REFERENCES

- Berger, A.H. and Bhown, A.S. (2011) Comparing physisorption and chemisorption solid sorbents for use separating CO₂ from flue gas using temperature swing adsorption. <u>Energy Procedia</u>, 4, 562-567.
- Bonneviot, L. and Kaliaguine, S. (Eds.). (1995) Zeolites: A Refined Tool for Designing Catalytic Sites. Amsterdam: Elsevier.
- Bougie, F., Lauzon-Gauthier, J., and Iliuta, M.C. (2009) Acceleration of the reaction of carbon dioxide into aqueous 2-amino-2-hydroxymethyl-1,3propanediol solutions by piperazine addition. <u>Chemical Engineering Science</u>, 64, 2011-2019.
- Chang, F.Y., Chao, K.J., Cheng, H.H., and Tan, C.S. (2009) Adsorption of CO₂ onto amine-grafted mesoporous silicas. <u>Separation and Purification</u> <u>Technology</u>, 70, 87-95.
- Chatti. R., Baniwal, A.K., Thote, J.A., Kumar, V., Jadhav, P., Lokhande, S.K., Biniwale, R.B., Labhsetwar, N.K., and Rayalu, S.S. (2009) Amine loaded zeolites for carbon dioxide capture: Amine loading and adsorption studies. <u>Microporous and Mesoporous Materials</u>, 121, 84-89.
- Dong, X., Jun, Z., Gang, L., Xiao, P., Webley, P., and Yu-Chun, Z. (2011) Effect of water vapor from power station flue gas on CO₂ capture by vacuum swing adsorption with activated carbon. <u>Journal of Fuel Chemistry and</u> Technology, 39(3), 169-174.
- Freeman, S.A., Dugas, R., Wagener, D.V, Nguyen, T., and Rochelle, G.T. (2009) Carbon dioxide capture with concentrated, aqueous piperazine. <u>Energy</u> <u>Procedia</u>, 1, 1489-1496.
- Garćia, S., Gil, M.V., Martín, C.F., Pis, J.J., Rubiera, F., and Pevida, C. (2011) Breakthrough adsorption study of a commercial activated carbon for precombustion CO₂ capture. <u>Chemical Engineering Journal</u>, 171, 549-556.
- Gargiulo, N., Pepe, F., and Caputo, D. (2012) Modeling carbon dioxide adsorption on polyethylenimine-functionalized TUD-1 mesoporous silica. Journal of Colloid and Interface Science, 367, 348-354.
- Guerrero R.S., Belmabkhout Y., and Sayari A. (2010). Further investigations of CO₂ capture using triamine-grafted pore-expanded mesoporous silica. <u>Chemical Engineering Science</u>, 158, 513-519.

- Heydari-Gorji, A. and Sayari, A. (2011) CO₂ capture on polyethylenimineimpregnated hydrophoblic mesoporous silica: Experimental and kinetic modeling. <u>Chemical Engineering Journal</u>, 173, 72-79.
- Kaithwas, A., Prasad, M., Kulshreshtha, A., and Verma, S. (2012) Industrial wastes derived solid adsorbents for CO₂ capture: A mini review. <u>Chemical</u> <u>Engineering Research and Design</u>, 10, 1632-1641.
- Kemper, J., Ewert, G., and Grünewald, M. (2011) Absorption and regeneration performance of novel reactive amine solvents for post-combustion CO₂ capture. <u>Energy Procedia</u>, 4, 232-239.
- Ko, Y.G., Shin, S.S., and Choi, U.S. (2011) Primary, secondary, and tertiary amines for CO₂ capture: Designing for mesoporous CO₂ adsorbents. <u>Journal of</u> <u>Colloid and Interface Science</u>, 361, 594-602.
- Kohl, A.L. and Reisenfeld, F.C. (Eds.). (1997) Gas Purification, <http://www.google.com/books?hl=th&lr=&id=rpzrIZWOcEC&oi=fnd&pg= PA1&dq=A.+Kohl,+R.+Nielsen,+Gas+Purification&ots=qVvRcsUxUb&sig =8XXOkgVBz3BSYqRtCh66yxGmAbE#v=onepage&q&f=false>
- Krishnapriya, K.R. and Kandaswamy, M. (2010) A new chitosan biopolymer derivative as metal-complexing agent: synthesis, characterization, and metal(II) ion adsorption studies. <u>Carbohydrate Research</u>, 345, 2013-2022.
- Lee, Z.H., Lee, K.T., Bhatia, S., and Mohamed, A.R. (2012) Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials. <u>Renewable and Sustainable Energy Reviews</u>, 16, 2599-2609.
- Li, L., Zhao, N., Wei, W., and Sun, Y. (2011) A review of research progress on CO₂ capture, storage, and utilization in Chinese Academy of Science. <u>Fuel</u>, 108, 112-130.
- Maroto-Valer, M.M., Lu, Z., Zhang, Y., and Tang, Z. (2008) Sorbents for CO₂ capture from high carbon fly ashes. <u>Waste Management</u>, 28, 2320-2328.
- Meziani, M.J., Zajac, J., Jones, D.J., Rozière, J., and Partyka, S. (1997) Surface characterization of mesoporous silicoaluminates of the MCM-41 type: evaluation of polar surface sites using flow calorimetry, adsorption of a cationic surfactant as a function of pore size and aluminum content. Langmuir. 13(20), 5409-5417.
- Plaza, M.G., García, S., Rubiera, F., Pis, J.J., and Pevida, C. (2010) Postcombustion CO₂ capture with a commercial activated carbon: Comparison of different regeneration strategies. <u>Chemical Engineering Journal</u>, 163, 41-47.

- Plaza, M.G., Pevida, C., Arenillas, A., Rubiera, F., and Pis, J.J. (2007) CO₂ capture by adsorption with nitrogen enriched carbons. <u>Fuel</u>, 86, 2204-2212.
- Polasek, J. and Bullin J.A. (2006) Selecting amines for sweetening units. <u>Bryan</u> Research and Engineering, 1-9.
- Quanmin, X., Di, W., Yaping, Z., and Li, Z. (2011) Improvement of aminemodification with piperazine for the adsorption of CO₂. <u>Applied Surface</u> <u>Science</u>, 258, 3859-3863.
- Rochelle, G.T, Chen, E., Freeman, S., Wagener, D.V., Xu, Q., and Voice, A. (2011) Aqueous piperazine as the new standard for CO₂ capture technology. <u>Chemical Engineering Journal</u>, 171, 725-733.
- Rochelle, G.T. and Cullinane, J.T. (2006) Kinetics of carbon dioxide absorption into aqueous potassium carbonate and piperazine. <u>Industrial Engineering</u> <u>Chemical Research</u>, 45, 2531-2545.
- Saha, D. and Deng, S. (2010) Adsorption equilibrium and kinetics of CO₂, CH₄, N₂O, and NH₃ on ordered mesoporous carbon. Journal of Colloid and Interface Science, 345, 402-409.
- Saiwan, C., Srisuwanvichein, S., Yoddee, P., Idem, R., Supap, T., Tontiwachwuthikul P., and Wongpanit, P. (2012) Studies of modification of biopolymer with piperazine derivative for carbon dioxide adsorption, <u>Chemical Engineering Transactions</u>, 29, 211-216.
- Samanta, A. and Bandyopadhyay, S.S. (2008) Absorption of carbon dioxide into aqueous solutions of piperazine activated 2-amino-2-methyl-1-propanol. <u>Chemical Engineering-Science</u>, 64, 1185-1194.
- Sanz, R., Calleja, G., Arencibia, A., and Sanz-Pérez, E.S. (2010) CO₂ adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15. <u>Applied Surface Science</u>, 256, 5323-5328.
- Sayari, A., Belmabkhout, Y., and Serna-Guerrero, R. (2011) Flue gas treatment via CO₂ adsorption. <u>Chemical Engineering Journal</u>, 171, 760-774.
- Schneider, J.J. (2012) Micro- and mesoporous solids: From science to application. Beilstein Journal Nanotechnology, 2, 110–118.
- Shafeeyan, M.S., Daud, W.M.A.W., Houshmand, A., and Shamiri, A. (2010) A review on surface modification of activated carbon for carbon dioxide adsorption. <u>Journal of Analytical and Applied Pyrolysis</u>, 89, 143-151.

- Shafeeyan, M.S., Duad, W.M.A.W., and Houshmand, A. (2011) Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation. <u>Applied Surface Science</u>, 257, 3936-3942.
- Sharma, P., Jun-Kyong, S., Yun-Ho, J., Su-Hyun, C., and Sang-Do, P. (2012) Amine modified and pelletized mesoporous material: Synthesis, texturalmechanical characterization and application in adsorptive separation of carbon dioxide. <u>Powder Technology</u>, 219, 86-98.
- Vaidya, P.D. and Kenig, E.Y. (2007) CO₂-Alkanoamine Reaction Kinetics: A review of Recent Studies. <u>Chemical Engineering and Technology</u>, 30(11), 1467-1474.
- Won-Jin, S., Jung-Sik, C., and Wha-Seung, A. (2008) Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. <u>Microporous and Mesoporous Materials</u>, 113, 31-40.
- Xu, X., Zhao, X., Sun, L., and Liu, X. (2009) Adsorption separation of carbon dioxide, methane and nitrogen on monoethanol amine modified β-zeolite. Journal of Natural Gas Chemistry, 18, 167-172.
- Yan, X., Zhang, L., Zhang, Y., Qiac, K., Yan, Z., and Komarneni, S. (2011) Aminemodified mesocellular silica foams for CO₂ capture. <u>Chemical Engineering</u> <u>Journal</u>, 168, 918-924.
- Zhang, Z., Xu, M., Wang, H., and Li, Z. (2010) Enhancement of CO₂ adsorption on high surface area activated carbon modified by N₂, H₂ and ammonia. <u>Chemical Engineering Journal</u>, 160, 571-577.

APPENDICES

APPENDIX A Preparation Of Piperazine Solution

M = g/Mw * 1000/V

Mw= molecular weight of piperazine (86.14g/mol), V= volume of solvent (5mL) Piperazine was loaded into activated carbon by adding the activated carbon into the piperazine solution for 2 hours stirring at 500rpm.

0	Activated carbon		
Molar (M)	Wt%	Weight (g)	Weight (g)
0.3483	22.82	0.1532	0.5180
0_4644	29.48	0.2164	0.5177
0.5805	33.71	0.2571	0.5055

Note: Wt%= weight percent

 $Weight \% = \frac{Weight of piperazine}{Weight of piperazine + Activated Carbon} * 100$

APPENDIX B Piperazine Calibration Curve

Preparation of 0.35M piperazine stock solution required

Piperazine of 3.0167g in 100 mL aqueous solution

Preparation of piperazine concentration for calibration curve

 $C_1V_1=C_2V_2$; C_1 = the concentration of piperazine (0.5M x 10⁻³) V₁= volume needed to prepare (10 mL), C₂= concentration of stock solution (0.3502M) V₂= volume required to pipette (x=0.0143)

$C_1 \times 10^{-3} (M)$	V ₁ (mL)	C ₂ (M)	V ₂ (mL)
0.5	10	0.3502	0.0143
2.5	10	0.3502	0.0714
4.5	10	0.3502	0.1286
6.5	10	0.3502	0.1857

Figure B1 Calibration curve of piperazine standard.

Analysis of Piperazine by GC

After oven dry of the impregnated activated carbon, it was grinded and weighed (sample1 (0.0607g) and sample2 (0.0810g)) to dissolve the piperazine in 5 mL ethanol and in the final ethanol solution of 10 mL. Next, 5 injections of samples were injected into the GC-FID to find the unknown concentration of piperazine using the calibration curve from the equation y= 13.771x+0.8415; y= peak area of piperazine, 13.771= sensitivity, 0.8415= interception, x= unknown piperazine concentration.

M = g/Mw * 1000/V

M=x=unknown piperazine concentration (2.7753 M x 10⁻³)

Mw= molecular weight of piperazine (86.14g/mol),

V = volume of solvent (10mL), g= weight of piperazine loading (0.2391gram x 10⁻²)

Weight of Act. C = Total weight – weight of piperazine

$$Piperazine \ loading(wt\%) = \frac{Weight \ of \ piperazine}{Weight \ of \ activated \ carbon + piperazine} * 100$$

 Table B1
 Sample 1 and 2; 28.57 wt % piperazine loading on activated carbon

	Sample weight (g)	Peak area*	Pz (g)*	Pz loading
				(wt %)
Sample 1	0.0607	30.84 ±7.738	0.001876 ±0.00048	3.0913 ±0.7974
Sample 2	0.0810	41.61 ±5.575	0.002550 ±0.00035	3.1480 ±0.4306
			Actual Piperazine	3.1197
			loading (wt %)	

 $P_Z^*=5$ average piperazine injections \pm SD, Peak area= 5 average peak area \pm SD

Actual Piperazine loading (wt%)
$$\bar{x} = \frac{1}{2}(x_1 + x_2)$$

; \bar{x} = actual piperazine loading (3.1197 wt%), x₁= average piperazine loading of sample 1 (3.0913wt%), x₂= average piperazine loading of sample 2 (3.1480 wt%) Table B2 Pure activated carbon and 28.57 wt % piperazine loading on activated carbon

	Weight (g)	Carbon (%)	Hydrogen (%)	Nitrogen %
	(Aver. 2runs)	(Aver. 2 runs)	(Aver. 2runs)	(Aver. 2 runs)
Pure Act.C	0.15065 ± 0.0001	65.22 ± 0.8140	0.3804 ± 0.0098	0.49072 ± 0.0120
(Aver. 2runs)				
28.57wt%Pz-Act.C	0.15170 ± 0.0008	68.26 ± 1.4000	2.6800 ± 0.0120	1.6572 ± 0.0754
(Aver. 2runs)				

Table B3 Normalized data of Table B2

	Weight (g)	Carbon (%)	Hydrogen (%)	Nitrogen (%)
	(Aver. 2runs)	(Aver. 2 runs)	(Aver. 2runs)	(Aver. 2 runs)
Pure Act.C (Aver. 2runs)	0.1500 ± 0.0001	64.9386 ± 0.8140	0.3788 ± 0.0098	0.4886 ± 0.0120
28.57wt % Pz-Act.C (Aver. 2runs)	0.1500 ± 0.0008	67.4951 ± 1.4000	2.6500 ± 0.0120	1.6386 ± 0.0754
	L · · · ·		Actual Piperazine	3.5379

 $Total \ N \ \%_{PZ} = N \ \%_{PZ-Act.C} - N \ \%_{Act.C}$ $Total \ weight \ of \ Nitrogen \ (g) = \frac{Total \ N \ \%_{PZ}}{100} * weight \ of \ adsorbent$ $Total \ weight \ of \ Piperazine \ (g) = \frac{Total \ weight \ of \ Nitrogen}{Mw \ of \ Nitrogen \ in \ Piperazine} * Mw \ of \ Piperazine$ $Actual \ Piperazine \ loading \ (wt\%) = \frac{Total \ weight \ of \ Adsorbent}{weight \ of \ adsorbent} * 100$

; Total N $%_{Pz}$ = 1.15%, N $%_{Pz-Act C}$ = 1.6386%, N $%_{Act C}$ = 0.4886%, total weight of nitrogen= 1.7250*10⁻³g, total weight of piperazine= 5.3068*10⁻³g, weight of adsorbent= 0.15g, Mw= molecular weight, Mw of Nitrogen in Piperazine= 28 g mol⁻¹, Mw of Piperazine= 86.14 g mol⁻¹, actual piperazine loading= 3.5379 wt%

APPENDIX C Specification Of Activated Carbon And Equipment

Table C1 Specification of palm shell activated carbon

TECHNICAL	SPECIFICATION					
Product:	Granular activated palm shell bas	ed carbon				
Grade:	PH5 12 X 40 P					
Test Method:	ASTM, Unless otherwise stated					
Application:	Water purification, deodorization	, decolourization,				
	lechlorination and removal of organic compound in water					
PHYSICAL PROPERTIES SPECIFICATION						
Apparent densi	ty (g/cc)	min. 0.48				
Moisture (%w/	w) (as packed)	max. 8				
Ash (%w/w) (a	s packed)	max. 5				
рН		9-11				
Surface area (m	² /g)	min. 1150				
lodine Number	(mg/g) (AWWA B604)	min. 1100				
Hardness Numb	per (%) (ASTM 3802-79)	min. 98				

Mass flow controller specifications:

- a. Model: GFC 17
- b. Flow range: 0-100 %
- c. Accuracy: ± 1.5 %
- d. Repeatability: $\pm 0.25 \%$
- e. Max. Gas Pressure: 1000 psig
- f. Brand: AALBORG

Rotameter specifications:

- a. Model: PMR1-010266
- b. Accuracy: ± 2% full-scale
- c. Repeatability: $\pm 0.25\%$
- d. Max Pressure: 200 psig
- e. Brand: Cole-Parmer

APPENDIX D Preparation For Standard Carbon Dioxide Concentration

Preparation of 1%CO₂ concentration from 15% premixed CO2

$$\%CO_2 = \left(\frac{flow of CO_2}{flow of CO_2 + N_2}\right) * Concentraion of \frac{CO_2}{N_2} * 100$$

Example of calculation of $CO_2 = 1\%$,

Flow of N₂= 70 mL/min (fixed), CO₂ premixed concentration, $\frac{CO_2}{N_2}$ 0.15 Flow of CO₂= required flow (5.0001mL/min)

 TABLE D1
 Required flow rate and actual flow rate for different carbon dioxide

 concentration

1% CO ₂	Peak	Flow of N ₂	Flow of CO ₂	Actual N ₂	Actual CO ₂		
	Area	(mL/min)	(mL/min)	flow	flow		
				(mL/min)	(mL/min)		
Trial(1)	10.83	70	5.0001	70	5		
Trial(2)	11.02			AVG	10.9467		
Trial(3)	10.99			STDEV	0.1021	%SD	0.9331

2% CO ₂	Peak	Flow of N ₂	Flow of CO ₂	Actual N ₂	Actual CO ₂		
	Area	(mL/min)	(mL/min)	flow	flow		
				(mL/min)	(mL/min)		
Trial(1)	15.00	70	10.7687	70	11	-	
Trial(2)	15.11		l	AVG	15.0900		
Trial(3)	15.16			STDEV	0.0800	%SD	0.5424

3% CO ₂	Peak	Flow of N	J ₂	Flow	of	CO ₂	Actual	N_2	Actual	CO2		
	Area	(mL/min)		(mL/m	in)		flow		flow			
							(mL/min)		(mL/min)			
Trial(1)	19.47	70		17.500	0		70		18			
Trial(2)	19.67						AVG		19.49			
Trial(3)	19.33						STDEV		0.1709		%SD	0.8768

4% CO2	Peak	Flow of N ₂	Flow of	CO ₂	Actual	N ₂	Actual	CO ₂		
	Area	(mL/min)	(mL/min)		flow		flow			
					(mL/min)		(mL/min)			
Trial(1)	24.81	70	25.4556		70		26			
Trial(2)	24.83		1		AVG		24.7467			
Trial(3)	24.60				STDEV		0.1274		%SD	0.5149

5% CO ₂	Area	Flow of N ₂	Flow of CO ₂	Actual N ₂	Actual CO ₂		
		(mL/min)	(mL/min)	flow	flow		
				(mL/min)	(mL/min)		
Trial(1)	30.02	70	34.9983	70	35		_
Trial(2)	30.26			AVG	30.0333		
Trial(3)	29.82			STDEV	0.2203	%SD	0.7335

Flow of	Actual Flo	ow ^a (mL/mi	n)					
CO ₂	Trial I	Trial 2	Trial 3	Average Actual	Flow	Actual	(%)	CO ₂
(mL/min)				(mL/min)		concentrati	ion	
5	18	18	18	18		2.0558		
11	26.2	26.2	26.3	26.23		2.8192		
18	36.2	36.1	36.2	36.17		3.6291		
26	47.2	47	47.3	47.17		4.4084		
35	59.1	59.2	59.1	59.13		5.1429		
Flow of	Actual Flo	w ^a (mL/mi	n)			L		
N ₂	Trial 1	Trial 2	Trial 3	Average Actual	Flow			
(mL/min)				(mL/min)				
7()	113	113	114	113.33				

TABLE D2 Actual flow (mL/min) from mass flow controllers by bubble flowmeter

Actual Flow ^a= measured by bubble flow meter

Actual %CO₂ =
$$\left(\frac{\text{average actual flow of CO}_2}{\text{average actual flow of CO}_2 + N_2}\right) * Concentraion of \frac{CO_2}{N_2}$$

* 100

Example of calculation of CO₂=2.0558%

Average actual flow of N₂= 1133.33 mL/min, CO₂ premixed concentration, $\frac{CO_2}{N_2}$ 0.15 Average actual flow of CO₂= 18 mL/min

Figure D1 Calibration curve of standard $\rm CO_2$ concentration for 5 mL /min.

Preparation for CO₂ adsorption at 4.4084 %CO₂ concentration and adsorbent

After line cleaning-up, 0.5 g of adsorbent in the column was pre-dry at 60 °C for 1h while purging with N₂ gas at 113 mL/min. Then, 4.4084 % premixed CO₂ of dry gas at 5 mL/min was allowed to flow into the packed bed adsorber to carry out the experiment at 25, 45 and 55 °C at atmospheric pressure until the CO₂ concentrations of feed gas at the outlet of adsorber reaches equilibrium.

Time (min)	Peak area of	Retention Time	C _A	C_A/C_0	
10 s	CO ₂				
0	0	-	0.3524	0.08018	
3	0	-	0.3524	0.08018	
6	0	-	0.3524	0.08018	
9	0	-	0.3524	0.08018	
12	0	-	0.3524	0.08018	
15	0	-	0.3524	0.08018	
18	0	-	0.3524	0.08018	
21	4.60	1.45	1.0996	0.25017	
24	19.52	1.45	3.5232	0.80155	
27	22.63	1.43	4.0283	0.91648	
30	23.01	1.45	4.0901	0.93052	
33	23.65	1.45	4.1940	0.95418	
36	23.88	1.45	4.2314	0.96267	
39	24.05	1.45	4.2590	0.96896	
42	24.33	1.43	4.3045	0.97930	
45	24.54	1.42	4.3386	0.98707	
48	24.66	1.45	4.3581	0.99150	
51	24.65	1.45	4.3564	0.99113	
54	24.89	1.45	4.3954	1	
57	24.83	1.47	4.3857	0.99778	
60	24.83	1.47	4.3857	0.99778	

TABLE D3 Adsorption data from Gas Chromatogram of pure Act. C at 25 °C

Retention Time= time carbon dioxide appear, $C_0 = CO_2$ concentrations of the influent, $C_A = CO_2$ concentration of effluent stream of the column

From the calibration curve obtaining an equation y = 6.1563x - 2.1696; y= peak area of CO₂, 6.1563 = sensitivity, -2.1696= interception, $x=C_A$.

Time (min)	Peak area of	Retention	C _A	C_A/C_0
	CO ₂	Time		
0	0	-	0.3524	0.0806
3	0	-	0.3524	0.0806
6	0	-	0.3524	0.0806
9	0	-	0.3524	0.0806
12	18.08	1.43	3.2892	0.7519
15	20.63	1.43	3.7035	0.8466
18	21.37	1.43	3.8237	0.8741
21	23.08	1.42	4.1014	0.9376
24	23.62	1.43	4.1891	0.9577
27	23.72	1.45	4.2054	0.9614
30	24.13	1.43	4.2720	0.9766
33	24.09	1.43	4.2655	0.9751
36	24.15	1.43	4.2752	0.9773
39	24.28	1.40	4.2963	0.9822
42	24.76	1.43	4.3743	1
45	24.74	1.42	4.3711	0.9993

TABLE D4 Adsorption data from Gas Chromatogram of pure Act. C at 45 $^{\rm o}{\rm C}$

FABLE D5 Adsorption data from Gas Chromatogram of pure Act. C at 55 °C

Time (min)	Peak area of	Retention Time	C _A	C_A/C_0
	CO_2			
0	0	-	0.3524	0.0805
3	0	-	0.3524	0.0805
6	0	-	0.3524	0.0805
9	4.53	1.45	1.0883	0.2486
12	22.97	1.43	4.0836	0.9328
15	23.45	1.43	4.1615	0.9506
18	24.04	1.43	4.2574	0.9725
21	24.59	1.40	4.3467	0.9929
24	24.49	1.42	4.3305	0.9892
27	24.53	1.43	4.3370	0.9907
30	24.48	1.45	4.3288	0.9889
33	24.78	1.45	4.3776	1

Time (min)	Peak area of	Retention Time	C _A	C_A/C_0	
	CO_2		0.0504		
0	0	-	0.3524	0.0799	
3	0	-	0.3524	0.0799	
6	0	-	0.3524	0.0799	
9	0	-	0.3524	0.0799	
12	0	-	0.3524	0.0799	
15	0	-	0.3524	0.0799	
18	0	-	0.3524	0.0799	
21	0	-	0.3524	0.0799	
24	0	-	0.3524	0.0799	
27	0	-	0.3524	0.0799	
30	18.10	1.43	3.2925	0.7469	
33	19.97	1.45	3.5963	0.8158	
36	21.00	1.43	3.7636	0.8537	
39	22.75	1.45	4.0478	0.9182	
42	23.04	1.45	4.0949	0.9289	
45	23.84	1.45	4.2249	0.9584	
48	23.72	1.42	4.2054	0.9539	
51	23.86	1.45	4.2281	0.9591	
54	24.10	1.45	4.2671	0.9679	
57	24.08	1.45	4.2639	0.9672	
60	24.89	1.45	4.3954	0.9971	
63	24.08	1.45	4.2639	0.9672	
66	24.95	1.45	4.4052	0.9993	
69	24.97	1.43	4.4084	1	

TABLE D6 Adsorption data from Gas Chromatogram of 3.12wt% Piperazine-Activated carbon at 25 $^{\circ}\mathrm{C}$

Time (min)	Peak area of	Retention Time	C _A	C_A/C_0
-	CO ₂			
0	0	-	0.3524	0.0810
3	0	-	0.3524	0.0810
6	0	-	0.3524	0.0810
9	0	-	0.3524	0.0810
12	0	-	0.3524	0.0810
15	0	-	0.3524	0.0810
18	21.21	1.40	3.7977	0.8727
21	22.86	1.43	4.0657	0.9343
24	23.69	1.43	4.2005	0.9653
27	23.97	1.45	4.2460	0.9757
30	24.62	1.43	4.3516	1
33	24.53	1.43	4.3370	0.9966
36	24.55	1.40	4.3402	0.9974
39	24.37	1.43	4.3110	0.9907
42	24.62	1.42	4.3516	1

TABLE D7 Adsorption data from Gas Chromatogram of 3.12wt% Piperazine-Activated carbon at 45 $^{\circ}\mathrm{C}$

TABLE D8 Adsorption data from Gas Chromatogram of 3.12wt% Piperazine-Activated carbon at 55 °C

Time (min)	Peak area of	Retention Time	C _A	C_A/C_0
	CO ₂			
0	0	-	0.3524	0.0811
3	0	-	0.3524	0.0811
6	0	-	0.3524	0.0811
9	0	-	0.3524	0.0811
12	16.59	1.45	3.0472	0.7010
15	22.41	1.45	3.9926	0.9185
18	23.93	1.45	4.2395	0.9753
21	24.49	1.43	4.3305	0.9963
24	24.59	1.42	4.3467	1
27	24.14	1.43	4.2736	0.9832
30	24.50	1.43	4.3321	0.9966

Time (min)	Peak area of	Retention Time	C _A	C_A/C_0
	CO ₂			
0	0	-	0.3524	0.0798
3	0	-	0.3524	0.0798
6	0	-	0.3524	0.0798
9	19.49	1.45	3.5182	0.7966
12	22.47	1.42	4.0023	0.9062
15	23.97	1.43	4.2460	0.9614
18	23.85	1.45	4.2265	0.9570
21	24.15	1.43	4.2752	0.9680
24	24.54	1.43	4.3386	0.9823
27	25.02	1.45	4.4165	1
30	24.69	1.40	4.3629	0.9879
33	24.54	1.45	4.3386	0.9823
36	24.78	1.43	4.3776	0.9911
39	24.67	1.45	4.3597	0.9871

TABLE D8Adsorption data from Gas Chromatogram of moisturized Act.C at 25 °C

TABLE D9 Adsorption data from Gas Chromatogram of moisturized Act.C at 45 °C

Time (min)	Peak area of	Retention Time	C _A	C_A/C_0
	CO_2			
0	0	-	0.3524	0.0823
3	0	-	0.3524	0.0823
6	22.37	1.45	3.9861	0.9306
9	23.16	1.45	4.1144	0.9606
12	23.57	1.45	4.1810	0.9761
15	23.85	1.45	4.2265	0.9867
18	23.95	1.40	4.2427	0.9905
21	24.20	1.45	4.2834	1
24	24.20	1.45	4.2834	1

Time (min)	Peak area of CO ₂	Retention Time	CA	C_A/C_0
0	0	-	0.3524	0.0794
3	6.36	1.45	1.3855	0.3122
6	24.12	1.45	4.2704	0.9623
9	24.81	1.43	4.3824	0.9876
12	24.61	1.42	4.3500	0.9802
15	25.01	1.43	4.4149	0.9949
18	25.15	1.40	4.4377	1

TABLE D10 Adsorption data from Gas Chromatogram of moisturized Act.C at 55 °C

TABLE D11 Required flow rate and actual flow rate for different carbon dioxideconcentration (2nd Calibration curve)

1% CO ₂	Peak	Flow of N ₂	Flow of CO ₂	Actual N ₂	Actual CO ₂		
	Area	(mL/min)	(mL/min)	flow	flow		
				(mL/min)	(mL/min)		
Trial(1)	12.69	70	5.0001	70	5		
Trial(2)	12.57		I	AVG	12.65		
Trial(3)	12.69	•		STDEV	0.069282	%SD	0.547684

2% CO ₂	Peak	Flow of N ₂	Flow of CO ₂	Actual N ₂	Actual CO ₂	
	Area	(mL/min)	(mL/min)	flow	flow	
				(mL/min)	(mL/min)	
Trial(1)	17.61	70	10.7687	70	11	
Trial(2)	17.86			AVG	17.72	
Trial(3)	17.69			STDEV	0.127671	%SD 0.720494

3% CO ₂	Peak	Flow of N ₂	Flow of CO ₂	Actual N ₂	Actual CO ₂		
	Area	(mL/min)	(mL/min)	flow	flow		
				(mL/min)	(mL/min)		
Trial(1)	22.64	70	17.5000	70	18		
Trial(2)	22.63		I	AVG	19.49		
Trial(3)	22.54			STDEV	0.055076	%SD	0.243662

4% CO2	Peak	Flow of N ₂	Flow of CO ₂	Actual N ₂	Actual CO ₂		
	Area	(mL/min)	(mL/min)	flow	flow		
				(mL/min)	(mL/min)		
Trial(1)	27.82	70	25.4556	70	26		
Trial(2)	28.04		1	AVG	29.03333	,	
Trial(3)	28.24			STDEV	0.210079	%SD	0.749391

5% CO ₂	Area	Flow of N_2	Flow of CO ₂	Actual N ₂	Actual CO ₂	
		(mL/min)	(mL/min)	flow	flow	
				(mL/min)	(mL/min)	
Trial(1)	32.91	70	34.9983	70	35	
Trial(2)	33.17		L	AVG	33.02667	
Trial(3)	23.00			STDEV	0.132035	%SD 0.399784

The 2nd calibration curve was done to improve the accuracy of the measurement as time passed.

From the calibration curve obtaining an equation y = 6.576x - 0.9404; y= peak area of CO₂, 6.576=sensitivity, -0.9494= interception, $x=C_A$.

Time (min)	Peak area of	Retention Time	C _A	C_A/C_0
	CO ₂			
0	0	-	0.14300	0.03256
3	0	-	0.14300	0.03256
6	0	-	0.14300	0.03256
9	0	-	0.14300	0.03256
12	0	-	0.14300	0.03256
15	16.49	1.33	2.65061	0.60354
18	23.79	1.30	3.76076	0.85630
21	25.32	1.33	3.99337	0.90928
24	26.28	1.33	4.13936	0.94252
27	26.39	1.28	4.15608	0.94633
30	26.99	1.33	4.24732	0.96711
33	26.89	1.33	4.23117	0.96364
36	26.49	1.28	4.17129	0.94979
39	27.29	1.33	4.29294	0.97749
42	27.10	1.33	4.26405	0.97091
45	27.94	1.30	4.39179	1

TABLE D12 Adsorption data from Gas Chromatogram of moisturized 3.12 wt %Act.C-piperazine at 25 °C

TABLE D13 Adsorption data from Gas Chromatogram of moisturized 3.12 wt % Act.C-piperazine at 45 °C

Time (min)	Peak area of	Retention Time	C _A	C_A/C_0
	CO ₂			
0	0	-	0.14300	0.03256
3	2.40	1.35	0.50797	0.11749
6	2.56	1.35	0.53230	0.12312
9	19.04	1.28	3.03838	0.70278
12	24.53	1.32	3.87324	0.89589
15	25.99	1.32	4.09526	0.94724
18	26.95	1.28	4.24124	0.98101
21	26.79	1.33	4.21691	0.97538
24	26.81	1.32	4.21995	0.97608
27	26.75	1.28	4.20931	0.97362
30	27.49	1.32	4.32336	1
33	27.35	1.33	4.30207	0.99508

Time (min)	Peak area of	Retention Time	CA	C_A/C_0
	CO ₂			
0	0	-	0.14300	0.03256
3	6.42	1.33	1.11928	0.25592
6	14.69	1.32	2.37689	0.54335
9	22.60	1.30	3.57974	0.81850
12	24.71	1.33	3.90061	0.89187
15	25.46	1.33	4.01466	0.91794
18	27.82	1.30	4.37354	1

TABLE D14 Adsorption data from Gas Chromatogram of moisturized 3.12 wt % Act.C-piperazine at 55 $^{\circ}\text{C}$

TABLE D15	Required	flow	rate	and	actual	flow	rate	for	different	carbon	dioxide
concentration (3 rd Calibrat	tion c	urve)								

1% CO ₂	Peak	Flow of N ₂	Flow of CO ₂	Actual N ₂	Actual CO ₂		
	Area	(mL/min)	(mL/min)	flow	flow		
				(mL/min)	(mL/min)		
Trial(1)	12.73	70	5.0001	70	5	1	
Trial(2)	12.60		I	AVG	12.63667	1	
Trial(3)	12.58	-		STDEV	0.081445	%SD	0.64452

2% CO ₂	Peak	Flow of N ₂	Flow of CO ₂	Actual N ₂	Actual CO ₂		
	Area	(mL/min)	(mL/min)	flow	flow		
				(mL/min)	(mL/min)		
Trial(1)	17.77	70	10.7687	70	11		
Trial(2)	17.90		L	AVG	17.84		
Trial(3)	17.85			STDEV	0.06557	%SD	0.36757

3% CO2	Peak	Flow of N ₂	Flow of CO ₂	Actual N ₂	Actual CO ₂		
	Area	(mL/min)	(mL/min)	flow	flow		
				(mL/min)	(mL/min)		
Trial(1)	22.78	70	17.5000	70	18		
Trial(2)	22.85			AVG	22.8767		
Trial(3)	23.00			STDEV	0.1124	%SD	0.49132

4% CO ₂	Peak	Flow of N ₂	Flow of CO ₂	Actual N ₂	Actual CO ₂		
	Area	(mL/min)	(mL/min)	flow	flow		
				(mL/min)	(mL/min)		
Trial(1)	28.58	70	25.4556	70	26		
Trial(2)	28.53			AVG	28.63		
Trial(3)	28.78			STDEV	0.13229	%SD	0.46206

5% CO2	Area	Flow of N	Flow	of	CO_2	Actual	N_2	Actual	CO ₂		
		(mL/min)	(mL/m	in)		flow		flow			
						(mL/min)		(mL/min)			
Trial(1)	33.05	70	34.998	3		70		35			
Trial(2)	32.89					AVG		32.9533			
Trial(3)	32.92					STDEV		0.08505		%SD	0.25809

Figure D3 3rd Calibration curve of standard CO₂ concentration for 5mL /min.

From the calibration curve obtaining an equation y = 6.6248x - 0.9353; y= peak area of CO₂, 6.6248=sensitivity, -0.9353= interception, $x=C_A$.

TABLE D16-1	Adsorption da	ita from	Gas Chron	natogram	of pure	Act.	C at 25	°C for
regeneration								

Time (min)	Peak area of	Retention Time	CA	C_A/C_0
	CO ₂			
0	0	-	0.1412	0.0317
3	0	-	0.1412	0.0317
6	0	-	0.1412	0.0317
9	0	-	0.1412	0.0317
12	0	-	0.1412	0.0317
15	0	-	0.1412	0.0317
18	0	-	0.1412	0.0317
21	13.82	1.43	2.2273	0.4994
24	25.82	1.45	4.0462	0.9073
27	26.63	1.45	4.1609	0.9330
30	27.48	1.47	4.2892	0.9618
33	27.76	1.45	4.3315	0.9712
36	28.08	1.47	4.3798	0.9821
39	28.12	1.42	4.3858	0.9834
42	28.13	1.45	4.3873	0.9838
45	28.16	1.45	4.3919	0.9848
48	28.50	1.45	4.4432	0.9963
51	28.33	1.45	4.4175	0.9905
54	28.61	1.42	4.4598	1

Time (min)	Peak area of	Retention Time	C _A	C_A/C_0
	CO ₂			
0	0	-	0.1412	0.0317
3	0	-	0.1412	0.0317
6	0	-	0.1412	0.0317
9	0	-	0.1412	0.0317
12	0	-	0.1412	0.0317
15	0	-	0.1412	0.0317
18	3.14	1.47	0.6152	0.1377
21	24.39	1.45	3.8228	0.8554
24	26.95	1.47	4.2092	0.9519
27	27.72	1.45	4.3255	0.9679
30	27.98	1.42	4.3647	0.9767
33	27.73	1.45	4.3270	0.9683
36	28.12	1.45	4.3858	0.9814
39	28.38	1.48	4.4251	0.9902
42	28.52	1.47	4.4462	0.9949
45	28.52	1.47	4.4462	0.9949
48	28.67	1.43	4.4689	1

TABLE D16-2 Adsorption data from Gas Chromatogram of regenerated Act. Cat 25 °C

Time (min)	Peak area of	Retention Time	CA	C_A/C_0
	CO ₂			
0	0	-	0.1412	0.0315
3	0	-	0.1412	0.0315
6	0	-	0.1412	0.0315
9	0	-	0.1412	0.0315
12	0	-	0.1412	0.0315
15	0	-	0.1412	0.0315
18	0	-	0.1412	0.0315
21	0	-	0.1412	0.0315
24	0	-	0.1412	0.0315
27	4.30	1.45	0.7903	0.1761
30	21.02	1.38	3.3141	0.7384
33	24.37	1.45	3.8198	0.8510
36	25.19	1.43	3.9436	0.8786
39	26.08	1.43	4.0779	0.9085
42	26.80	1.43	4.1866	0.9327
45	26.85	1.43	4.1941	0.9344
48	27.26	1.40	4.2560	0.9482
51	27.50	1.45	4.2923	0.9563
54	27.81	1.43	4.3390	0.9667
57	27.95	1.43	4.3602	0.9714
60	28.53	1.45	4.4477	0.9909
63	28.80	1.45	4.4885	1

TABLE D17-1 Adsorption data from Gas Chromatogram of 3.12wt% Piperazine-Activated carbon at 25 °C for regeneration

Time (min)	Peak area of	Retention Time	C _A	C_A/C_0
	CO ₂			
0	0	-	0.1412	0.0315
3	0	-	0.1412	0.0315
6	0	-	0.1412	0.0315
9	0	-	0.1412	0.0315
12	0	-	0.1412	0.0315
15	0	-	0.1412	0.0315
18	0	-	0.1412	0.0315
21	0	-	0.1412	0.0315
24	10.28	1.45	1.6929	0.3810
27	22.73	1.45	3.5722	0.8040
30	24.64	1.42	3.8605	0.8689
33	26.36	1.45	4.1202	0.9273
36	26.77	1.45	4.1821	0.9412
39	27.20	1.43	4.2470	0.9558
42	27.77	1.43	4.3330	0.9752
45	27.41	1.45	4.2787	0.9630
48	27.67	1.40	4.3179	0.9718
51	27.97	1.43	4.3632	0.9820
54	27.88	1.43	4.3496	0.9789
57	28.12	1.43	4.3858	0.9871
60	28.40	1.42	4.4281	0.9966
63	28.50	1.45	4.4432	1

TABLE D17-2 Adsorption data from Gas Chromatogram of regenerated 3.12wt%Piperazine-Activated carbon at 25 °C

TABLE D18 Required flow rate and actual flow rate for different carbon dioxideconcentration (4th Calibration curve)

1% CO2	Peak	Flow of N ₂	Flow of CO ₂	Actual N ₂	Actual CO ₂		
	Area	(mL/min)	(mL/min)	flow	flow		
				(mL/min)	(mL/min)		
Trial(1)	7.11	70	5.0001	70	5		
Trial(2)	7.01			AVG	7.08667		
Trial(3)	7.14			STDEV	0.06807	%SD	0.96052

	2% CO ₂	Peak	Flow	of	N ₂	Flow	of	CO ₂	Actual	N ₂	Actual	CO2		
		Area	(mL/m	in)		(mL/m	in)		flow		flow			
ļ									(mL/min)		(mL/min)			
	Trial(1)	10.39	70			10.768	7		70		11		1	
1	Trial(2)	10.61							AVG		10.4833			
	Trial(3)	10.45							STDEV		0.11372		%SD	0.108482
	Trial(1) Trial(2) Trial(3)	10.39 10.61 10.45	70			10.768	7		(mL/min) 70 AVG STDEV		(mL/min) 11 10.4833 0.11372		%SD	0.10

3% CO2	Peak	Flow of N ₂	Flow of CO ₂	Actual N ₂	Actual CO ₂		
	Area	(mL/min)	(mL/min)	flow	flow		
				(mL/min)	(mL/min)		
Trial(1)	13.85	70	17.5000	70	18		
Irial(2)	13.89			AVG	13.88		
Trial(3)	13.91			STDEV	0.03055	%SD	0.22005

4% CO2	Peak	Flow	of	N_2	Flow	of	CO ₂	Actual	N ₂	Actual	CO ₂		
	Area	(mL/mi	n)		(mL/m	in)		flow		flow			
								(mL/min)		(mL/min)			
Trial(1)	16.66	70			25.455	6		70		26			
Trial(2)	16.71							AVG		16.8233			
Trial(3)	17.10							STDEV		0.2409		%SD	1.43195

5% CO2	Area	Flow	of	N_2	Flow	of	CO ₂	Actual	N ₂	Actual	CO ₂		
		(mL/mir	n)		(mL/m	in)		flow		flow			
								(mL/min)		(mL/min)			
Trial(1)	19.80	70			34.998	3		70		35			
Trial(2)	19.33							AVG	-	19.5967			
Trial(3)	19.66							STDEV		0.24132		%SD	1.23141

Figure D4 4th Calibration curve of standard CO₂ concentration for 3mL /min.

From the calibration curve obtaining an equation y = 4.0406x - 1.0171; y= peak area of CO₂, 4.0406= sensitivity, -1.0171= interception, $x=C_A$.

Time (min)	Peak area of	Retention Time	C _A	C_A/C_0
	CO ₂			
0	0	-	0.2517	0.0579
3	13.03	1.28	3.4765	0.7983
6	15.92	1.33	4.1917	0.9625
9	15.90	1.32	4.1868	0.9614
12	16.27	1.33	4.2783	0.9824
15	15.71	1.32	4.1396	0.9506
18	15.81	1.33	4.1645	0.9562
21	16.13	1.28	4.2437	0.9744
24	16.58	1.32	4.3551	1

 TABLE D19
 Adsorption data from Gas Chromatogram of Biopolymer-Pz at 25 °C

Time (min)	Peak area of	Retention Time	CA	C_A/C_0
	CO ₂			
0	0	-	0.2517	0.0579
3	14.57	1.32	3.8576	0.8873
6	16.12	1.32	4.2412	0.9755
9	16.20	1.33	4.2610	0.9801
12	16.21	1.32	4.2635	0.9806
15	16.04	1.30	4.2214	0.9710
18	16.15	1.28	4.2487	0.9772
21	16.18	1.30	4.2561	0.9789
24	16.55	1.32	4.3476	1

TABLE D20 Adsorption data from Gas Chromatogram of moisturized Biopolymer-Pz at 25 $^{\circ}\mathrm{C}$

Adsorbent	Weight	Adsorption	Flow rate	Molar flow	t _{tot}	t _{mathlab}	tq	Cc	Q _{ads}	Q _{ada}
Туре	(g)	Temperature	(mL/min)	rate (mol/min)	(min)	(min)	(min)		(mmol/g)	(mg/g)
		(°C)		x 10 ⁻⁴						
	0.5226	25	4.98	2.04	60	38.2541	21.7458	0.044084	0.3742	16.4654
Pure Act.C	0.5068	45	4.95	2.02	45	33.0667	11.9333	0.044084	0.2101	9.2455
	0.5041	55	5.01	2.05	33	23.3030	9.6970	0.044084	0.1737	7.6446
	0.5005	25	5.02	2.05	69	39.8789	29.1211	0.044084	0.5266	23.1689
3.12wt%Pz-Ac	0.5055	45	5.04	2.06	42	26.0345	15.9656	0.044084	0.2870	12.6268
	0.5080	55	5.13	2.10	30	19.0693	10.9307	0.044084	0.1990	8.7560
Moisturized	0.5450	25	5.22	2.13	39	30.9511	8.0489	0.044084	0.1390	6.1152
Act.C	0.5063	45	5.05	2.07	24	19.4038	4.5962	0.044084	0.0826	3.6365
	0.5024	55	5.09	2.08	18	14.3307	3.6693	0.044084	0_0670	2.9488
Moisturized	0.5124	25	5.04	2.06	45	29.2004	15.7996	0.044084	0.2802	12.3274
Pz-Act.C	0.5059	45	5.05	2.07	33	24.6201	8 3799	0.044084	0.1511	6.6486
	0.5001	55	5.11	2.09	18	11.8321	6.1679	0.044084	0.1136	4.9992
Repeated Pure Act C	0.5041	25	5.06	2.07	54	32.6976	21.3024	0.044084	0.3855	16.9617
Regenerated	0.5041	25	5.10	2.09	48	28.4493	19.5507	0.044084	0.3566	15.6895
Pure Act.C										
Repeated 3 12wt% Pz-Act C	0.5079	25	5.06	2.07	63	33.0618	29.9382	0.044084	0.5377	23.6595
Regenerated 3.12wt% Pz-Act.C	0.5079	25	5.06	2.07	63	37.4134	25.5866	0.044084	0.4532	19.9407
Biopolymer-Pz	0.2490	25	3.02	1.24	24	21_3439	2.6561	0.044084	0.0581	2.5553
Moisturized Biopolymer-Pz	0.2599	25	3.02	1.24	24	21.8389	2.1611	0.044084	0.0453	1 9919

TABLE D21Summarized data obtained for CO_2 adsorption with 4.4084% CO_2 concentration

$$Molar flow rate = \frac{Px V}{R x T}$$

Example of calculation of Pure Act.C at 25 °C

Pressure= 1atm= 101325 Pa, V= Volume (4.98 m³ x 10⁻⁶). R= 8.31451 Pa*m³*K⁻¹*mol, T= temperature= Kelvin (K) = (25°C) +273

$$t_q = \int_0^\infty \left(1 - \frac{C_A}{C_0}\right) dt$$

 t_q = stoichiometric time determined from the breakthrough curve via MATLAB software version 7.10.0.499

$$Q_{ads} = \frac{FC_0 t_q}{W}$$

 Q_{ads} = dynamic adsorption capacity (0.3742 mmol/g) F= molar flow rate (4.98 mol/min) x 10⁻⁴, C₀= 0.044084, t_q= 21.7458 mins, W= 0.5226 g

 Table D22
 Summary of CO₂ adsorption with activated carbon and piperazine-activated carbon

	Q _{ads} (mmol/g)					
	Dry Condition		Moisture effect		Regeneration	
Adsorption	Pure Act. C	3.12wt%Pz-Ac	Act.C	3.12wt%	Act.C	3.12wt%
lemp (°C)	(Aver. 2 runs)	(Aver. 2 runs)		Pz-Act.C		Pz-Act.C
25	0.3799 ± 0.0080	0.5322 <u>+</u> 0.0078	0.1390	0.2802	0.3566	0.4532
45	0.2101	0.2870	0.0826	0.1511		
55	0.1737	0.1990	0.0670	0.1136		

Note:

Effect of amine = ((0.5322-0.3799)/0.3799)x100 = 40.09 % increase of adsorption

Effect of moisture = 63.41 % adsorption reduction of act. C, purely due to active site deactivation.

= 47.35 % adsorption reduction for 3.12 wt % PZ-Act. C.

Regeneration efficiency = 93.87 % and 85.16 % for act.C and 3.12 wt % PZ-Act. C

Effect of temperature:

Pure Act. C: adsorption decreases 44.70 % at 45 °C and 54.28 % at 55 °C with respect to 25 °C

Moisturized Act. C: adsorption decreases 40.58% at 45 °C and 51.80 % at 55 °C with respect to 25°C

PZ-Act. C: adsorption decreases 46.07 % at 45 °C and 62.61 % at 55 °C with respect to 25° C

Moisturized PZ-act. C: adsorption decreases 46% at 45 °C and 59% at 55 °C with respect to 25 °C

CURRICULUM VITAE

Name: Mr. Watana Kangwanwatana

Date of Birth: July 24, 1991

Nationality: Thai

University Education:

2011-2013 Master Degree of Science, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok, Thailand 2007-2011 Bachelor Degree of Science, Faculty of Science, King Mongkut's

Institute of Technology Ladkrabang, Bangkok, Thailand

Work Experience:

2010	Position:	Quality Control of Lubricating Oil (Internship)			
	Company name:	PTT Lubricant Prakanong			

Proceedings:

 Kangwanwatana, W.; Saiwan, C.; and Tontiwachwuthikul, P. (2013, April 23)
 Study of CO₂ adsorption using adsorbent modified with piperazine. <u>Proceedings</u> of <u>PETRO-MAT and SYM 2013</u>, Bangkok, Thailand.