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APPENDICES
Appendix A Amine Solution Preparation Calculations

The solution concentration for the experimental analysis of the ternary AMP-
PZ-MEA blend is discussed in this subsection. The properties of each solvent stock
solution as provided in the material safety data sheet (MSDS) is highlighted in Table AL
below;

Table AL Properties of AMP, PZ and MEA

AMP  PZ MEA
Molecular Weight (g/mol) 80.14 86.14 61.08
Purity (wt%) % 9 9
Density (g/L) 930 1012
Calculated Molar Concentration (mole/L, M) - 10.3 16.5

The molarity (molar concentration) of the stock solution of each solvent
(available in liquid form: AMP and MEA) was calculated using the general formula seen
in Equation Al

] Wy _ _purity (wt%) x_density (g/L)
Mol gmolt) < molecular weight fg/mol) « 100 Al

The ternary blend solution was prepared based on molarity basis ( oles/L or
kmol/m3or M). The preparation followed the correlation described in Equation A2.

Mass of Solv.(g) = Solv. Cone, (_ﬁ x Solution Vol. (L) x MW (6T A2

MW = Molecular Weight of solvent, (=0
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Example Al ;
Preparing 500 mL of2M AMP - 0.5 MPZ - 3 M MEA solution.

Calculation:

From Equation A2 it is noticed that the unit of the sample solution is in liters
(L) and moreso the concentration is based on ‘how many moles of the solvent is present
in the sample solution’. Therefore, 500 mL will be converted to ‘L’ which gives 0.5 L.
The

AMP;

Mass of PZ =89.14 ¢

PZ:
Mass of PZ (g) = 0.5 ( H x 05 (L) « 86.14 \(mGIe_Q
Mass of PZ = 21.53 ¢

MEA:
Mass of PZ (g) = 3 ("—) x 05 (L)  61.08 (")
Mass of PZ = 91.62 ¢

Its very important to note that all the mass of each individual solvent should be
weighed out separately, and when mixing them do not add 500 mL of water. First add all
the solvents, then add about 250 mL of water and allow a homogenous mixture to occur.
Then fill the volumetric flask with water to the 500 mL mark. This will guarantee the
exact concentration of each solvent.  this case one of the solvents (PZ) is in solid form,
and this will add some volume to the blended solution. If 500 mL of water is added with
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the mass of all solvents, the final solution volume will exceed 500 mL and as such give a
different concentration of each solvent.
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Appendix B Hydrochloric (HCI) Acid Preparation and Standardization

Hydrochloric acid (HCL) is integral in the experimental analysis because its
used as a titrant to determine amine solution concentration and for the CO2 loading
analysis. The Table BL shows the properties of the HCL stock solution as indicated in the
MSDS (Material Safety Data Sheet);

Table BL Required properties of HCL and Na2C03

HCl  Naxo03
Molecular Weight (g/mol) 36.46 10599
Purity (%) 37
Density (g/L) 1190

Calculated Molar Concentration (mole/L, M) 121

HC1 Preparation;
The simple dilution formula (Equation BI) is used to dilute the stock solution to
the desired final concentration. In this case 1M of HCL is prepared.

V1 = Volume of Stock Solution required, mL
c1= Concentration of Stock Solution, M

2 = Volume of Final Solution, mL

¢2 = Concentration of Final Solution, M

The molar concentration of HC1 was calculated using the informations on Table
B land the Equation AL

Vi=? mL
Ci=121M
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va=1000,ml
c2=IM

=t 00 6L -3l

Therefore, to prepare 1000 mL (I L) of I M HCI, 83 mL of the HCI stock
solution will be mixed with 917 mL of distilled water.

HCI Standardization;

This prepared | M HCI must be standardized before its used during the
experimental analysis. This will confirm the exact concentration in 2 decimal places. In
practice, and most often, the prepared HCI will not be exactly 1 M. It could be within the
accepted accuracy of £ 0.05 M,

The standardization is done using sodium carbonate (Na2CO;,) according to the
reaction in Equation B2 below;

Na2C03 + 2HCI -» 2NaCl + C02+ H20 B2

Datas from a simple titration using a known mass of Na2C03 is used to
standardize the HCI using Equation B3.

HCl Conc. = ( 9Na,C04 % 1000 )

MWpNa,co
2 3
m——— X VHCL_Endpoint

3Na2co3 = Mass ofweighed Na2C03,g
MWNa2c03 = Molecular weight of Na2C03,g/mol

Vhei_endpoint ~ Volume of HCl at endpointImL
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Considering the 1.05 g of Na2C03 was weighed out and the volume of HCI at
endpoint is 194 mL, then the actual concentration of the HCL is;

1.05 x 1000
HC1 Cone. = 1.02 M

/,105.99\ -
(12 ) * 10a

Note: This standardized HC1 concentration (1.02 M) is to be used for calculation during
the experimental analysis. This standardization should be done atleast twice to confirm
the concentration. Ifin any case the concentration of the 2 standardization differs by +
0.05, the average of the 2 concentrations should be used for calculations.
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Appendix C Amine Solution Concentration Calculation

Once the desired concentration of the ternary blend is prepared as described in
Appendix A, a simple titration using standardized HCL as described in Appendix B is
used to confirm the actual concentration of the blend. Methyl orange is used as the
indicator. Citing the complexity of the blend, a derived correlation below is used to
calculate the ternary blend concentration;

Use only when;

1) . Solvent sample size to titrate is 1mL

2) . HCL concentration is 1M

3) . Amine solution concentration is 2 M AMP - 05 M PZ- 3M MEA

A+ D= Salt Cl
B+ D= Salt v
¢ + D= Salt G

AMP (amine with IN so it is L1 ratio)
ma x V=md x Y0l C4

MEA (amine with | N soitis L1 ratio)

Mg x V= Mo x vo2 ¢s

PZ (amine with 2N so it is 1:2 ratio)
Mc « V= (Md x \VDB)/2 C6
2me XV=Md X vos C/

(C4) + (C5) + (C6), V=1mLand MO —1M
Ma + Mg+ 2Mc= DL+ VI2+ VDB - VHClendpoint C8
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Mokar ratio; M= 2 ang Mez 2 co
Ma + ( + 2 (MYN) = VHcLEndpoint XMD CIO
Ma + A——"+ 05 Ma = VHCi Endpoint X MD cil
15 Ms+ A—] = VHCI.Endpoint X C12
3Ma + 3Ma = 2 (VHCi Endpoint X M) c13
6Ma = 2 (VHCLenapOine X Mo) c14
3 MA = VHCIEndpoint X MO0 C15
Ma = VHCLEndpoint X MD c16
rtﬁb: 3 X \A‘UEVdPoint X MO C17

- 05 x ijCIéEndpoint X My i
Matbtc = Mat Mb+ M C19

Ma = Molar concentration of AMP, (M or moles/L)

Mg = Molar concentration of MEA, (M or moles/L)

Mc = Molar concentration of PZ, (M or moles/L)

MO = Molar concentration of HCI, (M or moles/L)

V=" Amine solution sample volume, (m)

VHCI.Endpoint — Vor + V02 + VB, (ML)

Ma+b+c —Total Amine solution concentration, (M or moles/L)

Note: Since PZ contains 2 amino groups it was accounted for in the con-elation (C6 and
C7). This procedure can be used to derive new correlations for sample volume more than
1 mL, other polyamines (2, 3 or more amino groups) and different blends (binary,
ternary, quartcnary).
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Example CI;
Data’s collected during the titration of the amine solution to determine its concentration
is presented below;

Ma = "M

Mb =?M

Mc=7M

MA+B+C —?M

Md= 1M

V=1L

Mer endpoint ~ 6.05 mL

Using Equations C16-19;

Wl engoint Mp 605 x 1
M4= —  p3 - = £ Dydzie=doo M

Ms = 3 X VBci_Endpoint N Mp 3 x0.05 x 1 - 303 M

a 05 x VhciEndpoint X Mp M0b x6.05 x 1
.z : _ O3 g5

Matbtc=Ma+ Mb+ Mc=202+303+05=555M

Note: To limit the sources of error during and after the experimental analysis, it is
imperative to keep the deviation (absolute average deviation, %AAD) of the amine
solution concentration to + 2.5 %.

The %AAD of the desired and measured concentration for each solvent was
calculated. The general formula (Equation 20) for calculating standard deviation;

(WAAD) = A 122 x 100 c20

Emeasured.



cmeasured = Measured solvent concentration, M
cdesired — Desired solvent concentration, M

For the analyzed concentration above, the %AAD for the solvents are below;

AMP
(%AAD) = x 100 =0.99 %

MEA
303 — 3
(%AAD) =< 3.03 )x 100 = 0.99 %

0.5 0.5

(%AAD) (;5 "~ X100 = 00 %
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Appendix D Carbon Dioxide (CO2) Loading Calculation

The procedure to determine co? loading of each solubility ran is described in
Section 3.2.5 and the correlation for its calculation is highlighted in the Equation DI.
A2-N(0(273M)1
i t[( (760mm(Hg()(T) )J i

aC°2 01

aC02 = amine solution C02 loading, mol C02/mol amine
T =room temperature (K)

p —barometric pressure (mmHg)

c1 = rich amine solution concentration (M)

VL = amine solution sample volume (mL)

A = conversion constant (2241 L/mole)

VO = volume of CO2collected in gas burette (mL)
VHCL—volume of acid titrant at end point (mL)

Note: The rich amine concentration is calculated using the correlation (Matbtc) as
described in Appendix c.

Sample Calculation;
The data below are from CO2 solubility in2 M AMP -0.5 MPZ - 3M MEA a
25 °¢ and 100 % CO- (93.93 kPa COx partial pressure).

aC02=? mol COZ mol amine
T=297K

p =760 mmHg

="M

VI=ImL

A = 2241 L/mole
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fcoz = 98 mL
VHCL= 6.05 mL

Using the datas gotten from the titration analysis (Chittick Apparatus), the
concentration of the rich amine solution is first calculated;

Md —HCI concentration —1.02 M

Ma(amp) - VBOLENdyeint AR o e At 205 M
Mb{MEA) - 3 X M-I'IDI_Endpoint X Mf) _ 3 X 6.056x 102

3.086 M
— 9-~ x yHCI_Endpoint x Mp _ 05 X 605 X 102 051M

€1=Ma+ Mb+ Mc=205+308+051=564M

Note: The amine concentration to use for this calculation must be the rich amine
solution concentration and not the lean amine solution concentration.

4

07
aC02— (5.65)&)(27;45 0668 = 0.67 mol C02imol amine

Note: For more précised accuracy, the CO2 loading should be approximated to 2
decimal places.
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Appendix E Carbon Dioxide (COz) Partial Pressure Calculation

The experimental set-Up consists of a saturation chamber to complete the flue
gas simulation (C02+ N2+ H2)). Therefore, the C02composition upstream of the
saturator would not be the same at the saturator downstream. The presence of water
vapor will be accounted for and hence determine the actual CO2partial pressure of the
flue gas going to the absoiption reactor (Equation EI).

Pco2 ~ NCo2 (Protai ~ pho) El

Pco2 = CO02Partial Pressure, kPa
NG = C02Mole Fraction

Protai — Total Pressure of System, kPa
Preo — H20 Vapor Pressure, kPa

The water vapor pressure is dependent of temperature and not dependent on the
pressure or volume of water. The water vapor pressures at different temperatures are
listed below;

pc02@ 25°c = 3.16 kPa
Poo2@40°C = 7.37 kPa
Pco2@ 60°c = 19.91 kPa
PG:2@ 100°¢ = 101.3 kPa

The correlation shown in Equation El was used to determine the CO? partial
pressures at different temperatures during the experimental analysis.

Sample Calculation at 25 °C;

Pc2 = ? PPa
n(@ = 10 (100 %)
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PTotai = 101.3 kPa
Ph2o = 3.16 kPa

PG2=1(1013 - 3.16) = 98.14 kPa
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Appendix F Hz0/PZ Molar Ratio Calculation

Citing Section 4.4.2.1.1, when PZ is part of the amine hlends, it’s important that
all the crystals of PZ dissolves in the amine solution without stirring or heating.
According to the study of Bishnoi (2000) the solubility of PZ concentration in water was
1.64 Mand 188 M at 20 °c and 25 °c respectively. The water concentrations (Equation
FI) of 1.64 M PZ and 1.88 M PZ was calculated and used to determine their HA/PZ
molar ratios. The calculated H20/PZ molar ratios was then used as a benchmark for the
bi-solvent and tri-solvent blends.

H?0 Cone, in amine solution = A X%'mg%)m \|/'|02|0(Cn$?§ (M) Fl

Preparing 20 mL of 188 M PZ
IMPZ = 188 « 0.02 « 86.14 = 324 ¢

Using a mass balance, 3.24 g of PZ was added in a calibrated beaker and mixed
some volume of water until all the PZ crystals to dissolve. Extra was was then added to
make up the final volume to 20 mL. In this case, the volume of water added to the 3.24 g
of PZwas 17 mL. To confirm that 17 mL of water can dissolve all the PZ crystals (3.24
0) without stirring, 17 mL of water was added in separate calibrated beaker containing
3.24 g of PZ crystals. It was confirmed that all the PZ crystals completely dissolved.

The concentration of the aqueous PZ solution was also confirmed using the titration
technique as described in Appendix B. Using Equation FI, the water concentration in
18 M PZ was calculated as seen below;

17 « 955

H20 Cone, in PZ solution = 20

=472 M
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The next step is to correlate the H20/PZ molar ratio which was determined
using Equation F2.

Hy O Molar Concentration in Amine Solution

""" - == mmmee mmmme e F2
PZ Molar Concentraulon in Amine Solution

Therefore, the H20/PZ molar ratio is:

H20 molar cone. 472
PZ molar cone. 188"’

The same procedure was used in calculating the H2)/PZ molar ratio of 1.64 M
PZ which was 29.5. A sample calculation for the tri-solvent blends is shown below;

Preparing 20mL of 2MAMP - IMPZ - MMEA

2MAMP =2 « 002 x 89.14= 356¢ = 4mL
IMPZ =1, 002 «86.14=172¢
SMMEA =3 « 002 x 61.08=366g = 3.7mL

The same procedure used in preparing the 188 M PZ was used for all the tri-
solvent blends. For this particular amine blend 10.7 mL of water was the final volume of
water added. The water concentration in the blended amine solution is calculated using
Equation FI.

H?O Cone,in amine solution -"]:Q:?'—%O'E'):r’"?: 297 M

The H20/PZ molar ratio for2 M AMP - 1M PZ - 3 M MEA was calculated
below:.
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HaO mofar cone. _ 29,/

e = 8- a7
Note: Since PZ is In crystal form, the additional volume it adds in the amine solution
was studied. This is necessary because all solids add a certain volume when preparing
solutions. It was seen that on preparing 20 mL of 1M PZ, the equivalent mass of PZ was
1.72 g and the required volume of distilled water was 18.4 mL. This means that 1.72 g of
PZ exerted about 1.6 mL to the solution. On the other hand, when 20 mL of 15 M PZ
was prepared, the equivalent mass of PZ was 2.58 g and the required volume of distilled
water was 17.6 mL. This also means that 2.58 ¢ of PZ added 2.4 mL to the solution. This
was integral in understanding the equivalent volume of water required when preparing
the ternary solutions, since AMP and MEA can be added to the amine solution as
liquids. With this information about the volume exerted by PZ, the H20/PZ molar ratios
of the aqueous amines solutions can be predicted prior to preparing the amine solutions.
This was als confirmed when preparing PZ concentrations of 1.64 M and 188 M.
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Appendix G Process Simulation Result Datas of Base Case (5 M MEA) and the
Ternary Blends

The simulation results for the base case (5 M MEA) and all the ternary blends
are presented below (Figures GL - G10). For the base case MEA all the results are
presented, but for the ternary blends only the major datas are presented.

5 M MEA

Name  Absorber

Connections - Process Data  Stage Data Specifications  Convergence  Analyses Plots  Streams ! Notes

Number of Stages 17
Degrees of Freedom 0
Column Type TSWEET Kinetics
Flash Type VLE
Column Add-ons None

Calculate Column Hydraulics ra

Efficiency Phase Light Liquid
Thermal Efficiency 0

Main Liquid Phase Light Liquid
Number Column Top Down 0

Phase Threshold 0.5

Figure G1 Absorber process data informations for the simulation.



Name  Absorber
I Connections | Process Data Stage Data  gpecifications jConvergence lAnaIyses lpiots  Streams Notes
[ Grouping Specify Pressure change below, or specify atleast the top and bottom stage pressures in the stage Summary table,

]0 kPa

Pressure Change

Hardware
Bottoms Head ~ T opsi

Efficiencies

Recoveries Stage Show Stage 3 Phases Temperature Pressure Vapor LightLiquid Heavy Liquid

Vapor Molar Flow

i kPa kmoFh
Light Liquid 1 n 57,5558 110 507312 334192 |
Heavy Liquid 2 v 70.7855 110.525 59538.9 342069
Phase Properties 3 76.6706 111.25 67415.7 345563

4 ) # 78.2258 111.875 70910.3 346140

K-Values I 4 hi 77.9793 1125 71486.8 345514
s g 77.0402 113.125 70861.5 344476
7 [ 75.5331 11375 69823.1 343327
8 L hi 74.5267 114.375 68673.8 342178
5 hi 73.1562 115 67525 341064
10 n 71.5265 115.625 66410.3 339983
1 e 70.4322 116.25 65330.1 338916
12 h 68.5638 116.875 64263.4 337831
13 tei 67.3524 117.5 63178.3 336680
14 hij 65.4324 118.125 62026.7 335383
15 m H 63.1397 115.75 60734.8 333529
16 H 59.5678 119.375 59175.9 331752
17 . 54.4312 120 57093.9 328629

Figure G2a Absorher stage data summary and results for the base case simulation.
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Figure G2b Absorber stage data hardware general results for the base case simulation.
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Figure G2c Absorber stage data structured hardware results for the base case

simulation.
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Name  Absorber

123

| Grouping '
l Parameters

Variables

Solver

Process Daia

Stage Data | Specfications | Convergence | andyses | ots | streams

Notes—i_

Outer Loop fterations

Enthalpy Model

Compesiticn-Cependent

Inner Loop model Boston-Sullivan Nenigeal

K Damping 0
Boston-Sullivan Kb vl

Maximum Initial tterations S0
Use Last Solution ¥

Figure G3 Absorber convergence specification.

Figure G4 Stripper process data informations for the simulation.
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17
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Efficiency Phase
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Main Liquid Phase

Number Column Top Down
Phase Threshold

VLE

Partial Condenser  /Reboiler

7
Light Liquid
0
Light Liquid
7
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1 crouping 1 SpeCify Pressure change below, or specify at least the top and bottom stage pressures in the stage Summary table.

[ Simmay 1
Hardware
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Heavy Licuid

Phase Properties

K-\ValLes

Figure Gba Stripper stage data summary and results for the base case simulation,

Pressure Change 0 KR
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Figure G5b Stripper stage data hardware general results for the base case simulation.
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Figure G5¢ Stripper stage data structured hardware results for the base case simulation.
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Name  stripper
Connections Process Data Stage Data  SPecificalions  Convergence  Analyses Plots ~ Streams  Notes

Degrees of Freedom 0

Name Target Value Active Estimate
Reflux Ratio 1 1 1.33343
Boilup Ratio 1 0.04128SS 0.0758919
Condenser Temperature :c 0 209997 7 i
Reboiler Temperature ¢ 120 0 7

Figure Gs Stripper specifications for the simulations.

Name  Stripper

{Connecﬁons Process Data | Stage Data | Spedifications | Convergence | Analyses | Plots | Streams Notesi

Outer Loop ferations
Parameters Enthalpy Model Compostticn-Dependent
Variables Inner Loop model Boston-Sullivan Henideal
P K Damping 0
Boston-Sulivan Kb |
Iaximum Inttial kerations 0
Use Last Solution ¥

Figure G7 Stripper convergence specification for the simulations,
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Names Units  Flue Gas FGto C02 Plant Treated Gas H20 Names Units R-Amine L-Amine
Temperature IC 40 40 57.996 40 Temperature G: 54.431 43
Pressure kPa m ]Z) m m Pressure kPa ]Z) m
Mass Flow MI 1685.7 1625.1 13723 60.575 Std Liquid Volumetric Flow sgpm 36214 34773
C02(Mass Flow) MI 368.17* 368.15 36.813 0.011514 C02 Loading M M de Amine 0.5 0.3
C02(Mole Fraction) % 14.59* 15.498 1.6472  0.0077818 MEA(Mass Fraction) % 29.1 3)
N2(Mde Fraction) % 69.97* 74.328 79 0.00087854 Mass Flew tfh 80744 78215
02(Mole Fraction) % 2.85* 3.0275 32177  6.8793e-005
H20(MdeFraction) % 11.69* 6.1899 15.1 99.991
ArfMole Fraction) % 0.9* 0.95606 1.0161 2,3032 05
Mdar Flow knd/h 57338* 53976 50781 3362

Names Units co02 Steam Q-2 1 Reflux Reboiler Ratio 38F Gt
Mass Flew MI 334.74 530.55 503 185.61 Steam Ratio .® tonfton
C02(Mass Fraction) % 99 0 20.7 (M. Cyclic Capacity 0.196F mol C02/mol Amine
C02(Mole Fraction) % 97.6 0 9.73 0.0907 LG Ratio i® %

EnergyRate MW -835  -1.95e+003 323 -1.71e+Q03 -816 C02 Recovery” m %
EnergyRate GJti -3.01e+003 -7.03e+003 1.16e+003 +6.17e+003 -2.94e+Q03
Temperature OC 30 124¢ ]Z) 30
Pressure KPa 180 22473 ZD 180

Figure G8 Simulation results for the base case 5 M MEA.



2MAMP - 05MPZ- 25 M MEA

Names Units  Flue Gas FG to C02 Hant Treated Gas H20 Names Units  R-Amine L-Amine
Temperature °c 40* 40 49.709 40 Temperature °c 59.425 43*
Pressure kPa ]Z) ]Z) m ]Z) Pressure kPa ]Z) m
Mass Flew th 1685.7 1625.1 1318.1 60.575 Std Liquid Volumetric Flow sgpm 38549 36870
C02(Mass Flow) th 368.17* 368.15 36.814 0.011514 C02 Loading Moi Mole Amine 0.45 0.27
C02(Mole Fraction) % 14.59* 15.498 1.7518  0.0077818 Mass Flow tih 83221  8015.1
N2(Mole Fraction) % 69.97* 74.328 84.014  0.00087854 AM P(Mass Fraction) % 18.29 19
02(Mde Fraction) % 285’ 3.0275 3.4219 6.8793e-005 PZ(Mass Fraction) % 45257 4.7
H20(Mole Fraction) % 11.69' 6.1899 9.7054 99.991 MEA(Mass Fraction) % 14.444 15
Ar(Mole Fraction) % 0.9* 0.95606 1.0806 2.3032 05
Mdar Fiow ollh  57338* 53976 47751 3362

Names Units Co02 Steam Q-2 1 Reflux Reboiler Ratio 4 Gl
Mass Flow M 334.74 554.08 538.37 212.82 Steam Rato 1.7# tonlton
C02(Mass Fraction) % 99 26 0.237  Cyclic Capacity 0.183# mol C02/md Amine
C02(Mole Fractal) % 97.6 0 ]28 0.0972 LG Rato 4.8% %
EnergyRate MW 1835 -2.04e+003 337 -1.78e+003 -936 C02 Recovery 90# %
EnergyRate GJIh  +3.01e+003 -7 34e+003 1.21e+003  -6.4e+003 -3.37e+003
Temperature °c 30 124% ]Z) 30
Pressure kPa 180 224.73 ZD 180

Figure G9 Simulation results for2M AMP - 05 M PZ - 25 M MEA.
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2MAMP - 05 MPZ- 3M MEA

Names Units  Flue Gas FG to C02 Plait Treated Gas H20 Names Units R-Amine L-Amine
Temperature OC LDk 40 56.531 40 Temperature ko 57.698 43
Pressure kPa ]Z) ]Z) m ]Z) Pressure kPa ]ZJ m
Mass Flew ﬂh 1685.7 1625.1 1354.5 60.575 std Liquid Volumetric Flow sgpm 33466 31947
C02(Mass Flow) th i 368.15 36.817 0.011514 C02 Loading Md Mole Amine 0.48 0.29
C02(MoleFracti ) % 14.59* 15.498 1.6816 0.0077818 Mass Flow tfh 72035 69329
N2(Mole Fraction) % 69.97* 74.328 80.642  0.00087854 AMP (M ass Fraction) % 18.27 19
02(Mole Fraction) % 285* 3.0275 3.2845 6.8793e-005 PZ(Mass Fraction) % 45218 4.7
H20(Mole Fraction) % 11.69* 6.1899 13314 99.991 MEA(Mass Fraction) % 17319 18
Ar(Mole Fraction) % 0.9* 0.95606 1.0372° 2.3032 05
Molar Flow ol/h 57338* 53976 49748 3362

Names Units Cco2 Steam Q-2 ]. Reflux Reboiler Ratio 364 GIlt
Mass Flow M 334.72 498.34 483.97 179.39 Steam Ratio 1.54 toniton
C02(Mass Fraction) % 99 0 285 0234 cyclic Capacity 0.1934 mol C02/md Amine
CO02(MoleFraction) % 97.6 0 143 0.0959 LG Ratio 414 %

EnergyRate MW 1835 -1.83*003 303 -1.58+%003 789 €02 RecoveryC 904 %
EnergyRate GJh -3.01e+003  -6.6e+003 1.09%003 m5.7*003 m2.84e+003
Temperature X 30 124* ]2) 30
Pressure kPa 180 224.13 ZD 180

Figure G10 Simulation results for 2M AMP - 0.5 M PZ- 3M MEA.



2MAMP-IMPZ-2M MEA

Names
Temperature
Pressure
Mass Flew
C02(Mass Flow)
C02(Mole Fractal)
N2(Mole Fraction)
02(Mde Fraction)
H20(Mole Fraction)
Ar(Mole Fraction)
Mdar Flow

Names
Mass Flew
C02(Mass Fraction)
C02(Mole Fraction)
EnergyRate
EnergyRate
Temperature
Pressure

Units FlueGas FGtoCO02 Plant TreatedGas  H20

L 40r 40 54,608 4 Temperature °C
kPa 10 0 110 0 Pressure kFa
th 16857 16251 1333 6057 std Liquid Volumetric FiOv ~ sgpm
th 36817 6815 38T 0011514 CO2Loading Mdfiilde Amine

% 145% 1548 1709 00077818 Mass Flew th

% 69.97* A8 81662 000087854  AMP(Mass Fraction) %
% 285* 30215 3361 687936005  PZfMass Fraction) %
% 1169 6.1899 2 9991  MEA(Mass Fraction) %

% 09t 095606 10503 2:30326-005

TR 53076 49127 332

Unts ~ C02  Steam Q2 ! Refx  ReholerRate 38 Gilt
M B 823 0% 20609 SteamRato 166 (on
% # v 23 08T cyic Capacity 0208¢ mol CO2/md Amine
% 976 0 B6 00 |6 Rato 108 %
MW 835 81.94%003 2 1716003 906 co2Recovert 9 %
GJh -301e+003 -6.98003 1167003 -6.16+003 -3.26e+003

o Rl 1k 10 30

kPa 180 2473 20 180

Names

Figure G11 Simulation results for 2M AMP - 1M PZ - 2 M MEA.
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2MAMP- IMPZ- 25M MEA
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Names Units Flue Gas FGto CO2 Plant Treated Gas ~ H20 Names Units R-Amine  L-Amine
Temperature IC 40 40 59.35 40 Temperature £ 56531 43
Pressure kPa Vi 120 10 120 Pressure lePa w o
Mass Flew ill 16857 16551 13131 60575 Sid liquid Volumetric Flew ~ sgpm 30360 28924
C02(Mass Flow) il 38.17* 3815 36816 0011514 CO2 Loading Mol ole Amine 052 03
C02(Mole Fraction) % 14.5¢¢ 15498 1648 00077818 Mass Flew il 64083 61563
N2(Mole Fraction) % 69.97¢ 7438 7903 000087854  AMP(Mass Fraction) % 1823 19
02(Mole Fraction) % 285" 30215 32191 68793005  PZ(Mas$ Fraction) % 912 95
H20(Mole Fraction) % 116% 6.1899 15,033 9991 MEAfMass Fracton) % 14405 15
Ar(Mde Fraction) % 09 095606 10165 2.3032-005
Molar Flow kmdh  57336* 53076 50761 3362

Names Unts  C02 Steam Q-2 1 eflux Reboiler Ratio 341 GJi
Mass Flew th BT LN 47177 1317 SteamRatio L4 (Men
C02(Mass Fraction) % %9 0* R 0233 Cyclic Capacity 0.215% molCO W Amine
C02(Mde Fraction) % 976 0 552 009%4  LGRatio 3T %

EnergyRate Mw 083 +1.74%003 281 +1.52*003 61 CO2Recoup %0 %
EnergyRate GJh -301e+003 w6,25*003 1.03*003 +5.46%003 +2.74*003
Temperature R Bl 124 10 3
Pressure kPa 180 247 200 180

Figure G12 Simulation results for 2M AMP - 1M PZ- 25 M MEA,



2M AMP - 1M PZ- 3M MEA

Names
Temperature
Pressure
Mass Flow
C02(Mass Flow)
C02(Mcle Fraction)
N2(Mde Fraction)
02(Mde Fraction)
H20(Mole Fraction)
Ar(Mde Fraction)
Mdar Flow

Names
Mass Flaw
C02(Mass Fraction)
C02(MdeFractim)
EnergyRate
EnergyRate
Temperature
Pressure

Units FlueGas FG1toC02 Plant Treated Gas

5 40t
kPa 120
«h 1685.7
MI 368.L7*
% 1459
% 69.97'
% 285
% 1169
% 0.9
ofh 57338
Units ~ C02
M 31
% 9
% 976
Mw 183
GJh  -301e+003
5 30
kPa 180

40

120
16251
368.15
15498
14328
302715
6.1899
0.95606
53976

Steam
43363
0*
0

02

-1.6%003 264 +1.39%003

+5.74*003 950
14
2473

H20

61.534 40
110 120
13875 60575
36817 0011514
16229 00077818
7783 0.0008785
31701 6*793 05
16319 99.991
10011 2.3032 05
51546 3362
| Reflux
13193 155.43
326 023
169 0,004
683

5e+003  -2.46e+003
12 Kl
200 180

Names
Temperature
Pressure

std Liquid Volumetric Flew
C02 Loading Md Mde Amine

Mass Flaw
AMP(Mass Fraction)
PZ(Mass Fraction)
MEA(M ass Fraction)

Retoiler Ratio
Steam Ratio

34 6
13 |
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Units R-Amine  L-Amine

c
kPa
sgpm

%
%
%

54.967

120
21046

0.5
56908
1811
9.0979
17.241

Cyclic Capacity 0.224# md C02/md Aming

LG Ratio
C02 Recovery"

Figure G13 Simulation results for 2M AMP - 1M PZ - 3M MEA.
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2MAMP - IMPZ- 4 M MEA

Names
Temperature
Pressure
Mass Flew
C02(Mass Flow)
C02(Mole Fraction)
N2(Mde Fraction)
02(Mole Fraction)
H20(MoleFraction)
ArjMole Fraction)
MdarFlow

Names
Mass Flay
C02(Mass Fraction)
C02(MoleFraction)
EnergyRate
EnergyRate
Temperature

Pressure

Units FlueGas FGtoCO2Plant TreatedGas  H20
X 401 40 63071 40
kPa 120¢ 120 110 120
Wh 1685.7 1625.1 13932 60.575
1] 368.L7* 368.15 36817 0.011514
% 145¢* 15,498 16132 0.0077818
% 69.97* 14328 77362 0.00087854
% 285* 30215 3151 6.87936-005
% 1169 6.1899 16821 90991
% 09 095606 099507 230326005
) 5733 53076 51859 3362
Unis €02 Steam Q-2 1 Relux
d 3B468 3842 41056 165,63
% % ¢ 3 0223
% 976 0¥ 198 00913
Mw 0835 -141e+003 234 -13e+003 28
GJfi -3.01e+003 -5.09e+003 842 -4.67e+003 -2.62e+003
X 3 124* 120 0
LPa 180 247 200 180

Names
Temperature

Pressure

StdLiquid Volumetric Flew

C02 Loading Md
Mass Fla.v
AMP(Mass Fraction)
PZ(Ma§s Fraction)
MEA(Mass Fraction)

Retailer Ratio

Steam Ratio

ole Amine

284 Gl

134

Units R-Amine L-Amine

X
kPa

sgom

l
B

%

Men

oA
o
1639 15101
0%
RN
mr
L 4
Ny U

Cyclic Capacity 03284 mdC02Imd Amine

LG Ratio
C02Recolery?

19% %
01

Figure G14 Simulation results for 2M AMP - 1M PZ - 4 M MEA.
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Appendix H Equilibrium Curve and Reproducibility of Experimental Results

As outlined in Section 3.2, the CO2 solubility was kept at constant operation for
4-14 hours to confirm that equilibrium was reached. During the initial analysis of each
amine solution (ternary blend), the C02solubility run was kept in constant operation up
to 24 hours. This helped to ascertain the average time to hit equilibrium and hence
reduce experimental analysis time period. Figure H 1high|ights the CO2 equilibrium
graph of2M AMP - 05 MPZ- 3M MEA a 25- 60 Cat 100 % C02 Taking
reference from Appendix E (calculation of CO2partial pressure), the C02partial
pressure of 100 % CO02at the different temperatures are listed below;

%5 °C= 9813 kP
08 =939 kPa
60 C= 81.39 kPa

0.69
g 0.67 : //‘\A\‘/\/"—“\i
g 1
'g 0.65 i —a—25 oC
z |
< 0.63 - /"\.,./-\././‘\. —e—40 oC
S 061 - —=—60 oC
| 059
5 0.57 AT
" 055

0246 5 1012141618202224 26
Time (hrs)

Figure HL CO2Equilibrium graph for2M AMP - 0.5 M PZ- 3M MEA at 25 - 60 T
and 100 % C02
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From Figure HI, it can be noticed that equilibrium is usually reached between 4
- 8 hours of constant operation. The reported results in this case are the equilibrium
datas between 4 -8 hours. The fluctuations in the C02 loading even after equilibrium is
attained can be attributed to the slight changes in the amine solution concentration
during the CO2solubility run. The minor fluctuation does not have a huge impact in the
C02loading. It's also important to note that at lower CO2partial pressure more time will
be required to hit equilibrium. In those cases, the experiment is extended to 14 hours.

It’s also important to note that the absorption rate of the amine solution can be
deduced from plotting C02 loading vs time as seen in Figure HI. The absorption rate is
also an important parameter in confirming potential amine solutions for C02capture.

For the reproducibility of the experimental results, each data point was repeated
3 times to further confirm the level of accuracy and reliability of the experimental
results. Figure H2 shows reproducibility results of 2 M AMP - 05 M PZ- 3 M MEA at
25-60 °c and 100 % C02
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Figure H2 Reproducibility results of2M AMP - 0.5 M PZ- 3M MEA at 25 - 60 °C
and 100%C02
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The %AAD from the reproduced results was between 0.5-3 % deviation. This
confirmed the reliability of the experimental results. The final CO2 loading reported in
this research project is the average of both the equilibrium data points and the
reproduced data paints.
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Appendix | Reducing Sources of Error during Experimental Analysis

Ability to minimize the possible sources of error will increase the reliability of
the experimental results. Figure 11 depicts various areas by which errors can arise during
experimental analysis (COz solubility run).

CO; mole fraction

HCI Concentration Amine Concentration

A A y

Experimental Analysis: Sources of Error
4 I A

Thermal Equilibrium Water Bath Temperature

CO; loading Titration

Figure 11 Sources of error during experimental analysis.

For some of the mentioned sources above, its minimal eiror cannot be
controlled. For instance, the water temperature and CO2mole fraction indicated by the
water bath (£ 01 °C) and COzanalyzer (£ 0.1 %) already have an existing precision and
accuracy as provided by the manufacturer. Therefore, more focus should be directed
towards minimizing errors from the amine solution concentration, HCL concentration,
thermal equilibrium and COz loading titration. Below are some procedures to limit errors
from these sources;
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Amine Concentration

During experimental analysis (CO2 solubility run) for any amine solution
concentration at more than 1data point, it is recommended that the amine solution
concentration prepared at once instead of in parts. In another scenario where
reproducibility experiment will be conducted, it is also important to prepare the amine
solution all at once. For instance, if the desired amine solution volume for each CO2
solubility run is 20 mL and the 2 data points will be analyzed, then the errors will be
reduced if40 mL of the amine solution Is prepared at once instead of preparing 20 mL
for 2 different data points (Figure 12). Also, if 1 data point will be conducted but a
second experiment (for reproducibility) will be conducted then 40 mL amine solution
should be prepared. This will ensure constant amine solution concentration during the
entire experimental analysis. Apart from reduced error other merits are listed below;

o Less titration to confirm the amine solution concentration (prior to the
COz2 solubility run). Also a reduced amine solution volume to confirm
concentration.

* Less MCI volume consumed during the confirmation of the amine solution
concentration.

[ 1

Figure 12 Preparing desired amine solution volume to correspond the proposed
experimental data points.
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Note: The other source of error in amine concentration is during its preparation. This has
been discussed in Appendix A

HC1 Concentration

The con-elation for calculating HCL concentration and its standardization was
described ill Appendix B. It's good to note that most times the concentration of the
prepared HCL differs by £ 0.05 M compared to the desired concentration. For instance, if
the desired concentration is 1M, the prepared concentration might be between 0.95 -
105 M. This was the case during this research project. In such cases, all calculations
involving HCL must be done with the exact concentration and not 1M. To limit possible
errors arising from HCL concentration, it’s better to prepare a large volume of HCL to be
used almost throughout the proposed experimental analysis (experimental data points).
As high as 5 L of 1M HCL can be prepared and kept for use. This is similar to the idea in
Figure 12

In addition, if another HCL concentration is prepared (during the experimental
time frame) and its concentration is slightly different from the previously prepared HCL,
it might be useful to check the concentration an amine solution that has been confirmed
by the previous HCL concentration. The 2 different amine solution concentrations (from
the previous and current HCL concentrations) can be compared, as it can also show the
accuracy of the newly prepared HCL

Thermal Equilibrium

This has a huge influence in the equilibrium CO? loading of any data point. In
the absence of reaching thermal equilibrium before starting the CO2 solubility am, the
eventual CO2 loading will be higher than the actual loading. For instance, if CO2 partial
pressure is 81.39 kPa and the desired temperature is 60 °c, without reaching thermal
equilibrium before commencing the CO2 solubility run the loading will be higher than
0.58 mol CCVmol amine. Below are few recommendations;
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» The saturation cell and absorption reactor should be submerged in the
water hath before switching on the water bath. This will allow water in the
saturator and amine solution in the absorption reactor to heat up as the
water bath reaches the desired set temperature. In this case, extra minutes
must be allowed for the water and amine solution in the saturator and
aming reactor to reach the desired temperature.

» |fthe water bath is already at the desired set temperature before
submerging the saturator and absorption reactor, then it is important to
allow the water and amine solution to heat from 24 - 25 °c to the desired
temperature. |f the desired temperature is 40 or 60 °c, then itwill take
about 20 to 35 minutes respectively.

For both recommendations, the final temperature must be confirmed by a
thermometer before commencing the CO2 solubility tun.

COtLoading Titration

The standard procedure for determining the COz loading in a CO2 loaded amine
solution is described in detail in Section 3.2.5 and must be strictly adhered to if high
accuracy is of paramount importance. Appendix D also detailed the correlation for
calculating the CO2 loading. Since this is the final procedure during any CO2 solubility
lun, high accuracy in the other sources of error (previously discussed) must precede this.
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Appendix J CO: Solubility in AMP - PZ - DETA - MEA Quartenary (Quad-
Solvent) Blends

The potential stccess of ternary solvent blends showed that quartenary solvent
(quad-solvent) blends might offer better qualities like high equilibrium COz loading,
high net cyclic capacity, no precipitation and much reduced energy of regeneration.

The already researched AMP - PZ - MEA ternary blend was further promoted with a
polyamine (diethylenetriamine, DETA). Table J1 shows the skeletal structure ofDETA.
DETA, atriamine contains three amino groups consisting of two primary and one
secondary amino groups (Hartono et ai, 2011). The addition ofDETA allowed much
|lower concentration of each amine solvent to be utilized thereby limiting any possibility
of forming solid precipitates. The polyamine, DETA have been previously studied which
Indicated higher CO2 ahsorption capacity and reaction rate than MEA (Yu et al., 2012h).
Yuetal. (2012h) stated that the higher boiling point and the vapor pressure ofDETA
will lead to a reduced energy required and reduced absorbent losses in stripper compared
with MEA. The reduced heat duty for DETA was also recently expressed by Zhang et .
(2014). DETA as asingle solvent for CO2 capture have been studied by Hartono et al.
(2011); Hartono et al. (2009).

Table J1 Skeletal Structure of other DETA

Acronym Chemical/Skeletal Structure

H
Diethylenetriamine ~ DETA hen/[X X" | Xnl | ™ nh



143

The concentrations of the quartenary blends analyzed are 2M AMP - 0.5 M PZ

- IMDETA- 15MMEA and 15M AMP - 05 MPZ- 15 MDETA - 15 M MEA
keeping their total concentration at 5 M. These two quartenary solutions showed a much
higher equilibrium ¢ 0 2 loading (39.8 - 45.7 %) and absorption working capacity ( 36.6
- 43.3 %) compared to 5M MEA (Figure J1). They also possessed slightly higher
equilibrium ¢ 0 2 loading (0-4.8 %) and higher absorption working capacity (10.8 —
16.2 %) than the binary 3M AMP - 15 M PZ (Figure JI). From Figure JI, when AMP
- PZ- DETA - MEA is compared to the already studied AMP - PZ - MEA ternary
blend of same total concentration (5 M), the quartenaly blends exhibited superior
equilibrium ¢ 0 2 loading (24.6 - 32.3 %) and absorption working capacity (22.8 - 30.3
% (]

) Based on this stccess, it can be suggested that the application of quartenaly
solvent blends might out-perform single, binary and ternary blends for capture of c 0 2.
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Figure JI' C02Solubility (mol C02mol amine) and absorption working capacity
(@QWC, mol CO2L amine solution) of different concentrations of quartenaiy AMP-PZ-
DETA-MEA Blends at 40 °c and 93.93 kPa C 02partial pressure compared to 5 M
MEA, 3M AMP - 15 M PZ and AMP-PZ-MEA ternary blends.
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The rich solution of the quartenary blends was also cooled at 20 =c for over 400
hours without forming any solid precipitate.

It is also important to note that during the CO2solubility run of the quartenary
blend, color change was noticed (from colorless to redish-brown) as shown in Figure J2
and 3. Itis yet to be ascertained why there was color change, but it can be said to be the
introduction of DETA into the blend. This color change might not be related to
degradation.

Figure J2 Rich Solution of2 M AMP - 05 MPZ- IMDETA - 15 M MEA showing
the color change.
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Figure J3 Rich Solution of 15 M AMP - 05 MPZ- 15 M DETA- 15M MEA
showing the color change.
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