SYNTHESIS AND DEPOSITION OF POLYANILINE AND SILVER PARTICLES ON CELLULOSE FIBERS BY SOLUTION PLASMA PROCESS

.

Phanthitra Anantasattakul

0

-

Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

2015

I28368642

580023

Thesis Title:	Synthesis and Deposition of Polyaniline and Silver Particles
	on Cellulose Fibers by Solution Plasma Process
By:	Phanthitra Anantasattakul
Program:	Polymer Science
• Thesis Advisors:	Assoc. Prof. Ratana Rujiravanit
	Prof. Nagahiro Saito

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Ratana Rujisavani

(Assoc. Prof. Ratana Rujiravanit)

Armathinia

(Prof. Anuvat Sirivat)

Magalin.

(Prof. Nagahiro Saito)

(Asst. Prof. Manisara Phiriyawirut)

ABSTRACT

5672016063: Polymer Science Program

Phanthitra Anantasattakul: Synthesis and Deposition of Polyaniline and Silver Particles on Cellulose Fibers by Solution Plasma Process. Thesis Advisors: Assoc. Prof. Ratana Rujiravanit and Prof. Nagahiro Saito 94 pp.

Keywords: Polyaniline/ Cellulose fibers/ Silver particles/ Solution plasma process

Polyaniline is a fascinating conductive polymer due to its beneficial properties including high conductivity, high thermal stability and simple synthesis procedure. However, polyaniline has a drawback on its poor processability. Therefore, coating of polyaniline on cellulose fibers not only solves the problem on processability but also increases the flexibility and making it suitable for electronic device applications. Cellulose sheets were prepared from cellulose fibers by a papermaking process. Cellulose fibers from the inner core of banana tree were treated by solution plasma process in order to modify the surface for better interaction between cellulose fibers and polyaniline. Polyaniline was simultaneously polymerized and coated on cellulose fibers by applying solution plasma to enhance the deposition capability of polyaniline on cellulose fibers. In order to enhance the electrical conductivity, different amounts of silver particles were incorporated into the cellulose sheets. In addition to the effect of plasma treatment time on cellulose fibers, the effects of aniline to cellulose fibers ratios and plasma treatment time on coating of polyaniline and silver on cellulose fibers by solution plasma process were investigated. The as-prepared polyaniline and silver co-coated cellulose sheets were characterized by FTIR, SEM, bending test, XRD, electrical conductivity, XPS, TGA and water contact angle.

Ø

บทคัดย่อ

พันธิตรา อนันตะเศรษฐกูล : การสังเคราะห์และเคลือบพอลิอะนิลีนและอนุภาคเงินบน เส้นใขเซลลูโลสโดยใช้โซลูชั่นพลาสมา (Synthesis and Deposition of Polyaniline and Silver Particles on Cellulose Fibers by Solution Plasma Process) อาจารย์ที่ปรึกษา : รศ. ดร.รัตนา รูจิรวนิจ และ ศ. ดร. นากาฮิโร ไซโต 94 หน้า

พอลิอะนีลีนเป็นพอลิเมอร์ที่มีสมบัติการนำไฟฟ้าที่น่าสนใจเนื่องจากมันมีสมบัติที่ดี เช่น มีค่าการนำไฟฟ้าสูง ทนความร้อนได้สูงและสังเคราะห์ได้ง่าย อย่างไรก็ตามพอลิอะนีลีนยังคงมี ้ข้อเสียคือมีขึ้นรูปได้ยาก ดังนั้นการเคลือบพอลิอะนีลีนบนเส้นใยเซลลูโลสไม่เพียงแต่แก้ปัญหาใน ซึ่งวิธีนี้ทำให้พอลิอะนีลีนสามารถ การขึ้นรูปอีกทั้งยังช่วยเพิ่มความยืดหยุ่นให้แก่พอลิอะนีลีน นำไปใช้ในอุปกรณ์อิเล็กทรอนิกส์ได้ แผ่นเซลลูโลสที่ใช้ในงานวิจัยนี้เตรียมได้จากกระบวนการ ทำกระคาษ โคยเส้นใยเซลลูโลสที่ได้มาจากแกนต้นกล้วยถูกคัคแปลงโคยเทคนิคโซลูชั่นพลาสมา เพื่อที่จะปรับปรุงพื้นผิวให้เหมาะสมกับการเกิดปฏิกิริยาระหว่างเส้นใยเซลลูโลสและพอลิอะนีลีน ให้ดีขึ้น พอลิอะนี้ลินถูกสังเคราะห์และเคลือบบนเส้นใยเซลลูโลสพร้อมๆกันโคยการใช้โซลูชั่น ซึ่งการใช้โซลูชั่นพลาสมาสามารถช่วยในการยึดติดระหว่างพอลิอะนีลีนและเส้นใย พลาสมา และเพื่อเป็นการเพิ่มค่าการนำไฟฟ้าของพอลิอะนีลีนที่เคลือบบนแผ่นเซลลูโลสจึงได้ เซลลุโลส เติมอนุภาคเงินลงไปในปริมาณต่างๆ อีกทั้งในงานวิจัยนี้ได้ศึกษาผลของระยะเวลาในการพลาสมา ต่อเส้นใยเซลลูโลส ผลของอัตราส่วนระหว่างเส้นใยเซลลูโลสและพอลิอะนีลึน และระยะเวลาใน การพลาสมาในการเคลือบของพอลิอะนี้ลื่นและอนุภาคเงินบนเส้นใยเซลลูโลส โดยพอลิอะนี้ลื่น และอนุภาคเงินที่เคลือบบนเส้นใยเซลลูโลสถูกตรวจสอบโดยเครื่องฟลูเรียร์ทรานส์ฟอร์ม

อินฟราเรคสเปกโทรมิเตอร์ กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด เครื่องทดสอบการงอ เครื่อง วิเกราะห์การเลี้ยวเบนรังสีเอกซ์ เครื่องวัดค่าการนำไฟฟ้า เครื่องวิเกราะห์ผิววัสดุด้วยเทคนิก XPS เครื่องเทอร์ โมกราวิเมตริก และเครื่องวิเกราะห์มุมติดต่อระหว่างน้ำและพื้นผิววัสดุ

Ø

ACKNOWLEDGEMENTS

First and foremost, I have to thank my supervisor Assoc.Prof. Ratana Rujiravanit. Without her assistance and dedicated involvement in every step throughout the process, this paper would have never been accomplished. I would like to thank you very much for your support and understanding.

I would also like to show gratitude to Prof. Anuvat Sirivat and Asst. Prof. Manisara Phiriyawirut for being thesis committee.

I am grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College and the Center of Excellence on Petrochemicals and Materials Technology, Thailand.

I would like to thank the staff members of The Petroleum and Petrochemical College for training instrument and giving the suggestion to me.

I am indebted to my many student colleagues to support a stimulating and fun environment to learn and grow. Particularly thanks are given to Chutima, Nattakamala and Chayanapat. Also, I simply say thanks to friends who made the two years such a memorable experience.

Most importantly, none of this could have happened without my family. They are always understanding, encouragement and supporting me throughout my life.

Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of the project.

This research work was partially supported by the Ratchadapisek Sompoch Endowment Fund (2013), Chulalongkorn University (CU-56-900-FC) and Thailand Research Fund (IRG5780012).

Ø

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	xii
List of Figures	xiii
CHAPTER	
I INTRODUCTION	1

II	LI	TERATURE REVIEW	4
	2.1	Cellulose Sheet	4
		2.1.1 Structure of Cellulose Sheet	4
		2.1.2 The Strength of Cellulose Sheet .	4
	.2.2	2 Plant Fibers	4
		2.2.1 Types of Plant Fibers	4
		2.2.2 The Structure of Plant Fibers	5
		2.2.3 The Composition of Plant Fibers	9
		2.2.3.1 Cellulose	9
		2.2.3.2 Hemicellulose	10
		2.2.3.3 Lignin	11
	÷ ×	2.2.3.4 Pectins and Waxes	11
		2.2.4 Cellulose from Plant Fibers	11
	2	2.2.5 Factors Affecting the Composite Properties	12
		2.2.5.1 Thermal Stability of Fibers	12
		2.2.5.2 Structure of Plant Fibers	12
		2.2.5.3 The Length of Fibers, Loading and Orientation	13

_

o

.

PAGE

2.2.5.4 Moisture Absorption of Fibers	13
2.2.5.5 The Void of Fibers	13
2.2.6 Surface Modification of Natural Fiber	14
2.2.6.1 Chemical Methods	14
2.2.6.1.1 Alkaline Treatment	14
2.2.6.1.2 Peroxide Treatment	15
2.2.6.1.3 Silane Treatment	16
2.2.7 Literature Reviews on Natural Fibers	17
2.3 Conductive Polymers	19
2.3.1 The History of Conductive Polymers	19
2.3.2 Doping	20
2.3.3 The Source of Their Conductivity	20
2.3.4 Polyaniline (PANI)	22
2.3.5 Literature Reviews on Conductive Polymers	23
2.3.6 Polymerization of Polyaniline	25
2.3.6.1 Oxidative Polymerization	25
2.3.6.1.1 The Mechanism of Aniline	
Polymerization	25
2.3.6.1.2 The Active Site of Polymerization	26
2.4 Plasma	26
2.4.1 Basic Principle of Plasma	26
2.4.2 Solution Plasma Process	29
2.4.2.1 Solution Plasma Set Up	31
2.4.3 Literature Reviews on Polyaniline by Oxidative	
Polymerization	31
2.4.4 Literature Reviews on Plasma	34
2.5 Metals	37
2.5.1 Literature Reviews on Silver Particles	38

0

.

	III	EX	PERIMENTAL .	40
		3.1	Chemicals and Materials	40
			3.1.1 Banana Trunks	40
			3.1.2 Chemicals	40
		3.2	Equipment	40
			3.2.1 Fourier Transformed Infrared Spectroscopy (FTIR)	40
			3.2.2 Thermogravimetric Analyzer (TGA)	40
			3.2.3 Scaning Electron Microscope (SEM)	41
			3.2.4 X-Ray Photoelectron Spectroscopy (XPS)	41
			3.2.5 X-ray Diffraction (XRD)	41
			3.2.6 Contact Angle Measurement	41
			3.2.7 Bending Test	41
			3.2.8 Gel Permeation Chromatography	41
			3.2.9 Electrical Conductivity	41
		3.3	Methodology	42
			3.3.1 Preparation of Cellulose Fiber	42
			3.3.2 Preparation of Cellulose Sheet	42
			3.3.3 Treatment of Cellulose Fibers by Solution Plasma	43
			3.3.4 Polymerization of Polyaniline Coated on Cellulose She	et
			by Solution Plasma Process	44
			3.3.5 Preparation of Polyaniline and Silver Particles	
			Co-coated on Cellulose Sheet	44
IV	RESU	LTS	S AND DISCUSSION	46
		4.1	Characterization of Cellulose Fibers Derived from	
			Banana Trunks	46
			4.1.1 Raw Banana Fibers	46
			4.1.2 Preparation of Cellulose Sheets	46

-

Ø

-

.

4.1.2.1 Effect of NaOH Concentrations for	
Prepare Cellulose Sheets	46
4.1.2.1.1 Morphology Analysis	47
4.1.2.1.2 Chemical Analysis	47
4.1.2.1.3 Crystallinity Analysis	48
4.1.2.2 Effect of HCl Concentrations for	
Prepare Cellulose Sheets	49
4.1.2.2.1 Morphology Analysis	49
4.1.2.2.2 Chemical Analysis	50
4.1.2.2.3 Crystallinity Analysis	51
4.2 Characterization of Cellulose Fibers Treated with Solution	
Plasma by Study the Effect of Plasma Treatment Time	54
4.2.1 Effect of Solution Plasma Treatment on Appearance	54
4.2.2 Effect of Solution Plasma Treatment on	
Morphology Analysis	56
4.2.3 Effect of Solution Plasma Treatment on	
Water Contact Angle Analysis	56
4.2.4 Effect of Solution Plasma Treatment on	
Bending Testing	58
4.2.5 Effect of Solution Plasma Treatment on	
Chemical Composition	59
4.2.6 Effect of Solution Plasma Treatment on Crystallinity	62
4.3 Characterization of Polyaniline Coated on Plasma Treated	
Cellulose Sheets by Using Different Cellulose to Aniline	
Monomer Ratios	63
4.3.1 Finding Percent Yield of Polyaniline	63
4.3.2 Compare %Yield of Polyaniline from Conventional	
Method and Solution Plasma Method	65

•

 \mathbf{V}

PAGE

х

4.3.3 Compare %Yield of Ppolyaniline by Using Difference	
Plasma Treatment Time	65
4.3.4 Compare Elctrical Conductivity of Polyaniline	
Coated on Cellulose Sheet by Solution Plasma	
Process and Oxidative Polymerization	66
4.3.5 Compare the Deposition Capacity of Polyaniline	
Coated on Cellulose Sheet by Solution Plasma	
Process and Oxidative Polymerization	67
4.3.6 Compare Molecular Weight of Polyaniline by	
Solution Plasma Process and Oxidative	
Polymerization	68
4.3.7 Morphology Analysis	68
4.3.8 Electrical Conductivity	69
4.3.9 Chemical Analysis	70
4.3.10 Thermogravimetric Analysis	71
4.3.11 The Propose Mechanism of Polyaniline Coated on	
Cellulose Sheets	72
4.4 Characterization of Polyaniline/Silver Particles Co-coated	
Cellulose Sheet	73
4.4.1 Effect of Ratio Between Silver Nitrate and Sodium	
Borohydride	73
4.4.2 The Morphology and Size of Silver Particles	74
4.4.3 Electrical Conductivity	77
CONCLUSIONS	
REFERENCES	79

÷

APPENDICES

σ

87

PAGE

Appendix A Effect of Plasma Treatment Time on	
Cellulose Sheet	87
Appendix B Effect of Cellulose to Aniline Monomer Ratio on	
Electrical Conductivity	89
Appendix C Effect of Silver Particles on Polyaniline Coated	
on Cellulose Sheet	90

CURRICULUM VITAE

.

94

σ

•

.

LIST OF TABLES

TABLE

2.1	Structure compositions of natural fibers	6
2.2	Comparative properties of natural fibers with conventional	
	manmade fibers	9
2.3	A list of conductive polymers and their abbreviations.	20
2.4	Electrical conductivity of metals	38
4.1	The production yield of treated cellulose fibers	53
4.2	Effect of plasma treatment time on the percentage of	
	chemical compositions	62
4.3	%Yield of polyaniline obtained from different aniline	
	monomer	64
4.4	%Yield of polyaniline obtained from conventional method	
	and solution plasma method	65
4.5	%Yield of polyaniline by using difference plasma treatment	
	time	65

xii

PAGE

FIGURE		PAGE
2.1	Chemical structure of (a) cellulose (b) hemicellulose	
	(c) lignin	6
2.2	Arrangement of microfibrils and cellulose in the plant	
	cell wall	7
2.3	Structure of natural fiber.	8
2.4	Structure organization of the three major constituents in	
	the fiber cell wall	9
2.5	Structure of natural fiber.	10
2.6	Acid hydrolysis breaks down disordered (amorphous)	
	regions and isolates nanocrystals	12
2.7	Typical structure of (i) untreated and (ii) alkalized	
	cellulose fiber	15
2.8	A simplified schematic of a conjugates backbone: a chain	
	containing alternating single and double bonds	21
2.9	A simplified explanation of the electrical conductivity of	
	conducting polymers	22
2.10	Diagram showing the chemical structure, synthesis,	
	reversible acid/ base doping/ dedoping, and redox	
	chemistry of PANI.	23
2.11	SEM images of MWCNTs (A) and PANI/MWCNTs (B).	24
2.12	Electrophilic substitution reaction.	25
2.13	Aniline oxidative polymerization	26
2.14	The movement of free charge particles in plasma system	27
2.15	A simple discharge.	27
2.16	Three categories of plasma corresponding to the	
	pressure-temperature relationship of three phases	30

-

.

FIGURE

FIGURE		PAGE
2.17	The reaction model of solution plasma	30
2.18	Solution plasma experimental set up	31
2.19	The schematic of SILAR method for deposition of PANI	
	on the substrate	32
2.20	FE-SEM images of BC/PANI	32
2.21	OES spectrum of pure water and plasma-treated gelatin	
	solutions containing various concentrations of ethanol	
	after treated for 1 min	36
2.22	Formation mechanisms of the products (a) without	
	agitation (b) with agitation	37
2.23	TEM images and particles size histograms of silver	
	nanoparticles with concentration a) 0.5 mol% and b) 2.5	
	mol%.	39
3.1	Flow chart of treatment of cellulose fibers by solution	
	plasma	43
3.2	Solution plasma set up	44
3.3	Flow chart of polymerization polyaniline coated on	
	cellulose sheet	45
4.1	SEM image of raw banana fibers obtained from inner	
	core of banana trunks	46
4.2	SEM images of cellulose sheets at NaOH concentrations	
	a) 5% w/v, b) 10% w/v, c) 15% w/v and d) 20% w/v	47
4.3	FTIR spectra of banana fibers before and after treatment	48
4.4	XRD curves of banana fibers before and after treatment	49
4.5	SEM images of cellulose sheets at HCl concentrations a)	
	1.5 M, b) 2 M, c) 2.5 M and d) 3 M	50

-

FIGURE

0

.

4.6	TIR spectra of banana fibers before and after treatment.	5 1
4.7	XRD curves of banana fibers before and after treatment	52
4.8	SEM image of treated banana fibers	53
4.9	The thermogravimetric analysis of raw banana fibers and	
	cellulose fibers	54
4.10	Appearance of cellulose sheets at plasma treatment time	
	(a) 0, (b) 30, (c) 60, (d) 90, (e) 120, (f) 180 and (g) 240	
	minutes	55
4.11	SEM image of cellulose sheets at plasma treatment time	
	(a) 0, (b) 30, (c) 60, (d) 90, (e) 120 minutes	56
4.12	Interfacial water contact angle of cellulose sheets treated	
	with solution plasma (a) 0, (b) 30, (c) 60, (d) 90 and (e)	
	120 minutes	57
4.13	Effect of plasma treatment time on water contact angle on	
	cellulose sheets	58
4.14	Effect of plasma treatment time on bending testing of	
	cellulose sheets	59
4.15	FTIR spectra of cellulose sheets at different solution	
	plasma treatment time	60
4.16	XPS spectra of (a) untreated- cellulose sheet, (b) 30, (c)	
	60, (d) 90 and (e) 120 minutes plasma-treated cellulose	
	sheets, respectively	61
4.17	XRD pattern of untreated and solution plasma treated	
	cellulose sheets	63
4.18	Amount of polyaniline obtained from different amount of	
	aniline monomer	64

÷ + 1

PAGE

FIGURE

IGURE		PAGE
4.19	Amount of polyaniline obtained from different plasma	:
	treatment time	66
4.20	Polyaniline coated on cellulose sheet by a)solution	
	plasma process 20 minutes, b)oxidative polymerization	
	20 minutes and c) oxidative polymerization 60 minutes	67
4.21	Polyaniline coated on cellulose sheet by a)solution	
	plasma process 20 minutes, b) oxidative polymerization	
	60 minutes	67
4.22	SEM images of polyaniline coated on solution plasma	
	treated cellulose sheets with cellulose to aniline weight	
	ratio a) 1:0, b) 1:0.5, c) 1:1, d) 1:5 and e) 1:6	69
4.23	The electrical conductivity of polyaniline coated on	
	cellulose sheets	70
4.24	FTIR spectrum of polyaniline coated on cellulose sheet	71
4.25	The thermogravimetric analysis of polyaniline coated on	
	cellulose sheet	72
4.26	The dissociation of water in solution plasma process	73
4.27	The propose mechanism of polyaniline coated on	
	cellulose sheet	73
4.28	The silver particles weight by using different silver nitrate	
	to reducing agent ratio	74
4.29	TEM image of silver particles by using reducing agent	
	and solution plasma	75
4.30	The particles size histrogram of silver particles by using	
	reducing agent and solution plasma	75
4.31	TEM image of silver particles by using reducing agent	76

0

.

1-

FIGURE		PAGE
4.32	The particles size histrogram of silver particles by using	
	reducing agent	76
4.33	The electrical conductivity of polyaniline/silver particles	
	co-coated cellulose sheet	77

xvii

o

•