CONVERSION OF RICE STRAW TO SUGARS BY MICROBIAL HYDROLYSIS

Paramet Kerdkaew

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science

The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with

The University of Michigan, The University of Oklahoma,
Case Western Reserve University and Institut Français du Pétrole
2012

Thesis Title:

Conversion of Rice Straw to Sugars by Microbial Hydrolysis

By:

Mr. Paramet Kerdkaew

Program:

Petrochemical Technology

Thesis Advisors:

Prof. Sumaeth Chavadej

Assoc. Prof. Pramoch Rangsunvigit

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

Chiwady-

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Prof. Sumaeth Chavadej)

(Assoc. Prof. Pramoch Rangsunvigit)

Ratana Rijisavanit

(Assoc. Prof. Ratana Rujiravanit)

sould or

(Prof. Suntud Sirianuntapaiboon)

ABSTRACT

5371013063: Petrochemical Technology Program

Paramet Kerdkaew: Conversion of Rice Straw to Sugars by Microbial

Hydrolysis

Thesis Advisors: Prof. Sumaeth Chavadej and Assoc. Prof. Pramoch

Rangsunvigit 82 pp.

Keywords: Microbial hydrolysis/ Rice straw/ Lignocellulose/ Microceroterms sp./

Sugar

Rice straw is one of the most abundant lignocellulosic wastes in the world. It contains 47 % cellulose, 25 % hemicellulose and 5 % lignin. The cellulose and hemicellulose in rice straw can be converted into glucose and other fermentable sugars via microbial hydrolysis. These sugars can then be used as feedstocks for bioethanol production. The purpose of this work was to investigate the possibility of using rice straw as a raw material for microbial hydrolysis to produce sugars using bacteria isolated from Thai higher termites, *Microceroterms* sp. The effects of particle size (40 mesh, 60 mesh and 80 mesh), hydrolysis temperature (30 °C and 37 °C), amount of malt extract in 65 modified DSMZ broth medium 2 and bacteria strains (A 002 and M 015) were investigated. Qualitative and quantitative analysis of the sugars were determined by high performance liquid chromatography (HPLC) with a refractive index detector. The maximum sugar concentration of 0.97 g/L at 9 h and 37 °C was obtained with 80 mesh rice straw using strain A002 and 10 g/L malt extract in the production medium.

บทคัดย่อ

ปรเมศวช์ เกิดแก้ว: การเปลี่ยนแปลงฟางข้าวไปเป็นน้ำตาลโดยการย่อยด้วยแบกทีเรีย (Conversion of Rice Straw to Sugars by Microbial Hydrolysis) อ. ที่ปรึกษา: ศ. คร. สุเมช ชวเดช และ รศ.คร. ปราโมช รังสรรค์วิจิตร 82 หน้า

ฟางข้าวเป็นผลผลิตพลอยได้ชนิดหนึ่งจากเกษตรกรรม ซึ่งองค์ประกอบฟางข้าวนั้น ประกอบไปด้วย เซลลูโลสร้อยละ 47 เฮมิเซลลูโลสร้อยละ 25 และ ลิกนินร้อยละ 5 เซลลูโลสและ เฮมิเซลลูโลสในฟางข้าวนั้นสามารถเปลี่ยนไปเป็นน้ำตาลกลูโคสและน้ำตาลอื่นๆได้ โดย กระบวนการย่อยด้วยแบคทีเรีย ซึ่งน้ำตาลที่ผลิตได้นั้นสามารถใช้เป็นวัตถุดิบตั้งต้นในการผลิต เอทธานอล วัตถุประสงค์หลักของงานวิจัยนี้คือ การศึกษาความเป็นไปได้ของการใช้ฟางข้าวเพื่อ เป็นวัตถุดิบตั้งค้นสำหรับกระบวนการย่อยด้วยเอนไซม์ โดยแบคทีเรียที่แยกได้จากปลวกชั้นสูง ตัว แปรที่ศึกษาในงานวิจัยนี้ประกอบไปค้วย ขนาดอนุภาคของฟางข้าว (40,60 และ 80 เมช) อุณภูมิที่ ใช้ในกระบวนการย่อย (30 และ 37 องศาเซลเซียส) ปริมาณของมอลสกัดในตัวกลางที่มีอาหาร เลี้ยงเชื้อ (10 กรัมต่อลิตร 5 กรัมต่อลิตร และ 1 กรัมต่อลิตร) และสายพันธุ์ของแบคทีเรีย (สายพันธุ์ เอ 002 และ เอ็ม 015) การวิเคราะห์เชิงคุณภาพและปริมาณของน้ำตาลที่ได้นั้นถูกวิเคราะห์โดย เครื่อง HPLC (high performance liquid chromatography) ที่ใช้ตัววัดแบบ Refractive Detector จากการวิเคราะห์พบว่า ปริมาณน้ำตาลกลูโคสสูงสุดประมาณ 0.97 กรัมต่อลิตร ที่ชั่วโมงที่ 9และอุณหภูมิ 37 องศาเซลเซียส ได้มาจากการย่อยฟางข้าวขนาด 80 เมช ด้วยแบคทีเรียสายพันธุ์ เอ 002 โดยมีปริมาณของมอลสกัด 10 กรัมต่อลิตรในตัวกลางที่มีอาหารเลี้ยงเชื้อ

ACKNOWLEDGEMENTS

This work would not have been successful without the assistance of the following individuals and organizations.

First of all, I gratefully acknowledge Prof. Sumaeth Chavadej, Assoc. Prof. Pramoch Rangsunvigit, for several constructive suggestions and discussion throughout the course of this work.

I am grateful for the scholarship and funding of the thesis work provided by the Petroleum and Petrochemical College, the Center of Excellence on Petrochemical and Materials Technology, Thailand, and Thai Oil Public Company Limited.

I would like to show my gratitude to Ms. Thitirat Choke-arpornchai and Ms. Pitcha Wongskeo for the very special people they are and for being the best of friends who supported and encouraged me at every moment.

I would like to thank to Ms. Wannaporn Eourarekullart for her suggestion.

I would like to thank to all faculties and staffs at PPC for the knowledge that I have learnt from them as well as their help to facilitate all my work.

Lastly, I would like to offer sincere gratitude to my family for their love, caring, supporting and understanding me all the time.

TABLE OF CONTENTS

			PAGE
Т	itle Page		i
A	Abstract (in English)		iii
Α	Abstract (in Thai)		iv
A	Acknowledgements		v
Т	able of C	Contents	vi
L	ist of Ta	bles	ix
L	ist of Fig	gures	X
СНАР	TER		
I	IN	TRODUCTION	1 1
I	I TI	HEORETICAL BACKGROUND AND	
	LI	TERATURE REVIEW	3
	2.1	Lignocellulosic Biosmass Materials	3
	2.2	2 Chemical Structure and Basic Components of	
		Lignocellulosic Materials	4
		2.2.1 Cellulose	5
		2.2.2 Hemicellulose	6
		2.2.3 Lignin	7
	2.3	Rice Straw	8
	2.4	Glucose	9
	2.5	Sugar Production from Lignocellulosic Materials	9
	2.6	Pretreatment of Lignocellulosic Materials	10
		2.6.1 Mechanical Comminution	12
		2.6.2 Pyrolysis	12
		2.6.3 Steam Explosion	12
		2.6.4 Ammonia Fiber Explosion (AFEX)	13
		2.6.5 Carbon Dioxide Explosion	13
		2.6.6 Liquid Hot-Water Pretreatment	13

CHAPTE	CHAPTER	
	2.6.7 Ozonolysis	14
	2.6.8 Alkaline Pretreatment	14
	2.6.9 Acid Pretreatment	15
	2.6.10 Ionic Liquid Pretreatment	15
	2.6.11 Biological Pretreatment	16
	2.7 Hydrolysis of Lignocellulosic Materials	19
	2.7.1 Concentrated Acid Hydrolysis	19
	2.7.2 Dilute Acid Hydrolysis	20
	2.7.3 Enzymatic Hydrolysis	20
	2.8 Cellulase Enzymes	22
III	EXPERIMENTAL	27
	3.1 Materials and Equipment	27
	3.1.1 Chemicals	27
	3.1.2 Equipments	27
	3.2 Experimental Procedures	29
	3.2.1 Biomass Preparation	29
	3.2.2 Bacteria Cells for Microbial Hydrolysis	29
	3.2.3 Microbial Hydrolysis	29
	3.2.4 Determination of Sugar and Bacteria	
	Concentrations	30
IV	RESULTS AND DISCUSSION	31
	4.1 Rice Straw Composition	31
	4.2 Hydrolysis Capacity Value (HC Value)	32
	4.3 Structure of Enzymatically Hydrolyzed Rice Straw	
	Sample	32
	4.4 Enzymatic Hydrolysis Results	33
	4.4.1 Effects of Rice Straw Particle Size on the	
	Glucose Production	33

CHAPTER		PAGE	
	4.4.2 Eff	ects of Hydrolysis Temperature on the	
	Glı	ucose Production	37
	4.4.3 Eff	ects of Bacteria Strain on the Glucose	
	Pro	oduction	39
	4.4.4 Eff	ects of Concentration of Secondary Carbon	
	Soi	urce on the Glucose Production	41
	4.4.5 Bac	cteria Concentration and Glucose Production	
	VS.	Time	42
	4.4.6 Cel	lulose Conversion and Glucose Production	
	VS.	Time	43
V	CONCLUSIO	ONS AND RECOMMENDATIONS	44
	5.1 Conclusio	ons	44
	5.2 Recomme	endations	44
	REFERENC	ES	45
	APPENDICE	CS .	
	Appendix A	Standard Calibration Curve	55
	Appendix B	Media for Microorganisms	56
	Appendix C	Reagent Preparations	57
	Appendix D	Bacteria Concentration	58
	Appendix E	Experiment Data of Enzymatic Hydrolysis	61
	Appendix F	SEM images of before and after enzymatic	
		Hydrolysis of rice straw	75
	CURRICULI	UM VITAE	82

LIST OF TABLES

FABLE		PAGE	
2.1	Contents of cellulose, hemicellulose, and lignin in common		
	lignocellulosic materials	5	
2.2	Advantages and disadvantages of various pretreatment		
	processes for lignocellulosic materials	17	
2.3	Comparison of process conditions and performance of three		
	hydrolysis processes	21	
2.4	Characteristics of isolates A 002, M 015, and F 018 by		
	microbiological methods	25	
4.1	Elemental composition of rice straw	31	
4.2	Chemical composition of rice straw	31	
4.3	Hydrolysis capacity values (HC value) of bacteria strain A		
	002 and strain M 015	32	

LIST OF FIGURES

FIGURE		PAGE	
2.1	Schematic representation of a cellulose chain	6	
2.2	Schematic of the basic structure of hemicellulose	7	
2.3	Lignin building blocks	8	
2.4	Overall view of sugar and ethanol productions from	o o	
_, .	lignocellulosic materials	10	
2.5	Schematic of goals of pretreatment on lignocellulosic		
2.0	material	11	
2.6	Mechanistic scheme of enzymatic cellulose hydrolysis by	•	
	Trichoderma non-complexed cellulase system	23	
4.1	Scaning electron microraphs of 60 - 80 mesh size of rice		
	straw surface (a) befor hydrolysis (b) after hydrolysis at		
	37°C with the strain A 002 and (c) after hydrolysis at 37°C		
	with the strain M 015	33	
4.2	Effect of rice straw particle size on the glucose concentration		
	profile at 37 °C using bacteria (a) strain A 002 and (b) strain		
	M015	35	
4.3	Effect of rice straw particle size on the glucose concentration		
	profile at 30 °C using bacteria (a) strain A 002 and (b) strain		
	M015	36	
4.4	Effect of hydrolysis temperature on the glucose concentration		
	from the hydrolysis of 80 mesh particle size rice straw using		
	bacteria (a) strain A 002 and (b) strain M 015	38	
4.5	Effect of bacteria strains on the glucose concentration profile		
	from the hydrolysis of < 80 mesh rice straw at 37 °C (a) and		
	30 °C (b)	40	

FIGURE		PAGE
4.6	Effect of concentration of secondary carbon source on the	
	glucose concentration profile from the hydrolysis of < 80	
	mesh particle size rice straw at 37 °C using bacteria strain	
	A 002	41
4.7	Glucose concentration and bacteria concentration profile	
	from the hydrolysis of < 80 mesh rice starw with strain A	
	002 at 37 °C	42
4.8	Glucose concentration profile and the percentage of	
	cellulose conversion from the hydrolysis of < 80 mesh rice	
	straw with strain A 002 at 37 °C	43