid Phase		Ĺ	ight Liquid				
Num	ber Column Top	Down	V					
Phas	se Threshold			0.5	%			

Figure G1 Absorber process data informations for the simulation.

nnections Process	s Data S	tage Data	pecifications	Convergence A	Analyses Plo	ots Stre	ams Notes	
Grouping	Specify P	Pressure Chan	ige below, or sj	pecify at least the	e top and bot	tom stage	pressures in the	e Stage Summary tal
Hardwara	Pressu	re Change		10 kPa				
naruware	Bottoms	s Head		0 psi				
Efficiencies								
Recoveries	Stage	Show Stag	e 3 Phases	Temperature	Pressure	Vapor	Light Liquid	Heavy Liquid
Vapor							Molar Flow	Y
				°C	kPa		kmol/h	
Light Liquid	1			57.9958	110	50781.2	334192	
Heavy Liquid	2	J		70,7859	110.625	59538.9	342069	
Phase Properties	3	J		76.6706	111.25	67415.7	345563	
KNahaa	4	J		78.2258	111.875	70910.3	346140	
K-Values	5	7		77.9793	112.5	71486.8	345514	
	6			77.0402	113.125	70861.5	344478	
	7			75.8331	113.75	69823.1	343327	
	8			74.5267	114.375	68673.8	342178	
	9		E.	73.1862	115	67525	341064	
	10			71.8265	115.625	66410.3	339983	
	11			70.4322	116.25	65330.1	338916	
	12			68 9536	116.875	64263.4	337831	
	13	J		67 3524	117.5	63178.3	336680	
	14	J	2000 2	65.4824	118.125	62026.7	335388	
	15	V	Provide The second se	63.1397	118.75	60734.8	333829	
	16	V		59.8678	119.375	59175.9	331752	
	17			54,4312	120	57098.9	328629	

Figure G2a Absorber stage data summary and results for the base case simulation.

Name Absorber

Grouping	General	Tray Dand	on Struchure	d								
Summary	o sinci ai											
Hardware	Stage	Hardware	Diameter	Fraction Flooding	Residence Time	Real/Ideal Stage Ratio	System Factor	Liquid Load	System Limit Flood	Flow Parameter	Cs Factor	Fs Facto
noences		1	m	%	S			m^3/(m^2*h)	%		π/s	Pang 5
overies	1	Structured	17.4411	80	1.5	1	0.8	30.9069	32.271	0.15774	0.0544517	1.79061
por	2	Structured	18.1804	80	1.5	1	8.0	28.577	33.7337	0.140588	0.0564888	1.85331
hi ni	3	Structured	18.5875	80	1.5	1	8.0	27.9197	34.0357	0.136696	0.0567605	1.86134
	4	Structured	18.6672	03	1.5	1	0.3	27.8977	34.091	0.13668	0.0567228	1.8624
iquid	5	Structured	18.6067	08	1.5	1	0.8	28.0729	34 0673	0.137841	0.0565987	1.85187
perties	δ	Structured	18.4946	30	1.5	1	6.0	28.3189	34 0129	0.139426	0.0564462	1.86065
5	7	Structured	18.2659	80	1.5	1	0.8	28.5946	33.9426	0.141192	0.0562833	1.85887
	8	Structured	18.2337	30	1.5	1	5.0	28.8337	33.8627	0.143043	0.0561172	1.8566
	ç	Structured	18.1026	80	1.5	1	0.3	29.1801	33 7759	0.144943	0.0559503	1,8539
	10	Structured	17.5949	08	1.5	1	0.8	30.7657	31.8576	0.146897	0.0582062	1.93124
	11	Structured	17,4795	60	1.5	1	03	31.0539	31.6885	0 148937	0.0579474	1.92498
	12	Structured	17.3623	08	1.5	1	0.8	31.3594	31.5121	0.151125	0.0576707	1.91793
	13	Structured	17 2376	30	1.5	1	6.0	31.6955	31.3205	0.15357	0.0573634	1.90975
	14	Structured	17.0978	80	1.5	1	0.3	32.0905	31.1002	0.156464	0.0570026	1.89978
	15	Structured	16 9288	05	1.5	1	0.3	32.5909	30.8256	0.160195	0.056544	1.88684
	16	Structured	16.6992	80	1.5	1	0.8	33.3156	30.4401	0.165691	0.0558852	1.85709
	17	Structured	16.3191	80	1.5	1	C.8	34.6371	29.7783	0.175938	0.0547205	1.8312

Figure G2b Absorber stage data hardware general results for the base case simulation.

Name Absorber

Sente

are	tage	Structured Packing Types	Flood Model	Stage Pressure Orop	Holdup	Linear Holdup Time	Surface Area	Void Fraction	Billet Cfi	Billet Cp	Billet Ch	Billet CL	Billet Cv
				mbarim	%	sim	1/1	%					
enes 1		Sulzer Melapak@ 250.Y melal	Sulzer	1.3012	6.5092	7.58183	76.2	58 B	2.464	0.292	0.554	1,668	0.406
2		Sulzer Metapal:@ 250.Y metal	Sulzer	1.36735	5.89592	7.42742	76.2	98 3	2.464	0.292	0.554	1.068	0.406
3		Sulzer Metapak® 250 Y metal	Sulzer	1.37382	5.65668	7.29381	76.2	98 3	2.484	0.292	0.554	1.068	0 408
4		Sulzer Melapak® 250 Y metal	Sulzer	1.37562	5.51335	7.24364	76.2	98.3	2 464	0.292	0.554	1.068	0 406
5		Sulzer Welapak@ 250.Y metal	Sulzer	1.37672	5.6441	7.23736	762	58.3	2 484	0.292	0.554	1.088	0 408
s E		Sulzer Metapak@ 250 Y metal	Sulzer	1.37736	5.70322	7.25014	76.2	96.8	2.464	0.292	0.554	1.058	0.405
7		Sulzer Melapak@ 250 Y metal	Sulzer	1.37741	5.7737	7.26336	76.2	8 89	2 464	0.292	0 554	1.058	0,408
8		Sulzer Melapak® 250.Y metal	Sulzer	1.37686	5.84865	7.28964	762	5 82	2484	0 292	0.554	1.068	0 406
9		Sulter Melapak® 250.Y metal	Sulzer	1.37576	5 92547	7.31035	762	98 3	2 484	0.292	0 554	1.068	0.408
1	0	Suber Melapak® 250. Y metal	Sulzer	1.4682	6.12476	7.1668	76.2	98.3	2.4£4	0.292	0.554	1.068	0.406
1	1	Suber Melapak® 250 Y metal	Sulzer	1.48226	6 20354	7.19161	762	5.82	2.4€4	0.292	0554	1.065	0.408
1	2	Sulzer Metapat@ 250.Y metal	Sulzer	1.47536	6.28699	7.21735	76.2	5.32	2.484	0.292	0.554	1.068	0.406
1	3	Suber Metapak® 250. Y metal	Sulzer	1.45716	6.37921	7.24532	76.2	98.3	2.464	0.292	0.554	1.068	0.408
1	4	Sulzer Melapak® 250. Y metal	Sulzer	1.45851	6.48725	7 27758	762	98.3	2.464	0.292	0.554	1.068	0.408
1	5	Sulter Melapak® 250.9 melal	Sulzer	1.44112	6.62471	7.31768	762	583	2.484	0.292	0.554	1.088	0.406
1	ê	Sulzer Melapak® 250 Y metal	Sulzer	1.41805	6.82273	7.37248	762	58 3	2.464	0.292	0.554	1.088	0.408
Ĩ	7	Sulter Melagak® 250 Y melal	Sulzer	1.3749	7.17476	7.45707	76.2	583	2.484	0.292	0.554	1.068	0 406

Connections Process Data Stage Data Specifications Convergence Analyses Plots Streams Noies

Figure G2c Absorber stage data structured hardware results for the base case simulation.

	b, fift, b appagate transmission
Name	Absorber

Connections	Process Data	Stage Data	Specifications	Convergence	Analyses	Plots	Streams	Notes
Groupin	ng Oute	r Loop Iteratio	ns					
Paramet	ers Entha	alpy Model	Compo	sition-Depender	it			
Variable	inner	Loop model	Boston-	Sullivan Nonidea	al			
Solver	K Da	mping			0			
DOIVE	Bost	on-Sullivan Kb		V				
	Maxi	mum Initial Itera	ations		50			
	Usel	Last Solution		7				

Figure G3 Absorber convergence specification.

Mamo	
Name	Strippe

ctions Process Data	Stage Data	Specifications	Convergence	Analyses	Plots	Streams	Not
Number of Change			47				
Mulliber of Stages							
Degrees of Freedom			0				
Column Type		TSWEET Alternat	e Stripper				
Flash Type			VLE				
Column Add-ons	Pa	rtial Condenser v	w/Reboiler				
Calculate Column Hyd	raulics	V					
Efficiency Phase		L	ight Liquid				
Thermal Efficiency							
Main Libuid Phase		L	ight Liquid				
Number Column Top D	own	V					
Phase Threshold			0.5	%			

Figure G4 Stripper process data informations for the simulation.

Name Stripper

Grouping	specity Press	ine change bei	w, or shed	ry accessione wp		stage hies		ge panning y lable.
Summary								
Hardware	Pressure Ch	ange	20	kPa	4			
Efficiencies	Bottoms Hea		0	psi]			
Recoveries	Stage	Show Stage	3 Phases	Temperature	Pressure	Vapor	Light Liquid	Heavy Liquid
Vapor							Molar Flow	/
				[÷] C	kPa		kmolA	
Light Liquid	Condenser			29.9997	180	7716.32	10289.1	
Heavy Liquid	1			100.8	130	18005.5	11599.2	
hase Properties	2	V	5 × 1	104.734	181.25	19315.6	334383	
Malaka a	3	J		104.689	182.5	13470.3	334326	
K-Values	4	J		104.65	183.75	13413	334273	
	5			104.613	185	13360.2	334222	
	6			104.578	186.25	13309.5	334174	
	7			104.547	187.5	13261.7	334130	
	8			104.523	188.75	13217.7	334093	
	9	1°		104.515	190	13180.7	334070	
	10			104.542	191.25	13157.5	334076	
	11	[:]		104.643	192.5	13163.5	334146	
	12			104.908	193.75	13233.1	334356	
	13	7		105.524	195	13442.9	334365	
	14	V		105.817	196.25	13952.7	335968	
	15	Ī,		109.164	197.5	15054 9	338045	
	16	17		112.585	198.75	17132.9	341265	
	17			116.422	200	20352.4	345267	
	Reboiler			120	200	24354.7	320913	

Figure G5a Stripper stage data summary and results for the base case simulation.

Name Stripper

Grouping		Torry Deeder	- Charles									
Summary		ITay Kanua	n jouxaie	<u>u</u>]								
Hardware	Stage	Hardware	Diameter	Fraction Flooding	Residence Time	Real/Ideal Stage Ratio	System Factor	Liquid Load	System Limit Flood	Flow Parameter	Cs Factor	Fs
Efficiencies	-		m	×	S			m*3/(m*2'h)	5		mis	Pa
Recoveries	1	Structured	6.70987	30	1.5	1	0.35	5.47641	62.9007	0.0141083	0.107918	3
Vapor	2	Struc!ured	9.60585	30	1.5	1	0.35	102.782	19.0785	0 830985	0.0343835	1
LightLiquid	3	Structured	9.53976	50	1.5	1	0.35	103.086	19.0378	0.835327	0.0343064	1
	;	Structured	9.57445	30	1.5	1	0.35	103.389	18.9977	0.839595	0.0342325	1
Heavy Liquid		Structured	9.55951	50	1.5	1	0.35	103.636	18.9584	0.8438	0.0341602	1
Phase Properties	5	Structured	9.54502	80	1.5	1	0.35	103.976	18.9203	0.847913	0 0340899	
K-Yalues	7	Structured	9.5312	80	1.5	1	0.35	104.254	18.6838	0.851868	0.0340226	1
8	3	Structured	9.51852	20	1.5	1	0.35	104.51	18.8505	0.855518	0.0339608	
9	9	Structured	9.50807	80	1.5	1	0.35	104.721	18.8234	0.858532	0.0339102	1
	10	Siructured	9 50227	30	1.5	1	0.35	104.836	18.8094	0.860168	0.0338831	1
1	11	Structured	9.50656	05	1.5	1	0.35	104.742	18.824	0.858782	0.0339076	1
1	12	Structured	9.53273	80	15	1	0.35	104.198	18.9006	0.850902	0.0340437	1
1	3	Structured	9.60466	33	1.5	1	0.35	102.735	19.1051	0.830027	0.0344094	1
[1	14	Structured	9.7526	80	1.5	1	0.35	99.6541	19.5425	0.787242	0.0351904	1
1	15	Structured	10.0496	30	1.5	1	0.35	94 4779	20.3034	0.71878	0 0365382	1
[1	16	Structured	10.7301	30	1.5	1	0.35	83.5756	22.6881	0.637632	0.036433	1
1	17	Structured	11,2125	80	1.5	1	0.35	TT 5295	23,7718	0.563909	0.0332133	1

Figure G5b Stripper stage data hardware general results for the base case simulation.

Name Stripper

Evenue

Summary	General	Tray Random Structured										·	
isdware	Stage	Structured Packing Types	Flood Model	Stage Pressure Drop	Holdup	Linear Holdup Time	Surface Area	Void Fraction	Billet Cfi	Billet Cp	Billet Ch	Billet CL	Billet Cr
Indendes				micar/m	%	s/m	1/7	*					
coveries	1	Sulzer Hellapake 250 Y metal	Suizer	3.27093	2.35169	15,4592	76.2	\$8.8	2 464	0.292	0.554	1.068	0.40
Vapor	2	Sulzer Hellapsk@ 250.Y metal	Sulzer	1.3181	9.43539	3.30498	76.2	3.86	2.464	0.292	0.554	1.068	0.406
htiaid	3	Sulzer Hellapak® 250 Y metal	Suizer	1.3266	9.45332	3.30132	76.2	93.8	2.464	0 292	0 554	1,068	0.40
Luquu	4	Sulzer Hellapak\$ 250.Y metal	Sutzer	1.33501	9.47101	3.29781	76.2	8.69	2.464	0.292	0.554	1 068	0.40
Liquid	5	Sulzer Mellapak\$ 250.Y metal	Sulzer	1.34321	9.48333	3.29436	76.2	98.8	2.464	0.292	0.554	1.068	0.406
perties	F _1	Sulzer Hellapak® 250.Y metal	Suizer	1.35144	9.50517	3 29101	76.2	93.8	2.454	0.292	0.554	1.068	0.406
×	7	Sulzer Mellapak® 250.Y metal	Sulzer	1.35928	9.52123	3.28778	76 2	98.8	2.464	0.292	0.554	1.068	0.40
-	8	Sulzer Hellapak® 250.Y metal	Suizer	1.36655	9.53589	3.28478	76.2	98.8	2.464	0 292	0 554	1.068	0.408
	9	Sulzer Mellapak® 250.Y metal	Sulzer	1.37267	9.5477	3.28223	76.2	3.86	2.464	0.292	0.554	1.068	0.40
	10	Sulzer Mellapak® 250. Y metal	Suizer	1 37628	9.55348	3 2806	76.2	93.8	2.464	0.292	0.554	1.068	0.406
	11	Sulzer Hellapake 250 Y metal	Suizer	1 37439	3.54507	3,28039	76.2	98.8	2.464	0.292	0.554	1.063	0.408
	12	Sulzer Nellapaké 250. Y metal	Suizer	1 35064	9.51011	3.28571	76 2	98.8	2.454	0.292	0.554	1.068	0.408
	13	Sulzer Nellapak® 250 Y metal	Suizer	1.32306	9.41558	3.29937	76.2	98.8	2.464	0.292	0.554	1.068	0.408
	14	Sulzer Mellapak® 250. Y metal	Sulzer	1.24486	9.21539	3.32924	76.2	8.66	2.464	0.292	0.554	1.068	0.405
	15	Sulzer Nellapakê 250. Yi metal	Sutzer	1.11808	8.87401	3.38137	76.2	93.8	2.464	0.292	0.554	1.068	0.408
	16	Sulzer Hellapake 250.Y metal	Sulzer	1.05355	8.22665	3.54361	76.2	98.8	2.464	0.292	0.554	1.068	0.4DE
	17	Sulzer Mellapak® 250 Y metal	Sulzer	0.89723	7.7824	3.61368	76.2	98.8	2.464	0.292	0.554	1.068	0.4%

Figure G5c Stripper stage data structured hardware results for the base case simulation.

Name	Stripper

		Degrees of F	reedom 0					
N	ame		Target		Value	Active	Estimat	e
Reflux Rati	io 1			1	1.33343			
Boilup Rati	c 1		0.0412	886	0.0758919	17		-
Condenser	Temperature	:C		30	29.9997	V	F	
Reboiler Te	emperature	°C		120	120	17	F	

Figure G6 Stripper specifications for the simulations.

Connections	Process Data	Stage Data	Specifications	Convergence	Analyses	Plots	Streams	Notes
Groupi	ig Oute	r I oon Herations	• T	e and the sector state to be the sector and	<u> </u>			
Paramet	ers Enth	Enthalpy Model Inner Loop model K Damping		Composition-Dependent Boston-Sullivan Nonideal 0				
Variable	s Inner							
Solver	K Da							
DOIACI	Bost	on-Sullivan Kb						
	Maxi	mum Initial Iterat	ions		50			
	Use	Last Solution		V				

Figure G7 Stripper convergence specification for the simulations.

Names	Units	Flue Gas	FG to CO2 Plant	Treated Gas	H2O
Temperature	°C	40*	40	57.996	40
Pressure	kРа	120*	120	110	120
Mass Flow	th	1685.7	1625.1	1372.3	60.575
CO2(Mass Flow)	th	368.17*	368.15	36.813	0.011514
CO2(Mole Fraction)	%	14.59*	15.498	1.6472	0.0077818
N2(Mole Fraction)	%	69.97*	74.328	79	0.00087854
O2(Mole Fraction)	%	2.85*	3.0275	3.2177	6.8793e-005
H2O(Mole Fraction)	%	11.69*	6.1899	15.1	99.991
Ar(Mole Fraction)	%	0.9*	0.95606	1.0161	2.3032e-005
Molar Flow	kmol/h	57338*	53976	50781	3362

	Names	Units	R-Amine	L-Amine
)	Temperature	°C	54.431	43*
)	Pressure	kPa	120	120*
5	Std Liquid Volumetric Flow	sgpm	36214	34773
4	CO2 Loading Mole/Mole Amine		0.5	0.3
3	MEA(Mass Fraction)	%	29.1	30
1	Mass Flow	t/h	8074.4	7821.5

Names	Units	CO2	Steam	Q-2	1	Reflux
Mass Flow	t/h	334.74	530.55		503	185.61
CO2(Mass Fraction)	%	99	0*		20.7	0.221
CO2(Mole Fraction)	%	97.6	0*		9.73	0.0907
EnergyRate	MW	-835	-1.95e+003	323	-1.71e+003	-816
EnergyRate	GJ/h	-3.01e+003	-7.03e+003	1.16e+003	-6.17e+003	-2.94e+003
Temperature	°C	30	124*		120	30
Pressure	kPa	180	224.73		200	180

Reboiler Ratio	3.8#	GJ/t
Steam Ratio	1.6#	ton/ton
Cyclic Capacity	0.196#	mol CO2/mol Amine
LG Ratio	4.6#	%
CO2 Recovery2	90#	%

Figure G8 Simulation results for the base case 5 M MEA.

Names	Units	Flue Gas	FG to CO2 Plant	Treated Gas	H2O
Temperature	°C	40*	40	49.709	40
Pressure	kРа	120*	120	110	120
Mass Flow	t∕h	1685.7	1625.1	1318.1	60.575
CO2(Mass Flow)	t∕h	368.17*	368.15	36.814	0.011514
CO2(Mole Fraction)	%	14.59*	15.498	1.7518	0.0077818
N2(Mole Fraction)	%	69.97*	74.328	84.014	0.00087854
O2(Mole Fraction)	%	285'	3.0275	3.4219	6.8793e-005
H2O(Mole Fraction)	%	11.69'	6.1899	9.7054	99.991
Ar(Mole Fraction)	%	0.9*	0.95606	1.0806	2.3032e-005
Molar Flow	kmol/h	57338*	53976	47751	3362

Names	Units	R-Amine	L-Amine
Temperature	°C	59.425	43*
Pressure	kРа	120	120"
Std Liquid Volumetric Flow	sgpm	38549	36870
CO2 Loading Mole/Mole Amine		0.45	0.27
Mass Flow	t'n	8322.1	8015.1
AMP(Mass Fraction)	%	18.29	19
PZ(Mass Fraction)	%	4.5257	4.7
MEA(Mass Fraction)	%	14.444	15

Names	Units	CO2	Steam	Q-2	1	Reflux
Mass Flow	1th	334.74	554.08		538.37	212.82
CO2(Mass Fraction)	%	99	0'		26	0.237
CO2(Mole Fraction)	%	97.6	0*		12.8	0.0972
EnergyRate	MW	-835	-2.04e+003	337	-1.78e+003	-936
EnergyRate	GJ/h	-3.01e+003	-7.34e+003	1.21e+003	-6.4e+003	-3.37e+003
Temperature	°C	30	124"		120	30
Pressure	kРа	180	224.73		200	180

Reboiler Ratio	4#	GJ/t
Steam Ratio	1.7#	ton/ton
Cyclic Capacity	0.183#	mol CO2/mol Amine
LG Ratio	4.8#	%
CO2 Recovery2	90#	%

Figure G9 Simulation results for 2 M AMP – 0.5 M PZ – 2.5 M MEA.

Names	Units	Flue Gas	FG to CO2 Plant	Treated Gas	H20
Temperature	°C	40*	40	56.531	40
Pressure	kРа	120*	120	110	120
Mass Flow	t/h	1685.7	1625.1	1354.5	60.575
CO2(Mass Flow)	t/h	368.17*	368.15	36.817	0.011514
CO2(Mole Fraction)	0% %	14.59*	15.498	1.6816	0.0077818
N2(Mole Fraction)	%	69.97*	74.328	80.642	0.00087854
O2(Mole Fraction)	%	2.85*	3.0275	3.2845	6.8793e-005
H2O(Mole Fraction)	%	11.69'	6.1899	13.314	99.991
Ar(Mole Fraction)	%	0.9*	0.95606	1.0372	2.3032e-005
Molar Flow	kmol/h	57338*	53976	49748	3362

<u>2 M AMP – 0.5 M PZ – 3 M MEA</u>

Names	Units	R-Amine	L-Amine
Temperature	°C	57.698	43'
Pressure	kPa	120	120*
Std Liquid Volumetric Flow	sgpm	33466	31947
CO2 Loading Mole/Mole Amine		0.48	0.29
Mass Flow	t/h	7203.5	6932.9
AMP(Mass Fraction)	%	18.27	19
PZ(Mass Fraction)	%	4.5218	4.7
MEA(Mass Fraction)	%	17.319	18

Names	Units	CO2	Steam	Q-2	1	Reflux
Mass Flow	t⁄h	334.72	498.34		483.97	179.39
CO2(Mass Fraction)	%	99	0*		28.5	0.234
CO2(Mole Fraction)	%	97.6	0*		14.3	0.0959
EnergyRate	MW	-835	-1.83e+003	303	-1.58e+003	-789
EnergyRate	GJ/h	-3.01e+003	-6.6e+003	1.09e+003	-5.7e+003	-2.84e+003
Temperature	νĈ	30	124'		120	30
Pressure	kРа	180	224.73		200	180

	Reboiler Ratio	3.6#	GJA
	Steam Ratio	1.5#	ton/ton
	Cyclic Capacity	0.193#	mol CO2/mol Amine
	LG Ratio	4.1#	%
ĺ	CO2 Recovery2	90#	%

Figure G10 Simulation results for 2 M AMP - 0.5 M PZ - 3 M MEA.

1	3	1	
-	_	_	

Names	Units	Flue Gas	FG to CO2 Plant	Treated Gas	H20
Temperature)°C	40*	40	54.608	40
Pressure	kPa	120'	120	110	120
Mass Flow	Vh	1685.7	1625.1	1343.3	60.575
CO2(Mass Flow)	Vh	368.17*	368.15	36.817	0.011514
CO2(Mole Fraction)	%	14.59*	15.498	1.7029	0.0077818
N2(Mole Fraction)	%	69.97*	74.328	81.662	0.00087854
O2(Mole Fraction)	%	285'	3.0275	3.3261	6.8793 e 005
H2O(Mole Fraction)	0/ /0	11.69'	6.1899	12.221	99.991
Ar(Mole Fraction)	%	0.9*	0.95606	1.0503	2.3032e-005
Molar Flow	kmol/h	57338*	53976	49127	3362

2 M	AMP –	1 M	PZ –	2 M	MEA
_					

Names	Units	R-Amine	L-Amine
Temperature	٥c	58.454	43*
Pressure	kPa	120	120*
Std Liquid Volumetric Flow	sgpm	35079	33511
CO2 Loading Mcle/Mole Amine		0.49	0.29
Mass Flow	th	7428.1	7146.2
AMP(Mass Fraction)	%	18_264	19
PZ(Mass Fraction)	%	9.1366	9.5
MEA(Mass Fraction)	%	11.542	12

Names	Units	CO2	Steam	Q-2	1	Reflux
Mass Flow	th	334.72	527.39		521.95	206.09
CO2(Mass Fraction)	%	99	0*		27.3	0237
CO2(Mole Fraction)	%	97.6	0*		13.6	0.0971
EnergyRate	MW	-835	-1.94e+003	321	-1.71e+003	-906
EnergyRate	GJ/h	-3.01e+003	-6.98e+003	1.16e+003	-6.16e+003	-3.26e+003
Temperature	°C	30	124*		120	30
Pressure	kPa	180	224.73		200	180

Reboiler Ratio	3.8#	GJ#
Steam Ratio	1.6#	ton/ton
Cyclic Capacity	0.203#	mol CO2/mol Amine
LG Ratio	4.2#	0/ /0
CO2 Recovery2	90#	0/ /0

Figure G11 Simulation results for 2 M AMP – 1 M PZ – 2 M MEA.

Names	Units	Flue Gas	FG to CO2 Plant	Treated Gas	H20
Temperature	l°C	40*	40	59.35	40
Pressure	kPa	120*	120	110	120
Mass Flow	Vh	1685.7	1625.1	1373.1	60.575
CO2(Mass Flow)	t/h	368.17*	368.15	36.816	0.011514
CO2(Mole Fraction)	%	14.59*	15.498	1.648	0.0077818
N2(Mole Fraction)	%	69.97*	74.328	79.033	0.00087854
O2(Mole Fraction)	%	2.85*	3.0275	3.2191	6.8793 e -005
H2O(Mole Fraction)	%	11.69*	6.1899	15.033	99.991
Ar(Mole Fraction)	%	0.9*	0.95606	1.0165	2.3032 e -005
Midiar Flow	kmol/h	57338*	53976	50761	3362

Names	Units	R-Amine	L-Amine
Temperature	0°	56.531	43*
Pressure	kРа	120	120*
Std Liquid Volumetric Flow	sgpm	30360	28924
CO2 Loading Mole/Mole Amine		0.52	0.31
Mass Flow	ťh	6408.3	6156.3
AMP(Mass Fraction)	%	18.23	19
PZ(Mass Fraction)	%	9.122	9.5
MEA(Mass Fraction)	%	14.405	15

Names	Units	CO2	Steam	Q-2	1	Reflux
Mass Flow	t/h	334.71	471.79		467.77	173.17
CO2(Mass Fraction)	%	99	0*		30	0.233
CO2(Mole Fraction)	%	97.6	0*		15.2	0.0954
EnergyRate	MW	-835	-1.74e+003	287	-1.52e+003	-761
EnergyRate	GJ/h	-3.01e+003	-6.25e+003	1.03e+003	-5.46e+003	-2.74e+003
Temperature	Эс	30	124*		120	30
Pressure	kPa	180	224.73		200	180

Reboiler Ratio	3.4#	GJ <i>i</i> t
Steam Ratio	1.4#	ton/ton
Cyclic Capacity	0.215#	mol CO2/mol Amine
LG Ratio	3.7#	%
CO2 Recovery2	90#	%

Figure G12 Simulation results for 2 M AMP – 1 M PZ – 2.5 M MEA.

<u>2 M AMP – 1 M PZ – 2.5 M MEA</u>

Names	Units	Flue Gas	FG to CO2 Plant	Treated Gas	H2O
Temperature	°C	40*	40	61.534	40
Pressure	kPa	120*	120	110	120
Mass Flow	t∕h	1685.7	1625.1	1387.5	60.575
CO2(Mass Flow)	t/h	368.17*	368.15	36.817	0.011514
CO2(Mole Fraction)	%	14.59*	15.498	1.6229	0.0077818
N2(Mole Fraction)	%	69.97*	74.328	77.83	0.00087854
O2(Mole Fraction)	%	2.85*	3.0275	3.1701	6.8793 e 005
H2O(Mole Fraction)	%	11.69'	6.1899	16.319	99.991
Ar(Mole Fraction)	%	0.9*	0.95606	1.0011	2.3032e-005
Molar Flow	kmol/h	57338*	53976	51546	3362

2 M	AMP –	1 M	PZ - 3	M MEA

Names	Units	R-Amine	L-Amine
Temperature	٦°	54.967	43*
Pressure	kPa	120	120*
Std Liquid Volumetric Flow	sgpm	27046	25673
CO2 Loading Mole/Mole Amine		0.55	0.33
Mass Flow	ťh	5690.8	5453.2
AMP(Mass Fraction)	%	18.177	19
PZ(Mass Fraction)	%	9.0979	9.5
MEA(Mass Fraction)	%	17.241	18

Names	Units	CO2	Steam	Q-2	1	Reflux
Mass Flow	t/h	334.71	433.63		431.93	155.43
CO2(Mass Fraction)	%	99	0*		32.6	0.23
CO2(Mole Fraction)	%	97.6	0*		16.9	0.0944
EnergyRate	MW	-835	-1.6e+003	264	-1.39e+003	-683
EnergyRate	GJ/h	-3.01e+003	-5.74e+003	950	-5e+003	-2.46e+003
Temperature	°C	30	124*		120	30
Pressure	kPa	180	224.73		200	180

Reboiler Ratio	3.1#	GJ/t
Steam Ratio	1.3#	ton/ton
Cyclic Capacity	0.224#	mol CO2/mol Amine
LG Ratio	3.2#	%
CO2 Recovery2	90#	%

Figure G13 Simulation results for 2 M AMP – 1 M PZ – 3 M MEA.

Names	Units	Flue Gas	FG to CO2 Plant	Treated Gas	H20
Temperature	0°C	40°	40	63.071	40
Pressure	kPa	120'	120	110	120
Mass Flow	ťh	1685.7	1625.1	1393.2	60.575
CO2(Mass Flow)	th	368.17*	368.15	36.817	0.011514
CO2(Mole Fraction)	%	14.59*	15.498	1.6132	0.0077818
N2(Mole Fraction)	%	69.97*	74.328	77.362	0.00087854
O2(Mole Fraction)	%	2.85*	3.0275	3.151	6.8793e-005
H2O(Mole Fraction)	%	11.69'	6.1899	16.821	99.991
Ar(Mole Fraction)	%	0.9*	0.95606	0.99507	2.3032e-005
Mdar Flow	kmcl.h	57338*	53976	51859	3362

<u>2 M AMP – 1 M PZ – 4 M MEA</u>

ñ

Names	Units	R-Amine	L-Amine
Temperature	°C	51.753	43*
Pressure	kPa	120	120*
Std Liquid Volumetric Flow	sgpm	16539	15191
CO2 Loading Md e/Mole Amine		0.71	0.38
Mass Flow	th	3441.9	3209.9
AMP(Mass Fraction)	0/ /0	17.67	19
PZ(Mass Fraction)	%	8.8521	9.5
MEA(Mass Fraction)	0/ /0	22.369	24

.

Names	Units	C02	Steam	Q-2	1	Reflux
Mæs Flow	th	334.68	384.21		410.56	165.63
CO2(Mass Fraction)	%	99	0*		37	0.223
CO2(Mole Fraction)	%	97.6	0,		19.8	0.0913
EnergyRale	MW	-835	-1.41e+003	234	-1.3e+003	-728
EnergyRate	GJ/h	-3.01e+003	-5.09e+003	842	-4.67e+003	-2.62e+003
Temperature	°C	30	124*		120	30
Pressure	kPa	180	224.73		200	180

Reboiler Ratio	2.8#	GJA
Steam Ratio	1.1#	ton,ton
Cyclic Capacity	0.328#	mol CO2/mol Amine
LG Ratio	1.9#	%
CO2 Recovery2	90 #	%

Figure G14 Simulation results for 2 M AMP – 1 M PZ – 4 M MEA.

Appendix H Equilibrium Curve and Reproducibility of Experimental Results

As outlined in Section 3.2, the CO₂ solubility was kept at constant operation for 4 - 14 hours to confirm that equilibrium was reached. During the initial analysis of each amine solution (ternary blend), the CO₂ solubility run was kept in constant operation up to 24 hours. This helped to ascertain the average time to hit equilibrium and hence reduce experimental analysis time period. Figure H I highlights the CO₂ equilibrium graph of 2 M AMP – 0.5 M PZ – 3 M MEA at 25 – 60 °C at 100 % CO₂. Taking reference from Appendix E (calculation of CO₂ partial pressure), the CO₂ partial pressure of 100 % CO₂ at the different temperatures are listed below;

25 °C = 98.13 kPa 40 °C = 93.93 kPa 60 °C = 81.39 kPa

Figure H1 CO₂ Equilibrium graph for 2 M AMP - 0.5 M PZ - 3 M MEA at 25 - 60 °C and 100 % CO₂.

From Figure H1, it can be noticed that equilibrium is usually reached between 4 – 8 hours of constant operation. The reported results in this case are the equilibrium datas between 4 – 8 hours. The fluctuations in the CO_2 loading even after equilibrium is attained can be attributed to the slight changes in the amine solution concentration during the CO_2 solubility run. The minor fluctuation does not have a huge impact in the CO_2 loading. It's also important to note that at lower CO_2 partial pressure more time will be required to hit equilibrium. In those cases, the experiment is extended to 14 hours.

It's also important to note that the absorption rate of the amine solution can be deduced from plotting CO_2 loading vs time as seen in Figure H1. The absorption rate is also an important parameter in confirming potential amine solutions for CO_2 capture.

For the reproducibility of the experimental results, each data point was repeated 3 times to further confirm the level of accuracy and reliability of the experimental results. Figure H2 shows reproducibility results of 2 M AMP – 0.5 M PZ – 3 M MEA at 25 - 60 °C and 100 % CO₂.

Figure H2 Reproducibility results of 2 M AMP – 0.5 M PZ – 3 M MEA at 25 - 60 °C and 100 % CO₂.

The %AAD from the reproduced results was between 0.5-3 % deviation. This confirmed the reliability of the experimental results. The final CO_2 loading reported in this research project is the average of both the equilibrium data points and the reproduced data points.

Appendix I Reducing Sources of Error during Experimental Analysis

Ability to minimize the possible sources of error will increase the reliability of the experimental results. Figure 11 depicts various areas by which errors can arise during experimental analysis (CO₂ solubility run).

Figure I1 Sources of error during experimental analysis.

For some of the mentioned sources above, its minimal error cannot be controlled. For instance, the water temperature and CO₂ mole fraction indicated by the water bath (\pm 0.1 °C) and CO₂ analyzer (\pm 0.1 %) already have an existing precision and accuracy as provided by the manufacturer. Therefore, more focus should be directed towards minimizing errors from the amine solution concentration, HCl concentration, thermal equilibrium and CO₂ loading titration. Below are some procedures to limit errors from these sources;

Amine Concentration

During experimental analysis (CO₂ solubility run) for any amine solution concentration at more than 1 data point, it is recommended that the amine solution concentration prepared at once instead of in parts. In another scenario where reproducibility experiment will be conducted, it is also important to prepare the amine solution all at once. For instance, if the desired amine solution volume for each CO₂ solubility run is 20 mL and the 2 data points will be analyzed, then the errors will be reduced if 40 mL of the amine solution is prepared at once instead of preparing 20 mL for 2 different data points (Figure I2). Also, if 1 data point will be conducted but a second experiment (for reproducibility) will be conducted then 40 mL amine solution should be prepared. This will ensure constant amine solution concentration during the entire experimental analysis. Apart from reduced error other merits are listed below;

- Less titration to confirm the amine solution concentration (prior to the CO₂ solubility run). Also a reduced amine solution volume to confirm concentration.
- Less HCl volume consumed during the confirmation of the amine solution concentration.

Figure 12 Preparing desired amine solution volume to correspond the proposed experimental data points.

Note: The other source of error in amine concentration is during its preparation. This has been discussed in Appendix A.

HCl Concentration

The correlation for calculating HCl concentration and its standardization was described in Appendix B. It's good to note that most times the concentration of the prepared HCl differs by ± 0.05 M compared to the desired concentration. For instance, if the desired concentration is 1 M, the prepared concentration might be between 0.95 - 1.05 M. This was the case during this research project. In such cases, all calculations involving HCl must be done with the exact concentration and not 1 M. To limit possible errors arising from HCl concentration, it's better to prepare a large volume of HCl to be used almost throughout the proposed experimental analysis (experimental data points). As high as 5 L of 1 M HCl can be prepared and kept for use. This is similar to the idea in Figure I 2.

In addition, if another HCl concentration is prepared (during the experimental time frame) and its concentration is slightly different from the previously prepared HCl, it might be useful to check the concentration an amine solution that has been confirmed by the previous HCl concentration. The 2 different amine solution concentrations (from the previous and current HCl concentrations) can be compared, as it can also show the accuracy of the newly prepared HCl.

Thermal Equilibrium

This has a huge influence in the equilibrium CO_2 loading of any data point. In the absence of reaching thermal equilibrium before starting the CO_2 solubility run, the eventual CO_2 loading will be higher than the actual loading. For instance, if CO_2 partial pressure is 81.39 kPa and the desired temperature is 60 °C, without reaching thermal equilibrium before commencing the CO_2 solubility run the loading will be higher than 0.58 mol CO_2 /mol amine. Below are few recommendations;

- The saturation cell and absorption reactor should be submerged in the water bath before switching on the water bath. This will allow water in the saturator and amine solution in the absorption reactor to heat up as the water bath reaches the desired set temperature. In this case, extra minutes must be allowed for the water and amine solution in the saturator and amine reactor to reach the desired temperature.
- If the water bath is already at the desired set temperature before submerging the saturator and absorption reactor, then it is important to allow the water and amine solution to heat from 24 25 °C to the desired temperature. If the desired temperature is 40 or 60 °C, then it will take about 20 to 35 minutes respectively.

For both recommendations, the final temperature must be confirmed by a thermometer before commencing the CO₂ solubility run.

CO₂ Loading Titration

The standard procedure for determining the CO_2 loading in a CO_2 loaded amine solution is described in detail in Section 3.2.5 and must be strictly adhered to if high accuracy is of paramount importance. Appendix D also detailed the correlation for calculating the CO_2 loading. Since this is the final procedure during any CO_2 solubility run, high accuracy in the other sources of error (previously discussed) must precede this.

Appendix J CO₂ Solubility in AMP – PZ – DETA – MEA Quartenary (Quad-Solvent) Blends

The potential success of ternary solvent blends showed that quartenary solvent (quad-solvent) blends might offer better qualities like high equilibrium CO_2 loading, high net cyclic capacity, no precipitation and much reduced energy of regeneration. The already researched AMP – PZ – MEA ternary blend was further promoted with a polyamine (diethylenetriamine, DETA). Table J1 shows the skeletal structure of DETA. DETA, a triamine contains three amino groups consisting of two primary and one secondary amino groups (Hartono *et al.*, 2011). The addition of DETA allowed much lower concentration of each amine solvent to be utilized thereby limiting any possibility of forming solid precipitates. The polyamine, DETA have been previously studied which indicated higher CO_2 absorption capacity and reaction rate than MEA (Yu *et al.*, 2012b). Yu *et al.* (2012b) stated that the higher boiling point and the vapor pressure of DETA will lead to a reduced energy required and reduced absorbent losses in stripper compared with MEA. The reduced heat duty for DETA was also recently expressed by Zhang *et al.* (2014). DETA as a single solvent for CO_2 capture have been studied by Hartono *et al.* (2011); Hartono *et al.* (2009).

Table J1 Skeletal Structure of other DETA

	Acronym	Chemical/Skeletal Structure
Diethylenetriamine	DETA	H ₂ N NH ₂

The concentrations of the quartenary blends analyzed are 2 M AMP – 0.5 M PZ – 1 M DETA – 1.5 M MEA and 1.5 M AMP – 0.5 M PZ – 1.5 M DETA – 1.5 M MEA keeping their total concentration at 5 M. These two quartenary solutions showed a much higher equilibrium CO₂ loading (39.8 – 45.7 %) and absorption working capacity (36.6 – 43.3 %) compared to 5 M MEA (Figure J1). They also possessed slightly higher equilibrium CO₂ loading (0 – 4.8 %) and higher absorption working capacity (10.8 – 16.2 %) than the binary 3 M AMP – 1.5 M PZ (Figure J1). From Figure J1, when AMP – PZ – DETA – MEA is compared to the already studied AMP – PZ – MEA ternary blend of same total concentration (5 M), the quartenary blends exhibited superior equilibrium CO₂ loading (24.6 – 32.3 %) and absorption working capacity (22.8 – 30.3 %).

Based on this success, it can be suggested that the application of quartenary solvent blends might out-perform single, binary and ternary blends for capture of CO₂.

Figure J1 CO₂ Solubility (mol CO₂/mol amine) and absorption working capacity (aWC, mol CO₂/L amine solution) of different concentrations of quartenary AMP-PZ-DETA-MEA Blends at 40 °C and 93.93 kPa CO₂ partial pressure compared to 5 M MEA, 3 M AMP – 1.5 M PZ and AMP-PZ-MEA ternary blends.

The rich solution of the quartenary blends was also cooled at 20 °C for over 400 hours without forming any solid precipitate.

It is also important to note that during the CO_2 solubility run of the quartenary blend, color change was noticed (from colorless to redish-brown) as shown in Figure J2 and 3. It is yet to be ascertained why there was color change, but it can be said to be the introduction of DETA into the blend. This color change might not be related to degradation.

Figure J2 Rich Solution of 2 M AMP - 0.5 M PZ - 1 M DETA - 1.5 M MEA showing the color change.

Figure J3 Rich Solution of 1.5 M AMP - 0.5 M PZ - 1.5 M DETA - 1.5 M MEA showing the color change.

CURRICULUM VITAE

Name: Mr. Chikezie Ndubuisi Nwaoha

Date of Birth: July 07, 1984

Nationality: Nigerian

University Education:

2003-2009 Bachelor Degree of Engineering in major of Petroleum Engineering , School of Engineering and Engineering Technology (SEET), Federal University of Technology, Owerri, Imo State, Nigeria.

Work Experience:

2005	Position:	Student Trainee (6 weeks)
	Company name:	Port Harcourt Refining Company, Eleme,
		Nigeria.
2008	Position:	Student Trainee (6 months)
	Company name:	Port Harcourt Refining Company, Eleme,
		Nigeria.

Publication:

 Nwaoha, C.; Saiwan, C.; Tontiwachwuthikul, P.; and Supap, T. (2015) Solubility of carbon dioxide (CO₂) in solutions of aqueous 2-amino-2-methyl-1-propanol (AMP) solvent promoted by piperazine (PZ) and monoethanolamine (MEA) blends. <u>International Journal of Greenhouse Gas Control</u>, (submitted).

Proceedings:

1. Nwaoha, C.; Saiwan, C.; Tontiwachwuthikul, P.; and Supap, T. (2015, April 21) CO₂ absorption: Solubility of CO₂ in 2-amino-2-methyl-1-propanol solvent promoted by piperazine and monoethanolamine. <u>Proceedings of the 21st PPC Symposium on</u> <u>Petroleum, Petrochemicals, and Polymers</u>, Bangkok, Thailand. (Oral Presentation)

Presentation:

1. Nwaoha, C.; Saiwan, C.; Tontiwachwuthikul, P.; and Supap, T. (2015, May 17 - 21) Equilibrium solubility of CO₂ in 2-amino-2-methyl-1-propanol solvent promoted by piperazine and monoethanolamine blends. Paper accepted at <u>The IEA Seventh</u> <u>International Conference on Clean Coal Technologies (CCT2015)</u>, Krakow, Poland.

Nwaoha, C.; Saiwan, C.; Tontiwachwuthikul, P.; and Supap, T. (2015, September 8 –
 Solubility of carbon dioxide (CO₂) in highly concentrated aqueous ternary blend of
 amino-2-methyl-1-propanol (AMP), piperazine (PZ), and monoethanolamine (MEA).
 Paper presented at <u>IEAGHG 3rd Post Combustion Capture Conference (PCCC3)</u>,
 Regina, Canada. (Oral Presentation)