REFERENCES

- Alessandra, B., Cristina, A., Ilaria, C., Fabio, B., Marinella, C., and Giuliano, F. (2008) Properties and performance of polypyrrole (PPy)-coated silk fibers. <u>Fibers and Polymers</u>, 9(6), 698-707.
- Alessio, V., Lorenzo, D.A., and Claudio, T. (2005) A study on the electrical conductivity decay of polypyrrole coated wool textiles. <u>Polymer</u> Degradation and Stability, 89, 125-132.
- Avinash, B., Yiu-Wing, M., Shing-Chung, W., Mojtaba, A., and Pei, C. (2010) Electrospinning of polymer nanofibers: Effect on oriented morphology, structure and tensile properties. <u>Composites Science and Technology</u>, 70, 703-718.
- Boontharika, C., Supaphol, P., Prasit, P., and Damrong, D. (2009) Electrospun poly(L-lactic acid)/hydroxyapatite composite fibrous scaffolds for bone tissue engineering. Polymer Interscience, 59, 227–235.
- Chirasakulkarun, A. (2008) <u>Admicellar polymerization of doped polypyrrole and</u> <u>polythiophene on the natural rubber</u>. The Petroleum and Petrochemical college, Chulalongkorn University.
- Chun-Yueh, M., Wei-Li, Y., I-Shou, T., Edgar, A.O., and Harry, B. (2008) Conductance measurement by two-line probe method of polypyrrole nanofilms formed on mica by admicellar polymerization. <u>Thin Solid Films</u>, 516, 8752–8756.
- Cucchi, I., Boschi, A., Arosio, C., Bertini, F., Freddi, G., and Catellani, M. (2009)
 Bio-based conductive composites: Preparation and properties of polypyrrole
 (PPy)-coated silk fabrics. <u>Synthetic Metals</u>, 159, 246–253.
- Dilek, K., Anil, K., Andrew, D., Child, B., and John, R. (1998) Conductivity switching in polypyrrole-coated textile fabrics as gas sensors. <u>Synthetic Metals</u>, 92, 53-56.
- Eric, G.F., Robert, E.V., and Patrick, A. (2000) Nerve regeneration. <u>Principles of</u> <u>Tissue Engineering</u>, 785-798.

- Genetti, W.B., Yuan, W.L., Grady, B.P., Edgar, A.O., and Lai, C.L. (1998) Polymer matrix composites: Conductivity enhancement through polypyrrole coating of nickel flake. <u>Journal of materials science</u>, 33, 3085-3093.
- Guixin, S., Mahmoud, R., Zhaoxu, W., Lee, H.D., and Ze, Z. (2004) A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. <u>Biomaterials</u>, 25, 2477–2488.
- Guixin, S., Ze, Z., and Mahmoud, R. (2008) The regulation of cell functions electrically using biodegradable polypyrrole-polylactide conductors. <u>Biomaterials</u>, 29, 3792–3798.
- Huang, J., Hu, X., Lu, L., Ye, Z., Zhang, Q., and Luo, Z. (2009) Electrical regulation of schwann cells using conductive poypyrrole/chitosan polymers. <u>Wiley</u> <u>interscience</u>.
- Huang, Y., and Huang, Y.Y. (2006) Tissue engineering for nerve repair. <u>Biomedical</u> engineering applications, basis and communications. in nerve guide studies. <u>Materials in medicines</u>, 5, 429-433.
- Jae, Y. L., Chris, A.B., Aaron, S.G., and Christine, E.S. (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. <u>Biomaterials</u>, 30, 4325–4335.
- Kanchana, B., Rathanawan, M., Edgar, A.O., and Grady, B.P. (2002) Polypyrrolecoated natural rubber latex by admicellar polymerization. <u>Colloid Polymer</u> Science, 280, 509–516.
- Kim, C.W., Dae-Sik, K., Kang, S.Y., Marquez, M., and Yong, L.J. (2006) Structural studies of electrospun cellulose nanofibers. <u>Chemical Sciences</u> and <u>Technology</u>, 47, 5097-5107.
- Kim, G.H., and Yoon, H. (2008) A direct-electrospinning process by combined electric field and air-blowing system for nanofibrous wound-dressings. <u>Applied Physics A Materials Science and Processing</u>, 90, 389–394.
- Kowalewskis, T.A., and Barral, S. (2005) Experiments and modelling of electrospinning process. <u>Bulletin of the polish academy of sciences</u> <u>technical sciences</u>, 53(4).

- Kyong, S.R., Jeong, L., Lee, G., Seo, B.M., and Park, Y.J. (2006) Electrospinning of collagen nanofibers:Effects on the behavior of normal human keratinocytes and early-stage wound healing. <u>Biomaterials</u>, 27, 1452-1461.
- Laleh, G.M., Molamma, P.P., Mohammad, M., Mohammad, H., and Seeram, R. (2008) Electrospun poly(3-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials, 29, 4532–4539.
- Lekpittaya, P. (2003) <u>Resistivity of conductive polymer-coated fabric</u>. The Petroleum and Petrochemical college, Chulalongkorn University.
- Li, Y., Cheng, X.Y., Leung, M.Y., Tsang, J., Tao, X.M., and Yuen, M.C. (2005) A flexible strain sensor from polypyrrole-coated fabrics. <u>Synthetic Metals</u>, 155, 89–94.
- Mengyan, L., Yi, G., Yen, W., Alan, G.M., and Peter, I.L. (2006) Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. <u>Biomaterials</u>, 27, 2705–2715.
- Mitsuyoshi, O., Yayoi, A., and Kazuya, T. (2009) New fabrication technique of conductive polymer/insulating polymer composite films and evaluation of biocompatibility in neuron cultures. <u>Thin Solid Films</u>, 518, 743-749.
- Nathalie, K.G., Natalia, G., and Christine, E.S. (2007) Conducting polymers in biomedical engineering. Progress Polymer Science, 32, 876–921.
- Ningping, C., and Liang, H. (2001) A study on pyrrole-coated polystyrene sulfonic acid microsperes-a proton electrolyte. <u>European Polymer Journal</u>, 37, 1027-1035.
- Nisara, J., (2006) <u>Application of admicellar polymerization in fiber reinforced</u> <u>concrete</u>. Thailand: The Petroleum and Petrochemical college, Chulalongkorn University.
- Pakakrong, S., (2006) <u>Electrospun chitosan fibers for nerve regeneration</u>. Thailand: The Petroleum and Petrochemical college, Chulalongkorn University.
- Pakpoom, R., Grady, B.P., and Supaphol, P. (2006) Surface-modified calcium carbonate particles by admicellar polymerization to be used as filler for isotactic polypropylene. <u>Colloids and Surfaces A: Physicochem. Eng.</u> <u>Aspects</u>, 275, 114–125.

- Piyachat, C., Nitirat, C., Supanna, T., and Supaphol, P. (2009) Gallic Acid Loaded Electrospun Poly(L-Lactic Acid) Fiber Mats and their Release Characteristic. <u>Macromolecule Chemistry and Physics</u>, 210, 814–822.
- Sarah, M., Jeffrey, L., Foster, B., Povlich, K.L., Kim, D.H., and Martin D. (2007) Polymerization of the conducting polymer poly(3,4ethylenedioxythiophene) (PEDOT) around living neural cells. <u>Biomaterials</u>, 28, 1539–1552.
- Shao, C., Kim, H.Y., Gong, J., Ding, B., Lee, D.R., and Park, S.J. (2003) Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning. <u>Materials</u> <u>Letters</u>, 57, 1579-1584.
- Suchada T., Edgar, A.O., and Nantaya, Y. (2008) Admicellar polymerization of 2hydroxy-4-acryloyloxybenzophenone: The production of UV-protective cotton. Colloids and Surfaces A: Physicochem. Eng. Aspects, 329, 87–94.
- Suchada, T., Edgar, A.O., and Nantaya, Y. (2009) Double coating via repeat admicellar polymerization for preparation of bifunctional cotton fabric: Ultraviolet protection and water repellence. <u>Colloids and Surfaces A:</u> <u>Physicochem. Eng. Aspects</u>, 349, 170–175.
- Supranee, S., Thirawudh, P., and Nantaya, Y. (2009) Mechanical property improvement of unsaturated polyester composite reinforced with admicellar-treated sisal fibers. <u>Composites: Part A</u>, 40, 687–694.
- Tavanai, H., and Kaynak, A. (2007) Effect of weight reduction pre-treatment on the electrical and thermal properties of polypyrrole coated woven polyester fabrics. <u>Synthetic Metals</u>, 157, 764–769.
- Varesano, A., Toni, C., Ferrero, F., and Marinella, S. (2008) Thermal stability and flame resistance of polypyrrole coated PET fibres. <u>Journal of Thermal</u> <u>Analysis and Calorimetry</u>, 94(2), 559–565.
- Wei-Li, Y., Edgar A.O., Grady, B.P., and Daniel, T.G. (2002) Nanometer-thick poly(pyrrole) films formed by admicellar polymerization under conditions of depleting adsolubilization. <u>Langmuir</u>, 18, 3343-3351.
- William, R.L., and Doherty, P.J. (1994) A preliminary assessment of poly(pyrrole)
- Xuehong, R., Lei, K., Hasan, B.K., Changyun, Z., Worley, S.D., Broughton R.M., and Huang T.S. (2008) Antimicrobial coating of an *N*-halamine biocidal

monomer on cotton fibers via admicellar polymerization. <u>Colloids and</u> Surfaces A: <u>Physicochem. Eng. Aspects</u>, 317, 711–716.

- Yang, F., Murugan, R., Wang, S., and Ramakrishna, S. (2005) Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. <u>Biomaterials</u>, 26, 2603–2610.
- Youyi, X., and Yun, L. (2008) Fabrication and properties of conductive conjugated polymers/silk fibroin composite fibers. <u>Composites Science and Technology</u>, 68, 1471–1479.
- Yuan, J., Nie, W., Fu, Q., Lian, X., Hou, T., and Tan, Z. (2009) Novel threedimensional nerve tissue engineering scaffolds and its biocompatibility with Schwann cells. <u>Chinese Journal of Traumatology</u>, 12(3), 133-137.
- Yumin, Y., Xuemei, C., Fei, D., Peiyun, Z., Jie, and Xiaoson, G. (2007).
 Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. <u>Biomaterials</u>, 28, 1643–1652.

APPENDICES

Appendix A Average Fiber Diameter of Poly(lactic acid) fibers

Table A.1 Average aligned fiber diameter of poly(lactic acid) produced from 10% w/v dissolved in chloroform by using applied voltage 15 kV, and 15 cm collecting distance

	Fiber diameter (μm)			
Point	Sample 1	Sample 2	Sample 3	
1	0.519	0.790	1.948	
2	0.779	0.918	1.837	
3	0.909	1.039	1.693	
4	0.918	1.223	1.708	
5	1.039	1.324	1.773	
6	1.071	1.452	1.668	
7	1.223	1.558	1.538	
8	1.299	1.693	1.569	
9	1.333	1.793	1.429	
10	1.538	1.972	1.481	
11	1.569	2.084	1.142	
12	1.693	2.312	1.278	
13	1.733	2.561	1.329	
14	1.837	2.937	1.039	
15	1.972	3.371	0.945	
16	2.078	3.573	0.779	
17	2.198	1.931	0.697	
18	2.223	0.909	1.837	
19	2.468	1.039	1.708	
20	2.636	1.223	1.766	
21	2.961	1.333	1.693	
22	3.379	1.538	1.569	
23	3.643	1.693	1.558	
24	4.354	1.837	1.481	
25	1.931	2.078	1.429	
26	0.779	2.391	1.452	

27	0.790	2.610	1.386
28	0.909	3.249	1.316
29	0.918	3.793	1.333
30	1.039	0.909	1.278
31	1.039	1.071	1.232
32	1.117	1.324	1.117
33	1.223	1.538	1.176
34	1.278	1.703	1.065
35	1.324	1.972	1.039
36	1.386	2.212	1.039
37	1.452	2.610	0.909
38	1.481	3.371	0.945
39	1.558	2.078	0.909
40	1.627	0.909	0.833
41	1.693	1.142	0.779
42	1.708	1.386	0.779
43	1.773	1.569	0.519
44	1.873	1.793	4.612
45	1.972	2.084	4.009
46	2.078	2.468	3.429
47	2.084	3.249	3.319
48	2.212	2.383	2.937
49	2.283	2.937	2.636
50	2.391	1.837	2.561
Average fiber diameter	1.706	1.935	1.590
SD	0.766	0.782	0.836

Sample	Fiber diameter (µm)
1	1.706
2	1.935
3	1.590
Average fiber diameter	1.744
SD	0.795

Table A.2 Average range of aligned fiber diameter of poly(lactic acid) produced from 10% w/v dissolved in chloroform by using applied voltage 15 kV, and 15 cm collecting distance

Range of diameter aligned PLA fibers	Frequency
0.50 - 0.99	14
1.00 - 1.49	25
1.50 - 1.99	21
2.00 - 2.49	18
2.50 - 2.99	9
3.00 - 4.49	6
3.50 - 3.99	3
4.00 - 4.49	4
Total of frequency	100

Range of diameter of PLA fibers (µm)

Figure A.1 Average diameter of aligned PLA fibers.

Table A.3 Degree of fiber orientation of poly(lactic acid) aligned fibers produced from 10% w/v dissolved in chloroform by using applied voltage 15 kV, and 15 cm collecting distance

		Ran	ge of degre	e (O)		Frequenc	y
			71-75			2	
			76-80			7	
			81-85			14	1
		-	86-90			90	
			91-95			3	
			7 -75			2	
		Tot	al of frequ	ency		150	12
				1			
	100]						•
	80 -						
rency	60 -						
Frequ	40 -						
	20 -						
	0	Fictures		la seconda de la seconda d I			
		71-75	76-80	81-85	86-90	91-95	
			Rar	nge of degree	e (0)		

Figure A.2 For degree of fiber orientation in aligned PLA fibers.

Table A.4 Average random fiber diameter of poly(lactic acid) produced from 10% w/v dissolved in chloroform by using applied voltage 15 kV, and 15 cm collecting distance

		Fiber diameter (µm)			
	Point	Sample 1	Sample 2	Sample 3	
	1	0.689	0.806	2.618	
	2	1.090	1.202	2.731	
	3	1.321	1.407	2.803	
	4	1.431	1.444	2.884	
	5	1.447	1.572	3.029	
	6	1.587	1.656	3.121	
	7	1.703	1.717	4.130	
	8	1.727	1.824	1.090	
	9	1.851	1.873	1.407	
-	10	1.924	1.950	1.447	
	11	1.959	1.959	1.656	
	12	2.000	1.979	1.727	
	13	2.032	2.031	1.873	
	14	2.091	2.075	1.959	
	15	2.138	2.117	2.031	
	16	2.201	2.167	2.091	
	17	2.287	2.229	2.167	
	18	2.355	2.327	2.287	
	19	2.428	2.390	2.428	
	20	2.505	2.453	2.538	
	21	2.637	2.538	2.786	
	22	2.786	2.731	2.990	
-	23	2.884	2.816	3.461	
	24	3.084	2.990	1.096	
	25	3.461	3.121	1.431	
	26	1.444	2.065	1.582	
	27	1.572	0.721	1.717	
	28	1.656	1.090	1.852	
	29	1.717	1.313	1.959	
	30	1.824	1.413	2.032	
	31	1.873	1.441	2.117	

32	1.950	1.447	2.222
33	1.979	1.582	2.355
34	2.031	1.656	2.478
35	2.075	1.711	2.731
36	2.117	1.727	2.902
37	2.167	1.828	3.461
38	2.229	1.873	0.828
39	2.327	1.959	1.321
40	2.390	2.031	1.441
41	2.453	2.046	1.572
42	2.538	2.091	1.703
43	2.731	2.128	1.727
44	2.816	2.167	1.852
45	2.990	2.222	1.950
46	3.121	2.287	1.979
47	2.065	2.355	2.032
48	1.550	2.390	2.102
49	1.656	2.450	2.167
50	1.444	2.505	2.268
Average fiber diameter	2.087	1.957	2.163
SD	0.555	0.509	0.668

Sample	Fiber diameter (µm)
1	2.087
2	1.957
3	2.163
Average fiber diameter	2.069
SD	0.577

Appendix B Calibration Curve of Standard DBSA

Procedure:

The standard solution of DBSA in distilled water was prepared from stock solution of 5 mM. in volume metric flask 50 ml. The amounts of DBSA in standard solution were measured by a UV spectrometer at 224 nm.

Calculation of a molar absorptivity of DBSA from the calibration curve

 $A = \varepsilon bc$

When, A = Absorbance

 ε = The molar absorptivity (L mol⁻¹ cm⁻¹)

c = Concentration of solution (mol/L)

From the equation of calibration curve, the molar extinction coefficient of DBSA is the slope of the calibration curve.

At a wavelength of 224 nm;

Y = 13.09x

Therefore, the molar absorptivity of DBSA at a wavelength of 224 nm is 13.09×10^3 L mol⁻¹ cm⁻¹

Table B.1 Absorbance value of the standard DBSA

Concentration DBSA (mM)	Absorbance			
	I	11	III	
0.008	0.0671	0.0670	0.0670	
0.020	0.2642	0.2644	0.2644	
0.050	0.6830	0.6833	0.6829	
0.070	0.8734	0.8733	0.8731	

Figure B.1 Calibration curve of the standard DBSA

Appendix C Determination of Surfactant Adsorption Isotherm

Calculation of the amount of adsorbed DBSA on aligned poly (lactic acid) fibers. $[DBSA]_{abs} = ([DBSA]_{ini} - [DBSA]_{fi}) \times V/1000$ Adsorption µmol/g of PLA fibers = {([DBSA]_{ads} × 25) /1000}/weight of fibers.

Table C.1	The equilibrium	DBSA	concentration
-----------	-----------------	------	---------------

([DBSA]	Adsorption of
(μM)	PLA fiber mmol/g
10	0.0073
60	0.0075
80	0.0619
80	0.0350
110	0.0366
110	0.0275
210	0.4513
420	0.4286
840	0.5206
1000	1.8340
1180	1.8420
1320	1.8440
1530	1.8260
1860	1.8370
3520	1.8460
5640	1.8350

Appendix D Average Fiber Diameter of Polyrrole-coated Poly(lactic acid) fibers

Table D.1Average aligned fiber diameter of Polyprrole-coated poly(lactic acid)produced from Admicellar polymerization

	Varies con	ndition DBS	SA : Pyrrole	e monomer/	Fiber dian	neter (µm)
Point	1:2	1:4	1:6	1:8	1:10	1:12
. 1	1.327	1.226	0.968	0.994	2.618	2.050
2	1.327	1.226	1.032	1.844	2.881	2.174
3	1.358	1.253	1.226	1.918	3.130	2.174
4	1.532	1.361	1.233	1.988	3.147	2.838
5	1.532	1.369	1.742	2.028	3.147	3.002
6	1.635	1.409	2.584	2.053	3.273	3.106
7	1.828	1.489	2.775	2.195	3.283	3.170
8	1.891	1.915	2.935	2.360	3.321	3.292
9	2.013	2.058	2.968	2.360	3.411	3.321
. 10	2.091	2.225	3.037	2.360	3.480	3.390
- 11	2.138	2.374	3.192	2.426	3.482	3.421
12	2.142	2.971	3.226	2.612	3.501	3.436
13	2.350	2.993	3.226	3.543	3.536	3.477
14	2.403	3.097	3.226	3.673	3.782	3.541
15	2.511	3.228	3.226	3.791	4.073	3.560
16	2.519	3.249	3.484	3.791	4.341	3.605
17	2.645	3.347	3.484	3.791	4.347	3.640
18	2.645	3.421	3.505	3.839	4.405	3.851
19	2.896	3.427	3.522	4.161	4.465	3.859
20	2.904	3.463	3.820	4.169	4.467	3.977
21	3.084	3.498	3.861	4.293	4.634	4.014
22	3.182	3.548	3.872	4.293	4.660	4.033
23	3.273	3.613	3.898	4.372	4.719	4.101
24	2.227	3.642	3.990	4.400	5.032	4.224
25	3.836	3.643	4.065	4.400	5.097	4.224
26	3.964	3.711	4.115	4.534	5.159	4.300
27	4.088	3.974	4.138	4.565	5.844	4.568
28	4.214	4.026	4.234	4.602	6.038	4.802
29	4.214	4.582	4.295	4.698	6.043	4.912
30	4 2 1 6	4 646	4.403	4 917	6 101	5 165

31	4.216	4.726	4.498	5.047	6.169	5.280
32	4.216	4.839	4.508	5.056	6.231	5.309
33	4.221	4.843	4.516	5.128	6.291	5.323
34	4.270	4.882	4.626	5.235	6.305	5.349
35	4.340	4.974	4.717	5.325	6.352	5.412
36	4.340	5.032	4.818	5.347	6.415	5.546
37	4.369	5.032	4.839	5.401	6.426	5.637
38	4.369	5.032	4.900	5.466	6.529	6.224
39	4.501	5.039	4.938	5.471	6.571	6.584
40	4.591	5.258	4.961	5.545	6.605	6.584
41	5.535	5.429	5.024	5.720	7.723	6.608
42	5.535	5.484	5.032	5.731	4.806	6.708
43	5.660	5.556	5.165	5.844	3.541	6.708
44	5.820	5.691	5.181	5.850	3.882	6.963
45	5.960	5.795	5.187	5.963	4.692	7.516
46	6.101	5.922	5.194	6.087	4.377	7.525
47	6.542	6.041	5.419	6.149	4.100	7.585
48	6.605	6.525	5.493	6.278	4.728	7.644
49	6.866	6.670	5.887	6.412	5.431	7.646
50	7.108	7.309	7.245	6.523	5.836	7.732
Average fiber						
diameter	3.663	3.921	3.949	4.291	4.769	4.782
SD	1.626	1.566	1.286	1.448	1.272	1.752

Sample	Fiber diameter (µm)	STDV
1:2	3.663	1.626
1:4	3.921	1.566
1:6	3.949	1.286
1:8	4.291	1.448
1:10	4.769	1.272
1:12	4.782	1.752
Average fiber diameter	4.229	1.492

Range of diameter aligned PPy-coated PLA fiber	Frequency
66-70	2
71-75	6
76-80	41
81-85	27
86-90	63
91-95	46
96-100	15
Total of frequency	200

Table D.2 Degree of fiber orientation of Polypyrrole-coated poly(lactic acid)aligned fibers produced from Admicellar polymerization

Figure D.1 For degree of fiber orientation in PPy-coated PLA aligned fibers.

	Varies condition DBSA : Pyrrole monomer/ Fiber diameter (µm					neter (µm)
Point	1:2	1:4	1:6	1:8	1:10	1:12
1	4.816	3.685	4.081	4.351	4.921	3.304
2	4.987	4.476	4.661	4.767	5.098	5.037
3	5.110	4.847	4.745	4.848	5.167	5.237
4	5.119	4.884	4.838	4.849	5.323	5.358
5	5.242	5.070	4.907	5.031	5.479	5.605
6	5.320	5.176	4.923	5.110	5.528	5.873
7	5.334	5.410	5.153	5.124	5.596	5.880
8	5.361	5.456	5:155	5.158	5.667	5.882
9	5.364	5.489	5.182	5.219	5.710	5.989
10	5.411	5.661	5.257	5.232	5.715	6.023
11	5.414	5.738	5.269	5.285	5.717	6.040
12	5.429	5.849	5.303	5.337	5.734	6.063
13	5.538	5.980	5.467	5.532	5.778	6.141
14	5.607	6.049	5.520	5.568	5.814	6.164
15	5.703	6.057	5.534	5.660	5.877	6.226
16	5.756	6.175	5.535	5.666	5.890	6.242
17	5.788	6.227	5.625	5.666	5.950	6.381
18	5.812	6.234	5.629	5.666	6.033	6.383
19	5.888	6.260	5.678	5.669	6.072	6.415
20	5.927	6.273	5.709	5.687	6.084	6.453
21	5.964	6.278	5.710	5.749	6.152	6.598
22	5.978	6.309	5.751	5.853	6.282	6.611
23	5.984	6.360	5.845	5.892	6.298	7.010
24	5.986	6.413	5.912	5.965	6.387	7.065
25	5.987	6.448	5.978	6.039	6.389	7.065
26	6.000	5.712	5.988	6.039	6.39	7.123
27	6.043	6.576	5.998	6.164	6.471	7.150
28	6.218	6.626	6.052	6.228	6.487	7.209
29	6.220	6.649	6.121	6.239	6.614	7.232
30	6.223	6.654	6.173	6.245	6.778	7.236
31	6.306	6.666	6.191	6.289	6.783	7.404
32	6.385	6.669	6.228	6.325	6.819	7.427
33	6.385	6.672	6.256	6.440	6.894	7.490

Table D.3 Average random fiber diameter of Polyprrole-coated poly(lactic acid)produced from Admicellar polymerization

34	6.420	6.995	6.287	6.475	6.926	7.544
35	6.433	7.047	6.407	6.493	6.935	7.575
36	6.486	7.116	6.481	6.587	7.111	7.628
37	6.496	7.129	6.509	6.600	7.218	7.657
38	6.612	7.209	6.510	6.734	7.317	7.682
39	6.624	7.239	6.528	6.958	7.334	7.733
40	6.765	7.242	6.691	7.197	7.366	7.745
41	6.771	7.306	6.696	7.360	7.366	7.810
42	6.780	7.352	6.699	7.361	7.589	8.025
43	6.895	7.425	6.775	7.480	7.627	8.031
44	7.084	7.613	6.917	7.489	7.644	8.065
45	7.269	7.684	6.942	7.960	7.65	8.089
46	7.386	7.746	6.945	8.062	7.654	8.179
47	7.481	8.023	7.092	8.357	7.821	8.427
48	8.339	8.046	7.246	8.481	8.203	8.592
49	9.035	8.134	7.631	8.678	8.267	9.062
50	9.328	9.349	9.071	6.213	10.056	9.494
Average fiber						
diameter	6.216	6.474	5.996	6.188	6.559	6.933
SD	0.936	1.039	0.869	1.022	0.986	1.127

Sample	Fiber diameter (µm)	STDV
1:2	6.216	0.936
1:4	6.474	1.039
1:6	5.996	0.869
1:8	6.188	1.022
1:10	6.559	0.986
1:12	6.933	1.127
Average fiber diameter	6.389	0.997

Appendix E Average The Geometric Correction Factor (K)

Procedure:

. .

The geometric correction factor was calculated by equation as follow

$$K = \frac{\rho}{R \times t} = \frac{I \times \rho}{V \times t}$$

When, K is the geometric correction factor,

 ρ/t is density of silicon wafer (107.373 Ω /Square)

I/V is the slope was measured by varies current (A).

Therefore, the geometric correction factor K is 1.074×10^{-7}

 Table E.1
 Values of measured current (A) at varies applied voltage (V)

	Current (A)					
Voltage	1	2	3	4	5	Average
25	4.15E-09	4.15E-09	4.17E-09	4.22E-09	4.26E-09	4.19E-09
50	4.78E-09	4.67E-09	4.71E-09	4.62E-09	4.74E-09	4.70E-09
75	6.34E-09	6.65E-09	6.13E-09	5.96E-09	5.04E-09	6.02E-09
100	7.72E-09	8.13E-09	7.73E-09	6.06E-09	8.29E-09	7.59E-09
125	8.52E-09	8.10E-09	7.05E-09	8.01E-09	7.64E-09	7.86E-09
150	8.46E-09	9.31E-09	8.70E-09	9.48E-09	1.13E-08	9.45E-09
175	1.13E-08	1.10E-08	1.03E-08	1.05E-08	1.03E-08	1.07E-08
200	1.05E-08	1.06E-08	1.12E-08	1.06E-08	1.13E-08	1.08E-08
225	1.52E-08	1.51E-08	1.52E-08	1.53E-08	1.56E-08	1.53E-08
250	1.60E-08	1.59E-08	1.61E-08	1.52E-08	1.38E-08	1.54E-08
275	1.84E-08	1.77E-08	1.71E-08	1.71E-08	1.76E-08	1.76E-08
300	1.96E-08	1.88E-08	1.86E-08	1.85E-08	1.88E-08	1.89E-08
325	2.13E-08	2.18E-08	2.06E-08	2.12E-08	2.05E-08	2.11E-08
350	2.31E-08	2.29E-08	2.32E-08	2.11E-08	2.15E-08	2.24E-08
375	2.32E-08	2.22E-08	2.24E-08	2.24E-08	2.21E-08	2.25E-08
400	2.48E-08	2.36E-08	2.31E-08	2.29E-08	2.22E-08	2.33E-08
425	2.32E-08	2.22E-08	2.24E-08	2.24E-08	2.21E-08	2.67E-08
450	2.78E-08	2.62E-08	2.60E-08	2.73E-08	2.75E-08	2.70E-08
475	2.97E-08	2.99E-08	2.84E-08	2.81E-08	2.98E-08	2.92E-08
500	3.19E-08	2.98E-08	2.91E-08	2.97E-08	2.99E-08	3.01E-08

Figure E.1 Calibration curve of the silicon wafer.

Appendix F Average of Surface Conductivity

Procedure:

The surface conductivity of the PPy-coated PLA fiber meshes were measured at vacuum chamber. The applied voltage and the current change in the linear Ohmic regime were converted to the electrical conductivity of PPy-coated PLA fiber meshes using equation as follow

$$\sigma = \frac{1}{\rho} = \frac{1}{R_s \times t} = \frac{I}{K \times V \times t}$$

When, σ is surface conductivity (S/cm)

K is the geometric correction factor (1.074×10^{-7})

I/V is the slope was measured by varies current (A)

 R_s is sheet resistivity (Ω)

t is fiber thickness (cm)

Table F.1 PPy-coated aligned PLA fibers at DBSA:pyrrole is 1:4 by admicellarpolymerization. Values of measured current (A) at varies applied voltage (V)

	Current (A)				
Voltage	1	2	3		
	Thickness 0.081 cm.	Thickness 0.072 cm.	Thickness 0.066 cm.		
0.001	3.60E-09	3.61E-09	3.62E-09		
0.003	3.63E-09	3.61E-09	3.60E-09		
0.005	3.60E-09	3.62E-09	3.66E-09		
0.01	3.69E-09	3.68E-09	3.68E-09		
0.03	3.69E-09	3.73E-09	3.78E-09		
0.05	3.70E-09	3.75E-09	3.77E-09		
0.07	3.70E-09	4.05E-09	4.67E-09		
0.1	3.77E-09	3.77E-09	3.78E-09		
0.3	4.04E-09	4.05E-09	4.03E-09		
0.5	4.26E-09	4.24E-09	4.27E-09		
0.7	4.48E-09	4.41E-09	4.80E-09		
1	4.85E-09	4.81E-09	4.80E-09		

10 30 50 70	1.22E-08 1.52E-08 2.03E-07 3.43E-07 4.84E-07	1.20E-08 1.50E-08 2.03E-07 3.41E-07 4.81E-07	1.19E-08 1.49E-08 2.03E-07 3.40E-07 4.81E-07
	$\begin{array}{c} 6.99E-07\\ \hline 00E-07\\ \hline 00E-07\\$	$\begin{array}{c} 6.96E-07 \\ \hline \\ \$ 00E-0^{\circ} \\ 00E-0^{\circ} \\ \$ 00E-0^{\circ} \\ 1 00E-0^{\circ} \\ 0 00E+00 \\ -1.00E-0^{\circ} \\ \$ 0 \\ \$ 0 \\ 1 \\ 0 \\ 0$	6.93E-07 8 00E-0" 6 00E-0" 6 00E-0" 5 00E-0" 9 00E-0" 1 00E-0" 2 00E-0" 1 00E-0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
σ(S/cm)	0.805	0.905	0.988

Sample -	Conductivity (S/cm)
1	0.805
2	0.905
3	0.988
Average conductivity	0.899
SD	0.092

	Current (A)				
Voltage	1	2	3		
	Thickness 0.070 cm.	Thickness 0.060 cm.	Thickness 0.061 cm.		
0.001	3.66E-09	3.76E-09	3.71E-09		
0.003	3.63E-09	3.73E-09	3.68E-09		
0.005	3.66E-09	3.69E-09	3.68E-09		
0.01	3.70E-09	3.72E-09	3.71E-09		
0.03	3.71E-09	3.73E-09	3.72E-09		
0.05	3.72E-09	3.80E-09	3.76E-09		
0.07	3.72E-09	3.76E-09	3.74E-09		
0.1	3.73E-09	3.79E-09	3.76E-09		
0.3	3.76E-09	3.84E-09	3.80E-09		
0.5	3.81E-09	3.93E-09	3.87E-09		
0.7	3.88E-09	4.07E-09	3.98E-09		
1	3.95E-09	4.13E-09	4.04E-09		
3	4.39E-09	4.98E-08	2.71E-08		
5	4.79E-08	5.74E-08	5.27E-08		
7	5.23E-08	6.60E-08	5.92E-08		
10	5.98E-08	7.71E-08	6.85E-08		
30	1.10E-07	1.72E-07	1.41E-07		
50	1.60E-07	2.60E-07	2.10E-07		
70	2.27E-07	3.58E-07	2.93E-07		
100	3.48E-07	3.48E-07	3.47E-07		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.50E-07 - 3.00E-07 - 2.50E-07 - 2.00E-07 - 1.50E-07 - 1.50E-07 - 1.50E-07 - 1.50E-07 - R ¹ = 0.9837 5.00E-08 - 0.00E+00 - 0 20 40 60 30		
σ(S/cm)	0.665	0.776	0.611		

Table F.2 PPy-coated aligned PLA fibers at DBSA:pyrrole is 1:6 by admicellarpolymerization. Values of measured current (A) at varies applied voltage (V)

11

.

· · · · ·

Sample	Conductivity (S/cm)
1	0.665
2	0.776
3	0.611
Average conductivity	0.684
SD	0.084

Table F.3 PPy-coated aligned PLA fibers at DBSA:pyrrole is 1:8 by admicellarpolymerization. Values of measured current (A) at varies applied voltage (V)

	Current (A)		
Voltage	1	2	3
	Thickness 0.062 cm.	Thickness 0.067 cm.	Thickness 0.070 cm.
0.001	3.63E-09	3.64E-09	3.62E-09
0.003	3.64E-09	3.66E-09	3.65E-09
0.005	3.68E-09	3.69E-09	3.69E-09
0.01	3.76E-09	3.81E-09	3.75E-09
0.03	4.04E-09	4.07E-09	4.03E-09
0.05	4.37E-09	4.41E-09	4.36E-09
0.07	4.80E-09	4.77E-09	4.80E-09
0.1	5.29E-09	5.28E-09	5.30E-09
0.3	8.85E-09	8.84E-09	8.86E-09
0.5	1.27E-08	1.27E-08	1.28E-08
0.7	1.69E-08	1.69E-08	1.69E-08
1	2.30E-07	2.30E-07	2.30E-07
3	6.93E-07	6.94E-07	6.92E-07
5	1.16E-06	1.16E-06	1.16E-06
7	1.60E-06	1.60E-06	1.60E-06
10	2.33E-06	2.33E-06	2.33E-06
30	7.08E-06	7.08E-06	7.08E-06
50	1.21E-05	1.21E-05	1.21E-05
70	1.71E-05	1.71E-05	1.71E-05
100	2.53E-05	2.53E-05	2.53E-05

Sample	Conductivity (S/cm)
1	30.035
2	27.794
3	26.603
Average conductivity	28.144
SD	1.743

Voltage	1	2	3
	Thickness 0.048 cm.	Thickness 0.068 cm.	Thickness 0.063 cm.
0.001	3.94E-09	3.78E-09	3.66E-09
0.003	3.66E-09	3.69E-09	3.65E-09
0.005	3.71E-09	3.72E-09	3.68E-09
0.01	3.82E-09	3.79E-09	3.88E-09
0.03	4.19E-09	4.75E-09	3.97E-09
0.05	4.27E-09	4.25E-09	4.25E-09
0.07	4.63E-09	4.63E-09	4.63E-09
0.1	5.00E-09	4.99E-09	4.99E-09
0.3	7.79E-09	7.81E-09	7.81E-09
0.5	1.07E-08	1.07E-08	1.07E-08
0.7	1.38E-08	1.39E-08	1.39E-08
1	1.58E-08	1.81E-08	1.81E-08
3	4.18E-07	4.19E-07	4.19E-07
5	6.97E-07	6.97E-07	6.97E-07
7	9.77E-07	9.77E-07	9.77E-07
10	1.40E-06	1.40E-06	1.40E-06
30	4.23E-06	4.23E-06	4.23E-06
50	7.13E-06	7.13E-06	7.13E-06
70	1.00E-05	1.00E-05	1.00E-05
100	1.45E-05	1.45E-05	1.45E-05
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1.60E-0^{\circ}_{\circ}$ $1.40E-0^{\circ}_{\circ}$ $1.20E-0^{\circ}_{\circ}$ $1.00E-0^{\circ}_{\circ}$ $8.00E-0^{\circ}_{\circ}$ <	1.60E-05 1.40E-05 1.20E-05 1.00E-05 3.00E-06 6.00E-06 2.00E-06 0.00E+00 -2.00E-06 0 1.20E-05 1.00E-06 2.00E-06 0 1.20E-05 1.20E-05 1.20E-05 1.20E-05 2.00E-06 0 1.20E-05 1.20E-05 1.20E-05 1.20E-05 1.20E-05 1.20E-06 1.20E-06
σ(S/cm)	19.398	13.693	14.779

Table F.4 PPy-coated aligned PLA fibers at DBSA:pyrrole is 1:10 by admicellarpolymerization. Values of measured current (A) at varies applied voltage (V)

Sample	Conductivity (S/cm)
1	19.398
2	13.693
3	14.779
Average conductivity	19.957
SD	3.029

Table F.5 PPy-coated aligned PLA fibers at DBSA:pyrrole is 1:12 by admicellarpolymerization. Values of measured current (A) at varies applied voltage (V)

	Current (A)			
Voltage	1	2	3	
	Thickness 0.072 cm.	Thickness 0.086 cm.	Thickness 0.075 cm.	
0.001	3.35E-09	3.54E-09	3.56E-09	
0.003	3.54E-09	3.57E-09	3.54E-09	
0.005	3.57E-09	3.52E-09	3.50E-09	
0.01	3.57E-09	3.57E-09	3.55E-09	
0.03	3.52E-09	3.56E-09	3.56E-09	
0.05	3.49E-09	3.59E-09	3.57E-09	
0.07	3.52E-09	3.61E-09	3.62E-09	
0.1	3.52E-09	3.64E-09	3.63E-09	
0.3	3.56E-09	3.70E-09	3.70E-09	
0.5	3.71E-09	3.75E-09	3.78E-09	
0.7	3.69E-09	3.78E-09	3.80E-09	
1	3.82E-09	3.88E-09	3.86E-09	
3	4.47E-09	4.44E-09	4.43E-09	
5	5.29E-09	5.02E-09	5.02E-09	
7	6.44E-09	5.55E-09	5.55E-09	
10	8.18E-09	6.30E-09	6.30E-09	
30	1.99E-08	1.12E-08	1.12E-08	
50	3.29E-08	1.55E-08	1.55E-08	
70	4.52E-08	1.91E-08	1.91E-08	
100	2.57E-07	2.52E-08	2.52E-08	

Sample	Conductivity (S/cm)
1	0.078
2	0.022
3	0.025
Average conductivity	0.042
SD	0.032

Table F.6 PPy-coated random PLA fibers at DBSA:pyrrole is 1:4 by admicellarpolymerization. Values of measured current (A) at varies applied voltage (V)

	Current (A)		
Voltage	1	2	3
	Thickness 0.105 cm.	Thickness 0.100 cm.	Thickness 0.108 cm.
0.001	3.37E-09	3.35E-09	3.36E-09
0.003	3.51E-09	3.53E-09	3.52E-09
0.005	3.72E-09	3.84E-09	3.78E-09
0.01	4.38E-09	3.92E-09	4.15E-09
0.03	4.64E-09	4.32E-09	4.48E-09
0.05	5.31E-09	4.72E-09	5.02E-09
0.07	6.38E-09	5.36E-09	5.87E-09
0.1	7.37E-09	6.30E-09	6.84E-09
0.3	7.33E-09	7.21E-09	7.27E-09
0.5	7.26E-09	7.26E-09	7.26E-09
0.7	7.30E-09	7.32E-09	7.31E-09
1	8.61E-09	8.29E-09	8.45E-09

5 9.32E-09 9.27E-09 9.30E-09 7 1.23E-08 1.46E-08 1.35E-08 10 1.43E-08 1.58E-08 1.51E-08 30 2.13E-07 2.25E-07 2.19E-07 50 3.40E-07 3.85E-07 3.63E-07 70 4.98E-07 4.05E-07 4.52E-07 100 7.23E-07 6.64E-07 6.94E-07 100 7.23E-07 6.64E-07 6.94E-07 100E-07 $\frac{100E-07}{100E-07}$ $100E-$	
5 9.32E-09 9.27E-09 9.30E-09 7 1.23E-08 1.46E-08 1.35E-08 10 1.43E-08 1.58E-08 1.51E-08 30 2.13E-07 2.25E-07 2.19E-07 50 3.40E-07 3.85E-07 3.63E-07 70 4.98E-07 4.05E-07 4.52E-07 100 7.23E-07 6.64E-07 6.94E-07	-09x-3E-09 = 0.991 80 100 120
5 9.32E-09 9.27E-09 9.30E-09 7 1.23E-08 1.46E-08 1.35E-08 10 1.43E-08 1.58E-08 1.51E-08 30 2.13E-07 2.25E-07 2.19E-07 50 3.40E-07 3.85E-07 3.63E-07 70 4.98E-07 4.05E-07 4.52E-07	7
5 9.32E-09 9.27E-09 9.30E-09 7 1.23E-08 1.46E-08 1.35E-08 10 1.43E-08 1.58E-08 1.51E-08 30 2.13E-07 2.25E-07 2.19E-07 50 3.40E-07 3.85E-07 3.63E-07	7
5 9.32E-09 9.27E-09 9.30E-09 7 1.23E-08 1.46E-08 1.35E-08 10 1.43E-08 1.58E-08 1.51E-08 30 2.13E-07 2.25E-07 2.19E-07	7
5 9.32E-09 9.27E-09 9.30E-09 7 1.23E-08 1.46E-08 1.35E-08 10 1.43E-08 1.58E-08 1.51E-08	7
5 9.32E-09 9.27E-09 9.30E-09 7 1.23E-08 1.46E-08 1.35E-08	}
5 9.32E-09 9.27E-09 9.30E-09	}
)
3 8.88E-09 8.59E-09 8.74E-09)

Sample	Conductivity (S/cm)
1	0.621
2	0.652
3	0.603
Average conductivity	0.625
SD	0.025

	Current (A)			
Voltage	1	2	3	
	Thickness 0.177 cm.	Thickness 0.108 cm.	Thickness 0.176 cm.	
0.001	3.23E-09	3.09E-09	3.16E-09	
0.003	3.49E-09	3.21E-09	3.35E-09	
0.005	3.57E-09	3.52E-09	3.55E-09	
0.01	3.92E-09	3.84E-09	3.88E-09	
0.03	4.25E-09	4.26E-09	4.26E-09	
0.05	4.48E-09	4.72E-09	4.60E-09	
0.07	4.81E-09	4.94E-09	4.88E-09	
0.1	5.30E-09	5.24E-09	5.27E-09	
0.3	5.73E-09	5.85E-09	5.79E-09	
0.5	6.31E-09	6.25E-09	6.28E-09	
0.7	7.53E-09	7.22E-09	7.38E-09	
1	8.31E-09	7.83E-09	8.07E-09	
3	9.37E-09	8.98E-09	9.18E-09	
5	4.25E-08	4.24E-08	4.25E-08	
7	5.20E-08	5.24E-08	5.22E-08	
10	5.29E-08	5.35E-08	5.32E-08	
30	1.57E-07	1.46E-07	1.52E-07	
50	1.73E-07	1.66E-07	1.70E-07	
70	2.08E-07	2.91E-07	2.50E-07	
100	3.26E-07	3.25E-07	3.26E-07	
	3.50E-0° 3.00E-0° 2.50E-0° 2.00E-0° 1.50E-0° 1.50E-0° 1.00E-0° 0.20 40 60 80 100 120	3.50E-0" 3.00E-0" 2.50E-0" 2.00E-0" 1.50E-0" 1.50E-0" R'= 0.9889 5.00E-08 0.00E+00 0.20 40 60 80 100 120	3 50E-0 ⁻ 3 00E-0 ⁻ 2 50E-0 ⁻ 2 00E-0 ⁻ 1 50E-0 ⁻ 1 50E-0 ⁻ 5 00E-0 ⁰ 0 20 40 60 80 100 120	
σ(S/cm)	0.158	0.259	0.159	

Table F.7 PPy-coated random PLA fibers at DBSA:pyrrole is 1:6 by admicellarpolymerization. Values of measured current (A) at varies applied voltage (V)

Sample	Conductivity (S/cm)
1	0.158
2	0.259
3	0.158
Average conductivity	0.192
SD	0.058

Table F.8 PPy-coated random PLA fibers at DBSA:pyrrole is 1:8 by admicellarpolymerization. Values of measured current (A) at varies applied voltage (V)

	Current (A)		
Voltage	1	2	3
	Thickness 0.118 cm.	Thickness 0.107 cm.	Thickness 0.107 cm.
0.001	3.24E-09	3.26E-09	3.25E-09
0.003	3.29E-09	3.24E-09	3.27E-09
0.005	3.19E-09	3.19E-09	3.19E-09
0.01	3.19E-09	3.18E-09	3.19E-09
0.03	4.16E-09	4.19E-09	4.18E-09
0.05	4.18E-09	4.22E-09	4.20E-09
0.07	4.26E-09	4.27E-09	4.27E-09
0.1	5.28E-09	5.28E-09	5.28E-09
0.3	8.23E-09	8.24E-09	8.24E-09
0.5	1.20E-09	1.22E-08	6.70E-09
0.7	6.18E-08	6.19E-08	6.19E-08
1	2.24E-07	2.24E-07	2.24E-07
3	6.24E-07	6.29E-07	6.27E-07
5	1.38E-06	1.33E-06	1.36E-06
7	1.34E-06	1.35E-06	1.35E-06
10	2.34E-06	2.32E-06	2.33E-06
30	7.10E-06	7.58E-06	7.34E-06
50	1.92E-05	1.02E-05	1.47E-05
70	1.34E-05	1.25E-05	1.30E-05
100	2.71E-05	2.69E-05	2.70E-05

Sample	Conductivity (S/cm)
1	23.672
2	26.106
3	26.106
Average conductivity	25.295
SD	1.405

	Current (A)		
Voltage	1	2	3
	Thickness 0.108 cm.	Thickness 0.107 cm.	Thickness 0.100 cm.
0.001	3.78E-09	3.13E-09	3.46E-09
0.003	3.69E-09	3.25E-09	3.47E-09
0.005	3.72E-09	3.68E-09	3.70E-09
0.01	3.79E-09	3.87E-09	3.83E-09
0.03	4.75E-09	4.15E-09	4.45E-09
0.05	5.25E-09	4.47E-09	4.86E-09
0.07	7.63E-09	4.75E-09	6.19E-09
0.1	8.39E-09	5.16E-09	6.78E-09
0.3	8.81E-09	7.18E-09	8.00E-09
0.5	1.07E-08	1.16E-08	1.12E-08
0.7	1.39E-08	1.22E-08	1.31E-08
1	1.81E-08	1.32E-08	1.57E-08
3	4.19E-07	4.32E-07	4.26E-07
5	6.97E-07	6.26E-07	6.62E-07
7	9.77E-07	9.27E-07	9.52E-07
10	1.40E-06	1.30E-06	1.35E-06
30	4.23E-06	4.55E-06	4.39E-06
50	7.13E-06	7.91E-06	7.52E-06
70	1.00E-05	8.31E-06	9.16E-06
100	1.45E-05	8.55E-06	1.15E-05
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
σ(S/cm)	8.620	17.404	9.311

Table F.9 PPy-coated random PLA fibers at DBSA:pyrrole is 1:10 by admicellarpolymerization. Values of measured current (A) at varies applied voltage (V)

Conductivity (S/cm)
8.620
17.404
9.311
11.778
4.884

Table F.10 PPy-coated random PLA fibers at DBSA:pyrrole is 1:12 by admicellarpolymerization. Values of measured current (A) at varies applied voltage (V)

		Current (A)	
Voltage	1	2	3
	Thickness 0.105 cm.	Thickness 0.112 cm.	Thickness 0.107 cm.
0.001	3.24E-09	3.54E-09	3.39E-09
0.003	3.25E-09	3.57E-09	3.41E-09
0.005	3.29E-09	3.52E-09	3.41E-09
0.01	3.33E-09	3.57E-09	3.45E-09
0.03	3.25E-09	3.56E-09	3.41E-09
0.05	3.20E-09	3.59E-09	3.40E-09
0.07	3.23E-09	3.61E-09	3.42E-09
0.1	3.30E-09	3.64E-09	3.47E-09
0.3	3.32E-09	3.70E-09	3.51E-09
0.5	3.62E-09	3.75E-09	3.69E-09
0.7	3.63E-09	3.78E-09	3.71E-09
1	3.90E-09	3.88E-09	3.89E-09
3	4.27E-09	4.44E-09	4.36E-09
5	5.28E-09	5.02E-09	5.15E-09
7	5.31E-09	5.55E-09	5.43E-09
10	6.31E-09	6.30E-09	6.31E-09
30	1.59E-08	1.12E-08	1.36E-08
50	1.93E-08	1.55E-08	1.74E-08
70	1.24E-08	1.91E-08	1.58E-08
100	2.74E-08	2.52E-08	2.63E-08

Sample	Conductivity (S/cm)
1	0.027
a) 2	0.025
3	0.026
Average conductivity	0.026
SD	0.001

Table F.11 Laminin coated on (PPy-coated aligned PLA fibers) at DBSA:pyrrole is 1:8 by admicellar polymerization. Values of measured current (A) at varies applied voltage (V)

	Current (A)		
Voltage	1	2	3
	Thickness 0.118 cm.	Thickness 0.107 cm.	Thickness 0.107 cm.
0.001	3.22E-09	3.29E-09	3.26E-09
0.003	3.24E-09	3.37E-09	3.31E-09
0.005	3.30E-09	3.24E-09	3.27E-09
0.01	3.25E-09	3.00E-09	3.13E-09
0.03	3.14E-09	3.15E-09	3.15E-09
0.05	3.26E-09	3.21E-09	3.24E-09
0.07	3.11E-09	3.12E-09	3.12E-09
0.1	3.24E-09	3.20E-09	3.22E-09
0.3	3.21E-09	3.18E-09	3.20E-09
0.5	3.23E-09	3.25E-09	3.24E-09
0.7	3.24E-09	3.34E-09	3.29E-09

1	3.30E-09	3.20E-09	3.25E-09
3	3.28E-09	3.28E-09	3.28E-09
5	3.29E-09	3.29E-09	3.29E-09
7	3.32E-09	3.40E-09	3.36E-09
10	3.40E-09	3.40E-09	3.40E-09
30	3.50E-09	3.45E-09	3.48E-09
50	3.52E-09	3.46E-09	3.49E-09
70	3.55E-09	3.48E-09	3.52E-09
100	3.60E-09	3.76E-09	3.68E-09
	3 65E 49 3 66E 49 3 55E	3 300E 49 3 70E 49 3 60E 49 3 560E 49 560E 49 570E 49	3.75E 40 3.76E 40 3.66E 40 3.66E 40 3.66E 40 3.66E 40 3.66E 40 3.66E 40 3.66E 40 3.67E 40 R ² = 0.9838 3.06E 40 3.37E 40 R ² = 0.9838 3.06E 40 3.37E 40 0.20E
σ(S/cm)	1.32E-03	2.07E-03	1.70E-03

Sample	Conductivity (S/cm)	
1	1.32E-03	
2	2.07E-03	67.0
3	1.70E-03	
Average conductivity	1.70E-03	
SD	0.38E-03	

Table F.12 PPy-coated aligned PLA fibers at DBSA:pyrrole is 1:8 by admicellar polymerization measured in time 1 day. Values of measured current (A) at varies applied voltage (V)

		Current (A)	
Voltage	1	2	3
	Thickness 0.062 cm.	Thickness 0.067 cm.	Thickness 0.070 cm.
0.001	3.63E-09	3.64E-09	3.62E-09
0.003	3.64E-09	3.66E-09	3.65E-09
0.005	3.68E-09	3.69E-09	3.69E-09
0.01	3.76E-09	3.81E-09	3.75E-09
0.03	4.04E-09	4.07E-09	4.03E-09
0.05	4.37E-09	4.41E-09	4.36E-09
0.07	4.80E-09	4.77E-09	4.80E-09
0.1	5.29E-09	5.28E-09	5.30E-09
0.3	8.85E-09	8.84E-09	8.86E-09
0.5	1.27E-08	1.27E-08	1.28E-08
0.7	1.69E-08	1.69E-08	1.69E-08
1	2.30E-07	2.30E-07	2.30E-07
3	6.93E-07	6.94E-07	6.92E-07
5	1.16E-06	1.16E-06	1.16E-06
7	1.60E-06	1.60E-06	1.60E-06
10	2.33E-06	2.33E-06	2.33E-06
30	7.08E-06	7.08E-06	7.08E-06
50	1.21E-05	1.21E-05	1.21E-05
70	1.71E-05	1.71E-05	1.71E-05
100	2.53E-05	2.53E-05	2.53E-05
	$3.00E-05$ $2.50E-05$ $2.00E-05$ $1.50E-05$ $1.00E-05$ $R^{2} = 0.9994$ $5.00E-06$ $0.00E+00$ $-5.00E-06$ $50 100 150$	$\begin{array}{c} 3.00E-05\\ 2.50E-05\\ 2.00E-05\\ 1.50E-05\\ 1.50E-05\\ 1.50E-05\\ 8^{-1}=0.9994\\ 5.00E-06\\ 0.00E+00\\ -5.00E-06\\ 0 \end{array}$	3 00E-05 2 50E-05 2 00E-05 1 50E-05 1 00E-05 1 00E-05 5 00E-06 0 00E+00 -5 00E-06 0 20 40 60 80 100 120
σ(S/cm)	30.035	27.794	26.603

and the second second second

Sample	Conductivity (S/cm)
1	0.665
2	0.776
3	0.611
Average conductivity	0.684
SD	0.084

Table F.13 PPy-coated aligned PLA fibers at DBSA:pyrrole is 1:8 by admicellar polymerization measured in time 1 month. Values of measured current (A) at varies applied voltage (V)

		Current (A)	
Voltage	1	2	3
	Thickness 0.062 cm.	Thickness 0.067 cm.	Thickness 0.070 cm.
0.001	3.65E-09	3.59E-09	3.68E-09
0.003	3.59E-09	3.59E-09	3.58E-09
0.005	3.65E-09	3.59E-09	3.63E-09
0.01	3.57E-09	3.62E-09	3.58E-09
0.03	3.66E-09	3.69E-09	3.65E-09
0.05	3.67E-09	3.66E-09	3.66E-09
0.07	3.67E-09	3.65E-09	3.67E-09
0.1	3.66E-09	3.64E-09	3.66E-09
0.3	3.80E-09	3.77E-09	3.80E-09
0.5	3.90E-09	3.82E-09	3.90E-09
0.7	4.05E-09	4.01E-09	4.05E-09
1	4.21E-09	4.06E-09	4.21E-09
3	5.33E-09	4.86E-09	5.33E-09
5	6.36E-09	5.65E-09	6.36E-09
7	7.48E-09	6.52E-09	7.48E-09
10	9.08E-09	7.70E-09	9.08E-09
30	2.03E-08	1.54E-08	2.01E-08
50	3.04E-08	2.19E-08	3.11E-08
70	3.78E-08	2.67E-08	3.66E-08
100	4.58E-08	3.37E-08	4.42E-08

Sample	Conductivity (S/cm)
· 1	0.075
2	0.042
·: 3	0.053
Average conductivity	0.057
SD	0.017

Table F.14 PPy-coated aligned PLA fibers at DBSA:pyrrole is 1:8 by admicellar polymerization measured in time 2 months. Values of measured current (A) at varies applied voltage (V)

	Current (A)				
Voltage	1	2	3		
	Thickness 0.062 cm.	Thickness 0.067 cm.	Thickness 0.070 cm.		
0.001	4.55E-09	3.50E-09	4.55E-09		
0.003	4.72E-09	3.46E-09	4.30E-09		
0.005	4.65E-09	3.37E-09	4.25E-09		
0.01	4.60E-09	3.30E-09	4.73E-09		
0.03	4.10E-09	3.32E-09	4.46E-09		
0.05	4.47E-09	3.51E-09	4.41E-09		
0.07	4.31E-09	3.30E-09	4.20E-09		
0.1	3.87E-09	3.32E-09	3.84E-09		
0.3	4.43E-09	3.37E-09	4.59E-09		
0.5	4.43E-09	3.36E-09	4.54E-09		
0.7	4.80E-09	3.41E-09	3.96E-09		

σ(S/cm)	0.014	0.013	0.012		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1.40E-08$ $1.20E-08$ $1.00E-08$ $y = 9E-11x - 4E-09$ $8.00E-09$ $R^2 = 0.9916$ $6.00E-09$ $2.00E-09$ $0.00E-00$ $0 20 40 60 80 100 120$		
100	1.31E-08	1.21E-08	1.31E-08		
70	1.04E-08	9.62E-09	1.04E-08		
50	8.65E-09	8.04E-09	8.66E-09		
30	6.98E-09	6.21E-09	6.35E-09		
10	4.99E-09	4.46E-09	5.12E-09		
7	4.72E-09	4.12E-09	5.01E-09		
5	4.54E-09	4.05E-09	4.80E-09		
3	4.49E-09	3.87E-09	4.22E-09		
1	4.39E-09	3.52E-09	4.51E-09		

Sample	Conductivity (S/cm)
1	0.014
2	0.013
3	0.012
Average conductivity	0.013
SD	0.001

Appendix G Indirect Cytotoxicity

Table G.1 Indirect cytotoxicity test, the mitochondrial metabolic activity (MTT assay) of Neuro 2a cultured for 1 day in the extracted media.

Time	Neuro 2a cell				
(1 day)	Control	PLA AF	PPy-coated	PLA RF	PPy-coated
			PLA AF		PLA RF
1	0.4482	0.5305	0.4155	0.4472	0.4552
2	0.3925	0.5226	0.4576	0.4427	0.4524
3	0.4624	0.4504	0.4493	0.4468	0.4484
4	0.4473	0.4592	0.4552	0.4462	0.4386
5	0.4572	0.4644	0.4514	0.4421	0.4553
Average	0.4415	0.4761	0.4458	0.4450	0.4500
SD	0.0281	0.0367	0.0172	0.0024	0.0070

Table G.2 Indirect cytotoxicity test, the mitochondrial metabolic activity (MTT assay) of Neuro 2a cultured for 3 days in the extracted media.

Time	Neuro 2a cell				
(3 days)	Control	PLA AF	PPy-coated	PLA RF	PPy-coated
			PLA AF		PLA RF
1	0.5200	0.5773	0.5227	0.7320	0.5743
2	0.7734	0.8676	0.5782	0.6741	0.5336
3	0.6126	0.6717	0.5933	0.6768	0.5372
4	0.6596	0.5971	0.6753	0.6476	0.5195
5	0.7156	0.5870	0.6175	0.6495	0.5635
Average	0.6562	0.6601	0.5974	0.6760	0.5456
SD	0.0971	0.1218	0.0558	0.0341	0.0226

Table H.1 Expression relative to GAPDH (c-Fos gene) in rat hippocampal neuralstem cell on electrical stimulation 2 hours cultured on the surfaces of laminin coatedon (PPy-coated aligned PLA fiber meshes)

Time	Expression relative	Expression relative to GAPDH		
(2 hours)	0 mV	100 mV		
1	1.0000	8.9619		
2	0.9830	8.9880		
3	0.9149	7.7312		
Average	0.9660	8.5604		
SD	0.0450	0.7182		

CURRICULUM VITAE

Name: Ms. Thitima Sudwilai

Date of Birth: March 28, 1987

Nationality: Thai

University Education:

2005-2008 Bachelor's Degree in industrial chemistry, Faculty of Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand

Proceedings:

 Sudwilai, T.; Ng, J.J.; Israsena, N.; and Supaphol, P. (2011, April 26) Polypyrrole-coated poly(lactic acid) electrospun fibrous scaffold: effect of the coating layer on electrical conductivity and neural cell growth. <u>Proceedings of the 2nd Symposium on Petroleum, Petrochemicals, and Polymers</u>, Bangkok, Thailand.

Presentations:

 Sudwilai, T.; Ng, J.J.; Israsena, N.; and Supaphol, P. (2011, April 26) Polypyrrole-coated poly(lactic acid) electrospun fibrous scaffold: effect of the coating layer on electrical conductivity and neural cell growth. <u>Paper presented at the 2nd Symposium on Petroleum, Petrochemicals, and Polymers</u>, Bangkok, Thailand.