REFERENCES

- Cameron, N.R. (2005) High internal phase emulsion templating as a route to welldefined porous polymers. <u>Polymer</u>, 46, 1439–1449.
- Damen, K., van Troost, M., Faaij, A., and Turkenburg, W., (2006b) A comparison of electricity and hydrogen production systems with CO₂ capture and storage. Part A: Review and selection of promising conversion and capture echnologies. <u>Process in Energy and Combustion Science</u>, 32, 215-246.
- Freeman, S.A., Dugas, R., Van Wagener, D.H., Nguyen, T., and Rochelle, G.T.,
 (2010) Carbon dioxide capture with concentrated, aqueous piperazine.
 <u>International Journal of Greenhouse Gas Control</u>, 4, 119-124.
- Griffin, W.C., (1994) Classification of surface-active agents by HLB. Journal of the Society of Cosmetic Chemists, 1, 311.
- Gray, M.L., Soong, Y., Champagne, K.J., Baltrus, J., Stevens, R.W., Jr., Toochinda,
 P., and Chuang, S.S.C., (2004) CO₂ capture by amine-enriched fly ash
 carbon sorbents. <u>Separation and Purification Technology</u> 35, 31–36.
- Harkins, W.D., (1947) Journal of the America Chemical Society, 69, 1428.
- Hoisington, M.A., Duke, J.R., and Apen, P.G., (1997) High temperature, polymeric, structural foams from high internal phase emulsion polymerizations. <u>Polymer</u> 38 3347-3357.
- Kun, J.W., (2007) <u>Techniques for synthesizing polymer particles</u>. Harvard School of Engineering and Applied Sciences.
- Li, N.H., and Benson, J.R., (1996) Polymeric microbeads. US Patent 5,583,162.
- Mandal, B.P., Guha, M., Biswas, A.K., and Bandyyopadhyay, S.S., (2001) Removal of carbon dioxide by absorption in mixed amines:modeling of absorption in aqueous MDEA/MEA and AMP/MEA solution. <u>Chemical Engineering</u> <u>Science</u> 56, 6217-6224.
- Odian, G. (2004) Principles of Polymerization, New York: Wiley.
- Pires, J.C.M., Martins, F.G., Alvim-Ferraz, M.C.M., and Simoes, M., (2011) Recent developments on carbon capture and storage. <u>Chemical Engineering</u> <u>Science</u>, 89, 1446-1460.
- Smith, W. V., and Ewart, R. H., (1948) Journal of Chemical Physics. 16, 592.

- Stefanec, D., and Krajnc, P., (2005) 4-Vinylbenzyl chloride based porous spherical polymer supports derived from water-in-oil-in-water emulsions. <u>Reactive</u> <u>& Functional Polymers</u>. 65, 37–45.
- Tai, H., Sergienko, A., and Silverstein, M.S., (2001) Organic-inorganic networks in foams from high internal phase emulsion polymerizations. <u>Polymer</u>, 42, 4473-4482.
- Tunc, Y., Golgelioglu, C., Hasirci, N., Ulubayram, K., and Tuncel, A., (2010) Acrylic-based high internal phase emulsion polymeric monolith for capillary electrochomatography. Journal of Chomatography A, 1217, 1654-1659.
- Zhang, H., and Cooper, A. I., (2002) Synthesis of monodisperse emulsiontemplated polymer beads by oil-in-water-in-oil (O/W/O) sedimentation polymerization. <u>Chemistry of Materials</u>, 14, 4017-4020.
- Zhang, J., Xiao, P., Li, G., and Webley, P.A., (2009) Effect of flue gas impurities on CO₂ capture performance from flue gas at coal-fired power stations by vacuum swing adsorption. <u>Energy Procedia</u> 1, 1115-1122.
- Zhang, S., Zhu, Y., Hua, Ye., Jegat, C., Chen, J., and Taha, M., (2011) Stability of surfactant-free high internal phase emulsions and its tailoring morphology of porous polymers based on the emulsions. <u>Polymer</u>, 52, 4881-4890.
- Zhu, Y., Legg, S., and Laird, C.D., (2010) Optimal design of cryogenic air separation columns under uncertainty. <u>Computer and Chemical</u> <u>Engineering</u>, 16, 953-963.

APPENDICES

Appendix A: Preparation of PolyHIPE

TABLE A1 Preparation of PolyHIPE reference

				Oil phase	Aqueous phase			
Recipe	Surfactant ratio	VBC (mL)	DVB (mL)	SpanR 80 (g)	Toluene (mL)	Triton X-100 (g)	K ₂ S ₂ O ₈ (g)	Water (mL)
1	1	0.1	0.9	0.2	1	0.2	0.04	18
1	1.18	0.1	0.9	0.2		0.17	0.04	18
3	1.33	0.1	0.9	0.2	l	0.15	0.04	18
4	1.54	0.1	0.9	0.2	1	0.13	0.04	18
5	2	0.1	0.9	0.2	I	0.10	0.04	18
6	4	0.1	0.9	0.2	1	0.05	0.04	18

TABLE A 2 Preparation of PolyHIPE with amines

Recipe	DVB (mL)	VBC (mL)	Amine (mL)	Toluene (mL)	SpanR80 (g)	Water (mL)	K ₂ S ₂ O ₈ (g)	Triton x-100 (g)	Surfactant ratio
7	1.8	0.2	0.2	2	0.6	36	0.08	0.50	1.20
8	1.8	0.2	0.2	2	0.6	36	0.08	0.45	1.33
()	1.8	0.2	0.2	2	0.6	36	0.08	0.40	1.50
10	1.8	0.2	0.2	2	().6	36	0.08	0.35	1.71
E F	1.8	0.2	0.2	2	0.65	36	0.08	0.90	0.72
12	1.8	0.2	0.2	2	0.65	36	0.08	0.85	0.76
13	1.8	0.2	0.2	2	0.65	36	0.08	0.80	0.81
14	1.8	0.2	0.2	2	0.65	36	0.08	0.75	0.87
15	1.8	0.2	0.2	2	0.65	36	0.08	0.70	0.93

A.3 Scanning electron microscope pictures

Scanning electron microscope (SEM) was used to observe the morphology of polyHIPE and interpreted the optimum condition of emulsion system when the ratio of surfactant was varied.

A.3.1 PolyHIPE reference

Figure A1 SEM of polyHIPE with SpanR80:Triton X-100 = 1.00 at magnifications of x10K

Figure A2 SEM of polyHIPE with SpanR80:Triton X-100 = 1.00 at magnifications of x20k

Figure A3 SEM of polyHIPE with SpanR80:Triton X-100 = 1.00 at magnifications of x50K.

Figure A4 SEM of polyHIPE with SpanR80:Triton X-100 = 1.00 at magnifications of >100K.

Figure A5 SEM of polyHIPE with SpanR80:Triton X-100 = 1.18 at magnifications of x10K.

Figure A6 SEM of polyHIPE with SpanR80:Triton X-100 = 1.18 at magnifications of x20K.

Figure A7 SEM of polyHIPE with SpanR80:Triton X-100 = 1.18 at magnifications of x50K.

Figure A8 SEM of polyHIPE with SpanR80:Triton X-100 = 1.18 at magnifications of x100K.

Figure A9 SEM of polyHIPE with SpanR80:Triton X-100 = 1.33 at magnifications of x10K.

Figure A10 SEM of polyHIPE with SpanR80:Triton X-100 = 1.33 at magnifications of $\times 20$ K

Figure A11 SEM of polyHIPE with SpanR80:Triton X-100 = 1.33 at magnifications of x50K.

Figure A12 SEM of cracked surface of polyHIPE with SpanR80:Triton X-100 = 1.33 at magnifications of x10K.

Figure A13 SEM of cracked surface of polyHIPE with SpanR80:Triton X-100 = 1.33 at magnifications of x20K.

Figure A14 SEM of polyHIPE with SpanR80:Triton X-100 = 1.54 at magnifications of x10K

Figure A15 SEM of polyHIPE with SpanR80:Triton X-100 = 1.54 at magnifications of x20K.

Figure A16 SEM of polyHIPE with SpanR80:Triton X-100 = 1.54 at magnifications of x50K.

Figure A17 SEM of polyHIPE with SpanR80:Triton X-100 = 1.54 at magnifications of x100K.

Figure A18 SEM of polyHIPE with SpanR80:Triton X-100 = 2 at magnifications of x10K.

Figure A19 SEM of polyHIPE with SpanR80:Triton X-100 = 2 at magnifications of x20K

Figure A20 SEM of polyHIPE with SpanR80:Triton X-100 = 2 at magnifications of x50K

Figure A21 SEM of polyHIPE with SpanR80:Triton X-100 = 4 at magnifications of x10K.

Figure A22 SEM of polyHIPE with SpanR80:Triton X-100 = 4 at magnifications of x20K.

Figure A23 SEM of polyHIPE with SpanR80:Triton X-100 = 4 at magnifications of x50K.

Figure A24 SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 0.73 at magnifications of x10K.

Figure A25 SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 0.73 at magnifications of x20K.

Figure A26 SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 0.73 at magnifications of x50K.

Figure A27 SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 1.33 at magnifications of x10K.

Figure A28 SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 1.33 at magnifications of x20K.

Figure A29 SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 1.33 at magnifications of x50K.

Figure A30 SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 1.50 at magnifications of x10K.

Figure A31 SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 1.50 at magnifications of x20K.

Figure A32 SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 1.50 at magnifications of x50K.

Figure A33 SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 1.71 at magnifications of x10K.

Figure A34 SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 1.71 at magnifications of x20K.

Figure A35 SEM of polyHIPE with hexylamine SpanR80:Triton X-100 = 1.71 at magnifications of x50K.

Figure A36 SEM of polyHIPE with 1.3-diaminopropane SpanR80:Triton X-100 = 0.72 at magnifications of x10K.

Figure A37 SEM of polyHIPE with 1,3-diaminopropane SpanR80:Triton X-100 = 0.72 at magnifications of x20K.

Figure A38 SEM of polyHIPE with 1.3-diaminopropane SpanR80:Triton X-100 = 0.72 at magnifications of x50K.

Figure A39 SEM of polyHIPE with 1.3-diaminopropane SpanR80:Triton X-100 = 0.76 at magnifications of x10K.

Figure A40 SEM of polyHIPE with 1,3-diaminopropane SpanR80:Triton X-100 = 0.76 at magnifications of x20K.

Figure A41 SEM of polyHIPE with 1,3-diaminopropane SpanR80:Triton X-100 = 0.76 at magnifications of x50K.

Figure A42 SEM of polyHIPE with 1,3-diaminopropane SpanR80:Triton X-100 = 0.81 at magnifications of x10K.

Figure A43 SEM of polyHIPE with 1.3-diaminopropane SpanR80:Triton X-100 = 0.81 at magnifications of x20K.

Figure A44 SEM of polyHIPE with 1,3-diaminopropane SpanR80:Triton X-100 = 0.81 at magnifications of x50K.

Figure A45 SEM of polyHIPE with 1,3-diaminopropane SpanR80:Triton X-100 = 0.87 at magnifications of x10K.

Figure A46 SEM of polyHIPE with 1,3-diaminopropane SpanR80:Triton X-100 = 0.87 at magnifications of x20K.

Figure A47 SEM of polyHIPE with 1,3-diaminopropane SpanR80:Triton X-100 = 0.87 at magnifications of x50K.

Figure A48 SEM of polyHIPE with 1,3-diaminopropane SpanR80:Triton X-100 = 0.93 at magnifications of x10K.

Figure A49 SEM of polyHIPE with 1,3-diaminopropane SpanR80:Triton X-100 = 0.93 at magnifications of x20K.

Figure A50 SEM of polyHIPE with 1,3-diaminopropane SpanR80:Triton X-100 = 0.93 at magnifications of x50K.

Appendix B Calculation of Quantity of Amines

The quantity of amines for the reaction with VBC were calculated by using mol ratio of amine to VBC equal 1.

 TABLE B 1
 Properties of VBC, hexylamine, 1,3-diaminopropane

	VBC	Hexylamine	1,3-diaminopropane
Molecular weight (g/mol)	152.62	101.2	74.12
Density (g/ml)	1.083	0.766	0.888

The mole ratio of VBC and amine was fixed at 1:1.07

VBC calculation

From $mole = \frac{mass}{molecular weight}$ $1 mol = \frac{mass}{152.62 \text{ g/mol}}$ mass = 152.62 gFrom $density = \frac{mass}{volume}$ $1.083 \text{ g/ml} = \frac{152.62 \text{ g}}{volume}$ $volume = \frac{152.62 \text{ g}}{1.083 \text{ g/ml}}$ volume = 140.92 ml

Thus VBC 1 mole is 140.92 ml

Hexylamine calculation

From	molo – mass
LIOIN	molecular weight
	$1.07 \text{ mol} = \frac{\text{mass}}{101.2 \text{ g/mol}}$
	mass $= 108.28 g$
From	density = $\frac{mass}{volume}$
	$0.766 \text{ g/ml} = \frac{108.28 \text{ g}}{volume}$

$$volume = \frac{108.28 \, g}{0.766 \, g/ml}$$
$$volume = 141.36 ml$$

 $mole = \frac{mass}{molecular weight}$

thus the volume ratio between VBC and hexylamine is 140.92: 141.36 or 2.00:2.00

1,3-diaminopropne calculation

From

From

 $1.07 \text{ mol} = \frac{\text{mass}}{74.12 \text{ g/mol}}$ mass = 79.308 g $\text{density} = \frac{\text{mass}}{\text{volume}}$ $0.888 \text{ g/ml} = \frac{79.308 \text{ g}}{\text{volume}}$ $\text{volume} = \frac{79.308 \text{ g}}{0.888 \text{ g/ml}}$ volume = 89.311 ml

thus the volume ratio between VBC and hexylamine is 140.92: 89.311 or 1:1.26

Figure C1 FTIR spectra of hexylamine, VBC and VBC reacted with hexylamine.

Figure C2 FTIR spectra of 1,3-diaminopropane, VBC and VBC reacted with 1,3-diaminopropane.

Appendix D CO₂ Adsorption **PolyHIPEs reference (recipe 2)** Weight of polyHIPE: 0.2579 g

Flow rate: 3.10 ml/min

Area of Retention time %CO₂ Concentration Time (min) C/C_0 CO_2 (C) (min) () 0 0 0.2517 0.0594 3 11.57 1.30 0.7345 3.1152 0.9714 6 1.30 4.1200 15.63 9 15.69 1.30 4.1348 0.9749 12 16.10 1.25 4.2363 0.9988 15 15.72 1.32 4.1422 0.9766 18 15.60 1.32 0.9697 4.1125 21 16.07 1.32 4.2288 0.9971 24 15.77 0.9796 1.32 4.1546 27 16.12 1.32 4.2412 1.0000 30 15.62 1.28 4.1175 0.9708

TABLE D1CO2adsorption data of polyHIPEs reference (recipe 2)

Figure D1 Break through curve of polyHIPE reference surfactant ratio 1.18 (recipe 2).

PolyHIPE with hexylamine (recipe 7)

Weight of polyHIPE: 0.2376 g, flow rate: 3.08 ml/min

 Table D 2 CO2 adsorption data of polyHIPE with hexylamine (recipe 7)

Time (min)	Area of CO ₂	Retention time	% CO ₂ Concentration (C)	C/C ₀
		(min)		
0	0	0	0.2517	0.0576
3	14.04	1.32	3.7264	0.8532
6	16.57	1.32	4.3526	0.9966
9	16.63	1.28	4.3674	1.0000
12	16.59	1.32	4.3575	0.9977

Figure D2 Break through curve of polyHIPE with hexylamine, surfactant ratio 1.20 (recipe 7).

PolyHIPEs with hexylamine (recipe 8)

Weight of polyHIPE: 0.2705 g, flow rate: 3.01 ml/min

TABLE D 3 CO₂ adsorption data of polyHIPE with hexylamine (recipe 8)

Time (min)	Area of CO ₂	Retention time (min)	%CO ₂ Concentration (C)	C/C ₀
0	0	0	0.2517	0.0571
3	11.55	1.33	3.1102	0.7057
6	16.46	1.27	4.3254	0.9815
9	16.68	1.32	4.3798	0.9938
12	16.55	1.33	4.3476	0.9865
15	16.46	1.33	4.3254	0.9815
18	16.79	1.32	4.4070	1.0000

Figure D3 Break through curve of polyHIPE with hexylamine, surfactant ratio 1.33 (recipe 8).

PolyHIPEs with hexylamine (recipe 9)

Weight of polyHIPE: 0.2789 g, flow rate: 3.01 ml/min

TABLE D 4	CO_2	adsorption data	a of polyHI	PE with	hexylamine	(recipe 9)

Time (min)	Area of CO ₂	Retention time (min)	%CO ₂ Concentration (C)	C/C ₀
0	0	0	0.2517	0.0595
<i>{</i>	6.95	1.32	1.9718	0.4663
ñ	15.74	1.32	4.1472	0.9807
9	15.90	1.27	4.1868	0.9901
12	15.84	1.30	4.1719	0.9865
15	15.89	1.32	4.1843	0.9895
18	15.95	1.32	4.1991	0.9930
21	15.69	1.30	4.1348	0.9778
24	16.04	1.30	4.2214	0.9982
27	15.90	1.28	4.1868	0.9900
30	15.84	1.30	4.1719	0.9865
33	15.55	1.30	4.1002	0.9696
36	16.07	1.30	4.2288	1.0000
39	15.79	1.32	4.1596	0.9836
42	15.77	1.30	4.1546	0.9824

Figure D4 Break through curve of polyHIPE with hexylamine, surfactant ratio 1.50 (recipe 9).

PolyHIPEs with hexylamine (recipe 10)

Weight of polyHIPE: 0.2849 g, flow rate: 3.02 ml/min

TABLE D 5	CO_2	adsorption d	lata of polyHII	PE with hex	ylamine	(recipe	10))
-----------	--------	--------------	-----------------	-------------	---------	---------	-----	---

Time (min)	Area of CO ₂	Retention time (min)	%CO ₂ Concentration (C)	C/C ₀
0	0	0	0.2517	0.0572
3	8.63	1.32	2.3875	0.5424
6	16.49	1.32	4.3328	0.9843
9	16.62	1.27	4.3650	0.9916
12	16.60	1.30	4.3600	0.9904
15	16.65	1.32	4.3724	0.9932
18	16.62	1.32	4.3650	0.9910
21	16.77	1.32	4.4021	1.0000

Figure D5 Break through curve of polyHIPE with hexylamine, surfactant ratio 1.71 (recipe 10).

PolyHIPEs with 1,3-diaminopropane (recipe 11)

Weight of polyHIPE: 0.0483 g, flow rate: 3.04 ml/min

Time (min)	Area of CO ₂	Retention time (min)	%CO ₂ Concentration (C)	C/C ₀
0	0	0	0.2517	0.0577
3	8.24	1.28	2.2910	0.5252
6	16.38	1.27	4.3056	0.9869
9	15.85	1.27	4.1744	0.9569
12	16.41	1.27	4.3130	0.9886
15	16.09	1.27	4.2338	0.9705
18	16.27	1.27	4.2783	0.9807
21	16.39	1.27	4.3080	0.9875
24	16.32	1.27	4.2907	0.9835
27	16.61	1.28	4.3625	1.0000
30	16.04	1.27	4.2214	0.9677

TABLE D 6 CO₂ adsorption data of polyHIPE with 1,3-diaminopropane (recipe 11)

Figure D6 Break through curve of polyHIPE with hexylamine, surfactant ratio 0.72 (recipe 11).

PolyHIPEs with 1,3-diaminopropane (recipe 12)

Weight of polyHIPE: 0.0786 g, flow rate: 3.08 ml/min

Time (min)	Area of CO ₂	Retention time (min)	%CO ₂ Concentration (C)	C/C ₀
0	0	0	0.2517	0.0582
3	7.84	1.28	2.1920	0.5065
6	16.01	1.27	4.2140	0.9737
9	15.99	1.27	4.2091	0.9725
1)	15.89	1.27	4.1843	0.9668
15	15.68	1.27	4.1323	0.9548
18	16.23	1.27	4.2685	0.9863
21	16.47	1.27	4.3278	1.0000
24	16.15	1.27	4.2487	0.9817
2.7	15.97	1.28	4.2041	0.9714

 TABLE D 7 CO2 adsorption data of polyHIPE with 1,3-diaminopropane (recipe 12)

Figure D7 Break through curve of polyHIPE with hexylamine, surfactant ratio 0.76 (recipe 12).

PolyHIPEs with 1,3-diaminopropane (recipe 13)

Weight of polyHIPE: 0.0673 g, flow rate: 3.08 ml/min

Time (min)	Area of CO ₂	Retention time (min)	%CO ₂ Concentration (C)	C/C ₀
0	0	0	0.2517	0.0571
3	11.64	1.28	3.1325	0.7108
6	16.24	1.28	4.2709	0.9691
9	16.32	1.28	4.2907	0.9736
12	16.37	1.27	4.3031	0.9764
15	16.65	1.27	4.3724	0.9921
18	16.79	1.27	4.4070	1.0000
21	16.60	1.27	4.3600	0.9893
24	16.58	1.27	4.3551	0.9882
27	16.44	1.27	4.3204	0.9803
30	16.53	1.25	4.3427	0.9854

TABLE D 8 CO₂ adsorption data of polyHIPE with 1,3-diaminopropane (recipe 13)

Figure D8 Break through curve of polyHIPE with hexylamine, surfactant ratio 0.81 (recipe 13).

PolyHIPEs with 1,3-diaminopropane (recipe 14)

Weight of polyHIPE: 0.1421 g, flow rate: 3.05 ml/min

Time (min)	Area of CO ₂	Retention time (min)	%CO ₂ Concentration (C)	C/C ₀
0	0	0	0.2517	0.0603
3	6.00	1.27	1.7366	0.4158
6	15.76	1.27	4.1521	0.9941
9	15.61	1.25	4.1150	0.9852
ī 2	15.71	1.27	4.1398	0.9911
15	15.44	1.27	4.0729	0.9751
18	15.61	1.27	4.1150	0.9852
21	15.63	1.25	4.1200	0.9864
24	15.86	1.27	4.1769	1.0000
27	15.82	1.27	4.1670	0.9976

TABLE D 9 CO₂ adsorption data of polyHIPE with 1,3-diaminopropane (recipe 13)

Figure D9 Break through curve of polyHIPE with hexylamine, surfactant ratio 0.87 (recipe 14).

PolyHIPEs with 1,3-diaminopropane (recipe 15)

Weight of polyHIPE: 0.2546 g, flow rate: 3.04 ml/min

Time (min)	Area of CO ₂	Retention time (min)	%CO ₂ Concentration (C)	C/C ₀
0	0	0	0.2517	0.0575
3	14.32	1.28	3.7957	0.8666
6	16.44	1.28	4.3204	0.9864
9	16.64	1.28	4.3699	0.9977
12	16.62	1.28	4.3650	0.9966
15	16.68	1.27	4.3798	1.0000
18	16.66	1.28	4.3748	0.9989
21	16.44	1.27	4.3204	0.9864
2.4	16.47	1.25	4.3278	0.9881
27	16.63	1.27	4.3674	0.9972
30	16.55	1.27	4.3476	0.9927

 TABLE D 10 CO2 adsorption data of polyHIPE with 1,3-diaminopropane (recipe 15)

Figure D10 Break through curve of polyHIPE with hexylamine, surfactant ratio 0.93 (recipe 15).

Effect of moisture on CO₂ adsorption

Moisturized polyHIPEs with hexylamine (recipe 7)

Weight of polyHIPE: 0.2422 g, flow rate: 3.09 ml/min

TABLE D 11 CO2 adsorption data of moisturized polyHIPE with hexylamine (recipe7)

Time (min)	Area of CO ₂	Retention time (min)	%CO ₂ Concentration (C)	C/C ₀
()	0	0	0.2517	0.0590
3	14.85	1.32	3.9269	0.9211
6	15.02	1.32	3.9690	0.9309
9	16.16	1.32	4.2511	0.9971
12	15.64	1.32	4.1224	0.9669
15	16.15	1.30	4.2487	0.9965
18	15.75	1.32	4.1497	0.9733
21	16.21	1.33	4.2635	1.0000
24	16.17	1.32	4.2536	0.9977

Figure D11 Break through curve of moisturized polyHIPE with hexylamine, surfactant ratio 1.20 (recipe 7).

Moisturized polyHIPEs with hexylamine (recipe 8)

Weight of polyHIPE: 0.2467 g, flow rate: 3.10 ml/min

TABLE D 12 CO2 adsorption data of moisturized polyHIPE with hexylamine (recipe8)

Time (min)	Area of CO ₂	Retention time (min)	%CO ₂ Concentration (C)	C/C ₀
0	0	0	0.2517	0.0589
3	12.40	1.32	3.3206	0.7775
6	15.51	1.32	4.0903	0.9577
9	15.85	1.32	4.1744	0.9774
12	15.83	1.32	4.1695	0.9762
15	16.24	1.30	4.2709	1.0000
18	15.94	1.27	4.1967	0.9826
21	16.10	1.32	4.2363	0.9919
24	15.95	1.32	4.1992	0.9832

Figure D12 Break through curve of moisturized polyHIPE with hexylamine, surfactant ratio 1.33 (recipe 8).

Moisturized polyHIPEs with hexylamine (recipe 9)

Weight of polyHIPE: 0.2540 g, flow rate: 3.12 ml/min

TABLE D 13 CO₂ adsorption data of moisturized polyHIPE with hexylamine (recipe 9)

Time (min)	Area of CO ₂	Retention time (min)	%CO ₂ Concentration (C)	C/C ₀
0	0	0	0.2517	0.0598
3	13.36	1.30	3.5582	0.8449
6	15.6	1.32	4.1125	0.9765
9	15.86	1.32	4.1769	0.9918
12	15.96	1.33	4.2016	0.9976
15	15.98	1.32	4.2066	0.9988
18	16	1.32	4.2115	1.0000
21	15.90	1.28	4.1868	0.9941
1 4	15.86	1.32	4.1769	0.9918

Figure D13 Break through curve of moisturized polyHIPE with hexylamine, surfactant ratio 1.50 (recipe 9).

Moisturized polyHIPEs with hexylamine (recipe 10)

Weight of polyHIPE: 0.2694 g, flow rate: 3.11 ml/min

TABLE D 14 CO2 adsorption data of moisturized polyHIPE with hexylamine (recipe10)

Fime (min)	Area of CO ₂	Retention time (min)	%CO ₂ Concentration (C)	C/C ₀
0	0	0	0.2517	0.0594
3	12.74	1.37	3.4047	0.8028
6	15.73	1.27	4.1447	0.9772
•;	15.80	1.30	4.1620	0.9813
12	15.94	1.32	4.1967	0.9895
15	16.22	1.32	4.2660	1.0058
18	16.01	1.32	4.2140	0.9936
21	15.77	1.32	4.1546	0.9796
24	16.12	1.27	4.2412	1.0000

Figure D14 Break through curve of moisturized polyHIPE with hexylamine, surfactant ratio 1.71 (recipe 10).

Appendix E Amine Loading of PolyHIPE PolyHIPE reference (recipe 2)

TABLE E 1 CHN result of polyHIPE reference (recipe 2)

Sample	Mass	%C	%H	%N	
1	0.06878	91.24	8.278	-0.44482	
2	0.08369	88.55	8.368	-0.40213	
	Average				

PolyHIPE with hexylamine (recipe 7)

TABLE E 2 CHN result of polyHIPE with hexylamine (recipe 7)

Sample	Mass	%C	%H	%N
1	0.08501	85.24	8.403	-0.07911
2	0.08401	85.60	8.325	-0.18702
	-0.13306			

PolyHIPE with hexylamine (recipe 8)

 TABLE E 3 CHN result of polyHIPE with hexylamine (recipe 8)

Sample	Mass	%C	%H	%N	
1	0.08357	83.97	7.989	-0.11214	
2	0.08020	84.38	8.474	-0.07207	
	Average				

PolyHIPE with hexylamine (recipe 9)

Sample	Mass	%C	%H	%N
1	0.08152	84.58	8.047	-0.09901
2	0.08128	84.91	8.683	0.13349
	Aver	age	1	0.44024

TABLE E 4 CHN result of polyHIPE with hexylamine (recipe 8)

PolyHIPE with hexylamine (recipe 10)

Table E5 CHN result of polyHIPE with hexylamine (recipe 10)

Sample	Mass	%C	%H	%N		
1	0.08267	77.77	8.872	-0.05851		
2	0.08005	77.59	8.83	-0.10782		
	Average 8.65					

PolyHIPE with 1,3-diaminopropane (recipe 11)

TABLE E 6 CHN result of polyHIPE with 1,3-diaminopropane (recipe 11)

Sample	Mass	%C	%H	%N
1	0.05107	71.54	7.682	3.3731
	Aver	age		3.3731

PolyHIPE with 1,3-diaminopropane (recipe 12)

TABLE E 7 CHN result of polyHIPE with 1,3-diaminopropane (recipe 12)

Sample	Mass	%C	%H	%N	
1	0.03504	71.67	6.681	3.2505	
	Average				

PolyHIPE with 1,3-diaminopropane (recipe 13)

TABLE E 8 CHN resu	ult of polyHIPE with	1,3-diaminopropane	(recipe 13)
---------------------------	----------------------	--------------------	-------------

Sample	Mass	%C	%H	%N
1	0.03946	69.59	7.518	3.0761

PolyHIPE with 1,3-diaminopropane (recipe 14)

Table E9 CHN result of	polyHIPE with 1,3-diamino	propane (recipe 14)
------------------------	---------------------------	---------------------

Sample	Mass	%C	%H	%N
1	0.07872	77.21	8.406	1.8016
	1.8016			

PolyHIPE with 1,3-diaminopropane (recipe 15)

 Table E9 CHN result of polyHIPE with 1,3-diaminopropane (recipe 15)

Sample	Mass	%C	%H	%N	
1	0.08319	74.70	8.998	0.32629	
	Average				

CURRICULUM VITAE

Name: Mr. Narit Athipongarporn

Date of Birth: January 29, 1986

Nationality: Thai

University Education:

2004–2007 Bachelor Degree of Petrochemical and Polymeric Materials, Laculty of Engineering and Industrial Technology, Silpakorn University, Thailand

Work Experience:

2008-2010 Position: Process Engineer Company: Thai Carbon Black Public Company Limited, Angtong, Thailand

Publication:

 Threepopnatkul, P., Kaerkitcha, N., and Athipongarporn, N. (2009). Effect of surface treatment on performance of pineapple leaf fiber–polycarbonate composites. <u>Composites: Part B</u>, 40, 638-632.

Proceeding:

 Athipongarporn, N.; Saiwan, C.; and Tontiwachwuthikul, P. (2013, April 23)
 Effect of Amines on High Internal Phase Emulsion Adsorbents for Carbon Dioxide Adsorption. <u>Proceedings of the 4th Research Symposium on</u> <u>Petrochemical and Materials Technology and 19th PPC Symposium on</u> <u>Petroleum, Petrochemical, and Polymers, Bangkok, Thailand.</u>