REFERENCES

Alchin, D. (2008) Ion exchange resins. XIII-Water-D-Ion Exchange Resins, 1-7.

- Carmona, M., García, M. M. T., Alcázar, Á. Á., Carnicer, Á. Á., and Rodriguez, J. F. (2012) Combining ion exchange and water adsorption processes for high grade glycerol from biodiesel. <u>Journal of Chemical Science and Technology</u>, 1(1),14-20.
- Carmona, M., Valverde, J. L., Pérez, A., Warchol, J., and Rodriguez, J. F. (2009)
 Purification of glycerol/water solutions from biodiesel synthesis by ion
 exchange: sodium removal Part I. Journal of Chemical Technology and
 Biotechnology, 84(5), 738-744.
- Carmona, M., Valverde, J. L., Pérez, A., Warchol, J., and Rodriguez, J. F. (2009) Purification of glycerol/water solutions from biodiesel synthesis by ion exchange: sodium removal Part II. Journal of Chemical Technology and <u>Biotechnology</u>, 84(8), 1130-1135.
- EET Corporation. "Glycerol Purification" EET Corporation. 2011. 28 November 2013 <http://www.eetcorp.com/heepm/glycerine.htm>
- Glueckauf, E. (1959) Electro-deionisation through a packed bed. <u>British Chemical</u> Engineering. 646-651.

Haselow, J. (2010) U.S. Patent WO/2010/033817.

- Indusekh, V.K. and Krishnaswamy N. (1965) Diffusion effect during electrodialysis with ion-exchange membrane. Journal of Applied Polymer Science, 9(7), 2631-2632.
- Jurenka, B. "Electrodialysis (ED) and electrodialysis reversal (EDR)" U.S.Department of the Interior Bureau of Reclamation. 20 Sep 2010. 19 Nov 2013 http://www.usbr.gov/pmts/water/publications/primer.html
- Kabsch-Korbutowicz, M., Kozak, A., and Krupinska, B. (2008) Ion-exchangeultrafiltration integrated process as a useful method in removing natural organic matter from water. <u>Environment Protection Engineering</u>, 34(2), 79.

- Mah, S. K., Leo, C. P., Wu, T. Y., and Chai, S. P. (2012) A feasibility investigation on ultrafiltration of palm oil and oleic acid removal from glycerin solutions: Flux decline, fouling pattern, rejection and membrane characterizations. Journal of Membrane Science, 389, 245-256.
- Mohammad, A. W., and Amin, I. N. H. M. (2013) Fouling of ultrafiltration membrane during adsorption of long chain fatty acid in glycerine solutions. <u>Sains Malaysiana</u>, 42(6), 827-836.
- Noble R.D. and Stern S.A. (1995) Membrane separations technology: principles and applications, 221-224, New York: Elsevier Science.
- Schaffner, F., Pontalier, P. Y., Sanchez, V., and Lutin, F. (2003) Bipolar electrodialysis for glycerin production from diester wastes. <u>Filtration & Separation</u>, 40(10). 35-39.
- Schaffner, F., Pontalier, P. Y., Sanchez, V., and Lutin, F. (2004) Comparison of diester waste treatment by conventional and bipolar electrodialysis, <u>Desalination</u>, 170(2), 113-121.
- Strathmann, H. (2004). Assessment of electrodialysis water desalination process costs. <u>Proceedings of the International Conference on Desalination Costing</u>, Limassol, Cyprus.
- Tanaka, Y., Uchino, H., and Murakami, M. (2012) Continuous ion-exchange
 membrane electrodialysis of mother liquid discharged from a saltmanufacturing plant and transport of Cl⁻ ions and SO₄²⁻ ions. <u>Membrane</u> Water Treatment, 3(1), 63-76.

Tye, F.L. (1959) U.K. Patent 815,154.

APPENDICES

Appendix A Experimental Data and Salt Ions Balance in Each Stream

			Ţ	- Current(A)									
Cycle	Food	I	Produc	:t	Co	ncentra	ate	E	lectra	le		rrent	(A)
	reeu	1	2	3	1	1 2		1	2	3	1	2	3
1	5.22	4.18	4.42	4.52	10.82	9	8.31	8.7	6.86	6.7	3	2.2	1.9
2	4.18	3.28	3.45	3.6	9.09	6.87	6.97	7.46	6.31	5.99	1.7	1.6	1.5
3	3.49	3.04	3.08	2.98_	5.91	5.8	5.86	5.7	4.73	4.76	1.4	1.4	1.4
4	2.96	2.4	2.45	2.46	5.14	5.25	5.08	4.73	4.35	4.41	1.4	1.4	1.4
- 5	2.43	2.1	2	2.19	4.56	4.46	4.35	4.48	4.88	3.82	1.2	1.2	1.2

Table A1 Experimental data at 70% water concentration

 Table A 2 Experimental data at 60% water concentration

			С	onduct	ivity (ı	nicro s	siemen	s)			Current(A)			
Cycle	Food	J	Produc	f	Со	ncentr	ate	E	lectro	le		пеш	(A)	
	reeu	1	2	3	1 2		3	1	2	3	1	2	3	
1	6.35	5.65	5.77	5.71	9.37	8.8	8.54	8.21	7.53	7.89	2.2	2.2	- 2	
2	5.61	5.37 5.27 5.32		8.54 8.94 8.46		7.14	7.56	7.44	2.1	2.3	2.1			
3	5.22	4.89	4.94	4.93	7.65	7.68	7.44	6.84	6.83	6.51	2.1	2.1	1.9	
4	4.79	4.51	4.53	4.49	7.3	7	7.04	6.08	5.87	5.9	2	2	1.8	
5	4.36	4.04 4.1 4		6.13	6.25	6.44	5.42	5.38	5.97	1.7	1.8	1.8		

 Table A3 Experimental data at 50% water concentration

			С	onduct	ivity (I	micro s	siemen	s)			- Current(A)			
Cycle	Food	J	Produc	t	Co	ncentr	ate	E	lectro	de		rrent	(A)	
	геец	1	2	3	1 2		3	1	1 2		1	2	3	
1	5.34	5.2	5.24	5.21	7.06	7.15	7.03	6.82	6.61	6.39	1.6	1.5	1.5	
2	5.22	5.06	5.04	5.1	6.77	7	6.84	6.56	6.82	6.34	1.6	1.6	1.6	
3	4.96	4.82	4.86	4.86	6.46	6.9	6.79	5.83	5.62	5.82	1.6	1.6	1.6	
4	4.83	4.58	4.6	4.63	6.11	6.13	6.24	5.84	5.66	5.61	1.6	1.6	1.6	
5	4.5	4.34	4.35	4.25	5.97	5.91	5.97	5.31	5.42	5.59	1.5	1.6	1.6	

- 1

			С	onduct	ivity (ı	nicro s	iemen	s)			Current(A)			
Cycle	Food	I	roduc	t	Co	ncentr	ate	E	lectroo	le	Cu	пеш	(A)	
	reeu	1	2	3	1 2		3	1 2		3	1	2	3	
1	4.66	4.49	4.51	4.48	6.01	5.96	5.97	5.38	5.44	5.24	1.3	1.2	1.2	
2	4.46	4.35	4.36	4.32	5.76	5.86	5.96	5.21	5.21	5.27	1.2	1.2	1.2	
3	4.3	4.15	4.21	4.1	5.58	5.69	5.45	5.21	5.14	5.08	1.3	1.3	1.3	
4	4.12	4	3.97	3.97	5.52	5.44	5.46	4.93	5	4.91	1.3	1.3	1.3	
5	3.97	3.86	3.83	3.84	5.18	5.42	5.28	4.93	4.82	4.91	1.2	1.2	1.2	

 Table A4 Experimental data at 40% water concentration

.

 Table A5 Experimental data at 30% water concentration

			С	onduct	ivity (ı	nicro s	siemen	s)			Current(A)			
Cycle	Feed	I	Produc	t	Co	ncentr	ate	E	lectro	le	Cu	rrent	(A)	
	reea	1	2	3	1 2		3	1 2		3	1	2	3	
1	2.35	2.13	2.13	2.11	2.35	2.44	2.35	2.24	2.23	2.27	0.8	0.9	0.9	
2	2.13	2.07 2.07 2.07		2.28 2.26		2.27	2.43	2.43	2.39	0.9	0.9	0.9		
3	2.07	2.04	2.14	2.01	2.3	2.19	2.33	2.33	2.37	2.42	1	1	1	
4	2.1	2.01	2.04	1.97	2.19	2.34	2.34	2.46	2.26	2.52	1	1	1	
5	2.03	1.94	2.01 2.04 1.97 1.94 1.97 1.98			2.23	2.23	2.09	2.04	2.03	1	1	1	

-

 Table A6 Experimental data of turbidity

.

C	I	Before (NTU	J)	After (NTU)					
Sample	1	2	3	1	2	3			
0% Water	20.9	20.9	20.9	N/A	N/A	N/A			
30%Water	29.8	29.8	29.9	10.1	10.0	9.9			
40%Water	31.8	31.8	31.8	11.0	11.0	11.0			
50%Water	35.0	35.0	35.0	11.2	11.2	11.2			
60%Water	49.2	49.2	49.2	11.0	11.0	11.1			
70%Water	44.8	45.0	45.1	10.3	10.5	10.5			

Mix UF's treated glycerol of 40% = 15.0, 15.0 and 15.0 Mix UF's treated glycerol of 60% = 13.8, 14.0 and 13.8

Appendix B Simulation Data of Distillation Treatment

Figure B1 Process flow diagram of glycerol purification by distillation.

				Distillati	on: Wat	er	Remova	1 @1	Main				
			I	MONITOR									
Specifications Summary													
Specified Value Current Value WL Error WL Tol. Abs. Tol. Active Estimate Used													
Reflux Ratio	0 25	0.2	2500	1.586e-008	1.000e-002		1,000e-002	On	On	On			
Distillate Rate	1165 kg	vh • 973.3	kg/h	-0 1646	1.000e-002		1 000 kg/h	Off	On	Off			
Reflux Rate	-	13.51 kgmc	n/sic		1.000e-002	1	000 kgmole/h	Off	On	Off			
4 Rate		31 68 kgmc	n/ek		1.000e-002	1.	000 kgmole/h	Off	On	Off			
Comp Fraction 1.000e-004 1.001e-004 1.417e-004 1.000e-002 1.000e-003 On On													
			СС	DNDITIONS									
Name		ude Glycerol @Main	erol a	nd Salt @Main	ater Product @N	l ain	O-Reboiler@	Main [O-Condenser	@Main			
Vapour		0.0000		0 0000	0.0	000							
Temperature	(C)	30,0000 *		287.5972	99 9	913							
Pressure	(kPa)	101.3000 *		101.3000	101 3	000		I					
Molar Flow	(kg/nole/h)	85.7090		31,6822	54.0	268							
Mass Flow	(kg/h)	3973.8723		3000.5738	973 2	984		Ι					
Sid Ideal Liq Vol Flow	(m3/h)	3.4000 *		2.4247	0.9	753							
Molar Enthalpy	(kJ/kgmole)	-4.303e+005		-6.088e+005	-2.792e+	005	,						
Molar Entropy	(kJ/kgmole-C)	-3.908		247 8	23	57							
Heat Flow	(ILJ/h)	-3.6882e+07		-1.9287e+07	-1 5085e	+07	5.2546	e+06	2.745	i3e+06			

Fable B1	Simulation	data of	water	removal	unit

		SUMMA	RY		
Flow Basis:		Molar	Th	e composition option is sele	cted
		Feed Compo	sition		
	5				
Flow Rate (kgmole/h)	85.7090				
		_			
Glycerol	0 3635				
1C16oicAcid	0.0060				
H2O	0 6305				
Flow Basis:		Molar	Th	e composition option is sele	cled
		Feed Flo	ws		
	5				
Flow Rate (kgmole/h)	85.7090				
Glycerol (kgmole/h)	31,1541				
1C16oicAcid (kgmole/h)	0.5114				
H2O (kgmole/h)	54.0435				1
-		Product	is		
Flow Basis:		Molar	Th	e composition option is sele-	cted
		Product Comp	ositions		
	6	4	. <u> </u>		
Flow Rate (kgmole/h)	54 0268	31.6822			
Glycerol	0 0000	0.9833			
1C160icAcid	0.0000	0.0161			
H2O	1.0000	0.0005			<u> </u>
Flow Basis:		Molar		e composition option is sele	cted
		SUMMAR	RY		
	6	4			T
Flow Rate (kgmole/h)	54 0268 *	31.6822	<u> </u>		
Glycerol (kgmole/h)	0.0000 *	31.1541		-	1
1C16oicAcid (kgmole/h)	0.0000 *	0.5114			
H2O (kgmole/h)	54.0268	0 0 167	-		I
Flow Basis;		Motar	The	composition option is selec	cled
		Product Reco	overies		
	6	4			
Flow Rate (kgmole/h)	54 0268	31.6822			
Glycerol (%)	0.0000	100 0000			
1C16oicAcid (%)	0.0000	100.0000			
1700 (81)	00.0000				1

Table B2 Simulation data of water removal unit (cont.)

Distillation: Glycerol Purification @Main													
				м	ONITOR								
121				Specific	ations Summary	,							
	Specified Value		Current Value	e	WL Error	WL Tol		Abs. Tol.	Active	Estimate	Used		
Comp Fraction	0.995	٥.	0.9	950	-4.378e-009	1.000e-002		1.000e-003	On	On	On		
Reflux Ratio	0.250	0.	0.2	500	1.015e-008	1.000e-002		1.000e-002	On	On	On		
Purified glycerol Rate			2884 I	kg/h		1,000e-002		1.000 kg/h	Off	On	Oft		
Waste Rate			117.0	kg/h		1.000e-002		1.000 kg/h	Off	On	011		
				CO	NDITIONS								
Name		erol an	d Salt @Main	V	Vaste @Main	rified glycerol @	Main	Q-Reboiler2	Main -(Condenser2	@Mam		
Vapour			0 0000		0.0000	0.0	0000						
Temperature	(C)		287.5972		198.2226	159.3	3746						
Pressure	(kPa)		101 3000		1.0000	1.0	0000						
Molar Flow (kgmole/h) 31.6822 0.4563 31.2258 More Flow (kgmole/h) 300.6720 1070.7721													
Mass Flow (kg/h) 3000.5738 117.0203 2883.5535 Std (doc) Lio (of Flow (m20) 2.4147 0.1337 2.2030													
Std kdeal Liq Vol Flow (m3/h) 2.4247 0.1327 2.2920 Matrix Enthalist (h. I/complex) 6.099a.005 7.472.005 6.444.005													
Mokar Enthalpy (kJ/kgmole) -6.088e+005 -7.407e+005 -6.441e+005													
Molar Entropy (kJ/kgmole-C) 247.8 415.0 93.32													
Heat Flow (k.J/h) -1.9287e+07 -3.3804e+05 -2.0114e+07 1.8428e+06 3.0071e+06													
SUMMARY													
Flow Basis:				Mas	s	The	сотро	sition option is se	ected	_			
				Feed (Composition								
	4												
Flow Rate (kg/h)	3.000574e+03	3											
Giycerol	0.9562				_				_				
1C16oicAcid	0.0437												
H2O	0.0001												
Flow Basis:				Mas	s Fl aver	The	compo	sition option is se	lected				
				re	Ed Flows								
	4	-			_								
FIOW HEATE (Kg/h)	3.0005740+03	,	<u> </u>										
Glucom (kalh)	2 9601262-03	, –	-										
1C16orC4cid (kg/l)	121 1270	,											
H2O (kolh)	0.3003												
THE C (NGMI)	L0.5003			P									
Flow Basis:				Mars	5	The	compo	sition option is se	lected				
	·		Pre	oduct	Composition	ıs							
	Purified glycero	к	Waste	e									
Flow Rate (kg/h)	2.883554e+03		1 17.02	03									
	0.0000			•					_				
Giycerol	0.9950	-	0.000	0									
10.150iCACId	0.0049		1.0000		_								
Flow Basis	1 0.0001		0.000	Marce		The		ention ontion is an	Incted				
• WW 00313.	_			Mass		- ine	Compo	andri opporti is se	RUPU				

_

Table B3 Simulation data of glycerol purification unit

÷.

SUMMARY											
	Purified glycerol	Waste									
Flow Rate (kg/h)	2.883554e+03 *	117 0203									
Glyceral (kg/h)	2.869136e+03 *	0 0000 *									
1C16oicAcid (kg/h)	14.1175	117 0203									
H2O (kg/h)	0 3003	0 0000 *									
Flow Basis:		Mass	The composition option is selected								
		- Product Recov	eries								
	Purified glycerol	Waste									
Flow Rate (kg/h)	2.883554e+03	117.0203									
Glycerol (%)	100 0000	0.0000									
1C16oicAcid (%)	10_7654	89.2346									
H2O (%)	100 0000	0.0000									

Table B4 Simulation data of glycerol purification unit (cont.)

Appendix C Simulation Data of EDI Treatment

.

Figure C1 Process flow diagram of glycerol purification by EDI.

-

Distillation: Water Removal 1 @Main													
				A	NON	ITOR							
				Specifi	icatior	ns Summary		-					
	Specified Value		Current Value	e	٧	Nt Error	Wt, Tol.		Abs Tol	Active	Estimate	Used	
Comp Fraction	1.000e-00	13 *	9.9 99e	004	-3	203e-005	2.000	·	1.000e-002 *	On	On	On	
Reflux Ratio	0 250	ю•	0.2	500	1.	139e-011	1.000e-002		1.000e-002	On	On	On	
Concentrated salt Rate	365.0 kg	m •	364.4	kg/h	-1	.636e-003	1.000	10.00 kg/h *	Off	On	Off		
				сс	DNDI	TIONS							
Name		ntrate s	stream @Main	entral	led sa	It @Main	Waste water @	Main	Q-100-2 @	Main	Q-101-2	@Main	
Vapour			0.0000			0.0000	1	0000					
Temperature	(C)		30.0000		2	282,7682	99.9913						
Pressure	(kPa)		101.3000		1	01.3000	101	1.3000		1			
Molar Flow	(kgmole/h)		8 7465			3.4164	5	3301					
Mass Flow (kg/h) 460 4248 364.4029 96 0219 Std Mask Flow (m2/b) 0.4126 0.2164 0.0062													
Std Ideal Liq Vol Flow (m3/h) 0.4126 0.3164 0.0962													
Molar Enthalpy (kJ/kgmole) -4.426e+005 -6.138e+005 -2.386e+005													
Molar Entropy (kJ/kgmole-C) -0 3720 272 1 132 5													
Heat Flow (kJ/h) -3.8708e+06 -2.0971e+06 -1.2716e+06 5.5637e+05 5.4168e+0													
SUMMARY													
Flow Basis:	Flow Basis: Mass The composition option is selected												
			-	Feed	Con	nposition							
	Concentrate str	eam											
Flow Rate (kg/h)	460 4248												
			L									•	
Glycerol	0 6169							I					
1C16oicAcid	0.1737		ļ		_								
H2O	0.2093		L										
Flow Basis:				- Ma	iss .		The	e compo	sition option is s	elected			
			T	F	eed I	Flows		<u> </u>					
	Concentrate str	eam											
Flow Rate (kg/n)	460.4248												
Givceral (ka/h)	284.0444									_			
1C16oicAcid (kg/h)	79.9940												
H2O (kg/h)													
Flow Basis:	155		Th.	e compo	sition option is s	elected							
Product Compositions													
	Glycerol and W	ater	Concentra	ted sat	1								
Flow Rate (kg/h)	96.0219		364.40)29									
Giycerol 0.0000 0.7795													
1C16oicAcid	0.0000		0.219	95									
H2O	1 0000		0.001	10								÷.	
Flow Basis:				Ma	iss		Th	e compo	sition option is s	elected		_	

Table C1 Simulation data of water removal unit 1

÷

.

-

		Product F	lows
	Glycerol and Water	Concentrated salt	
Flow Rate (kg/h)	96.0219	364.4029	
		SUMMA	RY
	Glycerol and Water	Concentrated salt	
Glycerol (kg/h)	0 0000 *	284.0444	
1C16oicAcid (kg/h)	0 0000 *	79.9940	
H2O (kg/h)	96 0219	0.3644	
Flow Basis:		Mass	The composition option is selected
		Product Rec	overies
	Glycerol and Water	Concentrated salt	
Flow Rate (kg/h)	96 0219	364.4029	
			-
Glycerol (%)	0.0000	100.0000	
1C16oicAcid (%)	0.0000	100.0000	
H2O (%)	99.6220	0.3780	

Table C2 Simulation data of water removal unit 1 (cont.)

 Table C3
 Simulation data of glycerol purification unit

•

Distillation: Glycerol Purification @Main												
MONITOR												
	Specifications Summary											
	Specified Value	Current Valu	e _	WL Error	Wt. Tol.		Abs. Tol	Active	Estimate	Used		
Reflux Ratio	0 250	0 0.2	0.2792		1 000e-002	1.000e-002		Off	On	Off		
Comp Fraction - 2	0 995	0 • 0.9	950	9.065e-005	5.000 *		1.000e-003	On	On	On		
Draw Rate	285.0 kg/	n • 285.01	kg/h	2.918e-006	1.000e-002		10.00 kg/h *	On	On	On		
CONDITIONS												
Name	centrated salt @Main			Salt @Main	erol Product1 @Main		Q-106-2 @Main		0-102-2	@Main		
Vapour		0.0000		0.0000	0.0	000	L					
Temperature	(C)	282.7682		196.6425	139.4	39.4294						
Pressure	(kPa)	(kPa) 101.3000 1.000		1.0000	1.0	000						
Molar Flow	(kgmole/h)	3.4164		0.3129	3.1035							
Mass Flow	(kg/h)	364.4029	79.4020		285.0008							
Std Ideal Lig Vol Flow	(m3/h)	0.3164		0 0899	0.2	265				_		
Molar Enthalpy	(kJ/kgmole)	-6.138e+005		-7.400e+005	-6.471e+	005						
Molar Entropy	(IcJ/kgmole-C)	272.1		408 2	72	2.15						
Heat Flow (ku/h) -2.0971e+06 -2.3157e+05 -2.0082e+				+06	1.8279e	+05	3.255	i0e≁05				
SUMMARY												
Flow Basis:			Mola	ne	The	сотро	sition option is se	lected				

43

	Feed Composition							
	Concentrated salt							
Flow Rate (kgmole/h)	3.4164							
Glycerol	0 9028							
1C16oicAcid	0 0913			· · · · · · · · · · · · · · · · · · ·				
H2O	0.0059							
Flow Basis:		Molar	The	composition option is selec	ted			
		Feed	Flows					
	Concentrated salt							
Flow Rate (kgmole/h)	3.4164							
Glycerol (kgmole/h)	3.0843							
1C16oicAcid (kgmole/h)	0.3120							
H2O (kamole/h)	0.0202							
		Proc	lucts					
Flow Basis:		Molar	The	composition option is selec	ted			
		Product Co	mpositions					
	Glycerol Product1	Salt						
Flow Rate (kgmole/h)	3.1035	0.3129		· · · · · · · · · · · · · · · · · · ·				
Givcerol	0.9922	0.0163						
1C160icAcid	0.0013	0.9837						
H2O	0.0065	0.0000						
Flow Basis:		Molar	The	composition option is selec	ted			
		Produc	t Flows					
	Givcerol Product1	Sait						
Flow Rate (komole/h)	3 1035	0.3129						
The (agricial)	5.1035	0.5125			L			
		SUMI	WARY					
	Glycerol Product1	Salt						
Glycerol (kgmole/h)	3.0792	0.0051						
1C16oicAcid (kgmole/h)	0.0041	0.3078						
H2O (kgmole/h)	0 0202	0 0000						
Flow Basis:	8	- Molar	The	composition option is selec	ted			
-		Product R	ecoveries					
	Glycerol Product1	- Salt						
Flow Rate (kgmole/h)	3_1035	0 3129						
Glycerol (%)	99 8350	0.1650						
1C16oicAcid (%)	1.3258	98.6742						
H2O (%)	100.0000	0.0000						
H2U (%)	100.0000	0.000			L			

-

Table C4 Simulation data of glycerol purification unit (cont.)

.

			M	ONITOR						
			Specifica	ations Summary						
	Specified Value	Current Valu	e	WL Error	Wt. Tol.		Abs. Tol.	Active	Estimate	
Reflux Ratio	0 2500	0.:	2500	1.581e-008	1.000e-002		1.000e-002	On	On	
Distullate Rate	2560 kg/h	2559	kg/h	-4.247e-004	1.000 *		10.00 kg/h *	Off	On	
Comp Fraction - 2	0.9950	0	9950	1.131e-004	5.000 *		1.000e-002 *	On	On	
			CO	DITIONS						
Name	bo	uct stream @Main	Prol proc	tuct2 @Main	/ater product @M	Aain	Q-106 @	Main	Q-102	2
Vapour		0.0000		0 0000	0.0	000				
Temperature	(C)	30.0000		281.9005	99.9	913				
Pressure	(kPa)	101.3000		101.3000	101.3	000				
Motar Flow	(kgmole/h)	75.9110		27.8978	48.0	133				
Mass Flow	(kg/h)	3423.8764		2558.9127	864.9	637				
Std Ideal Liq Vol Flow	(m3/h)	2 8969		2.0302	0.8	667				
Motar Enthalpy	(kJ/kgmole)	-4.279e+005		6 078e+005	-2 792e+	005				
Molar Entropy	(kJ/kgmole-C)	-4.726		236.4	2:	3.57				
Heat Flow	(kJ/h)	-3.2479e+07		-1.6958e+07	-1.3406e	+07	- 4.5547	e+0+ô	2,43	3
			su	MMARY						
Flow Basis:			Mola	I	The	compos	ation option is s	elected		
			Feed C	omposition						
	Product stream									
Flow Rate (kgmole/h)	75.9110									
Glyceral	0.3657									
1C16oicAcid	0 0000									
H2O	0 6343									
Flow Basis:	-		Mola	r	The	compos	sition option is se	elected		
			Fee	d Flows						
	Product stream									-
Flow Rate (kgmole/h)	75.9110							_		_
Gherard (tramole/h)	27 7583					-	2			
1C16oicAcid (knmole/h)	0 0000			-			-			
- H2O (komole/h)	48.1527									
			Pr	oducts						
Flow Basis:	-		Mola		The	compos	ation option is se	elected		
		P	roduct	Compositio	ns					
	5	Giverni r	roduct	T	1					
Flow Rate (kgmole/h)	48.0133	27 89	78							
	Anto	- 6.0								
Glycerol	0.0000	0.995	50							
1C16olcAcid	0.0000	0.000	00							
H2O	1 0000	0.00	50							
Flow Basis:			Motar		The	compos	ation option is se	elected		
			Prod	UCT FIOWS						
1	5	Channel -	And and							

Table C5 Simulation data of water removal unit 2

	·	SUMMA	RY			
	5	Glycerol product				
Glycerol (ligmole/h)	0 0000 *	27 7583				
1C16aicAcid (kgmole/h)	0 0000 *	0.0000				
H2O (kgmole/h)	48 0133	0 1395				
Flow Basis:		Molar	The composition option is selected			
		Product Reco	veries			
-	5	Glycerol product				
Flow Rate (kgmole/h)	48 0133	27.8978				
Glycerol (%)	0.0000	100.0000				
1C16oicAcid (%)	0.0000	0.0000				
H2O (%)	99 7103	0.2897				

Table C6 Simulation data of water removal unit 2

-

.

CURRICULUM VITAE

Name: Mr. Danupol Ngamsitthisak

Date of Birth: December 16, 1989

Nationality: Thai

University Education:

2008–2011 Bachelor Degree of Chemical Engineering, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

1.1

Work Experience:

-	2011	Position:	Trainee
		Company name:	- PTT Gas Separation Plant

Proceedings:

- Ngamsitthisak, D., Kitiyanan, B., and Robert M., Z. (2014, April 7) Desalination of Crude Glycerol Obtained from Biodiesel Production by Electrodeionization. Proceedings of <u>The 5th Research Symposium on Petroleum</u>, Petrochemicals, and
- <u>Materials Technology and the 20th PPC Symposium on Petroleum,</u> <u>Petrochemicals and Polymers.</u> Bangkok, Thailand.

Presentations:

 Ngamsitthisak, D., Kitiyanan, B., and Robert M., Z. (2014, April 22) Desalination of Crude Glycerol Obtained from Biodiesel Production by Electrodeionization. Poster presented at <u>The 5th Research Symposium on Petroleum, Petrochemicals,</u> <u>and Materials Technology and the 20th PPC Symposium on Petroleum,</u> <u>Petrochemicals and Polymers, Bangkok, Thailand.</u>