CHAPTER III

EXPERIMENTAL

3.1 Materials

- 3.1.1 Chemicals
	- 3.1.1.1 Benzene (LOBA Chemie, ACS reagent, 99.5% purity)
	- 3.1.1.2 Aluminum Chloride (Sigma Aldrich, Reagent grade, 98% purity, anhydrous)
	- 3.1.1.3 Copper (II) Chloride (Aldrich, Reagent grade, 97% purity, anhydrous)
	- 3.1.1.4 Iron (III) Chloride (Sigma Aldrich, Reagent grade, 97% purity, anhydrous)
	- 3.1.1.5 Poly (ε -caprolactone) (Aldrich, M_n ~ 70,000-90,000)
	- 3.1.1. 6 Luperox® A75 Benzoyl Peroxide (Aldrich,75% remider water)
	- 3.1.1.7 18% Hydrochloric Acid (RCI Labscan, Reagent grade)
	- 3.1.1. 8 Absolute Ethanol (RCI Labscan, Reagent grade)

3.1.2 Solvents

- 3.1.2.1 Benzene (LOBA Chemie, ACS reagent, 99.5% purity)
- 3.1.2.2 Absolute Ethanol (RCI Labscan, Reagent grade)

3.1.3 Gas

3.1.3.1 Nitrogen gas (High purity grade)

3.2 Equipment

- 3.2.1 FT-IR Spectrometer (Thermo Nicolet, Nexus 670)
- 3.2.2 Thermalgravimetric Analyzer (Perkin Elmer, TGA7)
- 3.2.3 Scanning Electron Microscopy or SEM (Hitachi, S4800)
- 3.2.4 Two-point Probe Couple with an Electrometer (Keithley, 6517A)

3.2.5 Particle Size Analyzer (Malvern, Masterizer X)

3.2.6 X-ray Fluorescence Spectrophotometer (PANalytical, Axios PW 4400)

- 3.2.7 Gas Pycnometer (Quantachrome Instrument, Ultrapycnometer 1000)
- 3.2.8 Melt Rheometer (Rheometric Scientific, Ares)
- 3.2.9 Digital Multimeter (Tektronix, CDM250)
- 3.2.10 Function Generator (Instek, GFG2816A)
- 3.2.11 DC Power Supply (Goldsun,GPS 3003D)
- 3.2.12 Vacuum Pump
- 3.2.13 Glasswares and Magnetic Stirrers

3.3 Methodology

3.3.1) Polv(p-phenylene) (PPP) Synthesis

Poly (p-phenylene) was synthesized via the Kovacic method (Bonagamba *et* al., 1995) by using benzene as monomer, anhydrous aluminium chloride (AlCl₃), and anhydrous cupric chloride (CuCl₂) with the mole ratio of 1:0.5:0.5, respectively. The reaction occurred in a 3-neck round-bottom flask at 37 $^{\circ}$ C for 4 hours. Then, the solution was filtered with 18% hot hydrochloric acid and finally in hot D1 water, until it had a pH of 6.0. At last, undoped PPP (uPPP) was dried at $100 \degree$ C for 24 hours. Dried uPPP, the light brown solid powder, was obtained and stored in a glass desiccator (Kunanuraksapong et al., 2007).

3.3.2) PPP Doping Process

The PPP particle was immersed in $FeCl₃$ -absolute ethanol mixtures at 60 °C in a 1:50, 1:30, 1:1, 30:1, 50:1 and 100:1 mole ratios between $FeCl₃$ and PPP monomer. The mixtures were stirred for 48 hours before filtration by using a Biichner funnel and vacuum pump before dried at $100 \degree C$ for 24 hours and stored in a glass desiccators (Phumman *et al.,* 2009).

3.3.3) Polv(ε -caprolactone) (PCL) Film Casting and Crosslinking

Poly(ϵ -caprolactone) (M_n 70,000–90,000 by GPC), purchased from Sigma Aldrich, was dissolved in benzene under stirring for 2 hours at room temperature and cast on a glass plate and dried at room temperature for 24 hours. In case of crosslinked PCL, 1, 3, 5, 7 and 10 wt% of benzoyl peroxide (BPO) were added in the solutions under stirring for 2 hours at room temperature. The solutions were cast on glass plates and dried at room temperature for 24 hours. The completely dried BPO-PCL was cured in an oven at $130 °C$ for 5 min to obtain crosslinked PCL film (Xiao *et al.*, 2010).

3.3.4) PCL and ppp Composite Fabrication

uPPP and dPPP, were added in 0.01 , 0.05 , 0.1 . 0.5 , and $1\%v/v$ into the solutions from 3.3.3.The particles were physically dispersed by vigorous stirring for 3 hours. Then they were dried at room temperature for 24 hours. Finally, the completely dried PCL was kept in an oven at 130 °C for 5 min as the curing temperature to obtain crosslinked PCL film embedded with ppp particles (Xiao *et al.*, 2010).

3.4 Testing and Characterization

3.4.1) Undoped and Doped ppp Particle

- Size of PPP particle was measured by particle size analyzer (Malvern, Masterizer X) (Kunanuraksapong *et al.,* 2007).
- Chemical structures of uPPP and dPPP were investigated by Fourier transform infrared spectrometer (FT-IR) (Thermo Nicolet, Nexus 670). The spectrometer was operated in the transmission mode averaging 64 scans at a resolution of 4 cm⁻¹, covering a wave number range of 4,000-400 cm⁻¹ (Kunanuraksapong et al., 2007).
- Amount of dopant from doping process was carried out by X-ray fluorescence spectrophotometer (XRF) (PANalytical, PW 4400) (Plocharski *et al.*, 1999).
- Decomposition temperature of uPPP and dPPP were investigated by thermogravimetric analyzer (TGA) (Perkin Elmer, TGA7). The particle was weighed to 8-15 mg then pelletized and placed into a platinum pan. The experiment was operated from 30–900 °C with a heating rate of 10 °C/min under nitrogen atmosphere (Phumman *et al.,* 2009).
- Density of PPP particle was determined by a gas pycnometer (Quantachrome Instrument, Ultrapycnometer 1000). Density of the particle was measured under ultra high helium atmosphere with the flow purge of ¹ minute (Sohn *et al.,* 2001).
- Electrical conductivity of uPPP and dPPP were measured by two-point probe connected with a voltage supplier (Keithley, 6517A). The polymers will be compressed into pellets at 10 tons with 1 cm diameter. A constant voltage was applied and the current will be simultaneously measured, then calculated into electrical conductivity. The electrical conductivity can be calculated from this equation:

$$
\sigma = (I/KVt) \tag{III-1}
$$

where σ is the electrical conductivity (S/cm), I is the measured current (A), V is the applied voltage (V), t is the thickness of the pellet (cm), and K is the geometric correction factor of the two-point probe which can be determined by calibration of the probe with a silicon wafer possessing a known resistivity value (Phumman *et al.,* 2009).

Morphology of PPP particle was observed by a using a scanning electron microscope (SEM) (Hitachi, S8400) (Sohn *et al.,* 2001).

3.4.2) Uncrosslinked and Crosslinked PCL

- Electrical conductivity of uncrosslinked PCL and crosslinked PCL film were measured by two-point probe connected with a voltage supplier (Keithley, 6517A) (Xiao et al., 2010).
- The electromechanical properties including storage modulus (G) , storage modulus response ($\Delta G'$) and storage modulus sensitivity ($\Delta G' / G'_{0}$) under and not under electric field were measured by a melt rheometer (Rheometric Scientific, Ares) which has a custom-built copper parallel plate fixture (diameter 25 mm). DC voltage was supplied by a DC power supply (Tektronix, CDM250) that can provide up to $4 \, \text{kV}$ as the maximum voltage. Storage modulus was investigated as a function of electric field, which was

varied from and 0.1 kV to 2 kV, and frequency, was varied from 0.1 to 100 rad/s (Kunchornsup *et al.,* 2012)..

- Morphology of PCL film was observed by using scanning electron microscope (SEM) (Hitachi, S8400) (Xiao *et al.,* 2010).
- Young's modulus of the samples was measured by a universal testing machine (Lloyd,). The sample was cut into the rectangular shape before the test was accomplished with the crosshead speed of 30 mm/min and the gauge length of 30 mm, that were adapted from ASTM D882. Each experiment was repeated for 3 times.

3.4.3) PCL/PPP Composite

- Electrical conductivity of uPPP and dPPP were measured by two-point probe connected with a voltage supplier (Keithley, 6517A) (Xiao *et al.,* 2010**).**
- Distribution of PPP in PCL matrix was observed by using scanning electron microscope (SEM) (Hitachi, S8400) (Xiao *et al.,* 2010).
- The electromechanical properties including storage modulus (G'), storage modulus response ($\Delta G'$) and storage modulus sensitivity ($\Delta G' / G'_0$) under and not under electric field were measured by a melt rheometer (Rheometric Scientific, Ares) which has a custom-built copper parallel plate fixture (diameter 25 mm). DC voltage was supplied by a DC power supply (Tektronix, CDM250) that can provide up to $4 \, \text{kV}$ as the maximum voltage. Storage modulus was investigated as a function of electric field, which was varied from and 0.1 kV to 1.25 kV, and frequency, was varied from 0.1 to 100 rad/s (Kunchornsup et al., 2012).
- The dielectrophoresis forces were determined the deflection distances in the vertical cantilever fixture under electric field. The specimens were vertically immersed in the silicone oil (viscosity=100 cSt) between parallel copper electrode plates (68 mm of length, 40 mm of width, and 2 mm of thickness). The gap between the pair of the electrodes will be 30 mm. A DC Voltage was applied with a DC power supply (Goldsun, GPS 3003B) connected to a high voltage power supply (Gamma High Voltage, model UC5-30P and

UC5-30N) which can deliver and electric field up to 25 kv. The output voltage from the high voltage power supply was calibrated using a Fluke 40 kv High Voltage Probe. A CCD video camera was be used to record the movement during experiment. Pictures were captured from the video and the deflection distances in x (d) and y axes (l) at the end of the specimen were determined by using the Scion Image software (version 4.0.3). The electric field strength was varied between 0 and 600 v/mm at the room temperature. Both the voltage and the current were monitored. The resisting elastic force of the specimens was calculated under electric field using the non-linear deflection theory of a cantilever, which can be obtained from the standard curve between $(F_eI_0^2)/(El)$ and d/I_0 $(I_0 =$ initial length of specimens); F_e is the elastic force, d is the deflection distance in the horizontal axis, 1 is the deflection distance in the vertical axis, E is the Young's modulus which is equal to $2G'(1+v)$, where G' is the shear storage modulus taken to be $G'(\omega=1 \text{ rad/s})$ at various electric field strength and l is the moment of inertia $1/12t³w$, where t is the thickness of the sample and w is the width of the sample. The electrophoresis force can be calculated from the static horizontal force balance consisting of the elastic force and the corrective gravity force term (mgsin θ), as shown in these following equations:

$$
F_d = F_e + mg\sin\theta + \rho Vgsin\theta
$$
 (III-2)

where g is 9.8 ms⁻², m is the mass of the specimen, ρ is the density of the silicone oil (g/cm) and θ is the deflection angle (Kunchornsup *et al.*, 2012).