METHANE ADSORPTION BY ACTIVATED CARBONS: COMPARISON AMONG COCONUT-, PALM-, AND BITUMINOUS COAL BASED ACTIVATED CARBONS

Wasa Sunthonsuriyawong

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University and Institut Français du Pétrole 2013

Thesis Title:	Methane Adsorption by Activated Carbons: Comparison
	among Coconut-, Palm-, and Bituminous Coal Based
Ч. н	Activated Carbons
By:	Wasa Sunthonsuriyawong
Program:	Petroleum Technology
Thesis Advisors:	Asst. Prof. Boonyarach Kitiyanan
	Assoc. Prof. Pramoch Rangsunvigit
	Dr. Santi Kulprathipanja

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

...... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

B. Kitiganon

(Asst. Prof. Boonyarach Kitiyanan)

amoch of

(Assoc. Prof. Pramoch Rangsunvigit)

Sant Kulpalhip

(Dr. Santi Kulprathipanja)

M

(Assoc. Prof. Thirasak Rirksomboon)

Month Jon

(Asst. Prof. Attasak Jaree)

ABSTRACT

5473025063 : Petroleum Technology Program
Wasa Sunthonsuriyawong: Methane Adsorption by Activated
Carbons: Comparison among Coconut-, Palm-, and Bituminous Coal
Based Activated Carbons
Thesis Advisors: Asst. Prof. Boonyarach Kitiyanan,
Assoc. Prof. Pramoch Rangsunvigit, and Dr. Santi Kulprathipanja
74 pp.
Keywords : Activated Carbon, adsorption, isotherm

Consumption of natural gas as a vehicular fuel has continuously increased in Thailand. Compressed natural gas (CNG) is natural gas which is compressed and stored under high pressure \sim 3,600 psi. To increase the travel distance per fill up, the storage capacity needs to be enhanced. It has been suggested that a porous material such as activated carbon can adsorb natural gas, and thus, increase the capacity of natural gas storage. Therefore, this research focuses on methane adsorption using several types of commercial activated carbon, such as activated carbons derived from coconut shell, palm shell, and bituminous coal with different iodine number; and coconut-based activated carbon by chemical activation process. Methane adsorption was measured by a volumetric apparatus under the pressure up to 1,000 psia at temperatures of 35, 40, and 45 °C. In addition, the physical properties of activated carbons were characterized by BET surface analysis, and Field Emission Scanning Electron Microscope (FE-SEM). The surface area, micropore volume, total pore volume, and average pore diameter played an important role in methane adsorption. A higher surface area of activated carbons led to greater methane adsorption capacity (mmol/g).

บทคัดย่อ

วษา สุนทรสุริยวงศ์: การดูดซับก๊าซมีเทนด้วยถ่านกัมมันต์ : เปรียบเทียบระหว่างถ่าน กัมมันต์ที่ผลิตจากกะลามะพร้าว, กะลาปาล์ม และถ่านหินบิทูมินัส (Methane Adsorption by Activated Carbons: Comparison among Coconut-, Palm-, and Bituminous Coal Based Activated Carbons) อ.ที่ปรึกษา: ผศ. คร. บุนยรัชต์ กิติยานันท์ รศ. คร. ปราโมช รังสรรค์วิจิตร และ คร.สันติ กุลประทีปัญญา 74 หน้า

ในปัจจุบันการใช้ยานพาหนะที่ใช้ก๊าซธรรมชาติเป็นเชื้อเพลิงมีปริมาณเพิ่มขึ้นอย่าง ต่อเนื่องในประเทศไทย เชื้อเพลิงที่ถูกนำมาใช้เรียกว่า ก๊าซธรรมชาติอัค คือก๊าซธรรมชาติที่ถูกอัค จนมีความคันสูงกว่า 3,600 ปอนค์/ตารางนิ้วและถูกเก็บไว้ในถังเก็บทนแรงคันสูง การที่ ยานพาหนะจะสามารถขับเคลื่อนได้ในระยะทางที่เพิ่มขึ้นต่อการเติมก๊าซธรรมชาติในหนึ่งครั้ง จึง จำเป็นต้องเพิ่มประสิทธิภาพของถังกักเก็บก๊าซธรรมชาติ การเติมตัวดูดซับ เช่น ถ่านกัมมันต์ ลง ในถังเพื่อเพิ่มปริมาณการดูคซับของก๊าซธรรมชาติอัคในถังบรรจุก๊าซเป็นวิธีที่ได้รับการสนใจ ้สึกษา ดังนั้น งานวิจัยนี้จึงศึกษาการดูดซับก๊าซมีเทนด้วยถ่านกัมมันต์เชิงพาณิชย์ซึ่งเตรียมมาจาก สารตั้งต้นต่างชนิดกันและมีเลขไอโอดีนแตกต่างกัน ได้แก่ ถ่านกัมมันต์ที่เตรียมจากกะลามะพร้าว กะลาปาล์ม และถ่านหินบิทูมินัส อีกทั้งศึกษาการใช้ถ่านกัมมันต์ที่ผลิตขึ้นเองจากกะลามะพร้าว และใช้วิธีการกระตุ้นทางเคมีโดยสารละลายโพแทสเซียมคาร์บอเนตด้วย ปริมาณการดูดซับก๊าซ มีเทนหาใค้จากเครื่องมือเชิงปริมาตร ภายใต้ความคันสูงถึง 1,000 ปอนค์/ตารางนิ้ว ที่อุณหภูมิ 35 40 และ 45 องศาเซลเซียส โดยทดสอบสมบัติทางกายภาพของถ่านกัมมันต์ด้วยเครื่องมือวิเคราะห์ พื้นที่ผิวบีอีที (BET surface analysis) และกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Field Emission Scanning Electron Microscope (FE-SEM)) จากผลการทดลองพบว่า พื้นที่ผิว ปริมาตรรู พรุน ปริมาตรรูพรุนทั้งหมด และขนาดของรูพรุน เป็นตัวแปรสำคัญในการดูคซับก๊าซมีเทน โดยเฉพาะอย่างยิ่ง ถ้าถ่านกัมมันต์มีพื้นที่ผิวมากจะทำให้ความสามารถในการดูดซับก๊าซมีเทน (มิลลิโมลต่อกรับ) มากด้วย

ACKNOWLEDGEMENTS

First of all, I would like to express my deepest appreciation to my advisor, Asst. Prof. Boonyarach Kitiyanan, and my co-advisors, Assoc. Prof. Pramoch Rangsunvigit and Dr. Santi Kulprathipanja, for their valuable guidance, encouragement, and understanding throughout this research. Their positive attitudes contributed significantly to inspire and maintain my enthusiasm throughout the whole period. I am proud to be their student.

I would like to sincerely thank Assoc. Prof. Thirasak Rirksomboon and Asst. Prof. Attasak Jaree for kindly serving on my thesis committee. Their sincere suggestions are definitely imperative for accomplishing my thesis.

Next, I would like to thanks Mr. Atsadawut Siangsai and Ms. Narumol Kumpoomee for their assistance and suggestions.

This thesis work is funded by the Petroleum and Petrochemical College, Chulalongkorn University; Center of Excellence on Petrochemicals and Materials Technology, Thailand; and National Metal and Materials Technology Center, National Science and Technology Development Agency, Ministry of Science and Technology, Thailand; for providing the financial support for this thesis work.

My gratitude is also extended to all staffs of the Petroleum and Petrochemical College, Chulalongkorn University, for their kind assistance and cooperation.

Furthermore, I would like to thank all of my friends for their friendly assistance, creative suggestions, and encouragement. I had a very good time working with them all.

Finally, I would really like to express my sincere gratitude to my family, especially my parents, for their love, understanding and infinite support.

TABLE OF CONTENTS

Title page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	viii
List of Figures	х
Abbreviations	xii

CHAPTER

Ι	INTRODUCTION	1
II	LITERATURE REVIEW	3
	2.1 Natural Gas	3
	2.2 Natural Gas Storage	4
	2.2.1 Compressed Natural Gas (CNG)	4
	2.2.2 Liquefied Natural Gas (LNG)	5
	2.2.3 Adsorbed Natural Gas (ANG)	5
	2.3 Adsorption	5
	2.3.1 Adsorption Isotherms	7
	2.4 Activated Carbon	9
	2.4.1 Production of Activated Carbon	9
	2.5 Literature Review	11
III	EXPERIMENTAL	20
	3.1 Materials and Equipments	20
	3.2 Experimental Procedures	21
	3.2.1 Characterization of Adsorbents	21

	3.2.2 Methane Adsorption by Activated Carbons	23
	3.2.3 Production of Activated Carbons	26
IV	RESULTS AND DISCUSSION	28
	4.1 Characterization of Adsorbents	28
	4.2 Methane Adsorption by Activated Carbons	33
	4.3 Production of Activated Carbons	44
V	CONCLUSIONS AND RECOMMENDATIONS	50
	5.1 Conclusions	50
	5.2 Recommendations	51
	REFERENCES	52
	APPENDICES	57
	Appendix A Specifications of the Commercial	
	Activated carbons	57
	Appendix B Amount of Methane Adsorbed on	
	all Activated Carbons	58
	CURRICULUM VITAE	74

LIST OF TABLES

TABLE		PAGE
2.1	Typical composition of natural gas	3
4.1	Physical BET surface properties of studied activated carbons	28
4.2	The capacity of methane adsorption (mmol/g) at 1,000 psia	
	and different temperature	39
4.3	The capacity of methane adsorption per BET surface area	
	(mmol/m ²) at 1,000 psia and different temperature	42
4.4	Characteristics of carbonized coconut shell at different	
	conditions	44
4.5	Characteristics of coconut-based activated carbon at	
	different activation conditions	47
Al	Specifications of the commercial activated carbons	57
A2	Physical properties of adsorbents (Kumpoomee, 2012)	57
B1	The amount of methane adsorption on A (IN 1100) at 35 °C	58
B2	The amount of methane adsorption on A (IN 1100) at 40 °C	59
B3	The amount of methane adsorption on A (IN 1100) at 45 °C	59
B4	The amount of methane adsorption on B (IN 1067) at 35 °C	60
B5	The amount of methane adsorption on B (IN 1067) at 40 °C	60
B6	The amount of methane adsorption on B (IN 1067) at 45 °C	61
B7	The amount of methane adsorption on C (IN 1100) at 35 °C	61
B8	The amount of methane adsorption on C (IN 1100) at 40 °C	62
B9	The amount of methane adsorption on C (IN 1100) at 45 °C	62
B10	The amount of methane adsorption on D (IN 937) at 35 °C	63
B11	The amount of methane adsorption on D (IN 937) at 40 °C	63
B12	The amount of methane adsorption on D (IN 937) at 45 °C	64
B13	The amount of methane adsorption on E (IN 1035) at 35 °C	64
B14	The amount of methane adsorption on E (IN 1035) at 40 °C	65
B15	The amount of methane adsorption on E (IN 1035) at 45 °C	65

B16	The amount of methane adsorption on F (IN 879) at 35 $^{\circ}$ C	66
B17	The amount of methane adsorption on F (IN 879) at 40 °C	66
B18	The amount of methane adsorption on F (IN 879) at 45 °C	67
B19	The amount of methane adsorption on G (IN 987) at 35 °C	67
B20	The amount of methane adsorption on G (IN 987) at 40 °C	68
B21	The amount of methane adsorption on G (IN 987) at 45 °C	68
B22	The amount of methane adsorption on $\text{Co-K}_2\text{CO}_3/1\text{h}$ at 35 °C	69
B23	The amount of methane adsorption on Co-K ₂ CO ₃ /1h at 40 $^{\circ}$ C	69
B24	The amount of methane adsorption on Co-K ₂ CO ₃ /1h at 45 $^{\circ}$ C	70
B25	The amount of methane adsorption on Co-K ₂ CO ₃ /2h at 35 $^{\circ}$ C	70
B26	The amount of methane adsorption on Co-K ₂ CO ₃ /2h at 40 °C	71
B27	The amount of methane adsorption on Co-K ₂ CO ₃ /2h at 45 $^{\circ}$ C	71
B28	The amount of methane adsorption on Co-K ₂ CO ₃ /3h at 35 $^{\circ}$ C	72
B29	The amount of methane adsorption on Co-K ₂ CO ₃ /3h at 40 $^{\circ}$ C	72
B30	The amount of methane adsorption on Co-K ₂ CO ₃ /3h at 45 °C	73

LIST OF FIGURES

FIGURE PAGE

2.1	The IUPAC classification for adsorption isotherms	8
3.1	Schematic of volumetric apparatus	24
3.2	Schematic diagram of apparatus to produce activated carbon	27
4.1	FE-SEM micrographs of raw coconut shell	29
4.2	FE-SEM images of coconut-based activated carbon (IN-1100)	30
4.3	FE-SEM images of bituminous coal-based activated carbon	
	(IN-1067)	30
4.4	FE-SEM images of palm-based activated carbon (IN-1100)	30
4.5	FE-SEM images of bituminous coal-based activated carbon	
	(IN-937)	31
4.6	FE-SEM images of bituminous coal-based activated carbon	
	(IN-1035)	31
4.7	FE-SEM images of bituminous coal-based activated carbon	
	(IN-879)	31
4.8	FE-SEM images of bituminous coal-based activated carbon	
	(IN-987)	32
4.9	FE-SEM images of coconut-based char at 400 °C and 60 min	32
4.10	FE-SEM images of coconut-based activated carbon with	
	K ₂ CO ₃ /1h	32
4.11	FE-SEM images of coconut-based activated carbon with	
	$K_2CO_3/2$ h	33
4.12	FE-SEM images of coconut-based activated carbon with	
	$K_2CO_3/3$ h	33
4.13	Methane adsorption (mmol/g) at 1,000 psia and 40 °C as	
	a function of BET surface area (m ² /g)	34

FIGURE

4.14	Methane adsorption (mmol/g) at 1,000 psia and 40 °C as	
	a function of micropore volume (cc/g)	34
4.15	Methane adsorption (mmol/g) at 1,000 psia and 40 °C as	
	a function of total pore volume (cc/g)	35
4.16	Methane adsorption (mmol/g) at 1,000 psia and 40 °C as	
	a function of DR micropore (Å)	35
4.17	Methane adsorption per BET surface area (mmol/m ²) at	
	1,000 psia and 40 °C as a function of BET surface area (m^2/g)	36
4.18	Methane adsorption on activated carbons at 35°C	37
4.19	Methane adsorption on activated carbons at 40°C	37
4.20	Methane adsorption on activated carbons at 45°C	38
4.21	Methane adsorption per BET surface (mmol/m ²) of activated	
	carbons as a function of equilibrium pressure (psia) at 35°C	40
4.22	Methane adsorption per BET surface (mmol/m ²) of activated	
	carbons as a function of equilibrium pressure (psia) at 40°C	41
4.23	Methane adsorption per BET surface (mmol/m ²) of activated	
	carbons as a function of equilibrium pressure (psia) at 45°C	41
4.24	Methane adsorption per BET surface (mmol/m ²) of activated	
	carbons as a function of equilibrium pressure (psia) at 35°C	
	compared with previous work (Kumpoomee, 2012)	43
4.25	Yield (%) and Burn-off (%) vs. time (min) of carbonized char	
	at 400°C	45
4.26	Yield (%) and Burn-off (%) vs. temperature (°C) of carbonized	
	char at 60 min	46
4.27	Influence of activation time on the micropore volume (cc/g)	
	and total pore volume of Co- K ₂ CO ₃	48
4.28	Influence of activation time on BET surface area (m^2/g) of	
	Co-K ₂ CO ₃	48

ABBREVIATIONS

A (IN 1100)	Coconut-based activated carbon at iodine number of 1100
B (IN 1067)	Bituminous coal-based activated carbon at iodine number
	of 1067
C (IN 1100)	Palm-based activated carbon at iodine number of 1100
Co-K ₂ CO ₃ /1h	Coconut-based activated carbon by K_2CO_3 activation at
	1 h of activation time
Co-K ₂ CO ₃ /2h	Coconut-based activated carbon by K ₂ CO ₃ activation at
	2 h of activation time
Co-K ₂ CO ₃ /3h	Coconut-based activated carbon by K ₂ CO ₃ activation at
	3 h of activation time
D (IN 937)	Bituminous coal-based activated carbon at iodine number
	of 937
E (IN 1035)	Bituminous coal-based activated carbon at iodine number
	of 1035
F (IN 879)	Bituminous coal-based activated carbon at iodine number
	of 879
G (IN 987)	Bituminous coal-based activated carbon at iodine number
	of 987