

REFERENCES

- Brown, A.S.C., Hargreaves, J.S.J., and Rijniersce, B. (1998). A study of the structural and catalytic effects of sulfation on iron oxide catalysts prepared from goethite and ferrihydrite precursors for methane oxidation. <u>Catalysis Letters</u>, 53, 7-13.
- Brunner, T.J., Wick, P., Manser, P., Spohn, P., Grass, R.N., Limbach, L.K., Bruinink, A., and Stark, W.J. (2006). In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. <u>Environmental Science & Technology</u>, 40, 43-74.
- Bumajdad, A., Eastoe, J., Zaki, M.I., Heenan, R.K., and Pasupulety, L. (2007). Generation of metal oxide nanoparticles in optimised microemulsions. Journal of Colloid and Interface Science, 312, 68-75.
- Cao, S., and Zhu, Y. (2008). Hierarchically nanostructured α-Fe₂O₃ hollow spheres:
 Preparation, growth mechanism, photocatalytic property, and application in water treatment. Journal of Physicl Chememistry C, 112, 6253-6257.
- Cao, X., Prozorov, R., Koltypin, Y., Kataby, G., Felner, I., and Gedanken, A. (1997). Synthesis of pure amorphous Fe₂O₃. Journal of Materials Research, 12, 402-406.
- Chauhan, P., Annapoomi, S., and Trikha, S.K. (1999). Humidity-sensing properties of nanocrystalline haematite thin films prepared by sol-gel processing. <u>Thin Solid Films</u>, 346, 266-268.
- Chunhui, S., Mu, P., and Runzhang, Y. (2008). The effect of particle size gradation of conductive fillers on the conductivity and the flexural strength of composite bipolar plate. <u>International Journal of Hydrogen Energy</u>, 33, 1035-1039.
- Cornell, R.M., and Giovanoli, R. (1985). Effect of solution conditions on the proportion and morphology of goethite formed from ferrihydrite. <u>Clays and</u> <u>Clay Minerals</u>, 33, 424-432.
- Cornell, R.M., and Schwertmann, U. (1996). <u>The Iron Oxides: Structure, Properties,</u> <u>Reaction, Occurrences and Uses</u>. Weinheim: Wiley-VCH.

- Cornell, R.M., and Schwertmann, U. (2003). <u>The Iron Oxides: Structure, Properties,</u> <u>Reaction, Occurrences and Uses</u>. Weinheim: Wiley-VCH.
- Dave, S.R., and Gao, X. (2009). Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: A versatile and evolving technology. <u>Nanobiotechnol</u>, 1, 583-609.
- De Yoreo, J.J., and Vekilov, P.G. (2003). Principles of crystal nucleation and growth. <u>Reviews in Mineralogy and Geochemistry</u>, 54, 57-93.
- Diamandescu, L., Mihaila-Tarabasanu, D., Popescu-Pogrion, N., Totovina, A., and Bibicu, I. (1999). Hydrothermal synthesis and characterization of some polycrystalline α-iron oxides. <u>Ceramics International</u>, 25, 689-692.
- Greedon, J.E. (1994). <u>Magnetic Oxides in Encyclopedia of Inorganic Chemistry</u>. Bruce King: John Wiley & Sons.
- Han, L.-H., Liu, H., and Wei, Y. (2011). In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method. <u>Powder Technology</u>, 207, 42-46.
- Han, M.G., and Armes, S.P. (2003). Synthesis of poly(3,4-ethylenedioxythiophene)/ silica colloidal nanocomposites. <u>Langmuir</u>, 19, 4523-4526.
- Hu, X., and Yu, J.C. (2008). Continuous aspect-ratio tuning and fine shape control of monodisperse α-Fe₂O₃ nanocrystals by a programmed microwavehydrothermal method. <u>Advanced Functional Materials</u>, 18, 880-887.
- Huang, Z., Feng, Q., Chen, Z., Chen, S., and Du, Y. (2003). Surface and size effects of magnetic properties in ferromagnetic nanoparticles. <u>Microelectronic Engineering</u>, 66, 128-135.
- Huo, L., Li, W., Lu, L., Cui, H., Xi, S., Wang, J., Zhao, B., Shen, Y., and Lu, Z.
 (2000). Preparation, structure, and properties of three-dimensional ordered α-Fe₂O₃ nanoparticulate film. Chemistry of Materials, 12, 790-794.
- Jing, Z., and Wu, S. (2004). Synthesis and characterization of monodisperse hematite nanoparticles modified by surfactants via hydrothermal approach. <u>Materials Letters</u>, 58, 3637-3640.
- Kacprzak, D. (2001). <u>Electeng 204 Lec Engineering Electromagnetics</u>. New Zealand: University of Auckland.

- Kandori, K., Ohnishi, S., Fukusumi, M., and Morisada, Y. (2008). Effects of anions on the morphology and structure of hematite particles produced from forced hydrolysis of Fe(NO₃)₃–HNO₃. <u>Colloids and Surfaces A: Physicochemical and Engineering Aspects</u>, 331, 232-238.
- Kay, A., Cesar, I., and Gratzel, M. (2006). New benchmark for water photooxidation by nanostructured α-Fe₂O₃ films. Journal of American Chemical So-<u>ciety</u>, 128, 15714-15721.
- Larson, B. (2006). Introduction to Magnetic Particle Inspection: The Hysteresis Loop and Magnetic Properties. USA: Iowa State University.
- Li, L., Li, G., Smith R.L. Jr., and Inomata, H. (2000). Microstructural evolution and magnetic properties of NiFe₂O₄ nanocrystals dispersed in amorphous silica. <u>Chemistry of Materials</u>, 12, 3705-3714.
- Lian, J., Duan, X., Ma, J., Peng, P., Kim, T., and Zheng, W. (2009). Hematite (α-Fe₂O₃) with various morphologies: Ionic liquid-assisted synthesis, formation mechanism, and properties. <u>ACS Nano</u>, 3, 3749-3761.
- Lian, S., Wang, E., Kang, Z., Bai, Y., Gao, L., Jiang, M., Hu, C., and Xu, L. (2004). Synthesis of magnetite nanorods and porous hematite nanorods. <u>Solid State</u> <u>Communications</u>, 129, 485-490.
- Liu, H., Li, P., Lu, B., Wei, Y., and Sun, Y. (2009). Transformation of ferrihydrite in the presence and absence of trace Fe(II): The effect of preparation procedure of ferrihydrite. Journal of Solid State Chemistry, 182, 1767-1771.
- Liu, H., Ma, M., Qin, M., Yang, L., and Wei, Y. (2010). Studies on the controllable transformation of ferrihydrite. <u>Journal of Solid State Chemistry</u>, 183, 2045-2050.
- Liu, H., Wei, Y., and Sun, Y. (2005). The formation of hematite from ferrihydrite using Fe(II) as a catalyst. Journal of Molecular Catalysis A: Chemical, 226, 135-140.
- Liu, H., Wei, Y., Li, P., Zhang, Y., and Sun, Y. (2007). Catalytic synthesis of nanosized hematite particles in solution. <u>Materials Chemistry and Physics</u>, 102, 1-6.

- Liu, X., Fu, S., Xiao, H., and Huang, C. (2005). Preparation and characterization of shuttle-like α-Fe₂O₃ nanoparticles by supermolecular template. <u>Journal of</u> <u>Solid State Chemistry</u>, 178, 2798-2803.
- Lu, J., Chen, D., and Jiao, X. (2006). Fabrication, characterization, and formation mechanism of hollow spindle-like hematite via a solvothermal process. <u>Journal of Colloid and Interface Science</u>, 303, 437-443.
- Machala, L., Tucek, J., and Zboril, R. (2011). Polymorphous transformations of nanometric iron(III) oxide: A review. <u>Chemistry of Materials</u>, 23, 3255-3272.
- Mercier, J.P., Zambelli, G., and Kurz, W. (2002). <u>Introduction to Materials Science</u>. Netherlands: Elsevier.
- Min, C., Huang, Y., and Liu, L. (2007). High-yield synthesis and magnetic property of hematite nanorhombohedras through a facile solution route. <u>Materials</u> <u>Letters</u>, 61, 4756-4758.
- Music, S., Krehula, S., Popovic, S., and Skoko, Z. (2003). Some factors influencing forced hydrolysis of FeCl₃ solutions. <u>Materials Letters</u>, 57, 1096-1102.
- Nassar, N., and Husein, M. (2006). Preparation of iron oxide nanoparticles from FeCl₃ solid powder using microemulsions. <u>Physica Status Solidi</u>, 203, 1324-1328.
- Ocana, M., Morales, M.P., and Cerna, C.J. (1995). The growth mechanism of α-Fe₂O₃ ellipsoidal particles in solution. <u>Journal of Colloid and Interface</u> <u>Science</u>, 171, 85-91.
- Petcharoen, K., and Sirivat, A. (2012). Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. <u>Materials Science</u> <u>and Engineering B</u>, 177, 421-427.
- Raming, T.P., Winnubst, A.J.A., van Kats, C.M., and Philipse, A.P. (2002). The synthesis and magnetic properties of nanosized hematite (α-Fe₂O₃) particles. <u>Journal of Colloid and Interface Science</u>, 249, 346-350.
- Ristic, M., De Grave, E., Music, S., Popovic, S., and Orehovec, Z. (2007). Transformation of low crystalline ferrihydrite to α-Fe₂O₃ in the solid state. <u>Journal of Molecular Structure</u>, 834, 454-460.
- Sarangi, P.P., Vadera, S.R., Patra, M.K., Prakash, C., and Ghosh, N.N. (2009). DC electrical resistivity and magnetic property of single-phase α-Fe₂O₃ nano-

powder synthesized by a simple chemical method. Journal of American Ceramic Society, 92, 2425-2428.

- Schwertmann, U., and Cornell, R.M. (2000). <u>Iron Oxides in the Laboratory Prepara-</u> tion and Characterization. Weinheim: Wiley-VCH.
- Schwertmann, U., Friedl, J., and Stanjek, H. (1999). From Fe(III) Ions to ferrihydrite and then to hematite. Journal of Colloid and Interface Science, 209, 215-223.
- Spaldin, N.A. (2003). <u>Magnetic Materials: Fundamentals and Device Applications</u>. UK: University of Cambridge.
- Su, C., Wang, H., and Liu, X. (2011). Controllable fabrication and growth mechanism of hematite cubes. <u>Crystal Research and Technology</u>, 46, 209-214.
- Sun, Q., Lu, X., and Liang, G. (2010). Controlled template-free hydrothermal synthesis of hematite nanoplatelets. <u>Materials Letters</u>, 64, 2006-2008.
- Tang, B., Wang, G., Zhuo, L., Ge, J., and Cui, L. (2006). Facile route to α-FeOOH and α-Fe₂O₃ nanorods and magnetic property of α-Fe₂O₃ nanorods. <u>Inor-ganic Chemistry</u>, 45, 5196-5200.
- Teja, A.S., and Koh, P.-Y. (2009). Synthesis, properties, and applications of magnetic iron oxide nanoparticles. <u>Progress in Crystal Growth and Characterization of Materials</u>, 55, 22-45.
- Vatta, L.L., Sanderson, R.D., and Koch, K.R. (2006). Magnetic nanoparticles: Properties and potential applications. <u>Pure and Applied Chemistry</u>, 78, 1793-1801.
- Wang, D., Cao, C., Xue, S., and Zhu, H. (2005). γ-Fe₂O₃ oriented growth by surfactant molecules in microemulsion. <u>Journal of Crystal Growth</u>, 277, 238-245.
- Wang, L., and Jiang. T. (2009). Preparation of Fe₃O₄ spherical nanoporous particles facilitated by polyethylene glycol 4000. <u>Nanoscale Research Letters</u>, 4, 1439-1446.
- Watanabe, A., and Kozuka, H. (2003). Photoanodic properties of sol-gel-derived Fe₂O₃ thin films containing dispersed gold and silver particles. <u>Journal of</u> <u>Physical Chemistry B</u>, 107, 12713-12720.

- Wu, Z., Yu, K., Zhang, S., and Xie, Y. (2008). Hematite hollow spheres with a mesoporous shell: Controlled synthesis and applications in gas sensor and lithium ion batteries. Journal of Physical Chemistry C, 112, 11307-11313.
- Zhang, Y.C., Tang, J.Y., and Hu, X.Y. (2008). Controllable synthesis and magnetic properties of pure hematite and maghemite nanocrystals from a molecular precursor. <u>Journal of Alloys and Compounds</u>, 462, 24-28.
- Zysler, R.D., Mansilla, M.V., and Fiorani, D. (2004). Surface effects in α-Fe₂O₃ nanoparticles. <u>European Physical Journal B</u>, 41, 171-175.

APPENDICES

Appendix A Amounts of Chemicals Used to Synthesize Hematite Particles and Yield Percentage of the Products

Chemicals	Molecular formula	Molecular weight (g/mol)	Appearance	Solubility
Ferric chloride an-	FeCl ₃	162.21	dark green	Easily soluble in
hydrous			powder	cold, hot water
Ferrous chloride	FeCl ₂ ·4H ₂ O	198.81	light yellow	Easily soluble in
tetrahydrate			powder	cold water
Sodium hydroxide	NaOH	40.00	white pellet	Easily soluble in
				cold water
Ammonia solution	NH ₃ ·H ₂ O	17.03	clear solution	Completely so-
				luble in water
Sodium chloride	NaCl	58.44	white powder	Easily soluble in
				cold, hot water

Table A1 Properties of the chemicals used in the experiment

Table A2 Amounts of chemicals used to synthesize hematite particles at various precursor concentrations with the constant $n_{\text{Fe(III)}}/n_{\text{Fe(III)}} = 0.02$, pH 7, 100 °C, and 1h

Precursor	50 ml Fe(III)	Fe(II)	6.0 M NaOH	1.0 M NaOH	Distilled water
conc.(M)	conc.(M)	weight(g)	volume(ml)	volume(ml)	volume(ml)
0.1	0.2	0.0398	5.0	0.4	44.6
0.2	0.4	0.0795	10.0	0.8	39.2
0.3	0.6	0.1193	15.0	1.2	33.8
0.4	0.8	0.1590	20.0	1.6	28.4
0.5	1.0	0.1988	25.0	2.0	23.0

Table A3 Amounts of chemicals used to synthesize hematite particles at various precursor concentrations (dilution method) with the constant $n_{\text{Fe(II)}}/n_{\text{Fe(III)}} = 0.02$, pH 7, 100 °C, and 1h

Precursor	1.0M Fe(III) +	6.0M NaOH	Fe(II) wt.	1.0M NaOH	Distilled water
conc. (M)	water vol. (ml)	vol. (ml)	(g)	vol. (ml)	vol. (ml)
0.1	25.0 + 100	12.5	0.099405	1.0	111.5
0.2	25.0 + 37.5	12.5	0.099405	1.0	49.0
0.3	25.0 + 16.6	12.5	0.099405	1.0	28.2
0.4	25.0 + 6.25	12.5	0.099405	1.0	17.75
0.5	25.0 + 0	12.5	0.099405	1.0	11.5

Table A4 Amounts of chemicals used to synthesize hematite particles at various solution pHs with the constant C = 0.3 M, $n_{Fc(III)}/n_{Fc(III)} = 0.02$, 100 °C, and 1h

Solution	1.0M Fe(III) +	6.0M NaOH	Fe(II) wt.	1.0M NaOH	Distilled water
рН	water vol. (ml)	vol. (ml)	(g)	vol. (ml)	vol. (ml)
рН 5	25.0 + 16.6	12.5	0.0994	0	29.2
PH 6	25.0 + 16.6	12.5	0.0994	1.0	28.2
рН 7	25.0 + 16.6	12.5	0.0994	2.0	27.2
pH 8	25.0 + 16.6	12.5	0.0994	3.0	26.2
рН 9	25.0 + 16.6	12.5	0.0994	3.5	25.7

Table A5 Amounts of chemicals used to synthesize hematite particles at various amounts of Fe(II) with the constant C = 0.3 M, pH 7, 100 °C, and 1h

n _{Fe(II)} /	1.0M Fe(III) +	6.0M NaOH	Fe(II) wt.	1.0M NaOH	Distilled water
n _{Fe(III)}	water vol. (ml)	vol. (ml)	(g)	vol. (ml)	vol. (ml)
0.01	25.0 + 16.6	12.5	0.0497	0.5	28.7
0.02	25.0 + 16.6	12.5	0.0994	1.0	28.2
0.03	25.0 + 16.6	12.5	0.1491	1.5	27.7
0.04	25.0 + 16.6	12.5	0.1988	2.0	27.2
0.05	25.0 + 16.6	12.5	0.2485	2.5	26.7

Table A6 Amounts of chemicals used to synthesize hematite particles at various ionic strength (*I*) values with the constant C = 0.3 M, $n_{\text{Fe(II)}}/n_{\text{Fe(III)}} = 0.02$, pH 7, 100 °C, and 1h

/ (M)	1.0M Fe(III) + water vol. (ml)	6.0M NaOH vol. (ml)	Fe(II) wt. (g)	1.0M NaOH vol. (ml)	5.0M NaCl vol. (ml)	Distilled water vol. (ml)
1.0	25.0 + 16.6	12.5	0.0994	1.0	1.5	26.7
1.2	25.0 + 16.6	12.5	0.0994	1.0	4.8	23.4
1.4	25.0 + 16.6	12.5	0.0994	1.0	8.1	20.0
1.6	25.0 + 16.6	12.5	0.0994	1.0	11.5	16.7
1.8	25.0 + 16.6	12.5	0.0994	1.0	14.8	13.4
2.0	25.0 + 16.6	12.5	0.0994	1.0	18.1	10.0

Note: The ionic strength (I) of the solution is calculated from equation (A1) as follow:

$$I = \sum_{i=1}^{n} C_i \ Z_i^2 \tag{A1}$$

where I = ionic strength (mol/L)

 C_i = molar concentration of each individual ion in the solution (mol/L)

 Z_i = valence of each individual ion in the solution

Table A7 Summary of yield percentage (%) of the synthesized hematite particles at various precursor concentrations with the constant $n_{\text{Fe(II)}}/n_{\text{Fe(III)}} = 0.02$, pH 7, 100 °C, and 1h

Sampla	Calculated weight	Sample weight	Yield percentage
Sample	(g)	(g)	(%)
Hematite $C = 0.05$ M	0.3992	0.1425	35.7
Hematite $C = 0.1$ M	0.7985	0.4862	60.9
Hematite $C = 0.2$ M	1.5969	1.2484	78.2
Hematite $C = 0.3$ M	2.3954	1.9968	83.4
Hematite $C = 0.4 \text{ M}$	3.1938	2.7951	87.5
Hematite $C = 0.5$ M	3.9923	3.5689	89.4

Appendix B XRD Patterns of the Synthesized Hematite Nanoparticles

A powder X-ray diffractometer (Bruker AXS, D8 Advance) was used to examine the crystal structure of the synthesized hematite particles which were below the nanometer scale. The Cu K α ($\lambda = 1.5406$ Å) radiation source was operated at 40 kV/30 mA and used the K β filter to eliminate the interference peak. Divergence slit and scattering slit 0.5 deg together with 0.3 mm of receiving slit were set on the instrument. The hematite powder was placed into a sample holder and the measurement was continuously run. The experiments were recorded by monitoring the diffraction in the diffraction angle (2 θ) range from 10.000 to 80.000 deg with a scan speed of 1.000 deg/min and a scan step of 0.020 deg.

The crystallite sizes of the synthesized hematite nanoparticles could be estimated from the XRD patterns by using Scherrer's equation (B1) as follow:

$$D = \frac{k\lambda}{\beta \cos\theta} \tag{B1}$$

where D = crystallite size (nm)

- k =grain shape dependent constant (assumed to be 0.89 for the spherical particles)
- λ = wave length of X-ray beam (nm) (λ = 0.15406 nm for Cu K α radiation)
- β = full width at half maximum (FWHM) for the considered diffraction peak (rad)

 θ = diffraction angle (°)

Note: For hematite, the crystallite sizes calculated from (104) diffraction peak located at $2\theta = 33.2^{\circ}$

Sample	104 peak (°)	FWHM (°)	Crystallite size (nm)
Hematite $C = 0.1$ M	33.168	0.403	20.3
Hematite $C = 0.3$ M	33.230	0.245	33.5
Hematite $C = 0.5$ M	33.238	0.203	40.4

 Table B1
 Summary of the estimated crystallite sizes of the synthesized hematite

 nanoparticles from the XRD patterns using Scherrer's equation

Figure B1 XRD pattern of the 2-line ferrihydrite precursor (C = 0.3 M, and pH 7).

Figure B2 XRD pattern of the synthesized hematite nanoparticles (C = 0.1 M, $n_{\text{Fe(III)}}/n_{\text{Fe(III)}} = 0.02$, pH 7, 100 °C, and 1h).

Figure B3 XRD pattern of the synthesized hematite nanoparticles (C = 0.3 M, $n_{\text{Fe(III)}}/n_{\text{Fe(III)}} = 0.02$, pH 7, 100 °C, and 1h).

Figure B4 XRD pattern of the synthesized hematite nanoparticles (C = 0.5 M, $n_{\text{Fe(II)}}/n_{\text{Fe(III)}} = 0.02$, pH 7, 100 °C, and 1h).

Table B2 Powder X-ray diffraction data of ferrihydrite and hematite (Joint Commit-tee on Powder Diffraction Standard; JCPDS) (adapted from Cornell and Schwert-mann, 2003)

Ferrihydrite (Fe5HO8·4H2O)				Hemati	ite (a-Fe ₂ O ₃)	
2θ (°)	Ι	hkl	<i>d</i> (nm)	2θ (°)	Ι	hkl	<i>d</i> (nm)
35.452	100	110*	0.250	24.033	30	012	0.3684
39.920	80	112	0.221	33.027	100	104	0.2700
45.505	80	113	0.196	35.452	70	110	0.2591
52,579	50	114	0.172	40.798	20	113	0.2207
60.771	70	115	0.151	49.212	40	024	0.1841
62.260	80	300*	0.148	53.888	45	116	0.1694
				57.168	10	122	0.1599
Note: Th	ere are tv	vo types of	ferrihydrite:	62.260	30	214	0.1486
2-line ferrihydrite; and 6-line ferrihydrite				63.687	30	300	0.1454
(the stars (*) are assigned to peaks of 2-			71.403	10	10 <u>10</u>	0.1312	
line ferril	hydrite).			74.679	8	220	0.1259

Note: 2θ is the diffraction angle (°); *I* is the relative intensity; *hkl* is the Miller indices; and *d* is the spacing between the adjacent (*hkl*) lattice planes (nm).

Appendix C FT-IR Spectra of the Synthesized Hematite Nanoparticles

A Fourier transform infrared spectrometer (Thermo Nicolet, Nexus 670), with a deuterated triglycine sulfate detector, was used to characterize the functional groups of the synthesized hematite particles. For the KBr-pellet technique, optical grade KBr (Carlo Erba Reagent) was used as the background material. The hematite powder was grounded in a motar and mixed with dried KBr at ratio of the sample:KBr was about 1:20, then the mixed powder was compressed into the pellets under the pressure of 7 tons. The absorption mode was run 64 scans with a resolution of ± 4 cm⁻¹ in the wave number in range of 4000-400 cm⁻¹.

Figure C1 FT-IR spectrum of the 2-line ferrihydrite precursor (C=0.3 M, and pH 7).

Figure C2 FT-IR spectra of the synthesized hematite nanoparticles $(n_{\text{Fe(II)}}/n_{\text{Fe(III)}} = 0.02, \text{ pH 7, 100 °C, and 1h}).$

Table C1 Summary of FT-IR bands of the 2-line ferrihydrite precursor and the synthesized hematite nanoparticles

Sampla	Observed wavenumbers (cm ⁻¹)			
Sample	Adsorbed water	Fe-O bond		
2-line ferrihydrite	3384 and 1621	577 and 430		
Hematite C = 0.1 M	3452 and 1638	567 and 477		
Hematite $C = 0.3$ M	3448 and 1637	569 and 472		
Hematite $C = 0.5$ M	3449 and 1632	560 and 475		

Sample	Functional groups	Wavenumbers (cm ⁻¹)	References
	Adsorbed or lattice	3357 and 1622	(Ristic <i>et al.</i> , 2007)
Ferrihydrite (Fe ₅ HO ₈ ·4H ₂ O)	water (stretching and bending vibra- tion of water mole- cules)	~3400 and ~1600	(Liu <i>et al.</i> , 2009)
	Fa O hand	580 and 441	(Ristic et al., 2007)
	re-O bond	~585 and ~459	(Liu et al., 2009)
	Adsorbed water	3420 and 1635	(Jing and Wu, 2004)
Hematite (α-Fe₂O3)	(stretching and bending vibration of water mole- cules)	3359.8 and 1616.2	(Liu <i>et al.</i> , 2007)
	Fe-O bond	560 and 479 578.6 and 474.3	(Jing and Wu, 2004) (Liu <i>et al.</i> , 2007)
	L		

 Table C2
 Peak positions for IR bands of ferrihydrite and hematite

Appendix D TG/DTA Curves of the Synthesized Hematite Nanoparticles

A thermogravimetric/differential thermal analyzer (Perkin Elmer, Pyris Diamond) was used to determine the thermal behaviour of the synthesized hematite particles. The experiment was carried out by weighting a powder sample of 1-5 mg and loaded into a platinum pan. The mass change under the temperature scan from 30 to 600 °C at a heating rate of 10 °C/min and under the nitrogen flow was monitored and recorded.

Figure D1 TG-DTA curves of the synthesized hematite nanoparticles (C = 0.3 M, $n_{\text{Fe(II)}}/n_{\text{Fe(III)}} = 0.02$, pH 7, 100 °C, and 1h).

Mode	Behavior	Temperature (°C)	References
DTA	Endothermic peak (eli- mination of adsorbed wa- ter on the surface)	25-50	(Kandori <i>et al.</i> , 2008)
TG	Mass loss about 4.0 % (removal of adsorbed wa- ter)	below 200	(Lu <i>et al.</i> , 2006)
	Mass loss about 0.5 % (elimination of hydroxyl group)	200-400	(Lu <i>et al.</i> , 2006)

Table D1 Thermal behavior assignations for TG/DTA curves of hematite

Appendix E FE-SEM Images of the Synthesized Hematite Nanoparticles

A field-emission scanning electron microscope (Hitachi, S-4800) was used to examine the morphological structure and to determine the particle size of the synthesized hematite particles. The sample powder was placed on the holder with an adhesive tape and coated with a thin layer of platinum using an ion sputtering device (Hitachi, E-1010) for 100 sec prior to observation under FE-SEM. The scanning electron images were investigated by using an acceleration voltage of 5.0 kV with a magnification in the range of 50.0-200k times.

Table E1 Summary of FE-SEM images of the 2-line ferrihydrite precursor and the synthesized hematite nanoparticles with different morphologies

Sampla	FE-SEM images	
Sample	Low magnification (50kX)	High magnification (100kX)
Ferrihydrite	5-4800 5 0k V 5 6mm ±50 0k SE(M) 1 00um	S-4800 S 0kV S 6mm x100k SE(M) \$00nm
Spherical hematite	S-4800 5 0kV 5 6mm x50 0k SE(M)	S-4800 5 0kV 5 6mm x100k SE(M)

Sample	FE-SEM images	
Sample	Low magnification (50kX)	High magnification (100kX)
Cubic hematite	5 0kV 5 7mm x50 0k SE(U)	5 0kV 5 7mm x100k SE(U)
Ellipsoidal hematite	S-4800 5 0kV 5.7mm x50 0k SE(M)	S-4800 5 0kV 8 7mm x100k SE(M)

Note: Spherical-like particles were synthesized by the simple conditions, cubic-like particles were synthesized at very low amount of Fe(II), and ellipsoidal particles were synthesized by using NH₄OH instead of NaOH.

Table E2Summary of FE-SEM images of the synthesized hematite nanoparticlesunder the effect of precursor concentrations

Precursor	FE-SEM images	
conc. (M)	Low magnification (50kX)	High magnification (100kX)
0.4	5 0kV 5 8mm x50 0k SE(M)	5 0kV 5 8mm x100k SE(M)
0.5	5 0KV 5 8mm x50 0k SE(M)	5 0kV 5 8mm x100k SE(M)

.

Table E3 Summary of FE-SEM images of the synthesized hematite nanoparticlesunder the effect of solution pHs

Solution	lution FE-SEM images	
рН	Low magnification (50kX)	High magnification (100kX)
рН 8	S-4800 5 0kV 5 6mm x50 0k SE(M)	S 4800 S 0kV S 6mm x100k SE(M)
рН 9	S-4800 5 0kV 5 6mm x50 0k SE(M) 1 00um	S-4800 5 0kV 5 6mm x100k SE(M) 500nm

Table E4Summary of FE-SEM images of the synthesized hematite nanoparticlesunder the effect of amounts of Fe(II)

n _{Fe(II)} /	FE-SEM images	
<i>n</i> _{Fe(III)}	Low magnification (50kX)	High magnification (100kX)
0.04	S 4800 5 0kV 5 6mm x50 0k SE(M)	S 4800 5 0kV 5 5mm x100k SE(M) 500m
0.05	S-4800 5 0kV 5 4/mm x50 0k SE(M)	S 4800 5 0kV 5 4mm x100k SE(M) 50mm

 Table E5
 Summary of FE-SEM images of the synthesized hematite nanoparticles

 under the effect of ionic strength (I) values

Ionic	FE-SEM images	
strength (I)	Low magnification (50kX)	High magnification (100kX)
1.6	S-4800 5 0kV 5 4mm x50 0k SE(M)	S-4800 5 0kV 5 4mm x100k SE(M)
1.8	S 4800 5 0kV 5 4mm x50 0k SEIM)	S 4800 5 0kV 5 4mm x100k SE(M) 500m
2.0		

Table E6 Summary of FE-SEM images of the synthesized hematite nanoparticles

 under the effect of reaction temperatures

Reaction	FE-SEM images	
temp. (°C)	Low magnification (50kX)	High magnification (100kX)
90	5 0k V 5 8mm x50 0k SE(M)	5 OkV 5 Bmm x100k SE(M)
100	5 0kV 5 8mm x50 0k SE(M)	5 0kv 5 8mm x100k SE(M)

Table E7 Summary of FE-SEM images of the synthesized hematite nanoparticles

 under the effect of reaction times

Reaction	n FE-SEM images	
time (min)	Low magnification (50kX)	High magnification (100kX)
60	S-4800 5 DkV 6 0mm x50 0k SE(M)	S-4800 5 0kV 6 0mm x100k SE(M) 500mm
120	S-4800 5 0kV 5 9mm x50 0k SE(M)	S-4800 5 0kV 5 9mm x100k SE(M)

Appendix F Particle Sizes and Particle Size Distributions of the Synthesized Hematite Nanoparticles

The particle size and particle size distribution of the synthesized hematite particles were determined by the professional image processing and analysis software of SemAfore over 2-3 FE-SEM images by the quantitative statistical method. There are multiple definitions for mean diameter value because this value is associated with the basis of the distribution calculation (number, surface, volume). The general form of the mean particle diameter is defined using equation (F1) as follows:

$$D[p,q] = \left(\frac{\sum_{i=1}^{n} n_i D_i^p}{\sum_{i=1}^{n} n_i D_i^q}\right)^{\frac{1}{p-q}}$$
(F1)

where D[p,q] = general form of the mean diameter

 n_i = number of the ith particle D_i = diameter of ith particle (p-q) = algebraic power of D[p,q]

The particle size of hematite could be characterized by D[1,0] and D[4,3] which are the number mean diameter (D_n ; equation (F2)) and volume mean diameter (D_v ; equation (F3)), respectively.

$$D_n = D[1,0] = \frac{\sum_{i=1}^n n_i D_i}{\sum_{i=1}^n n_i}$$
(F2)

$$D_{v} = D[4,3] = \frac{\sum_{i=1}^{n} n_{i} D_{i}^{4}}{\sum_{i=1}^{n} n_{i} D_{i}^{3}}$$
(F3)

In addition, the particle size distribution index could be determined by the polydispersity index (PDI) using equation (F4) as follows:

$$PDI = \frac{D_v}{D_n} = \frac{D[4,3]}{D[1,0]}$$
 (F4)

Figure F1 Average particle sizes of the synthesized hematite at various precursor concentrations with the constant $n_{\text{Fe(II)}}/n_{\text{Fe(III)}} = 0.02$, pH 7, 100 °C, and 1h.

Figure F2 Average particle sizes of the synthesized hematite at various solution pHs with the constant C = 0.3 M, $n_{\text{Fe(II)}}/n_{\text{Fe(III)}} = 0.02$, 100 °C, and 1h.

Figure F3 Average particle sizes of the synthesized hematite at various amounts of Fe(II) with the constant C = 0.3 M, pH 7, 100 °C, and 1h.

Figure F4 Average particle sizes of the synthesized hematite at various ionic strength (*I*) values with the constant C = 0.3 M, $n_{\text{Fe(II)}}/n_{\text{Fe(III)}} = 0.02$, pH 7, 100 °C, and 1h.

Figure F5 Average particle sizes of the synthesized hematite at reaction times with the constant C = 0.3 M, $n_{\text{Fe(II)}}/n_{\text{Fe(III)}} = 0.02$, pH 7, and 1h.

Figure F6 Average particle sizes of the synthesized hematite at reaction times with the constant C = 0.3 M, $n_{\text{Fe(II)}}/n_{\text{Fe(III)}} = 0.02$, pH 7, and 100 °C.

Table F1 Summary of the average particle sizes and particle size distributions of the2-line ferrihydrite precursor and the synthesized hematite nanoparticles with differentmorphologies

	Particle size (nm)					
Sample	$D_n \pm SD$	Particle size distribution				
	D_{ν} , PDI					
Ferrihydrite	11.5 ± 2.0 12.5, 1.09	Particle size (nm)				
Spherical-like hematite	139.5 ± 28.2 153.3, 1.10	h t t t t t t t t t t t t t t t t t t t				

Note: Spherical-like particles were synthesized by the simple conditions, cubic-like particles were synthesized at very low amount of Fe(II), and ellipsoidal particles were synthesized by using NH₄OH instead of NaOH.

Dreambach cone	Particle size (nm)	
(M)	$D_n \pm SD$	Particle size distribution
	D_{ν} , PDI	
0.1	49.3 ± 8.8 54.0, 1.10	30 25 20 20 20 20 20 20 20 20 20 20
0.2	72.1 ± 15.3 81.6, 1.13	30 25 20 40 40 40 40 40 40 40 40 40 40 40 40 40

Table F2 Summary of the average particle sizes and particle size distributions of thesynthesized hematite under the effect of precursor concentrations

Table F3 Summary of the average particle sizes and particle size distributions of thesynthesized hematite under the effect of solution pHs

Table F4 Summary of the average particle sizes and particle size distributions of thesynthesized hematite under the effect of amounts of Fe(II)

Particle size (nm) Ionic strength (I) $D_n \pm SD$ Particle size distribution D_{ν} , PDI Number of particle (%) 74.8 ± 16.8 1.0 85.7, 1.15 Particle size (nm) Number of particle (%) 82.8 ± 20.6 1.2 95.0, 1.15 Particle size (nm) Number of particle (%) 104.3 ± 26.4 1.4 121.3, 1.16 Particle size (nm)

Table F5 Summary of the average particle sizes and particle size distributions of thesynthesized hematite under the effect of ionic strength (I) values

Table F6 Summary of the average particle sizes and particle size distributions of thesynthesized hematite under the effect of reaction temperatures

Table F7 Summary of the average particle sizes and particle size distributions of thesynthesized hematite under the effect of reaction times

Appendix G Specific Surface Area Measurement of the Synthesized Hematite Nanoparticles

A surface area analyzer (Thermo finnigan, Sorptomatic 1990) was used to measure the specific surface area of the synthesized hematite particles. The absorbent sample was weighed and outgassed at 300 °C for 12 h under vacuum to eliminate volatile adsorbate on the surface. The data were obtained by adsorption and desorption with He and N_2 gases. The BET surface area was determined by using the static volumetric method.

In addition, the specific surface area (SSA) could be estimated from the particle size of the spherical particle using equation (G1) as follow:

$$SSA = \frac{6}{D[3,2] \times \rho_s} \tag{G1}$$

where
$$SSA$$
 = specific surface area (m²/g)
 $D[3,2]$ = surface mean diameter (nm) or D_s
 ρ_s = solid density (g/m³) for hematite particle ρ_s is about 5.26×10⁶ g/m³

Note: This equation is strictly correct only for the spherical particles but may be used without correction for shape if the particles are not too asymmetrical and the surface mean diameter can be calculated from equation (G2) as follow:

$$D_s = D[3,2] = \frac{\sum_{i=1}^n n_1 D_i^3}{\sum_{i=1}^n n_i D_i^2}$$
(G2)

where n_i = number of the ith particle D_i = diameter of ith particle

	Sample	Specific surface area (m ² /g)			
Particle shape	Particle size (<i>D</i> [3,2]; nm)	Calculated	BET		
Sphere	52.4	21.7	55.4		
Sphere	96.8	11.8	29.4		
Sphere	148.9	7.7	18.5		
Cube	136.7	8.3	13.7		
Ellipsoid	151.7	7.5	7.6		

Table G1 Summary of the specific surface area of the synthesized hematite nano-particles with different particle sizes and morphologies

Appendix H Electrical Conductivity Measurement of the Synthesized Hematite Nanoparticles

An electrometer (Keithley, 6517A), with a custom-built two-point probe, was used to measure the electrical conductivity which is the inversion of specific resistivity (ρ) that indicates the ability of material to transport electrical charge. The meter consisted of a probe making contact on the surface of the sample in a disc shape. This probe was connected to a power supplier source for a constant source and for reading current. The applied voltage was plotted versus the resultant current to determine the linear Ohmic regime of each sample based on the Van der Pauw method. The applied voltage and the current in the linear Ohmic regime were converted to the electrical conductivity of the sample using equation (H1) as follow:

$$\sigma = \frac{1}{\rho} = \frac{1}{R_s \times t} = \frac{l}{K \times V \times t} = \frac{slope}{K \times t}$$
(H1)

where σ is the specific conductivity (S/cm), ρ is the specific resistivity (Ω .cm), R_s is the sheet resistivity (Ω), I is the resultant current (A), K is the geometric correction factor, V is the applied voltage (V), and t is the thickness of the disc sample (cm).

The geometrical correction factor was taken into account of geometric effects, depending on the configuration and probe tip spacing and was determined by using standard materials where specific resistivity values were known; we used silicon wafer chips (SiO₂). In our case, the sheet resistivity was measured by using the two-point probe and then the geometric correction factor was calculated by equation (H2) as follow:

$$K = \frac{\rho}{R \times t} = \frac{I \times \rho}{V \times t} = slope \times R_s \tag{H2}$$

where K is the geometric correction factor, ρ is the known resistivity of standard silicon wafer (Ω .cm), t is the film thickness (cm), R is the film resistance (Ω), and I is the resultant current (A).

Figure H1 Specific conductivities of the synthesized hematite nanoparticles with different particle sizes.

Table H1 Summary of the specific conductivities of the 2-line ferrihydrite precursor

 and the synthesized hematite nanoparticles with different particle sizes and morphol

 ogies

Sampla	Particle size (nm)	Specific conductivity (S/cm)			
Sample	$(\overline{X} \pm SD)$	Avg.	SD		
Ferrihydrite	11.5 ± 2.0	5.51E-02	8.47E-03		
Hematite $C = 0.1$ M	49.3 ± 8.8	5.16E-03	7.20E-04		
Hematite $C = 0.2$ M	72.1 ± 15.3	2.99E-03	6.13E-04		
Hematite $C = 0.3$ M	91.7 ± 15.1	1.97E-03	3.46E-04		
Hematite $C = 0.4$ M	104.7 ± 20.6	1.68E-03	3.03E-04		
Hematite $C = 0.5$ M	139.5 ± 28.2	9.72E-04	2.20E-04		
Cubic-like hematite	127.5 ± 24.3	1.00E-03	2.29E-04		
Ellipsoidal hematite	119.4 ± 44.3	3.22E-04	6.13E-05		

Note: The synthesized hematite particles using precursor concentration 0.1-0.5 M possessed the spherical-like morphology.

Table H2 Raw data for determination of the linear Ohmic regime to calibrate probe by using a standard silicon wafer ($R_s = 107.373 \Omega$)

Applied vol-		Curre	nt (µA)	Slope	K	
tage (V)	#1	#2	#3	Avg.	Siehe	
0.150	1.11237	1.10720	1.10092	1.10683		
0.140	1.00173	1.03114	1.04587	1.02625		
0.130	0.95143	0.95578	0.93653	0.94791		
0.120	0.87137	0.86263	0.86033	0.86478		
0.110	0.79486	0.78845	0.81494	0.79942	-	
0.100	0.71164	0.71788	0.70909	0.71287		
0.090	0.68512	0.69277	0.64487	0.67425		
0.080	0.65394	0.63814	0.63196	0.64135	6.8574E-06	7.3630E-04
0.070	0.56354	0.56817	0.55963	0.56378	-	
0.060	0.49270	0.48635	0.48984	0.48963		
0.050	0.41209	0.39410	0.38765	0.39795		
0.040	0.33994	0.33598	0.34286	0.33960		
0.030	0.26485	0.26491	0.26216	0.26397		
0.020	0.18628	0.18342	0.18279	0.18416		
0.010	0.12530	0.12617	0.12626	0.12591		

Example H1: Calculation of the geometric correction factor (K)

The geometric correction factor was calculated by equation (G2) as follow:

 $K = slope \times R_s$ $K = (6.8574 \times 10^{-6} \Omega^{-1})(107.373 \Omega)$ $K = 7.3630 \times 10^{-4}$

So, the geometric correction factor (*K*) was 7.3630×10^{-4} .

Figure H2 The linear Ohmic regime plot of the standard silicon wafer ($R_s = 107.373$ Ω).

Sampla	Thickness A	Applied			Specific con-		
Sample	(cm)	(V)	#1	#2	#3	Avg.	(S/cm)
	0.0425	0.120	260.366	258.398	256.157	258.307	
	0.0443	0.110	238.771	239.076	238.794	238.880	
	0.0429	0.100	212.544	208.989	209.603	210.379	
	0.0462	0.090	190.718	189.325	190.273	190.105	
	0.0420	0.080	169.817	170.431	171.017	170.422	6 41 E-02
10.1	0.0454	0.070	150.569	150.669	149.764	150.334	0.1112 02
		0.060	131.997	131.006	131.417	131.474	
	0.0439	0.050	109.439	108.197	107.248	108.295	
	0.0437	0.040	89.042	90.235	90.438	89.905	
		0.030	74.026	73.488	70.755	72.756	
	0.0449	0.120	231.494	230.336	232.883	231.571	
	0.0485	0.110	209.629	211.319	213.010	211.319	5.38E-02
	0.0433	0.100	204.499	203.482	201.651	203.211	
	0.0478	0.090	181.660	184.221	182.940	182.940	
No 2	0.0428	0.080	160.010	161.138	162.589	161.246	
INU.2	0.0437	0.070	147.291	145.965	148.469	147.242	
	0.0452	0.060	129.172	129.821	130.600	129.864	
		0.050	106.473	105.523	104.785	105.594	
		0.040	87.890	88.863	88.421	88.391	
		0.030	72.370	71.791	72.877	72.346	
	0.0493	0.120	203.631	205.480	207.124	205.412	
	0.0475	0.110	179.992	182.167	181.261	181.140	
	0.0451	0.100	174.564	173.523	172.482	173.523	
	0.0494	0.090	155.285	157.946	156.537	156.590	
N- 2	0.0495	0.080	132.777	132.113	133.707	132.866	4 73E-02
IN0.3	0.0476	0.070	122.104	121.376	120.405	121.295	
		0.060	102.909	103.530	104.462	103.634	
	0.0481	0.050	82.683	83.851	83.434	83.322	
	0.0401	0.040	71.609	71.107	72.182	71.633	
		0.030	52.239	52.502	52.869	52.537	
	·	Average spe	cific cond	uctivity			5.51E-02
		Standa	rd deviati	on			8.47E-03

Table H3 Raw data for determination of the linear Ohmic regime and the specificconductivities of the 2-line ferrihydrite precursor

Figure H3 The linear Ohmic regime plots of the 2-line ferrihydrite precursor.

Example H2: Calculation of the specific conductivity (σ) of the sample no.1 The specific conductivity (σ) was calculated by equation (G2) as follow:

$$\sigma = \frac{slope}{K \times t}$$

$$\sigma = \frac{(2.0722 \times 10^{-6} \Omega^{-1})}{(7.3630 \times 10^{-4})(0.0439 \, cm)}$$

$$\sigma = 6.41 \times 10^{-2} S/cm$$

So, the specific conductivity (σ) of the sample no.1 was 6.41 x 10⁻² S/cm.

Sample	Thickness	Applied		Curre	Specific		
Sample	(cm)	(V)	#1	#2	#3	Avg.	(S/cm)
	0.0493	0.130	5.14710	5.19384	5.23539	5.19211	
	0.0432	0.120	4.82093	4.85491	4.87919	4.85167	
	0.0400	0.110	4.61544	4.64330	4.67116	4.64330	
0.	0.0447	0.100	4.16086	4.19441	4.23216	4.19581	
No 1	0.0418	0.090	3.66072	3.67912	3.70487	3.68157	1 23E-03
110.1	0.0412	0.080	3.22795	3.25398	3.27351	3.25181	1.232 03
		0.070	2.93602	2.95375	2.98033	2.95670	
	0.0424	0.060	2.43068	2.45275	2.46502	2.44948	
	0.0434	0.050	2.18132	2.19670	2.21428	2.19743	
		0.040	1.71086	1.71946	1.73150	1.72061	
	0.0338	0.130	3.93309	3.86480	3.81823	3.87204	
	0.0332	0.120	3.70832	3.59419	3.53525	3.61259	9.99E-04
	0.0375	0.110	3.26005	3.19750	3.16290	3.20682	
	0.0409	0.100	2.98066	2.92320	2.89395	2.93260	
No 2	0.0418	0.090	2.72465	2.67203	2.63442	2.67703	
190.2	0.0412	0.080	2.45465	2.43323	2.41501	2.43430	
	0.0381	0.070	2.19048	2.17306	2.16449	2.17601	
		0.060	1.90096	1.88427	1.86664	1.88396	
		0.050	1.61210	1.59288	1.60530	1.60342	
		0.040	1.31188	1.30882	1.31818	1.31296	
	0.0338	0.130	3.05184	3.03877	2.94055	3.01039	
	0.0355	0.120	2.93704	2.78075	2.71948	2.81242	
	0.0329	0.110	2.64598	2.67641	2.53261	2.61833	
	0.0342	0.100	2.33818	2.36214	2.42330	2.37454	
No 3	0.0320	0.090	2.19693	2.21921	2.17301	2.19639	7.75E-04
110.3	0.0339	0.080	2.06953	1.97352	2.03308	2.02538	1.102 01
		0.070	1.80102	1.81653	1.77828	1.79861	
	0.0227	0.060	1.69629	1.65197	1.61651	1.65492	
	0.0337	0.050	1.45369	1.42709	1.44892	1.44323	
		0.040	1.33128	1.28828	1.26241	1.29399	
		Average spe	cific cond	uctivity			1.00E-03
		Standa	rd deviati	on			2.29E-04

Table H4 Raw data for determination of the linear Ohmic regime and the specific conductivities of the synthesized hematite nanoparticles (cubic-like shape)

Figure H4 The linear Ohmic regime plots of the synthesized hematite nanoparticles (cubic-like shape).

	Thickness	Applied		Specific			
Sample	(cm)	Voltage (V)	#1	#2	#3	Avg.	(S/cm)
	0.0559	0.130	2.37337	2.30186	2.22207	2.29910	
	0.0608	0.120	2.18882	2.09176	2.04279	2.10779	
	0.0569	0.110	2.09216	2.02940	1.98689	2.03615	
	0.0518	0.100	1.82493	1.78870	1.75174	1.78846	
NI- 1	0.0619	0.090	1.67464	1.61642	1.62086	1.63731	3 89F-04
190.1	0.0526	0.080	1.53211	1.50581	1.48223	1.50672	3.89E-04
		0.070	1.40025	1.38607	1.35335	1.37989	
	0.0567	0.060	1.21710	1.21931	1.20921	1.21521	
	0.0507	0.050	0.99763	0.99599	0.98989	0.99451	
		0.040	0.79279	0.79755	0.80758	0.79931	
	0.0755	0.130	2.01744	1.97491	1.92081	1.97105	
	0.0705	0.120	1.81707	1.86227	1.81196	1.83043	2.68E-04
	0.0660	0.110	1.69746	1.61426	1.60916	1.64029	
	0.0625	0.100	1.55530	1.50130	1.47666	1.51109	
No 2	0.0573	0.090	1.38622	1.35120	1.36274	1.36672	
190.2	0.0605	0.080	1.25089	1.22513	1.20367	1.22656	
	0.0654	0.070	1.18872	1.14504	1.11636	1.15004	
		0.060	1.08430	1.06030	1.03829	1.06096	
		0.050	0.90301	0.88370	0.87945	0.88872	
		0.040	0.82519	0.79289	0.77377	0.79728	
	0.0567	0.130	1.72761	1.74330	1.75725	1.74272	
	0.0514	0.120	1.58688	1.57898	1.56793	1.57793	:
	0.0481	0.110	1.48657	1.49555	1.50452	1.49555	
	0.0454	0.100	1.38273	1.39388	1.40643	1.39435	
No 2	0.0569	0.090	1.23590	1.22731	1.22118	1.22813	3.11E-04
N0.5	0.0482	0.080	1.13355	1.12679	1.11777	1.12604	
		0.070	1.02801	1.03422	1.04353	1.03525	
	0.0511	0.060	0.89605	0.89159	0.88357	0.89041	
	0.0311	0.050	0.80583	0.81151	0.81800	0.81178	
		Average spe	cific cond	uctivity			3.22E-04
		Standa	rd deviati	on			6.13E-05

Table H5 Raw data for determination of the linear Ohmic regime and the specific conductivities of the synthesized hematite nanoparticles (ellipsoidal shape)

Figure H5 The linear Ohmic regime plots of the synthesized hematite nanoparticles (ellipsoidal shape).

Sampla	Thickness Applied		Specific				
Sample	(cm)	Voltage (V)	#1	#2	#3	Avg.	(S/cm)
	0.0488	0.120	18.6343	18.3556	17.9834	18.3245	
	0.0440	0.110	17.5132	17.4993	17.4007	17.4711	
0.043 0.043 0.043	0.0432	0.100	14.4205	14.8525	15.2320	14.8350	
	0.0438	0.090	13.0936	12.7862	12.7632	12.8810	
	0.0426	0.080	12.3011	12.1932	11.9648	12.1530	5 28F-03
INO.1	0.0371	0.070	10.8230	10.8551	10.8976	10.8585	5.202 05
		0.060	8.5292	8.8426	9.1114	8.8277	
	0.0433	0.050	6.3366	6.3400	6.4580	6.3782	
	0.0435	0.040	5.0352	5.0817	5.0514	5.0561	
		0.030	3.1725	3.3189	3.5040	3.3318	
	0.0463	0.120	21.2392	21.4321	21.6036	21.4250	
	0.0445	0.110	19.9762	20.2176	20.1170	20.1036	
	0.0421	0.100	18.4354	18.3254	18.2155	18.3254	5.81E-03
	0.0464	0.090	15.4097	15.5340	15.6738	15.5391	
No 2	0.0467	0.080	13.9221	13.8525	14.0195	13.9314	
N0.2	0.0446	0.070	12.3745	12.5492	12.4743	12.4660	
	0.0451	0.060	9.8964	9.9561	10.0457	9.9661	
		0.050	8.4136	8.3718	8.2964	8.3606	
		0.040	6.3985	6.4951	6.4436	6.4457	
		0.030	4.2399	4.2612	4.2910	4.2640	
	0.0520	0.120	20.5446	20.7312	20.8970	20.7243	
	0.0551	0.110	18.1895	18.0990	17.9723	18.0870	
	0.0507	0.100	17.0078	17.2131	17.1105	17.1105	
	0.0627	0.090	15.0769	15.1985	15.3353	15.2035	
N- 2	0.0599	0.080	12.6415	12.5783	12.7300	12.6499	4 38F-03
IN0.3	0.0696	0.070	11.2641	11.1740	11.3316	11.2566	1.502.05
		0.060	9.2231	9.3623	9.2788	9.2880	
	0.0583	0.050	7.0467	7.1107	7.1462	7.1012	
	0.0303	0.040	5.6385	5.5991	5.6836	5.6404	
	·	Average spe	cific cond	uctivity			5.16E-03
		Standa	rd deviati	on			7.20E-04

Table H6 Raw data for determination of the linear Ohmic regime and the specific conductivities of the synthesized hematite nanoparticles $(49.3 \pm 8.8 \text{ nm})$

Figure H6 The linear Ohmic regime plots of the synthesized hematite nanoparticles $(49.3 \pm 8.8 \text{ nm})$.

Comple	Thickness	hickness Applied	Current (nA)				Specific
Sample	(cm)	(V)	#1	#2	#3	Avg.	(S/cm)
	0.0603	0.120	21.0612	21.1670	21.2940	21.1741	
	0.0633	0.110	19.8287	19.9886	20.1485	19.9886	
	0.0572	0.100	18.3613	18.2699	18.1055	18.2456	
	0.0600	0.090	17.9164	18.0427	18.1690	18.0427	
N- 1	0.0503	0.080	16.4518	16.5677	16.7168	16.5788	2 39F-03
190.1	0.0530	0.070	15.5893	15.4656	15.3264	15.4604	2.372 03
		0.060	14.9008	14.9756	15.0655	14.9806	
	0.0574	0.050	14.2783	14.1510	14.0519	14.1604	
	0.0574	0.040	12.7137	12.7904	12.8544	12.7862	
		0.030	11.8085	11.7265	11.6327	11.7226	
	0.0587	0.120	22.5587	22.6721	22.8534	22.6947	
	0.0590	0.110	20.4311	20.3294	20.1668	20.3091	
	0.0583	0.100	19.9580	19.8389	19.7001	19.8323	3.61E-03
	0.0545	0.090	17.8120	17.9557	18.1173	17.9617	
No 2	0.0536	0.080	15.8730	15.9688	16.0806	15.9741	
IN0.2	0.0572	0.070	15.1984	15.1077	15.0171	15.1077	
	0.0569	0.060	13.3674	13.4616	13.5827	13.4706	
		0.050	11.6662	11.6082	11.5153	11.5966	
		0.040	10.3713	10.4655	10.5492	10.4620	
		0.030	8.7284	8.7899	8.8514	8.7899	
	0.0603	0.120	19.4778	19.3232	19.2073	19.3361	
	0.0616	0.110	17.5768	17.6652	17.7535	17.6652	
	0.0586	0.100	16.0944	16.2242	16.3215	16.2134	
	0.0571	0.090	15.5584	15.4197	15.2809	15.4197	
N- 2	0.0561	0.080	13.9358	13.8389	13.7420	13.8389	2 99F-03
IN0.3	0.0552	0.070	12.7404	12.8173	12.8942	12.8173	
		0.060	11.7348	11.6301	11.5371	11.6340	
	0.0593	0.050	9.9426	10.0127	10.0627	10.0060	
	0.0582	0.040	9.0740	9.0020	8.9570	9.0110	
		0.030	7.5141	7.4618	7.3947	7.4569	
		Average spe	cific cond	uctivity			2.99E-03
		Standa	rd deviati	on			6.13E-04

Table H7 Raw data for determination of the linear Ohmic regime and the specificconductivities of the synthesized hematite nanoparticles (72.1 ± 15.3 nm)

Figure H7 The linear Ohmic regime plots of the synthesized hematite nanoparticles $(72.1 \pm 15.3 \text{ nm})$.

Sample	Thickness (cm)	Applied		Specific con-			
		(V)	#1	#2	#3	Avg.	(S/cm)
	0.0493	0.120	7.85913	7.88650	7.73125	7.82562	
	0.0438	0.110	7.45660	7.26050	7.10969	7.27559	
	0.0464	0.100	6.69955	6.45963	6.38594	6.51504	
	0.0486	0.090	6.07931	5.99826	5.95812	6.01190	
	0.0489	0.080	5.48099	5.41088	5.36965	5.42051	1 66F-03
190.1	0.0481	0.070	4.88056	4.81187	4.79708	4.82983	1.002 05
		0.060	4.39019	4.31244	4.27187	4.32483	
	0.0475	0.050	3.66432	3.65618	3.63337	3.65129	
	0.04/5	0.040	3.15764	3.12492	3.10857	3.13038	
		0.030	2.68845	2.65446	2.61240	2.65177	
	0.0440	0.120	10.5651	10.1951	9.89243	10.2175	
	0.0442	0.110	9.93670	9.41729	9.17525	9.50975	
	0.0416	0.100	8.87391	8.43229	8.21378	8.50666	
	0.0422	0.090	8.17748	8.08479	7.73774	8.00000	
N - 2	0.0437	0.080	7.49702	7.23263	6.99389	7.24118	2.34E-03
IN0.2	0.0460	0.070	6.78894	6.51199	6.45279	6.58457	
	0.0436	0.060	6.12046	5.86351	5.74206	5.90868	
		0.050	5.07717	4.91547	4.84631	4.94632	
		0.040	4.27584	4.18618	4.12776	4.19659	
		0.030	3.36336	3.29464	3.26753	3.30851	
	0.0419	0.120	8.11175	8.15251	8.20143	8.15523	
	0.0438	0.110	7.07118	7.12821	7.18523	7.12821	
	0.0469	0.100	6.46550	6.43333	6.37543	6.42475	
	0.0495	0.090	6.06796	6.11074	6.15351	6.11074	
N. 2	0.0451	0.080	5.25897	5.29604	5.34371	5.29958	1 92F-03
N0.3	0.0462	0.070	4.65091	4.61400	4.57247	4.61246	1.722 05
	0.0456	0.060	4.08691	4.10745	4.13209	4.10882	
		0.050	3.52535	3.49391	3.46945	3.49624	
		0.040	2.73964	2.75618	2.76996	2.75526	
		0.030	2.11449	2.09979	2.08299	2.09909	1
Average specific conductivity							1.97E-03
	3.46E-04						

Table H8 Raw data for determination of the linear Ohmic regime and the specificconductivities of the synthesized hematite nanoparticles (91.7 ± 15.1 nm)

Note: The bold values are the average values of the data.

Figure H8 The linear Ohmic regime plots of the synthesized hematite nanoparticles $(91.7 \pm 15.1 \text{ nm})$.

Sample	Thickness (cm)	Applied	Current (nA)				Specific con-	
		(V)	#1	#2	#3	Avg.	(S/cm)	
	0.0469	0.130	8.42951	8.47187	8.52270	8.47469		
	0.0437	0.120	7.71473	7.77695	7.83916	7.77695		
	0.0486	0.110	7.74637	7.70783	7.63846	7.69755		
	0.0473	0.100	7.12142	7.17162	7.22182	7.17162		
	0.0481	0.090	6.40197	6.44710	6.50512	6.45139	1 37F-03	
INO.1	0.0426	0.080	6.11360	6.06508	6.01049	6.06305		
		0.070	5.75855	5.78749	5.82222	5.78942		
	0.0462	0.060	5.32136	5.27390	5.23698	5.27741		
	0.0402	0.050	4.64592	4.67396	4.69733	4.67241		
		0.040	4.21682	4.18751	4.15401	4.18611		
	0.0499	0.130	11.7712	11.8303	11.9250	11.8422		
	0.0557	0.120	10.8969	10.8427	10.7560	10.8319		
	0.0537	0.110	9.94438	9.88507	9.81588	9.88178		
	0.0503	0.100	9.34384	9.41919	9.50396	9.42233		
No 2	0.0527	0.090	8.26451	8.31440	8.37260	8.31717	1.98E-03	
190.2	0.0565	0.080	7.85786	7.81100	7.76413	7.81100		
	0.0531	0.070	6.86501	6.91341	6.97563	6.91802		
		0.060	6.38926	6.35748	6.30662	6.35112		
		0.050	5.48739	5.53722	5.58152	5.53538		
		0.040	4.60488	4.63734	4.66980	4.63734		
	0.0395	0.130	8.43810	8.37113	8.32090	8.37671		
	0.0448	0.120	7.50238	7.54008	7.57778	7.54008		
	0.0436	0.110	7.19472	7.25274	7.29626	7.24790		
No.3	0.0383	0.100	6.66063	6.60122	6.54181	6.60122		
	0.0391	0.090	6.13597	6.09332	6.05067	6.09332	1 69E-03	
	0.0425	0.080	5.77623	5.81110	5.84596	5.81110		
		0.070	5.27847	5.23139	5.18954	5.23313		
	0.0413	0.060	4.49180	4.52346	4.54608	4.52045		
		0.050	4.21828	4.18480	4.16388	4.18899		
		0.040	3.57870	3.55382	3.52184	3.55145		
Average specific conductivity							1.68E-03	
Standard deviation							3.03E-04	

Table H9 Raw data for determination of the linear Ohmic regime and the specific conductivities of the synthesized hematite nanoparticles $(104.7 \pm 20.6 \text{ nm})$

Note: The bold values are the average values of the data.

Figure H9 The linear Ohmic regime plots of the synthesized hematite nanoparticles $(104.7 \pm 20.6 \text{ nm})$.

Sample	Thickness (cm)	Applied	Current (nA)				Specific con-	
		(V)	#1	#2	#3	Avg.	(S/cm)	
	0.0572	0.130	6.65398	6.49051	6.54175	6.56208		
	0.0565	0.120	6.15540	6.09432	6.07783	6.10918		
	0.0554	0.110	5.70160	5.78235	5.60281	5.69559		
	0.0546	0.100	5.04484	5.04215	4.96889	5.01863		
	0.0528	0.090	4.56979	4.55079	4.48303	4.53454	1.19E-03	
INO.1	0.0519	0.080	4.14098	4.05509	4.02628	4.07412	1.172.05	
		0.070	3.74573	3.68136	3.65009	3.69239		
	0.0547	0.060	3.29546	3.27805	3.22329	3.26560		
	0.0547	0.050	2.74649	2.70736	2.64117	2.69834		
		0.040	2.23681	2.25647	2.27359	2.25563		
	0.0519	0.130	5.59573	5.50822	5.40812	5.50403		
	0.0498	0.120	5.21000	5.11544	5.10469	5.14337		
	0.0483	0.110	4.88972	4.75353	4.74979	4.79768		
	0.0477	0.100	4.50309	4.41808	4.38919	4.43679	9 74E-04	
N- 3	0.0462	0.090	4.18076	4.10825	4.05539	4.11480		
INO.2	0.0493	0.080	3.69305	3.63709	3.60599	3.64538	<i></i>	
	0.0489	0.070	3.34951	3.31120	3.27392	3.31154		
		0.060	3.03337	2.97644	2.95207	2.98729		
		0.050	2.74071	2.67520	2.64849	2.68813		
		0.040	2.44601	2.42904	2.39975	2.42493		
	0.0483	0.130	4.05069	4.07104	4.09547	4.07240		
	0.0498	0.120	3.72163	3.75164	3.78165	3.75164		
	0.0529	0.110	3.35229	3.33562	3.30560	3.33117		
No.3	0.0535	0.100	3.16954	3.19189	3.21423	3.19189		
	0.0516	0.090	2.80658	2.82636	2.85180	2.82825	7 52F-04	
	0.0517	0.080	2.54914	2.52891	2.50615	2.52807	7.52E 01	
		0.070	2.31755	2.32919	2.34317	2.32997		
	0.0513	0.060	2.09103	2.07237	2.05787	2.07376		
		0.050	1.72934	1.73978	1.74848	1.73920		
		0.040	1.46347	1.45330	1.44167	1.45282		
Average specific conductivity							9.72E-04	
	2.20E-04							

Table H10 Raw data for determination of the linear Ohmic regime and the specificconductivities of the synthesized hematite nanoparticles $(139.5 \pm 28.2 \text{ nm})$

Note: The bold values are the average values of the data.

Figure H10 The linear Ohmic regime plots of the synthesized hematite nanoparticles (139.5 \pm 28.2 nm).

Appendix I Magnetic Properties Measurement of the Synthesized Hematite Nanoparticles

A vibrating sample magnetometer (LakeShore, 7404), with a 4-inch electromagnet, was used to study the magnetic properties of the synthesized hematite particles. The magnetization curves were measured under the maximum magnetic field strength of 8000.0 Oe at room temperature to determine the hysteresis loops. The data were taken with a scan speed of 10 sec/point to complete the 280 points of the hysteresis loop.

Figure I1 Room temperature magnetization curve of the 2-line ferrihydrite precursor (C = 0.3 M, and pH 7).

Figure I2 Room temperature magnetization curves of the synthesized hematite nanoparticles with different particle sizes.

Figure I3 Room temperature magnetization curves of the synthesized hematite nanoparticles with different morphologies (dash line is the same line as represented in Figure I2).

	Sample	Magnetic parameters					
Particle shape	Particle size (nm) $(\overline{X} \pm SD)$	H _c (Oe)	<i>M</i> _r (emu/g)	M _s (emu/g)	$M_{\rm r}/M_{\rm s}$		
Sphere	49.3 ± 8.8	30.2	0.00946	0.8018	0.01179		
Sphere	91.7 ± 15.1	115.3	0.17104	1.2874	0.13286		
Sphere	139.5 ± 28.2	211.5	0.56480	1.9433	0.29064		
Cube	127.5 ± 24.3	120.2	0.24456	1.7863	0.13691		
Ellipsoid	119.4 ± 44.3	185.2	0.31185	1.6332	0.19095		

Table I1 Summary of the magnetic parameters of the synthesized hematite nanoparticles with different particle sizes and morphologies

Note: H_c is the coercive force; M_r is the remanence magnetization (at H = 0 Oe); and M_s is the saturation (maximum) magnetization.

CURRICULUM VITAE

Name: Mr. Kitibodee Supattarasakda

Date of Birth: July 19, 1987

Nationality: Thai

University Education:

2006-2009 Bachelor Degree in Petrochemicals and Polymeric Materials, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand

Proceedings:

Supattarasakda, K.; and Sirivat, A. (2012, April 24). Synthesis and Characterization of Size-controlled Hematite (αFe₂O₃) Nanoparticles via the Chemical Precipitation Method. Proceedings of the 3rd Research Symposium on Petrochemical, and Materials Technology and the 18th PPC Symposium on Petroleum, Petrochemicals, and Polymers, Ballroom, Queen Sirikit National Convention Center, Bangkok, Thailand.

Presentation:

Supattarasakda, K.; and Sirivat, A. (2012, April 24). Synthesis and Characterization of Size-controlled Hematite (αFe₂O₃) Nanoparticles via the Chemical Precipitation Method. Paper presented at <u>the 3rd Research Symposium</u> on Petrochemical, and Materials Technology and the 18th PPC Symposium on Petroleum, Petrochemicals, and Polymers, Ballroom, Queen Sirikit National Convention Center, Bangkok, Thailand.

