DESIGN AND SYNTHESIS OF MULTIFUNCTIONAL CHITOSAN FROM WATER-BASED REACTION SYSTEM FOR POTENTIALLY BIOMEDICAL MATERIALS

Jatesuda Jirawutthiwongchai

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University

Thesis Title:	Design and Synthesis of Multifunctional Chitosan from
	Water-based Reaction System for Potentially Biomedical
	Materials
By:	Jatesuda Jirawutthiwongchai
Program:	Polymer Science
Thesis Advisor:	Prof. Suwabun Chirachanchai

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof. Pomthong Malakul)

Thanyalik Chasin_

(Asst. Prof. Thanyalak Chaisuwan)

(Dr. Gerald Draeger)

fina 21

(Prof. Suwabun Chirachanchai)

Hathaikain

(Asst. Prof. Hathaikarn Manuspiya)

Taleson Mgm

(Asst. Prof. Rangrong Yoksan)

(Dr. Katanchalee Mai-ngam)

ABSTRACT

5392002063: Polymer Science Program
 Jatesuda Jirawutthiwongchai: Design and Synthesis of
 Multifunctional Chitosan from Water-based Reaction System for
 Potentially Biomedical Materials
 Thesis Advisor: Prof. Suwabun Chirachanchai 158 pp.
 Keywords: Chitosan/ Water-based system/ Multifunctional chitosan/ Biomedical

The present work focuses on molecular design, synthesis, systematic studying of multifunctional chitosan to use as promising biomedical materials. Here, the strategies of nanoparticle self assembly and hybridization of chitosan-inorganic nanoparticle are proposed to produce multifunctional chitosan. However, the use of chitosan without acidic solvent is still required. Thus, the multifunctional chitosan from 2 strategies are prepared by chemical functionalization based on water-based reaction system and mild condition. In the first part, biomolecules, phenylalanine and polyethylene glycol, are derivatized on chitosan chain via CS-HOBt water soluble system and conjugating reaction. This chitosan derivative shows the colloidal stability in water, nanoparticle forming, and ability to form allergen. This design system is proposed to use in allergen delivery system. In the second part, chitosan is functionalized with active molecule called as oxanorbornadiene. The chitosanoxanorbornadiene is proposed as a novel type of chitosan derivative which can be further coupled with azido-modified substrates to provide various types of functional groups on chitosan chain via Cu-free Click. The reaction can be done in aqueous solution without catalyst and purification steps. In the final part, chitosanoxanorbornadiene is developed to be a water-soluble chitosan derivative to hybridize with inorganic nanoparticles, azido-gold nanoparticles. The success of hybridization provides the gold aggregation via Cu-free Click. This part is extended to use this chitosan-oxanorbornadiene as a linker between gold nanoparticles and antigens to provide the gold aggregated acceleration in naked-eye detection of antigens.

บทคัดย่อ

v

เจตสุดา จิร วุฒิวงศ์ชัย : การออกแบบและสังเคราะห์ไคโตซานหลากหลายฟังก์ชันจาก ระบบปฏิกิริยาพื้นฐานในน้ำ เพื่อความเป็นไปได้สำหรับวัสดุทางชีวแพทย์ (Design and Synthesis of Multifunctional Chitosan from Water-based Reaction System for Potentially Biomedical Materials) อ. ที่ปรึกษา: ศาสตราจารย์ ดร. สุวบุญ จิรชาญชัย 158 หน้า

้วิทยานิพนธ์ฉบับนี้มุ่งเน้นถึงการออกแบบโมเลกุล การสังเคราะห์ และการศึกษาอย่างมี ระบบของไคโตซานหลากหลายพึงก์ชัน เพื่อใช้เป็นวัสดุทางชีวแพทย์อย่างเป็นไปได้ ในงานนึ ผู้วิจัยเลือกกลวิธี การรวมแบบอัคโนมัติ และการผสมระหว่างไคโตซานและอนุภาคอนินทรีย์ ระดับนาโน เพื่อการผลิตไคโตซานหลากหลายพึงก์ชัน อย่างไรก็ตามการหลีกเลี่ยงการใช้ สารละลายไคโตซานในอะซิดิกยังคงมีความต้องการ ดังนั้น ไคโตซานหลากหลายพึงก์ชันจาก กลวิธี 2 แบบข้างต้น จึงถูกเตรียม โดยการเติมแต่งหมู่ฟังก์ชันทางเคมีบนพื้นฐานของระบบปฏิกิริยา ้พื้นฐานในน้ำ และปฏิกิริยาที่ไม่รุนแรง ในส่วนแรก โมเลกุลทางชีวภาพ ได้แก่ ฟีนิลอะลานีน และ พอลิเอทิลีนไกลคอล ถูกเดิมแด่งบนสายโซ่ไคโตซานผ่านระบบ CS-HOBเ ที่ละลายน้ำและผ่าน ้ปฏิกิริยาแบบจับคู่ อนุพันธ์ไกโตซานนี้แสดงสมบัติกอลลอยค์ได้ในน้ำ มีขนาคอนุภากระดับนาโน และมีความสามารถในการกักเก็บสารก่อภูมิแพ้ (allergen) ระบบที่ถูกออกแบบนี้ถูกเสนอขึ้นเพื่อ ใช้ในระบบขนส่งสารก่อภูมิแพ้ ในส่วนที่สอง ไคโตซานถูกเคิมแต่งฟังก์ชันด้วยโมเลกุลที่มี ความสามารถในการกระตุ้น ที่เรียกว่า ออกซานอร์บอร์นะไคอีน (oxanorbornadiene) ไคโคซาน-้ออกซานอร์บอร์นะ ไตอื่นนี้ถูกเสนอให้เป็นอนุพันธ์ใคโคซานแบบใหม่ที่สามารถเข้ากู่กันกับ อะ-ซิโคโมคิฟายค์ซับสเตรตหลายๆ แบบ เพื่อก่อให้เกิดหมู่ฟังก์ชันหลากหลายแบบบนสายโซ่ไคโต-ซานผ่านทางปฏิกิริยาเคมีคลิกแบบปราศจากคอปเปอร์ ปฏิกิริยานี้สามารถถกเตรียมได้ใน สารละลายที่มีน้ำเป็นองค์ประกอบโดยปราศจากสารเร่งปฏิกิริยา (catalyst) และกระบวนการทำ สารให้บริสุทธิ์ ในส่วนสุดท้าย ไกโตซาน-ออกซานอร์บอร์นะไดอีนถูกพัฒนาให้เป็นอนุพันธ์ไก-้โตซานที่ละลายน้ำได้ เพื่อผสมกับอนภาคอนินทรีย์ระดับนาโน ที่เรียกว่า อนภาคอะซิโด-ทอง ความสำเร็จของการผสมก่อให้เกิดการรวมกลุ่มของอนุภาคทองผ่านทางปฏิกิริยาเคมีคลิกแบบ ้ปราศจากคอปเปอร์ ในงานส่วนนี้ถูกขยายให้ใช้ไคโตซาน-ออกซานอร์บอร์นะไดอื่นเป็นตัวเชื่อม ระหว่างอนุภาคทองระดับน่าโนและแอนติเจนเพื่อทำให้เกิดการเร่งการรวมกลุ่มของอนุภาคทอง ระดับนาโนสำหรับการครวจสอบสารแอนติเจนด้วยตาเปล่า

ACKNOWLEDGEMENTS

The author would like to express her grateful thanks to Professor Suwabun Chirachanchai, her advisor, who gave her many valuable suggestions, patience, and worth inspiration during Ph.D. and Master degree programs under his supervision.

She would like to acknowledge the Dutsadee Pipat fund, Chulalongkorn University for Ph.D. Scholarship, and Thailand Graduate Institute of Science and Technology (TGIST) for Master degree Scholarship, National Research Council of Thailand (NRCT), The Petroleum and Petrochemical College, and The Center of Excellence on Petrochemical and Materials Technology, Thailand for funding of the thesis research.

She is greatly indebted to Dr. Amornpun Sereemaspun and I-yanut klaharn for very nice collaboration in biological testing at Department of Anatomy, Faculty of Medicine, Chulalongkorn University.

She would like to acknowledge Dr. Gerald Draeger, Dr. Andreas Krause, and Dr. Nadine Bluhm (Institute of Organic Chemistry, Leibniz University of Hannover) and Dr. Csaba Laszlo Sajti (Nanotechnology Department, Laser Zentrum Hannover) for taking care of her during her work at Germany and providing gold nanoparticles.

She would like to thank Dr. Katanchalee Mai-ngam from the National Metal and Materials Technology Center (MTEC) for very kind suggestion. Monoclonal Antibody Production Laboratory, the National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA) for Enzyme linked immunosorbent assay (ELISA), Assoc. Prof. Praneet Opanasopit (Faculty of Pharmacy, Silpakorn University) for their HPLC guidance, and Asst. Prof. Rath Pichayangkura, Head of Chitin Research Center, Chulalongkorn University for chitosan (raw material).

In addition, she would like to thank all Suwabun's group members for being such a good friends and cheer her up through the hard moment.

Finally, she wishes to thank her family members, especially, Kowit, Manthanee, and Piyanart for believing in her, understanding, supporting her from their hearts, especially invaluable love.

TABLE OF CONTENTS

	PAGE
Title Page	i
Abstract (in English)	iv
Abstract (in Thai)	v
Acknowledgements	vi
Table of Contents	vii
List of Table	xi
List of Figures	xii
List of Schemes	xix

CHAPTER

I	INTRODUCTION	1
Π	LITERATURE REVIEW	3
	2.1 Chitosan	3
	2.2 Water-soluble Chitosan	3
	2.3 Allergy	4
	2.4 Allergen Immunotherapy: Chitosan as an Adjuvant	5
	2.5 Chitosan in Drug/Antigen Delivery System	5
	2.6 Nanoparticle for Delivery System	6
	2.7 Phenylalanine	6
	2.8 Polyethylene Glycol	6
	2.9 Click Chemistry	7
	2.10 Oxanorbornadiene for Click Chemistry	9
	2.11 Derivatization of Chitosan/Polymer via Cu-free	
	Click Chemistry	10
	2.12 Gold Nanoparticles	10
	2.13 Synthesis of Gold Nanoparticles	11
	2.14 Physical properties of Gold Nanoparticles	13

CHAP	TER
------	-----

2.15 Visual Detection

III	CHITOSAN NANOPARTICLES FOR HOUSE DUST MITE ALLERGEN: FROM A SIMPLE SINGLE STEP WATER-			
	BASED CONJUGATION TO AN IMMUNOTHERAPY			
	STUDY ON CELLULAR SAFETY	Y AND PRECLINICAL		
	IMPLEMENTATION	<u>,</u>	20	
	3.1 Abstract		20	
	3.2 Introduction		21	
	3.3 Experimental Section		23	
	3.4 Results and Discussion		29	
	3.5 Conclusions		48	
	3.6 Acknowledgements		48	
	3.7 References		49	

IV

-

CHITOSAN-OXANORBORNADIENE: A CONVENIENT	
CHITOSAN DERIVATIVE FOR CLICK CHEMISTRY	
WITHOUT METAL CATALYST PROBLEM	
4.1 Abstract	
4.2 Introduction	
4.3 Results and Discussion	

4.4	Conclusions	61
4.5	Acknowledgements	61
4.6	References	61

V	RAPID HYBRIDIZATION OF CHITOSAN-GOLD-ANTIB	ODY
	VIA METAL-FREE CLICK IN WATER-BASED SYSTEM:	: A
	MODEL APPROACH FOR NAKED-EYE DETECTABLE	
	ANTIGEN SENSOR	65
	5.1 Abstract	65

15

54 54

VI

P	A	G	E
---	---	---	---

. .

. .

5.2 Introduction	65
5.3 Experimental Section	67
5.4 Results and Discussion	69
5.5 Conclusions	75
5.6 Acknowledgements	75
5.7 References	76
、	
CONCLUSIONS	79
REFERENCES	80
APPENDICES	93
Appendix A Supporting Synthesis for Chapter III	93
Appendix B Supporting Structural Characterization	
for Chapter III	95
Appendix C Supporting Evaluation of Morphology, Size,	
and ζ -potential	104
Appendix D Supporting Determination of Allergen Content	110
Appendix E Supporting Evaluation of In Vitro Cytotoxicity	113
Appendix F Supporting Evaluation of Allergen Release Profile	115
Appendix G Supporting Synthesis for Chapter IV	118
Appendix H Supporting Structural Characterization	
for Chapter IV	128
Appendix I Supporting Structural Characterization	
for Chapter V	140
Appendix J Observation of Chitosan Solution Appearances	146
Appendix K Evaluation of Antibody Immobilization	147
Appendix L Evaluation of Azido-disulfide Content	148
Appendix M Mechanism of Disulfide Cleavage and Azido-Gold	
Nanoparticle Forming	149

CHAPTER

PAGE

155

•

•

. .

.:

•

Apper	ndix N	Appearance of Gold Nanoparticle Solution		
		Mixed with Chitosan Solutions	15	0
Apper	ndix O	Cycloaddition Time of Mixture between		
		WSC-OND-Ab and Azido-disulfide	15]
Appen	idix P	Synthesis of 1,2-bis (3-azidopropyl) disulfane		
		Immobilized Gold Nanoparticle, Azido-AuNPs	15	3
Apper	dix Q	Antigen Detection by Naked Eyes	15	4

CURRICULUM VITAE

LIST OF TABLES

TABLE

PAGE

38

CHAPTER III

3.1	Entrapment efficiency (%EE), loading capacity (%LC),
	and diameter size (at initial loaded allergen = 3.25
	μg/mL)

APPENDICES

、

Bl	Integral ratio of chitosan and chitosan derivatives by FT-			
	IR curve fitting	96		
B2	Degree of substitution (%DS) of Phe and mPEG-COOH			
	of chitosan derivatives as identified by ¹ H-NMR	102		
HI	Curve fitting FT-IR integral ratio of CS, CS-1, CS-2, and			
	CS-3	129		
П	Curve fitting FTIR integral ratio of CS, CS-mPEG, CS-			
	mPEG-OND with 30 %DS of OND, and CS-mPEG-			
	OND-Ab with 30%DS of OND	145		

-

.

LIST OF FIGURES

FIGURE

.

PAGE

1.0

CHAPTER II

2.1	Solution of gold nanoparticles at various sizes.	11
2.2	Gold nanoparticles by laser ablation.	13

CHAPTER III

	3.1	(A) FT-IR spectra, (B) region of FT-IR curve fitting, and (C)	
		FT-IR curve fitting of (a) CS, (b) IS-CS-Phe1.0-mPEG0.3, and	
		(c) 2S-CS-Phe1.0-mPEG0.3.	32
	3.2	¹ H NMR spectra of (a) CS, (b) 1S-CS-Phe1.0-mPEG0.3, and	
		(c) 2S-CS-Phe1.0-mPEG0.3 (in 2% CD ₃ COOD/D ₂ O), and (d)	
		chemical structure of CS-Phe1.0-mPEG0.3 indicating the	
		position of the protons.	33
	3.3	TEM micrographs, colloidal appearances, and frequency	
		distribution of (a) CS, (b, d) 1S-CS-Phe1.0-mPEG0.3, (c, e)	
		2S-CS-Phe1.0-mPEG0.3.	34
	3.4	(A) ζ -potentials of (a) HDM, (Δ) 1S-CS-Phe1.0-mPEG0.3,	
		and () HDM-entrapped 1S-CS-Phe1.0-mPEG0.3	
		(concentration 1 mg/mL in HCl_{aq} / NaOH _{aq} solution), and (B)	
2		HDM immobilized content (%) of HDM-entrapped 1S-CS-	
÷.		Phe1.0-mPEG0.3 measured by QCM. Results are the means \pm	36
		SD (n=3).	
	- 3.5	Cell viability of L929 cells determined by (A) Alarmar blue	
		and (B) MTT assay in various concentration of (40
		mPEG, (🛲) HDM, and (💦) HDM- entrapped CS-Phe-	
		mPEG.	
	3.6	(A) Cell morphology of HaCaTs treated with (a) control, (b)	
		HDM, (c) HDM-entrapped CS, and (d) HDM-entrapped CS-	

	Phe-mPEG visualized by phase contrast microscopy and (B)	
	Cell viability of HaCaTs treated with control, HDM, CS,	
	HDM-entrapped CS, CS-Phe, HDM-entrapped CS-Phe, CS-	
	mPEG, HDM-entrapped CS-mPEG, CS-Phe-mPEG, and	
	HDM-entrapped CS-Phe-mPEG for 24 h.	41
3.7	ROS generation from HaCaTs after treating with control,	
	HDM, HDM-entrapped CS, HDM-entrapped CS-Phe, HDM-	
	entrapped CS-mPEG, and HDM-entrapped CS-Phe-mPEG for	
	a: 0 min, b: 10 min, c: 20 min, d: 30 min, e: 40 min, f: 50 min,	
	and g: 60 min.	42
3.8	Cell cycle analysis of HaCaTs treated with (A) Control, (B)	
	HDM, (C) HDM-entrapped CS, and (D) HDM-entrapped CS-	
	Phe-mPEG. The cell cycle phases are shown as (a) G0/G1	
	phase, (b) S phase, and (c) G2/M phase.	43
3.9	(A) IFN- γ and (B) IL-10 productions from PBMCs incubated	
	with control (a-b), HDM (c-d), HDM-entrapped CS (e-f),	
	HDM-entrapped CS-Phe (g-h), HDM-entrapped CS-mPEG (i-	
	j), and HDM-entrapped CS-Phe-mPEG (k-1). PBMCs isolated	
	from the normal (a, c, e, g, i, and k) and the allergic patients (b,	
	d, f, h, j, and l).	45
3.10	Fluorescent image of FITC-HDM-entrapped CS-Phe-mPEG	
	(green dots) incubated with HaCaTs for 24 h. The blue region	
	represents the nuclei stained with DPI.	46
3.11	TEM micrographs of HDM-entrapped CS-Phe-mPEG (a)	
	before HDM release, and (b) after HDM release.	47

CHAPTER IV

4.1 ¹⁹F-NMR spectra of (a) 1, (b) CS-1, (c) CS-2, (d) CS-3, (e) CS-4. (f) CS-5, and (g) CS-6 in 2% CD₃COOD/D₂O. 57

PAGE

PAGE

FIGURE

5.1

5.2

5.3

4.2 (A) Mechanism of cycloaddition between CS-3 and 4, (B) ¹H-NMR spectra of ligation progress in 2% CD₃COOD/D₂O over time between CS-3 and 4, and (C) Ratio of furan and oxanorbornadiene (integral ratio of δ 6.4/δ 5.7) over the reaction time detected by ¹H-NMR based on the integration;
(□) from CS-3 and 4, (Δ) from CS-3 and 5, and (•) from CS-3 and 6.

60

CHAPTER V

- (A) scheme of cycloaddition between CS-mPEG-OND and azido-AuNPs, (B) ¹⁹F-NMR spectra of (a) OND, (b) CS-mPEG-OND, and (c) CS-mPEG-disulfide, and (C) ¹H-NMR spectra of ligation progress in D_2O over the reaction time between CS-mPEG-OND and azido-disulfide.
 - (A) scheme of metal-free cycloaddition between CS-mPEG-OND-Ab and azido-AuNP to yield CS-mPEG-Ab-AuNP and(B) Surface-enhanced Raman spectra of (a) AuNPs, (b) azido-AuNPs, and (c) CS-mPEG-Ab-AuNPs.

70

5.4 Appearances of nitrocellulose membranes after soaking with azido-AuNPs by first spotting with (g) - (l) and without (a)-(f) Ag followed by dropping with: (a), (g) PBS buffer; (b), (h) CS-mPEG; (c), (i) CS-mPEG-Ab; (d), (j) CS-mPEG-OND; (e), (k) CS-mPEG-OND-Ab; and (f), (l) Ab solution.

74

APPENDICES

.

Determination of degree of substitution (%DS) of			
phenylalanine (Phe) and poly(ethylene glycol)methyl ether			
(mPEG) by ¹ H NMR.	97		
¹ H-NMR spectra of (a) CS-Phe1.0, (b) CS-Phe3.0, (c) 1S-CS-			
Phe0.5-mPEG0.3, (d) 1S-CS-Phe1.0-mPEG0.3, (e) 1S-CS-			
Phe1.5-mPEG0.3, (f) 1S-CS-Phe2.0-mPEG0.3, (g) 1S-CS-			
Phe3.0-mPEG0.3, (h) CS-mPEG0.3 in 2% CD ₃ COOD/D ₂ O.	101		
Elemental Analysis of various types of chitosans.	103		
TEM micrographs of (a) 1S-CS-Phe0.5-mPEG0.3, (b) 1S-CS-			
Phe1.5-mPEG0.3, (c) 1S-CS-Phe2.0-mPEG0.3, and (d) 1S-			
CS-Phe3.0-mPEG0.3.	104		
Appearances of CS after stirring (a) 0 day, (c) 1 day, and 1S-			
CS-Phe1.0-mPEG0.3 after stirring (b) 0 day, (d) 1 day. The			
samples were dispersed in deionized water with the			
concentration 1 mg/mL.	105		
(A) size (determined by DLS) of 1S-CS-Phe1.0-mPEG0.3			
(concentration 1 mg/mL) in solvents with different dielectric			
constants, (B) determination of dielectric constants of the			
binary mixture of solvents.	106		
Appearance and average diameter size (determined by DLS)			
of 1S-CS-Phe1.0-mPEG0.3 in different types of solvents.	107		
	Determination of degree of substitution (%DS) of phenylalanine (Phe) and poly(ethylene glycol)methyl ether (mPEG) by ¹ H NMR. ¹ H-NMR spectra of (a) CS-Phe1.0, (b) CS-Phe3.0, (c) 1S-CS- Phe0.5-mPEG0.3, (d) 1S-CS-Phe1.0-mPEG0.3, (e) 1S-CS- Phe1.5-mPEG0.3, (f) 1S-CS-Phe2.0-mPEG0.3, (g) 1S-CS- Phe3.0-mPEG0.3, (h) CS-mPEG0.3 in 2% CD ₃ COOD/D ₂ O. Elemental Analysis of various types of chitosans. TEM micrographs of (a) 1S-CS-Phe0.5-mPEG0.3, (b) 1S-CS- Phe1.5-mPEG0.3, (c) 1S-CS-Phe2.0-mPEG0.3, (b) 1S-CS- Phe1.5-mPEG0.3, (c) 1S-CS-Phe2.0-mPEG0.3, and (d) 1S- CS-Phe3.0-mPEG0.3. Appearances of CS after stirring (a) 0 day, (c) 1 day, and 1S- CS-Phe1.0-mPEG0.3 after stirring (b) 0 day, (d) 1 day. The samples were dispersed in deionized water with the concentration 1 mg/mL. (A) size (determined by DLS) of 1S-CS-Phe1.0-mPEG0.3 (concentration 1 mg/mL) in solvents with different dielectric constants, (B) determination of dielectric constants of the binary mixture of solvents. Appearance and average diameter size (determined by DLS) of 1S-CS-Phe1.0-mPEG0.3 in different types of solvents.		

PAGE

C5	(A) ζ -potentials and (B) size of (\circ) CS, (\Box) CS-Phe1.0, (\diamondsuit)			
	CS-mPEG0.3, (Δ) 1S-CS-Phe1.0-mPEG0.3, and (×) 1S-CS-			
	Phe3.0-mPEG0.3 at pH 2-12 (concentration of products: 1			
	mg/mL) in HCl/NaOH solution. Results are means \pm SD			
	(n=3).	108		
C6	SEM micrographs of (a) CS, (b) 1S-CS-Phe1.0-mPEG0.3, and			
	(c) 2S-CS-Phe1.0-mPEG0.3.	109		
DI	HPLC spectrum of allergen supernatant.	110		
D2	Standard curve of Bovine serum albumin (BSA) by Bradford			
	Assay in order to determine the crude allergen concentration.	110		
D3	%EE and %LC of () CS and () 1S-CS-Phel.0-			
	mPEG0.3 (concentration 1 mg/mL) at different contents of			
	initial loaded allergen in DI water adjusted to pH 6.0 by			
	HCI/NaOH. The contents were determined by Elisa. Results			
	are means \pm SD (n=3).	111		
El	Optical micrographs of HaCaT cells after incubation for 24 h			
	at 37 °C with different samples; (a) control, (b) DMSO, (c)			
	HDM-allergen, (d) CS, (e) HDM-allergen-entrapped CS, (f)			
	CS-Phe-mPEG, HDM-allergen-entrapped CS-Phe-mPEG.	113		
E2	Cell viability of PBMC determined by Alarmar blue in the			
	presence of (a) no treatment, (b) HDM-allergen, and (c) HDM-			
	allergen-entrapped CS-Phe-mPEG incubated for 5 day.	114		
Fl	Release profiles of HDM-allergen-entrapped CS-Phe-mPEG in			
	(•) Citric buffer (pH 5.2), (\Box) PBS buffer (pH 7.4), and (\blacktriangle)			
	Tris buffer (pH 8.1). The allergen content was determined by			
	Elisa. Results are means \pm SD (n=3).	115		
F2	Release profile of (\bullet) allergen-entrapped CS and (\blacktriangle) allergen-			
	entrapped 1S-CS-Phe1.0-mPEG0.3 in (a) Citric buffer pH 5.2,			
	(b) PBS buffer pH 7.4, (c) Tris buffer pH 8.1.	116		

PAGE

FIGURE

PAGE

F3	Accumulative release allergen of (\bullet) HDM-allergen-entrapped					
	CS, (▲) HDM-allergen-entrapped CS-Phe-mPEG in DI water.					
	The allergen content was determined by HPLC. Results are					
	means \pm SD (n=3).	117				
HI	Curve fitting FT-IR spectra of (a) CS (b) CS-1, (c) CS-2, and					
	(d) CS-3.	128				
H2	FT-IR spectra of (a) 5, (b) 6, (c) CS-3, (d) CS-5, and (e) CS-6.	129				
H3	¹ H-NMR spectra of A) CS-1, B) CS-2, C) CS-3, D) CS-4, E)					
	CS-5, and F) CS-6.	134				
H4	Mechanism of CS-2 and <i>N</i> -acylurea by using EDC.	135	de			
H5	¹ H-NMR spectra of A) I, B) 2, C) 1a, D) 3a, E) 3b, F), G) 5,		1.			
	and H) 6.	139				
11	¹ H-NMR spectra of A) mPEG-COOH, B) CS, C) CS-mPEG,					
	CS-mPEG-OND from the initial content of OND; D) 1.5, E)					
	1.0, F) 0.5 equivalent to CS.	142				
12	FTIR spectra of (a) mPEG-COOH, (b) CS (c) CS-mPEG, (d)					
	CS-mPEG-OND with 30 %DS of OND, and (e) CS-mPEG-					
	OND-Ab with 30 %DS of OND.	143				
13	Curve fitting FTIR spectra of (a) CS, (b) CS-mPEG, (c) CS-					
	mPEG-OND with 30 % DS of OND, and (d) CS-mPEG-OND-					
	Ab with 30 %DS of OND.	144				
I4	¹⁹ F-NMR spectra of (a) oxanorbornadiene derivative (OND),					
	(b) CS-mPEG-OND-Ab, and (c) CS-mPEG-Ab-click-					
	disulfide.	145				
J1	Appearances of (a) CS-mPEG, (b) CS-mPEG-OND with 60 $\%$					
	and 60 %DS of mPEG and OND, respectively, (c) CS-mPEG-					
	OND-Ab with 30 %DS of OND, (d) CS-mPEG-OND-Ab with					
	60 %DS of OND, and (e) CS-mPEG-OND-Ab with 30 %DS					
	of OND after adding azido-disulfide for 11 d.	146				

1

KI	ζ -potentials of (A) WSC-OND and (B) WSC-OND-Ab at pH
	2-12 adjusted by 0.1 M NaOH/0.1 M NaCl. 147
LI	(A) UV-Vis spectra of azido-disulfide in DMSO (B) Standard
	Curve plotting between concentration of azido-disulfide and
	absorbance. (C) Concentration of supernatant (after
	centrifugation with 21,000 rpm to separate AuNPs at the
	bottom part) measured by UV-VIS spectrophotometer with a
	variation of initial concentration of azido-disulfide. 148
M	UV-Vis spectra of azido-AuNPs. 149
NI	Appearances of mixture between azido-AuNP solution and (a)
	water (b) CS-mPEG-Ab solution, and (c) CS-mPEG-OND-Ab
	solution with A) 30% and B) 60% OND substitutution and
	over the time at room temperature. 150
01	Ratio of furan and oxanorbornadiene (integral ratio of δ
	6.4/85.7) of cycloaddition between CS-mPEG-OND-Ab and
	azido-disulfide over the reaction time detected by ¹ H-NMR
	based on the integration at; (\Box) 60 °C , (Δ) 25 °C, (\bullet) 40 °C,
	and (×) 4 °C. 151
02	¹ H-NMR spectra of ligation progress in the presence of A)
	phosphate buffer and B) 10% DMSO over time between CS-
	mPEG-OND-Ab and azido-disulfide.

9 <u>,</u> 949

LIST OF SCHEMES

SCHEMES

PAGE

CHAPTER II

	2.1	Structure of chitosan.	3
	2.2	Inter- and intra- hydrogen bonding of chitosan.	4
	2.3	(A) Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction,	
		(B) ruthenium(II) -catalyzed cycleaddition, (C) ring	
		strain promoted cycloaddition, (D) ring strain promoted	
		cycloaddition with 4-dibenzocyclooctynol, (E) second	
		generation of ring strain promoted cycloadditon, (F) the	
-		tandem [3+2] cycloaddition-retro-Diels-Alder ligation	
		method.	8
	2.4	(A) Michael addition between thiols and acrylates, (B)	
		thiols and vinyl sulfones, (C) thiols and maleimides, (D)	
		thiols and alkene (R2 and .R3 have to be electron	
		withdrawing groups).	9
÷.	2.5	Synthesis of gold nanoparticles by citrate-capped AuNP.	12
1.0	2.6	Synthesis of gold nanoparticles by Au-S coordination.	12
1811-11	2.7	Physical properties of AuNPS and the concept of AuNP-	
1		based detection system.	13
	2.8	Resonance of gold nanoparticles and electric field of	
		light.	14
	2.9	(A) Structure of antibody consisting of various types of	
		functional groups and (B) interactions between AuNP and	
		antibody.	16
	2.10	Type and procedure of ELISA.	17
	2.11	Gold nanoparitcle modified with responsive polymer	
		linked with biotinlated antibody and the strategy of	
		developed lateral flow immunoassay.	18

CHAPTER III

3.1	Preparation of CS-Phe and CS-Phe-mPEG by a single step	
	(1S) and two-step reactions (2S).	

CHAPTER IV

- 4.1 Synthesis of chitosan-oxanorbornadiene with; (i) EDC,
 DMAP, 1 d, and (ii) DiPEA, 1 d. Purification by intense dialysis against an aqueous NaCl solution and DI water.
- 4.2 Cu-free cycloaddition of azido-modified substrates; 5-azidopentanoic acid, 4; 1,2-bis(3-azidopropyl)disulfane, 5; and (3-azidopropyl)triethoxysilane, 6; to CS-oxanorbornadiene, CS-3, yielding chitosan conjugation products CS-4, CS-5, and CS-6 in 2% CD₃COOH/H₂O.

APPENDICES

- B1 (A) water soluble chitosan coming from complexation between -NH₂ of chitosan and HOBt, (B) mechanism of ester linkage by using EDC conjugating agent.
- D1 (A) Sauebrey equation, eq. 3, (Huang *et al.*, 2000; Nishino *et al.*, 2004) for analysis of immobilized mass per surface area (ΔM), and (B) QCM spectra and calculation of immobilized IS-CS-Phe1.0-mPEG0.3, and immobilized allergen including allergen immobilization equation.

-

95

1. C

31

PAGE

56