NEW HYBRID BIOFUEL USING PALM OIL/DIESEL ETHANOL BASED REVERSE MICELLE MICROEMULSION

Sachart Manaphati

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University

in Academic Partnership with

The University of Michigan, The University of Oklahoma,

Case Western Reserve University, and Institut Français du Pétrole

2015

0

Thesis Title: New Hybrid Biofuel using Palm oil/Diesel Ethanol based

Reverse Micelle Microemulsion

By: Mr. Sachart Manaphati

Program: Petrochemical Technology

Thesis Advisors: Dr. Ampira Charoensaeng

Prof. David A. Sabatini

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Dr. Ampira Charoensaeng)

(Prof. David A. Sabatini)

(Dr. Uthaiporn Suriyapraphadilok)

Emma Asmachinda

(Dr. Emma Asnachinda)

ABSTRACT

5671031063: Petrochemical Technology Program

Sachart Manaphati: New Hybrid Biofuel using Palm oil/Diesel

Ethanol based Reverse Micelle Microemulsion.

Thesis Advisors: Prof. Ampira Charoensaeng, and Prof. David A.

Sabatini 87 pp.

Keywords: Biofuel/ Reverse microemulsion/ Palm oil/ RBDPO/ Surfactant

Biofuels are one of renewable fuels used in many vehicles and industries. Vegetable oils which are green and non-toxic nature derived from agricultural feedstock, have been used for biofuel's production for many years. Due to their high viscosity, the direct use of vegetable oil in diesel engines can lead to engine durability problems. Reverse micelle microemulsion as an alternative biofuel production has been intensively studied for formulating biofuel with desirable viscosity. This work aims to formulate microemulsion biofuels of palm oil/diesel blend and refined bleached deodorized palm oil (RBDPO)/diesel blend mixed with ethanol used as a viscosity reducer using three nonionic surfactant derived from renewable based feedstock (methyl oleate, Span 80 and palm oil methyl ester (PME)) and two cosurfactants (1-octanol and 2-ethyl-1-hexanol). Additionally, their fuel properties (i.e. kinematic viscosity, droplet size, turbidity, density and heat of combustion) were investigated and compared with standard of diesel No.2. The effects of nonionic surfactant and cosurfactant structures had no significant impact on phase behaviors of the microemulsion biofuels. For the results of kinematic viscosity measurements, microemulsion biofuels had higher kinematic viscosity than that of standard of No. 2 diesel. The formulation of microemulsion biofuel depends on raw material selection. The fuel properties of microemulsion biofuel can be desired and adjusted be microemulsion formulation with using a renewable based surfactant in the system offering attractive options environmentally for future biofuel production.

บทคัดย่อ

ษชาติ มานะผาติ : เชื้อเพลิงชีวภาพผสมใหม่ที่ผลิตด้วยวิธีการรีเวิร์สไมเซลไมโคร อิมัลชัน โดยใช้น้ำมันปาล์ม น้ำมันคีเซลและเอทานอล (New Hybrid Biofuel using Palm oil/Diesel Ethanol based Reverse Micelle Microemulsion) อ. ที่ปรึกษา : คร.อัมพิรา เจริญแสง, ศาตราจารย์คร. เควิค เอ สะบาตินี 78 หน้า

เชื้อเพลิงชีวภาพเป็นหนึ่งในเชื้อเพลิงทคแทนที่ในใช้ในยานพาหนะและอุตสาหกรรม โดยน้ำมันพืชเป็นผลิตภัณฑ์ที่มาจากการเกษตรซึ่งมีความสะอาค ปราศจากมลพิษ มีการนำมา ผลิตปันเชื้อเพลิงชีวภาพมาหลายปี เนื่องจากการใช้น้ำมันพืชเป็นเชื้อเพลิงในเครื่องยนต์คีเซลนั้น ส่งผลกับเครื่องยนต์และทำให้ประสิทธิภาพของเครื่องยนต์คีเซลนั้นลคลงเนื่องจากความหนืดของ น้ำมันพืชมีค่าที่สูง วิธีการผลิตเชื้อเพลิงชีวภาพค้วยวิธีการ ใม โครอิมัลชันได้มีการศึกษาอย่างมาก เพื่อให้ได้เชื้อเพลิงชีวภาพที่มีความหนืดที่เหมาะสม งานวิจัยนี้มีวัตถุประสงค์เพื่อผสมเชื้อเพลิง ชีวภาพโคยใช้น้ำมันปาล์มผสมกับน้ำมันคีเซล และน้ำมันปาล์มบริสุทธิ์ที่ยังไม่แยกไขผสมกับ น้ำมันคีเซลซึ่งมีเอทานอลเป็นสารช่วยลคความหนืดของเชื้อเพลิง โคยใช้สารลคแรงตึงผิวชนิคไม่ ้มีขั้ว 3 ชนิค ได้แก่ เมทิลโอลิเอต. สแปน 80 และ กรคไขมันของเมทิลเอสเตอร์ซึ่งผลิตจากน้ำมัน ปาล์ม และผสมกับสารลดแรงตึงผิวร่วม ได้แก่ออกทานอลและเอทิลเฮกซานอล โดยผสมสาร ทั้งหมดให้เป็นเนื้อเดียวกันเพื่อศึกษาพฤติกรรมวัฏภาคของเชื้อเพลิงชีวภาพ นอกจากนี้ได้ศึกษา คุณสมบัติ ได้แก่ ความหนืดจลน์ ขนาดของหยดไมโครอิมัลชั้น ความขุ่น ความหนาแน่น ค่าความ ร้อนและทำการเปรียบเทียบตามมาตรฐานของเชื้อเพลิงคีเซลประเภท 2 ผลของโครงสร้างของสาร ลคแรงตึงผิวชนิดไม่มีประจุและสารลคแรงตึงผิวร่วมไม่มีผลต่อพฤติกรรมการละลายที่เป็นเนื้อ เคียวกันของเชื้อเพลิงชีวภาพ ส่วนผลการศึกษาความหนืคจลน์พบว่าเชื้อเพลิงชีวภาพจากไมโคร อิมัลชั้นมีความหนืดสูงกว่ามาตรฐานของเชื้อเพลิงคีเซลประเภท 2 โดยสูตรของเชื้อเพลิงชีวภาพที่ ผลิตด้วยวิธีการ ใมโครอิมัลชั้นขึ้นกับการเลือกสารที่นำมาผสม และคุณสมบัติของเชื้อเพลิงชีวภาพ ถูกปรับปรุงสูตร โดยใช้สารลดแรงตึงผิวเพื่อเป็นทางเลือกในการผลิตเชื้อเพลิงชีวภาพที่เป็นมิตรต่อ สิ่งแวคล้อมต่อไปในอนาคต

ACKNOWLEDGEMENTS

This thesis work is partially funded by The Petroleum and Petrochemical College; The National Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, The Ratchadapisek Sompoch Endowment Fund (2013), Chulalongkom University (CU-56-900-FC) and The Thailand Research Fund (TRG5780163 and IRG5780012). In addition, I extend our gratitude to thank Kao Chemical Company (Thailand) and Werasuwan Co., Ltd. for providing Span 80 and palm methyl ester (PME), respectively.

I would like to express my sincerest grarirude to the advisors, Dr. Ampira Charoensaeng and Prof. David A. Sabatini for their guidance, encouragement and the support provided throughout this research. Additionally, I thanks to members of my committee, Dr. Uthaiporn Suriyapraphadilok and Dr. Emma Asnachinda. I also extend my warm and sincere thanks to Assoc. Prof. Sutha Khaodhiar, Dr. Chodchanok Attaphong and Noulkamol Arpornpong for suggestion and valuable comment for this study. I also would like to thank the officers and all of my friends at The Petroleum and Petrochemical College for help and warmth toward me throughout. Finally, I would like to express my appreciation to my family for their love, encouragement and supports.

TABLE OF CONTENTS

			PAGE	
	Title	Page	i	
	Abstr	act (in English)	iii	1.7
	Abstr	act (in Thai)	iv	
	Ackn	owledgements	v	
	Table	of Contents	vi	
	List o	f Tables	x	
	List o	f Figures	xiii	
CH.	APTER			
	I	INTRODUCTION	1	
	II	THEORETICAL BACKGROUND AND		
		LITERATURE REVIEW	3	
		2.1 Vegetable Oil	3	
		2.1.1 Palm Oil	4	
		2.1.2 Refined Bleached Deodorized Palm Oil (RBDPO)	5	
		2.2 Diesel	5	
		2.2.1 Types of Diesel	6	
		2.2.2 Standard Diesel Fuels	6	
		2.3 Biofuel	7	
		2.3.1 Demand & Supply of Biodiesel	7	
		2.4 Methods for Vegetable Oil Viscosity Reduction	8	
		2.4.1 Vegetable Oil/Diesel Blends	8	
		2.4.2 Pyrolysis	8	
		2.4.3 Transesterification	9	
		2.4.4 Microemulsion	9	
		2.5 Surfactant	10	
		2.6 Fish Diagram	11	
		2.7 Pseudo-ternary Phase Diagram	12	

CHAPTER		PAGE
	2.8 Fuel Properties	13
	2.8.1 Kinematic Viscosity	13
	2.8.2 Droplet Size	14
	2.8.3 Cloud Point	15
	2.8.4 Gross Heat of Combustion	15
	2.9 Literature Review	17
	2.10 Objective	20
	2.11 Scope of Research	21
III	EXPERIMENTAL	22
	3.1 Materials	22
	3.1.1 Surfactant	22
	3.1.2 Cosurfactant	23
	3.1.3 Palm Oil, RBDPO and Diesel	24
	3.1.4 Ethanol	25
	3.2 Experimental Methods	25
	3.2.1 Microemulsion Preparation	25
	3.2.2 Pseudo-ternary Phase Diagram	26
	3.2.3 Fuel Properties Determination	26
IV	RESULTS AND DISCUSSION	28
	4.1 Phase Behavior Study	28
	4.1.1 Effects of Surfactant's Structures	29
	4.1.2 Effects of Cosurfactant's Structures	31
	4.2 Effects of Types of Palm Oil	34
	4.2.1 Amount of Surfactant Required to Formulate	
	Single Phase Microemulsion Study	35

CHAPTER			PAGE
	4.2.2 Ar	nount of Surfactant with the Different Types	
	1	Cosurfactant Required to Formulate Single Phase	
		croemulsion Study	37
		perties Determination	39
	4.3.1 Ki	nematic Viscosity Measurement	41
	4.3.2 Dr	oplet Size and Size Distribution	44
	4.3.3 Tu	rbidity	48
	4.3.4 Cl	oud Point	52
	4.3.5 De	ensity	53
	4.3.6 He	eat of Combustion	53
	4.4 Summari	zed Results	53
V	CONCLUSI	ONS AND RECOMMENDATIONS	57
	5.1 Conclusi	ons	57
	5.2 Recomm	endations	58
	REFERENC	ŒS	59
	APPENDIC	ES	64
	Appendix A	Supplemental Materials for Phase Diagram	64
	Appendix B	Supplemental Materials for Effect of Oil Types on	1
	^	Amount of Surfactant to Formulate Single Phase	
		Microemulsion Study	67
	Appendix C	Supplemental Materials for Viscosity Study	68
	Appendix D	Supplemental Materials for Microemulsion	
		Droplet Size Study	71
	Appendix E	Supplemental Materials for Density Study	75
	Appendix F	HLB Calculation of Nonionic Surfactants	76

CHAPTER		
CURRICULUM VITAE		78

LIST OF TABLES

TABL	LE	PAGE
2.1	Properties and heat of combustion of vegetable oils and	
	diesel	3
2.2	Fatty acid composition of palm oil	5
2.3	The standard properties of No.2 diesel and biodiesel fuel	16
3.1	Properties of the studied surfactants and cosurfactants	24
3.2	Fatty acid compositions of palm oil and RBDPO	24
4.1	Fatty acid compositions of palm oil and RBDPO	36
4.2	Composition of microemulsion biofuels in palm oil - olein	
	system with 20 vol.% of ethanol used for fuel property	
	determination	40
4.3	Composition of microemulsion biofuels in RBDPO's system	
	with 20 vol.% of ethanol used for studied fuel properties	
	determination	40
4.4	Comparision of the droplet size and distribution of	
	microemulsion biofuels with palm oil/diesel blend (1:1 v/v)	
	at room temperature (25±2°C)	45
4.5	Comparison the time that the sample of Span 80's systems	
	with palm oil/diesel blend (1:1 v/v) and 20 vol.% ethanol	
	was placed before measured droplet size and distribution at	
	25±2°C	46
4.6	Comparing relation of droplet size with kinematic viscosity	
	of palm oil/diesel blend (1:1 v/v) and 20 vol.% ethanol with	
	surfactant/cosurfactant at molar ratio of 1:8 at 25±2°C	48
4.7	Cloud point, density and heat of combustion of	
	microemulsion biofuels compared with diesel and palm	
	oil/diesel blend and 20 vol.% of ethanol	52

TABI	LE	PAGE
Al	Methyl oleate/1-octanol 1:8 mole ratio, palm oil/diesel 1:1	
	(v/v)	64
A2	Methyl oleate/2-ethyl-1-hexanol 1:8 mole ratio, palm	
	oil/diesel 1:1 (v/v)	64
A3	Span 80/1-octanol 1:8 mole ratio, palm oil/diesel 1:1 (v/v)	65
A4	Span 80/2-ethyl-1-hexanol 1:8 mole ratio, palm oil/diesel 1:1	
	(v/v)	65
A 5	Palm oil methyl ester (PME)/1-octanol 1:8 mole ratio, palm	
	oil/diesel 1:1 (v/v)	66
A6	Palm oil methyl ester (PME)/1-octanol 1:8 mole ratio, palm	
	oil/diesel 1:1 (v/v)	66
B1	Surfactant/cosurfactant 1:8 mole ratio, palm oil/diesel 1:1	
	(v/v) with 20 vol.% of ethanol	67
B2	Surfactant/cosurfactant 1:8 mole ratio, RBDPO/diesel 1:1	
	(v/v) with 20 vol.% of ethanol	67
C1	Time for measured kinematic viscosity of microemulsion	
	biofuels, surfactant/cosurfactant 1:8 mole ratio, palm	
	oil/diesel 1:1 (v/v) with 20 vol.% of ethanol	69
C2	Kinematic viscosity of microemulsion biofuels,	
	surfactant/cosurfactant 1:8 mole ratio, palm oil/diesel 1:1	
	(v/v) with 20 vol.% of ethanol	69
C3	Time for measured kinematic viscosity of microemulsion	
	biofuels, surfactant/cosurfactant 1:8 mole ratio,	
	RBDPO/diesel 1:1 (v/v) with 20 vol.% of ethanol	70
C4	Kinematic viscosity of microemulsion biofuels,	
	surfactant/cosurfactant 1:8 mole ratio, RBDPO/diesel 1:1	
	(v/v) with 20 vol.% of ethanol	70

TABI	LE .	PAGE
E1	Density of microemulsion biofuels, surfactant/cosurfactant	
	1:8 mole ratio, RBDPO/diesel 1:1 (v/v) with 20 vol.% of	1
	ethanol at room temperature (25°C)	75
F1	HLB _{AVG} calculation of mixed products	77

LIST OF FIGURES

FIGU	RE	PAGE
2.1	Palm fruits.	4
2.2	Demand and supply of biodiesel in the future.	8
2.3	Transesterification reaction between triglyceride and	
	alcohol.	9
2.4	Surfactant's structure.	10
2.5	(a) normal micelle and (b) reverse micelle.	10
2.6	Structure of Span 80.	11
2.7	Fish diagram shows phase behavior with surfactant	
	concentration and formulation hydrophobicity by salinity.	12
2.8	A sample of pseudo-ternary phase diagram.	13
2.9	Cannon-Fenske routine viscometer.	14
2.10	Shecimatic diagram of bomb calorimeter.	15
2.11	Comparison of the systems of C16-18 4PO-2EO-	
	carboxylate at surfactant/1-Octanol ratio of 1-16 at 25 °C	
	where the oil is canola oil/diesel ratio at 0-100, 25-75, 50-	
	50, 75–25, and 100–0.	17
2.12	Structure of Brij 30.	19
2.13	Structure of AOT.	19
3.1	Structure of surfactants.	23
3.2	Structure of cosurfactants.	23
3.3	Experimental methods flow diagram.	25
4.1	The pseudo ternary phase diagram of microemulsion biofuel	
	using methyl oleate/1-octanol as surfactants at 1:8 molar	
	ratio with palm oil/diesel blend at a ratio of 1:1 (v/v).	28

FIGU	RE T	PAGE
4.2	Pseudo ternary phase diagram of microemulsion biofuel	
	systems using methyl oleate, Span 80 and PME as a	
	surfactant at surfactant/1-octanol molar ratio of 1:8 with a	
	palm oil/diesel at a ratio of 1:1 (v/v) at room temperature	
	(25±2°C).	29
4.3	Pseudo ternary phase diagram of microemulsion biofuel	
	systems using methyl oleate, Span 80 and PME as a	
	surfactant at surfactant/2-Ethyl-1-hexanol molar ratio of 1:8	
	with a palm oil/diesel at ratio of 1:1 (v/v) at room	
	temperature (25±2°C).	30
4.4	Pseudo ternary phase diagram of methyl olelate/1-octanol	
	and methyl olelate/2-ethyl-1-hexanol at	
	surfactant/cosurfactant molar ratio of 1:8 with a palm	
	oil/diesel at ratio of 1:1 (v/v) at room temperature (25±2°C).	32
4.5	Ternary phase diagram of Span 80/1-octanol and Span 80/2-	
	ethyl-1-hexanol at surfactant/cosurfactant molar ratio of 1:8	
	with a palm oil/diesel at ratio of 1:1 (v/v) at room	
	temperature (25±2°C).	33
4.6	Ternary phase diagram of PME/1-octanol and PME/2-ethyl-	
	1-hexanol at surfactant/cosurfactant molar ratio of 1:8 with a	
	palm oil/diesel at ratio of 1:1 (v/v) at room temperature	
×	(25±2°C).	34
4.7	Minimum total surfactant concentration (%) to formulate	
	single phase microemulsion versus types of surfactant and 1-	
	octanol as a cosurfactant at a molar ratio of 1:8 compared	
	with a palm oil/diesel and RBDPO/diesel blends at a ratio of	
	1:1 (v/v) with 20 vol.% of ethanol at room temperature	
	(25±2°C).	35

FIGU	FIGURE	
4.8	Minimum total surfactant concentration (%) to formulate	
	single phase microemulsion versus types of surfactant and 2-	
	ethyl-1-hexanol as a cosurfactant at a molar ratio of 1:8	
	compared with a palm oil/diesel and RBDPO/diesel blends	
	at a ratio of 1:1 (v/v) with 20 vol.%. of ethanol at room	
	temperature (25±2°C).	36
4.9	Minimum total surfactant concentration (%) to formulate	Ÿ
	single phase microemulsion of methyl oleate systems versus	
	types of cosurfactant at a molar ratio of 1:8 with a palm	
	oil/diesel blends at a ratio of 1:1 (v/v) and 20 vol.%. of	
	ethanol at room temperature (25±2°C).	37
4.10	Minimum total surfactant concentration (%) to formulate	
	single phase microemulsion of Span 80 systems versus types	
	of cosurfactant at a molar ratio of 1:8 with a palm oil/diesel	
	blends at a ratio of 1:1 (v/v) and 20 vol.%. of ethanol at	
	room temperature (25±2°C).	38
4.11	Minimum total surfactant concentration (%) to formulate	
	single phase microemulsion of Span 80 systems versus types	
	of cosurfactant at a molar ratio of	
	1:8 with a palm oil/diesel blends at a ratio of 1:1 (v/v) and	
	20 vol.%. of ethanol at room temperature (25±2°C).	39
4.12	Kinematic viscosity (cSt) at 40°C versus types of surfactant	
	and 1-octanol as a cosurfactant at a molar ratio of 1:8	
	compared with a palm oil/diesel and RBDPO/diesel blends	
	at a ratio of 1:1 (v/v) with 20 vol.% of ethanol.	41

FIGU	RE	PAGE
4.13	Kinematic viscosity (cSt) at 40°C versus types of surfactant	
	and 2-ethyl-1-hexanol as a cosurfactant at a molar ratio of	
	1:8 compared with a palm oil/diesel and RBDPO/diesel	
	blends at a ratio of 1:1 (v/v) with 20 vol.% of ethanol.	42
4.14	Kinematic viscosity (cSt) at 40°C versus types of surfactant	
	and cosurfactant at a molar ratio of 1:8 with a palm oil/diesel	
	blends at a ratio of 1:1 (v/v) and 20 vol.%. of ethanol.	43
4.15	Kinematic viscosity (cSt) at 40°C versus types of surfactant	
	and cosurfactant at a molar ratio of 1:8 with a RBDPO/diesel	
	blends at a ratio of 1:1 (v/v) and 20 vol.%. of ethanol.	44
4.16	Phase behavior and turbidity varying surfactant	
	concentration of methyl oleate/1-octanol with a palm	
	oil/diesel blends at a ratio of 1:1 (v/v) and ethanol.	49
4.17	Phase behavior and turbidity compasion of Span 80/1-	
	octanol system in RBDPO/diesel blend and palm oil/diesel	
	blend at a ratio of 1:1 (v/v) with ethanol.	50
4.18	Precipitates of microemulsion biofuels within RBDPO's	
	system after held at room temperature (25±2°C) for 48	
	hours.	51
4.19	Turbidity of all of palm oil/diesel blend with 20 vol.% of	
	ethanol systems after held at room temperature (25±2°C) for	
	48 hours.	51
D1	Droplet size and size distribution of methyl oleate/1-octanol	
	1:8 mole ratio, palm oil/diesel 1:1 (v/v) with 20 vol.% of	
	ethanol.	71
D2	Droplet size and size distribution of methyl oleate/2-ethyl-1-	
	hexanol 1:8 mole ratio, palm oil/diesel 1:1 (v/v) with 20	
	vol % of ethanol	71

FIGURE		PAGE
D3	Droplet size and size distribution of Span 80/1-octanol 1:8	
	mole ratio, palm oil/diesel 1:1 (v/v) with 20 vol.% of	
	ethanol.	72
D4	Droplet size and size distribution of Span 80/2-ethyl-1-	
	hexanol 1:8 mole ratio, palm oil/diesel 1:1 (v/v) with 20	
	vol.% of ethanol.	72
D5	Droplet size and size distribution of palm oil methyl ester	
	(PME)/1-octanol 1:8 mole ratio, palm oil/diesel 1:1 (v/v)	
	with 20 vol.% of ethanol.	73
D6	Droplet size and size distribution of palm oil methyl ester	
	(PME)/2-ethyl-1-hexanol 1:8 mole ratio, palm oil/diesel 1:1	
	(v/v) with 20 vol.% of ethanol.	73
D7	Droplet size and size distribution of Span 80/1-octanol 1:8	
	mole ratio, palm oil/diesel 1:1 (v/v) with 20 vol.% of ethanol	
	(measured after prepared immediately).	74
D8	Droplet size and size distribution of Span 80/2-ethyl-1-	
	hexanol 1:8 mole ratio, palm oil/diesel 1:1 (v/v) with 20	
	vol.% of ethanol (measured after prepared immediately).	74