EFFECT OF AMINES ON HIGH INTERNAL PHASE EMULSION ADSORBENTS FOR CARBON DIOXIDE ADSORPTION

Narit Athipongarporn

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2013

Thesis Title:	Effect of Amines on High Internal Phase Emulsion
	Adsorbents for Carbon Dioxide Adsorption
By:	Narit Athipongarporn
Program:	Petroleum Technology
Thesis Advisors:	Assoc. Prof. Chintana Saiwan
	Prof. Paitoon Tontiwachwuthikul

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean (Asst. Prof. Pomthong Malakul)

Thesis Committee:

Chutan Samin

(Assoc. Prof. Chintana Saiwan) Cin

(Professor Paitoon Tontiwachwuthikul)

(Asst. Prof. Manit Nithitanakul) upip (Dr. Teeradet Supap)

561027

ABSTRACT

5473006063 : Petroleum Technology Program
Narit Athipongarporn: Effect of Amines on High Internal Phase
Emulsion Adsorbents for Carbon Dioxide Adsorption.
Thesis Advisors: Assoc. Prof. Chintana Saiwan, Professor Paitoon
Tontiwachwuthikul 100 pp.
Keywords : PolyHIPE/ Oil in water emulsion/ Amine/ CO₂ adsorption

High internal phase emulsion polymers (PolyHIPE) with amines, i.e. hexylamine and 1,3-diaminopropane were prepared. The oil-in-water emulsion system was obtained by mixing divinylbenzene (DVB), vinylbenzylchloride (VBC) and surfactants (SpanR 80, oil soluble surfactant and Triton X-100, water soluble surfactant). The optimum condition of the emulsion system was obtained by varying the ratio of the surfactants. The ratio of SpanR80 to Triton X-100 of 1.18 was optimum for polyHIPE reference, while an addition of amines, hexylamine showed the optimum at 1.50 and 1,3-diaminopropane at 0.81. A Fourier transform infrared spectroscope was used to confirm the presence of amine in polyHIPE by using the peak ratio change of C- vinyl at 900 cm⁻¹ to 920 cm⁻¹ to C-chloride at 729 cm⁻¹. Scanning electron micrograph showed that the morphology of polyHIPE was spherical. Voids and fractures on the surface morphology were formed by agglomeration of small spheres and the surface area was a consequence of the effect of the oil soluble surfactant (SpanR80) that was dissolved into oil droplets and formed water-in-oil emulsion system. CO₂ adsorption capacities in dried and moisturized condition were measured by feeding 4% CO₂ in N₂ balanced through the adsorbent which was packed in the column, then the quantity of CO₂ was detected by gas chromatography (GC) and taken the value to calculate the CO₂ adsorption capacity. In the dried condition and the surfactant ratio of 0.72, the polyHIPE-1,3diaminopropane showed the highest CO_2 adsorption capacity (0.3770 mmol/g). In the moisturized condition, all values of CO₂ adsorption capacities were lower than those of the dried conditions because the adsorption of moisture reduced the adsorption sites of CO₂.

บทคัดย่อ

นาย นฤตย์ อธิพงษ์อาภรณ์ : ผลของเอมีนต่อตัวดูดซับที่ได้จากอิมัลชันชนิดเฟส ภายในสูงสำหรับการดูดซับก๊าซคาร์บอนไดออกไซด์ (Effect of Amines on High Internal Phase Emulsion Adsorbents for Carbon Dioxide Adsorption) อ. ที่ปรึกษา : รศ.ดร. จินตนา สายวรรณ์ และ ศ.ดร. ไพฑูร์ ตันติเวชวุฒิกุล 100 หน้า

พอลิเมอร์จากอิมัลชันชนิดเฟสภายในสูง (พอลิฮิป) ที่มีเอมีนด้วย เช่น เฮ็กซิลเอมีน และ 🚯 ไตอะมิโนโพรเพน ถูกเตรียมขึ้นโดยใช้อิมัลชันชนิดน้ำมันในน้ำโดยการผสมไดไวนิลเบนซีน (ดีวีบี), ไวนิลเบนซิลคลอไรด์(วีบีซี) และสารลดแรงตึงผิว (สแปนอาร์แปดสิบ ละลายในน้ำมัน และไทรตันเอ็กหนึ่งร้อย ละลายในน้ำ) ภาวะที่เหมาะสมของระบบอิมัลชันได้จากการแปรผัน ้อัตราส่วนของสารถคแรงตึงผิว อัตราส่วนของสแปนอาร์แปคสิบต่อไทรตันเอ็กหนึ่งร้อย ของพอลิ อปอ้างอิง เท่ากับ 1.18 ขณะที่ เมื่อเติมเอมีนลงไปพอลิฮิปเป็นเฮ็กซิลเอมีนมีอัตราส่วนที่เหมาะสม เท่ากับ 1.50 และพอลิฮิปที่เติม 1.3 ใดอะมิโนโพรเพน เท่ากับ 0.81 ฟลเรียทรานส์ฟอร์ม สเป็คโต รสโคป (เอ็ฟที่ไออาร์) ยืนยันการเกิดปฏิกิริยาระหว่างไวนิลเบนซิลคลอไรค์และ เอมีน โดยดูการ ปลี่ยนแปลงก่าอัตราส่วนของพีคของหมู่ การ์บอน–ไวนิล ที่ช่วงของ เลขกลื่น 900 ต่อเซ็นติเมตร ถึง 920 ต่อเซ็นติเมตร ต่อพีคของหมู่การ์บอน-คลอไรด์ ที่เลขคลื่น 729 ต่อเซ็นติเมตร สแกนนิ่ง อีเล็คตรอน ไมโครกราฟแสดงสัณฐานของพอลิฮิป เป็นทรงกลม และมี ช่องว่างหรือรอยแตกบน 🕷 ผื่นผิว เป็นผลจากการรวมตัวกันของพอลิฮิปทรงกลมเล็กๆ และจากการที่สารลดแรงดึงผิวที่ ละลายในน้ำมัน (สแปนอาร์แปคสิบ) เกิดเป็นอิมัลชันแบบน้ำในน้ำมัน การทคสอบหาการดูคซับ ก๊าซการ์บอนไดออกไซด์ในพอลิฮิปทั้งในสภาวะที่แห้งและที่มีความชื้น โดยการผ่านก๊าซ คาร์บอนใดออกไซด์ความเข้มข้น 4 เปอร์เซ็นต์ ที่ผสมในก๊าซในโตรเจนไปในคอลัมน์ที่บรรจตัว ดูดซับพอลิฮิป และวัดหาปริมาณก๊าซคาร์บอนไดออกไซด์ที่ผ่านพ้นคอลัมน์ด้วยเครื่องก๊าซโครมา โตกราฟพี่ (จีซี)และนำค่าที่ได้ไปคำนวณหาปริมาณก๊าซการ์บอนไคออกไซด์ที่ถูกดุดซับ พบว่า ใน สภาวะที่แห้งและที่อัตราส่วนของสารลดแรงตึงผิวเท่ากับ 0.72 พอลิฮิปที่มี1.3-ไดอะมิโนโพรเพน ให้ค่าการดูดซับก๊าซคาร์บอนใดออกไซค์สูงที่สุด (0.3770 มิถถิโมถต่อกรัม) ในสภาวะที่มี ควเมชิ้น ทุกค่าของการดูดซับก๊าซคาร์บอนใดออกไซด์ ให้ค่าต่ำกว่าเมื่อเทียบกับสภาวะแห้ง ้เนื่องจากความชื้นดูดซับที่ผิวหน้าของตัวดูดซับทำให้การดูดซับก๊าซการ์บอนไดออกไซด์ได้ น้อยลง

ACKNOWLEDGEMENTS

I would like to express my gratitude to my advisor Associate Professor Chintana Saiwan and my co-advisor Professor Paitoon Tontiwachwuthikul for the useful comments, remarks and engagement through the learning process of this master thesis. I would also like to thank Dr. Teeradet Supap for his advice and give me the great full ideas to solve the problems in this thesis. I would like to thank Mr. Watana Kangwanwatana for the design and construction of the CO₂ adsorption equipment.

This thesis work is funded by the Petroleum and Petrochemical College, and the National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand and the 90th Year Anniversary of Chulalongkorn University Fund (Ratchadaphisekssomphot Endowment Fund) for the scholarship and funding to the research work.

TABLE OF CONTENTS

P	A	G	E	
	гъ	v		

Title page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	xi

CHAPTER

I	INTRODUCTION	1
II	THEORETICAL BACKGROUND	2
	AND LITERATURE REVIEW	
	2.1 CO ₂ Separation Techniques	2
	2.2 Absorption	2
	2.3 Adsorption	3
	2.4 Properties of Adsorbent	4
	2.5 High Internal Phase Emulsion Polymerization (PolyHIPE)	4
	2.6 Emulsion Polymerization	7
	2.7 Preparation of PolyHIPE	9
	2.7.1 Preparation	9
	2.7.2 Effect of Surfactant	13
	2.7.3 Effect of Electrolyte Concentration	13
	2.7.4 Effect of Stirring Time	14
	2.7.5 Effect of Initiator	14

CHAPTER

PAGE	
15	

2.8 Applications

III	EXPERIMENTAL	16
	3.1 Equipment and Chemicals	16
	3.2 Experimental Procedures	16
	3.2.1 PolyHIPE	16
	3.2.2 PolyHIPE Preparation with Amine Compounds	17
	3.2.3 Effect of Surfactants on PolyHIPE	18
	3.3 Characterization of polyHIPE	19
	3.3.1 Scanning Electron Microscopy (SEM)	19
	3.3.2 Fourier Transform Infrared Spectroscopy (FTIR)	19
	3.3.3 Surface Area of PolyHIPE	19
	3.3.4 Amine Loading of PolyHIPE	20
	3.4 Carbon Dioxide Adsorption	20
IV	RESULTS AND DISCUSSION	
	4.1 Poly HIPE Preparations	22
	4.1.1 PolyHIPE Reference	22
	4.1.2 PolyHIPE with Amines	25
	4.2 Characterization of PolyHIPE	31
	4.2.1 Surface area of PolyHIPE	31
	4.2.2 Amine Loading in PolyHIPE	32
	4.3 Carbon Dioxide Adsorption	33

PAGE

100

V	CONCLUSIONS AND RECOMMENDATIONS	36
	5.1 Conclusions	36
	5.2 Recommendations	36
	REFERENCES	38
	APPENDICES	40
	Appendix A Preparation of PolyHIPE	40
	Appendix B Calculation of Quantity of Amines	67
	Appendix C Calculation of %Conversion of Reaction	69
	between Amines and VBC by FTIR Spectra	
	Appendix D CO ₂ Adsorption	71
	Appendix E Amine Loading of PolyHIPE	97

CURRICULUM VITAE

viii

LIST OF TABLES

TABLE

3.1	PolyHIPE preparation at various conditions	19
4.1	Peak ratio calculation	27
4.2	Peak ratio calculation	29
4.3	Surface area of polyHIPE	31
4.4	Amine loading measurement	32
4.5	CO ₂ adsorption capacity	33
4.6	Effect of moisture on CO2 adsorption capacity of	
	polyHIPE-hexylamine	35
Al	Preparation of PolyHIPE reference	40
A2	Preparation of PolyHIPE with amines	40
B1	Properties of VBC, hexylamine, 1,3-diaminopropane	67
DI	CO ₂ adsorption data of polyHIPEs reference (recipe 2)	71
D2	CO_2 adsorption data of polyHIPE with hexylamine (recipe 7)	73
D3	CO_2 adsorption data of polyHIPE with hexylamine (recipe 8)	74
D4	CO_2 adsorption data of polyHIPE with hexylamine (recipe 9)	75
D5	CO_2 adsorption data of polyHIPE with hexylamine (recipe 10)	77
D6	CO ₂ adsorption data of polyHIPE with	
	1,3-diaminopropane (recipe 11)	79
D7	CO ₂ adsorption data of polyHIPE with	
	1,3-diaminopropane (recipe 12)	81
D8	CO ₂ adsorption data of polyHIPE with	
	1,3-diaminopropane (recipe 13)	83
D9	CO ₂ adsorption data of polyHIPE with	
	1,3-diaminopropane (recipe 13)	85

ix

TABLE

D10	CO ₂ adsorption data of polyHIPE with	
	1,3-diaminopropane (recipe 15)	87
DH	CO ₂ adsorption data of moisturized polyHIPE	
	with hexylamine (recipe 7)	89
D12	CO ₂ adsorption data of moisturized polyHIPE	
	with hexylamine (recipe 8)	91
D13	CO ₂ adsorption data of moisturized polyHIPE	
	with hexylamine (recipe 9)	93
D14	CO ₂ adsorption data of moisturized polyHIPE	
	with hexylamine (recipe 10)	95
El	CHN result of polyHIPE reference (recipe 2)	97
E2	CHN result of polyHIPE with hexylamine (recipe 7)	97
E3	CHN result of polyHIPE with hexylamine (recipe 8)	97
E4	CHN result of polyHIPE with hexylamine (recipe 8)	98
E5	CHN result of polyHIPE with hexylamine (recipe 10)	98
E6	CHN result of polyHIPE with 1,3-diaminopropane (recipe 11)	98
F7	CHN result of polyHIPE with 1,3-diaminopropane (recipe 12)	99
E8	CHN result of polyHIPE with 1,3-diaminopropane (recipe 13)	99

LIST OF FIGURES

FIGURE

2.1	Functionalization of polyHIPE Materials.	5
2.2	Modification of fly ash carbon adsorbent surface.	6
2.3	Step of emulsion polymerization: interval I-III and rate of	
	Polymerization.	8
2.4	Preparation of porous beads by polymerization of W/O/W emulsion.	10
2.5	Functionalization of VBC/DVB porous particles.	11
2.6	Optical image of emulsion-templated beads.	12
2.7	Electron micrographs of individual emulsion-templated beads.	12
3.1	Methodology flow diagram	17
3.2	Schematic flow diagram for CO2 adsorption	20
4 1	SEM micrographs of polyHIPE reference with magnification of	
	x20K,surfactant ratio of (a) 1.0, (b) 1.18, (c) 1.33, (d)1.54	22
4.2	Void and fracture formation from the effect of oil soluble surfactant	23
4.3	SEM micrographs of polyHIPE with magnifications of (a) x3K	
	(b) x10K (c) x50K (d) x100K, with SpanR80:Triton X-100 = 2	24
4.4	SEM micrographs of polyHIPE with magnifications of (a) x10K	
	(b) x50K (c) 50K (d) 100K of polyHIPE with SpanR80:Triton	
	X - 100 = 4	25
4.5	FTIR spectra of hexylamine, VBC, and VBC-hexylamine product	26
4.6	SEM micrographs of polyHIPE with hexylamine with magnification	
	x20K, surfactant ratio of (a) 1.2, (b) 1.33, (c) 1.50, (d)1.71	28
4.7	FTIR spectra of 1,3-diaminopropane, VBC and	
	VBC-1,3-diaminopropane product	29

PAGE

4.8	SEM micrographs of polyHIPE with hexylamine with magnification	30
	x20K, surfactant ratio of (a) 0.72, (b) 0.76, (c) 0.87, (d) 0.94	
4.9	SEM micrographs of polyHIPE with 1,3-diaminopropane with	
	surfactant ratio of 0.81, magnification (a) x5K, (b) x10K, (c) x20K,	
	(d) x50K	30
4.10	SEM micrographs of polyHIPE reference with magnification	
	x10K and x50K surfactant ratio of 1.18	32
Al	SEM of polyHIPE with SpanR80:Triton X-100 = 1.00	
	at magnifications of x10K	41
A2	SEM of polyHIPE with SpanR80:Triton X-100 = 1.00	
	at magnifications of x20K.	42
A3	SEM of polyHIPE with SpanR80:Triton X-100 = 1.00	
	at magnifications of x50K.	42
A4	SEM of polyHIPE with SpanR80:Triton X-100 = 1.00	
	at magnifications of x100K.	43
A5	SEM of polyHIPE with SpanR80:Triton X-100 = 1.18	
	at magnifications of x10K.	43
А6	SEM of polyHIPE with SpanR80:Triton X-100 = 1.18	
	at magnifications of x20K.	44
А7	SEM of polyHIPE with SpanR80:Triton X-100 = 1.18	
	at magnifications of x50K.	44
A8	SEM of polyHIPE with SpanR80:Triton X-100 = 1.18	
	at magnifications of x100K.	45
A9 ••	SEM of polyHIPE with SpanR80:Triton X-100 = 1.33	
	at magnifications of x10K.	45
A10	SEM of polyHIPE with SpanR80:Triton X-100 = 1.33	
	at magnifications of x20K.	46

xii

PAGE

A11	SEM of polyHIPE with SpanR80:Triton X-100 = 1.33	
	at magnifications of x50K.	46
A12	SEM of cracked surface of polyHIPE with	
	SpanR80:Triton X-100 = 1.33 at magnifications of x10K.	47
A13	SEM of cracked surface of polyHIPE with	
	SpanR80:Triton X-100 = 1.33 at magnifications of x20K.	47
A14	SEM of polyHIPE with SpanR80:Triton X-100 = 1.54	
	at magnifications of x10K.	48
A15	SEM of polyHIPE with SpanR80:Triton X-100 = 1.54	
	at magnifications of x20K.	48
A16	SEM of polyHIPE with SpanR80:Triton X-100 = 1.54	
	at magnifications of x50K.	49
A17	SEM of polyHIPE with SpanR80:Triton X-100 = 1.54	
	at magnifications of x100K.	49
A18	SEM of polyHIPE with SpanR80:Triton $X-100 = 2$	
	at magnifications of x10K.	50
A19	SEM of polyHIPE with SpanR80:Triton $X-100 = 2$	
	at magnifications of x20K.	50
A20	SEM of polyHIPE with SpanR80:Triton $X-100 = 2$	
	at magnifications of x50K.	51
A21	SEM of polyHIPE with SpanR80:Triton $X-100 = 4$	
	at magnifications of x10K.	51
A22	SEM of polyHIPE with SpanR80:Triton $X-100 = 4$	
	at magnifications of x20K.	52
A23	SEM of polyHIPE with SpanR80:Triton X-100 = 4	
	at magnifications of x50K.	52

xiii

A24	SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 0.73	
	at magnifications of x10K.	53
A25	SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 0.73	
	at magnifications of x20K.	53
A26	SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 0.73	
	at magnifications of x50K.	54
A27	SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 1.33	
	at magnifications of x10K.	54
A28	SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 1.33	
	at magnifications of x20K.	55
A29	SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 1.33	
	at magnifications of x50K.	55
A30	SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 1.50	
	at magnifications of x10K.	56
A31	SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 1.50	
	at magnifications of x20K.	56
A32	SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 1.50	
	at magnifications of x50K.	57
A33	SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 1.71	
	at magnifications of x10K.	57
A34	SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 1.71	
	at magnifications of x20K.	58
A35	SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 1.71	
	at magnifications of x50K.	58
A36	SEM of polyHIPE with 1.3-diaminopropane	
	SpanR80:Triton X-100 = 0.72 at magnifications of x10K.	59

A37	SEM of polyHIPE with 1,3-diaminopropane	
	SpanR80:Triton X-100 = 0.72 at magnifications of x20K.	59
A38	SEM of polyHIPE with 1,3-diaminopropane	
	SpanR80:Triton X-100 = 0.72 at magnifications of x50K.	60
A39	SEM of polyHIPE with 1,3-diaminopropane	
	SpanR80:Triton X-100 = 0.76 at magnifications of x10K.	60
A40	SEM of polyHIPE with 1,3-diaminopropane	
	SpanR80:Triton X-100 = 0.76 at magnifications of x20K.	61
A41	SEM of polyHIPE with 1,3-diaminopropane	
	SpanR80:Triton X-100 = 0.76 at magnifications of x50K.	61
A42	SEM of polyHIPE with 1,3-diaminopropane	
	SpanR80:Triton X-100 = 0.81 at magnifications of x10K.	62
A43	SEM of polyHIPE with 1,3-diaminopropane	
	SpanR80:Triton X-100 = 0.81 at magnifications of x20K.	62
A44	SEM of polyHIPE with 1,3-diaminopropane	
	SpanR80:Triton X-100 = 0.81 at magnifications of x50K.	63
A45	SEM of polyHIPE with 1,3-diaminopropane	
	SpanR80:Triton X-100 = 0.87 at magnifications of x10K.	63
A46	SEM of polyHIPE with 1,3-diaminopropane	
	SpanR80:Triton X-100 = 0.87 at magnifications of x20K.	64
Α47	SEM of polyHIPE with 1.3-diaminopropane	
	SpanR80:Triton X-100 = 0.87 at magnifications of x50K.	64
Α48	SEM of polyHIPE with 1,3-diaminopropane	
	SpanR80:Triton X-100 = 0.93 at magnifications of x10K.	65
A49	SEM of polyHIPE with 1,3-diaminopropane	
	SpanR80:Triton X-100 = 0.93 at magnifications of x20K.	65

A50	SEM of polyHIPE with 1,3-diaminopropane	
	SpanR80:Triton X-100 = 0.93 at magnifications of x50K.	66
C1	FTIR spectra of hexylamine, VBC and VBC reacted with hexylamine.	69
C2	FTIR spectra of 1,3-diaminopropane, VBC and	
	VBC reacted with 1,3-diaminopropane.	70
DI	Break through curve of polyHIPE reference	
	surfactant ratio 1.18 (recipe 2).	72
D2	Break through curve of polyHIPE with hexylamine,	
	surfactant ratio 1.20 (recipe 7).	73
D3	Break through curve of polyHIPE with hexylamine,	
	surfactant ratio 1.33 (recipe 8).	74
1)4	Break through curve of polyHIPE with hexylamine,	
	surfactant ratio 1.50 (recipe 9).	76
D5	Break through curve of polyHIPE with hexylamine,	
	surfactant ratio 1.71 (recipe 10).	78
D6	Break through curve of polyHIPE with hexylamine,	
	surfactant ratio 0.72 (recipe 11).	80
1)7	Break through curve of polyHIPE with hexylamine,	
	surfactant ratio 0.76 (recipe 12).	82
D8	Break through curve of polyHIPE with hexylamine.	
	surfactant ratio 0.81 (recipe 13).	84
D9	Break through curve of polyHIPE with hexylamine,	
	surfactant ratio 0.87 (recipe 14).	86
D10	Break through curve of polyHIPE with hexylamine,	
	surfactant ratio 0.93 (recipe 15).	88

DH	Break through curve of moisturized polyHIPE with hexylamine,	
	surfactant ratio 1.20 (recipe 7).	90
D12	Break through curve of moisturized polyHIPE with hexylamine,	
	surfactant ratio 1.33 (recipe 8).	92
D13	Break through curve of moisturized polyHIPE with hexylamine,	
	surfactant ratio 1.50 (recipe 9).	94
D14	Break through curve of moisturized polyHIPE with hexylamine,	
	surfactant ratio 1.71 (recipe 10).	96