STUDY OF BIOPOLYMER MODIFIED WITH ARGININE FOR CO₂ ADSORPTION

Krissada Sae-jae

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
Case Western Reserve University, and Institut Français du Pétrole
2012

Thesis Title: Study of Biopolymer Modified with Arginine for

CO₂ Adsorption

By: Krissada Sae-jae

Program: Petroleum Technology

Thesis Advisors: Assoc. Prof. Chintana Saiwan

Prof. Paitoon Tontiwachwuthikul

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

.... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Assoc. Prof. Chintana Saiwan)

(Prof. Paitoon Tontiwachwuthikul)

(Asst. Prof. Pomthong Malakul)

(Dr. Teeradet Supan)

ABSTRACT

5373004063: Petroleum Technology Program

Krissada Sae-jae: Study of Biopolymer Modified with Arginine for

CO₂ Adsorption

Thesis Advisors: Assoc. Prof. Chintana Saiwan, and Prof. Paitoon

Tontiwachwuthikul 87 pp.

Keywords: Biopolymer/ Arginine/ CO₂ adsorption

Biopolymer was modified with arginine for carbon dioxide adsorption study. Biopolymer was reacted with arginine in 2-(N morpholino) ethanesulfonic acid sodium salt solution (MES solution) of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC.HCl) and N-hydroxysulfosuccinimide sodium salt (sulfo-NHS). The effects of the ratios of the coupling agents to biopolymer, ratios of arginine to biopolymer, and reaction time were studied. The degree of substitution was determined by high-performance liquid chromatography (HPLC) and the functional groups of the biopolymer-arginine composite were detected by Fourier transform infrared spectroscopy (FT-IR). The most suitable ratio of coupling agents to biopolymer was 1:1, which give the highest degree of substitution (%DS) as compared with the ratios of 2:1 and 3:1. The most suitable reaction time was 72 hours as compared with 24 hours and 48 hours. The effect of arginine ratio was to vary the ratio of arginine to biopolymer as 1:1, 2:1 and 3:1. The ratio of biopolymer to arginine at 1:1 give the most suitable %DS. The obtained material was used as an adsorbent for a CO₂ adsorption study.

บทคัดย่อ

กฤษฎา แซ่เจ๋ : การศึกษาการคูดซับก๊าซคาร์บอนไดออกไซด์โดยใช้ไบโอพอถิเมอร์ที่ ปรับปรุงด้วยการเพิ่มอาร์จินิน (Study of Biopolymer Modified with Arginine for CO_2 Adsorption) อ. ที่ปรึกษา : รองศาสตราจารย์ คร. จินตนา สายวรรณ์ และ ศาสตราจารย์ คร. ไพฑูรย์ ตันติเวชวุฒิกุล 87 หน้า

ใบโอพอลิเมอร์ถูกปรับปรุงโดยการเพิ่มอาร์จินินเพื่อใช้สำหรับศึกษาการดูดซับก๊าซ คาร์บอนใคออกใหด์ โดยนำใบโอพอลิเมอร์มาทำปฏิกริยากับอาร์จินิน ในสารละลาย 2-(เอ็น-มอร์ ฟอลิโน อีเทนนิซัลโฟนิค เอซิค โซเคียม เซาท์) โดยใช้สารช่วยทำปฏิกริยา 1-เอทิล-3-(3-ได เมททิลลามิโนโพพิล) คาร์โบไดไอไมด์ ไฮโดรคลอไรด์ และ เอ็น-ไฮดรอกซีซัลโฟซัคสินิไมด์ โซเคียม เซาท์ โดยศึกษาผลของอัตราส่วนระหว่างสารช่วยทำปฏิกริยากับใบโอพอลิเมอร์, อัตราส่วนระหว่างอาร์จินินกับใบโอพอลิเมอร์, และเวลาในการทำปฏิกริยา ระดับการเข้าไปแทนที่ ของอาร์จินินในใบโอพอลิเมอร์สามารถวิเคราะห์ได้จากวิธีการวิเคราะห์ด้วยเครื่องไฮเพอร์ ฟอร์แมนซ์ ลิควิค โครมาโตกราฟฟี (เอชพีแอลซี) และหม่ฟังก์ชันของใบโอพอลิเมอร์-อาร์จินินที่ จับกันสามารถวิเคราะห์ได้จากเครื่อง ฟูเรียร์ ทรานส์ฟอร์ม อินฟาเรค สเปคโตรสโครปี (เอฟทีไอ อาร์) อัตราส่วนระหว่างสารช่วยทำปฏิกริยากับไบโอพอถิเมอร์ที่เพิ่มสัดส่วนการเข้าแทนที่ของอาร์ จินินสู่ใบโอพอลิเมอร์ได้มากที่สุดคือ อัตราส่วนของสารช่วยทำปฏิกริยาต่อใบโอพอลิเมอร์ที่ 1 ต่อ 1 เมื่อเทียบกับอัตรา 2 ต่อ 1 และ 3 ต่อ 1 ตามลำดับ เวลาทำปฏิกริยาที่เหมาะสมที่สด คือ 72 ชั่วโมง เมื่อเทียบกับ 24 ชั่วโมงและ 48 ชั่วโมง อัตราส่วนระหว่างอาร์จินินกับใบโอพอลิเมอร์ที่เพิ่ม สัคส่วนการเข้าแทนที่ของอาร์จินินสู่ไบโอพอถิเมอร์ได้มากที่สุดคือ อัตราส่วนของอาร์จินินต่อไบ โอพอลิเมอร์ที่ 1 ต่อ 1 เมื่อเทียบกับอัตรา 2 ต่อ 1 และ 3 ต่อ 1 ตามลำคับ ไบโอพอลิเมอร์-อาร์จินิน ที่สังเคราะห์ได้จะนำไปทดสอบในกระบวนการดูดซับกาซคาร์บอนไดออกไซด์

ACKNOWLEDGEMENTS

This work would not have been possible without the assistance of the following individuals:

First and foremost, I sincerely appreciate Prof. Chintana Saiwan, my advisor, and Prof. Paitoon Tontiwachwuthikul, my co-advisor, for providing invaluable knowledge, creative comments, untouchable experience in classroom, and kind support throughout this research work.

I would like to thank Asst. Prof. Pomthong Malakul and Dr. Teeradet Supap for being my thesis committee. Their suggestions and comments are very beneficial for me and this work.

This thesis work is funded by the Petroleum and Petrochemical College, Chulalongkorn University and the National Centre of Excellence on Petrochemicals, and Materials Technology, Thailand.

I greatly appreciate all PPC staffs and my friends who gave me support and encouragement.

Finally, I am deeply indebted to my parents; Sittichai and Wannee Sae-jae for their love, understanding, encouragement, and support for me at all time.

TABLE OF CONTENTS

		PAGE
Tit	le Page	i
Ab	estract (in English)	iii
Ab	estract (in Thai)	iv
Ac	knowledgements	V
Та	ble of Contents	vi
Lis	List of Tables	
Lis	st of Figures	xi
СНАРТ	ER	
I	INTRODUCTION	1
II	LITERATURE REVIEW	2
	2.1 Review of Carbon Dioxide Emission	2
	2.2 CO ₂ Capture Technology	2
	2.2.1 Pre-Combustion	2
	2.2.2 Post-Combustion	3
	2.2.3 Oxy-Combustion	3
	2.3 Review of Possible CO ₂ Separation Technology	6
	2.3.1 Absorption	6
	2.3.2 Adsorption	8
	2.3.3 Membrane	16
	2.3.3 Cryogenic	16
	2.4 Biopolymer	18
	2.5 Amino Acids	23
	2.3.3 Arginine	29
	2.6 Literatures	32

CHAPTER		PAGE
III	EXPERIMENTAL	
	3.1 Materials and Equipment	38
	3.2 Experimental Procedures	38
	3.2.1 Purification of Biopolymer	38
	3.2.2 Determination of Degree of Deacetylation o	f
	Biopolymer	39
	3.2.3 Modification of Purified Biopolymer with	
	Arginine	40
	3.2.4 Characterization of Biopolymer-Arginine	43
IV	RESULTS AND DISCUSSION	
	4.1 Purification of Biopolymer and Characterization	
	Purified Biopolymer	45
	4.2 Synthesis of Modified Biopolymer–Arginine and	
	Characterization	47
	4.2.1 Effect of Coupling Agents to Purified	
	Biopolymer	47
	4.2.2 Effect of Reaction Time	52
	4.2.3 Effect of Arginine to Purified Biopolymer	54
	4.2.4 Results from Thermo Gravimetric Analysis	55
V	CONCLUSIONS AND RECOMMENDATIONS	57
	REFERENCES	58
	APPENDICES	62
	Appendix A Determination of Degree of Purification	of
	Purified Biopolymer by Fourier	
	Transforrm Infared Spectroscopy (FT-II	R) 62

CHAPTER		PAGE
Appendix B	Calculations of Degree of Deacetylation	
	from Titration Method	65
Appendix C	Calculation of Chemical used	67
Appendix D	Calculation of Degree of Substitution of	
	Biopolymer-Arginine from CHN Elemental	
	Analysis Method	69
Appendix E	Calculation of Degree of Substitution of	
	Biopolymer-Arginine from HPLC Method	79
CURRICUL	UM VITAE	87

LIST OF TABLES

TABL	E	PAGE
2.1	Advantages and Disadvantages of Different CO ₂ Capture	
	Approaches	4
2.2	Parameters of Physical Adsorption and Chemisorption	10
2.3	Factors Governing Choice of Regeneration Method	14
2.4	Summary of Current Status of CO ₂ Separation Techniques	17
2.5	Principal Applications for Chitosan	19
2.6	General Recommendations for the Use of Chitin and	
	Chitosan in Several Applications	21
2.7	Types of Amino Acids	24
2.8	Alternative Oxygen-Rich Solid Substrates Tested as	
	Amine-Enriched Sorbents for the Capture of CO ₂	33
2.9	Computed Heats of CO_2 Absorption (ΔH) per Mole of CO_2	
	At 25 °C in 30 wt% MEA and 45 wt% MDEA Solutions	36
2.10	Computed Vs. Experimental Density at 25 °c in Various	
	Amine Solutions and CO ₂ Loading Levels	37
3.1	Effect of Coupling Agents on Biopolymer (PB)/Arginine (AR)/	
	Coupling Agents (CA) at Mole Ratio of 1:1:0, 1:1:1, 1:1:2	
	and 1:1:3, Respectively at Reaction Time 48 h	41
3.2	Effect of Reaction Time on Biopolymer (PB)/Arginine (AR)/	
	Coupling Agents (CA) of 1:1:1	42
3.3	Effect of Arginine on Biopolymer (PB)/Arginine (AR)/	
	Coupling Agents (CA) of 1:1:1, 1:2:1 and 1:3:1 with	
	Reaction Time 72 h	43
4.1	Degree of Substitution of Arginine in Biopolymer-Arginine	
	at Various Mole Ratio of Coupling Agents to Biopolymer	
	and Reaction Time 48 h	52

TABLE		PAGE
4.2	Degree of Substitution of Arginine in Biopolymer-Arginine	
	at Various Reaction Time while Biopolymer/Arginine/	
	Coupling Agents were Kept Constant at 1:1:1	53
4.3	Degree of Substitution of Biopolymer-Arginine at Various	
	Mole Ratio of Arginine and Reaction Time 72 h	55
4.4	Thermal decomposition temperature of biopolymer, arginine,	
	and biopolymer-arginine	56

LIST OF FIGURES

F	FIGURE		PAGE	
	2.1	Block Diagram for Pre-Combustion System.	3	
	2.2	Block Diagram for Post-Combustion System.	3	
	2.3	Block Diagram for Oxy-Combustion System.	4	
	2.4	Proposed Reaction Sequence for The Capture of CO ₂ by		
	2.1	Liquid Amine-Based Systems.	7	
	2.5	Degradetion MEA by CO_2 and O_2 .	8	
	2.6	Concentration Profiles through an Idealized Biporous		
	2.0	Adsorbent Particle Showing Some of the Possible Regimes.	11	
	2.7	The Two Basic Modes of Operation for an Adsorption		
		Process: (A) Cyclic Batch System; (B) Continuous Counter		
		Current System with Adsorbent Recirculation.	13	
	2.8	Technology Options for CO ₂ Separation.	17	
	2.9	Structure of Chitosan.	18	
	2.10	Delocalization of Charge in Guanidinium Group of		
		L-Arginine	30	
	3.1	Deacetylation Reaction of Biopolymer.	39	
	4.1	Comparison of Infrared Spectra of Original Biopolymer		
		and Purified Biopolymer.	45	
	4.2	Titration Curve for Determining Degree of Deacetylation		
		of Purified Biopolymer.	46	
	4.3	Reaction Between Biopolymer and Arginine to Form		
		Biopolymer-Arginine using EDC.Hcl and Sulfo-NHS		
		Coupling Agents in MES Buffer Solution.	47	
	4.4	Reaction Of EDC.Hcl and Sulfo-NHS to Change		
		Carboxylic Group to Amide Group.	48	
	4.5	Infrared Spectra of Purified Biopolymer and Arginine.	48	

FIGURE		PAGE
4.6	Infrared Spectra of Biopolymer-Arginine with Coupling	
	Agents and Biopolymer-Arginine with No Coupling Agents.	
	a Ratio of Biopolymer/Arginine/Coupling Agents was 1:1:1.	49
4.7	Infrared Spectra of Purified Biopolymer-Coupling Agents	
	Used at Ratio 1:1, 1:2 and 1:3, while Biopolymer/Arginine	
	was Kept Constant at 1:1 at Reaction Time 48 h.	50
4.8	Standard Calibration Curve of Arginine.	51
4.9	HPLC Chromatogram of 4 (%Wt/V) Arginine Standard.	51
4.10	HPLC Chromatogram of the Product from the Mole Ratios	
	of Biopolymer/Coupling Agents was Varied, 1:2 while	
	Keeping Mole Ratio of Biopolymer to Arginine Constant	
	at 1:1 at Reaction Time 48 h.	52
4.11	Infrared Spectra Compare Biopolymer-Arginine with	
	Reaction Time 24 h, 48 h and 72 h, while Biopolymer/	
	Arginine/Coupling Agents was Constant at 1:1:1.	53
4.12	Infrared Spectra of Purified Biopolymer-Arginine Used at	
	Ratio 1:1, 1:2 and 1:3, while Biopolymer/Coupling Agents	
	was Kept Constant at 1:1 at Reaction Time 72 h.	54
4.13	Thermograms of A) Biopolymer, B) Arginine and	
	C) Biopolymer-Arginine with 76.29% Degree of Substitution,	
	at from 25°C to-600 °C at a Constant Heating Rate of	
	10 °C/Min under a Nitrogen Atmosphere.	55