CHEMICAL CONSTITUENTS WITH ALPHA-GLUCOSIDASE INHIBITORY ACTIVITY FROM DENDROBIUM BRAIANENSE AND DENDROBIUM KENTROPHYLLUM

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmaceutical Sciences and Technology Common Course FACULTY OF PHARMACEUTICAL SCIENCES Chulalongkorn University Academic Year 2020 Copyright of Chulalongkorn University

องค์ประกอบทางเคมีที่มีฤทธิ์ยับยั้งเอนไซม์แอลฟา-กลูโคซิเดสของเอื้องคำป๊อกลาวและเอื้องก้างปลา ใหญ่

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเภสัชศาสตร์และเทคโนโลยี ไม่สังกัดภาควิชา/เทียบเท่า คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2563 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	CHEMICAL CONSTITUENTS WITH ALPHA-GLUCOSIDASE
	INHIBITORY ACTIVITY FROM DENDROBIUM BRAIANENSE
	AND DENDROBIUM KENTROPHYLLUM
Ву	Miss Mia Indria Permatasari
Field of Study	Pharmaceutical Sciences and Technology
Thesis Advisor	Associate Professor BOONCHOO SRITULARAK, Ph.D.
Thesis Co Advisor	Professor KITTISAK LIKHITWITAYAWUID, Ph.D.

Accepted by the FACULTY OF PHARMACEUTICAL SCIENCES, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Science

-	Dean of the FACULTY OF
	PHARMACEUTICAL SCIENCES
(Assistant Professor RUNGPETCH SAKULBUMRUNGSIL,
I	Ph.D.)
THESIS COMMIT	TEE CONTRACTOR
-	Chairman
(Assistant Professor TAKSINA CHUANASA, Ph.D.)
	Thesis Advisor
(Associate Professor BOONCHOO SRITULARAK, Ph.D.)
-	Thesis Co-Advisor
((Professor KITTISAK LIKHITWITAYAWUID, Ph.D.)
-	Examiner
(Assistant Professor CHAISAK CHANSRINIYOM, Ph.D.)
-	External Examiner
((Duangpen Pattamadilok, Ph.D.)

ไมอา อินเดรีย เพอร์มาทาซารี : องค์ประกอบทางเคมีที่มีฤทธิ์ยับยั้งเอนไซม์แอลฟา-กลู โคซิเดสของเอื้องคำปือกลาวและเอื้องก้างปลาใหญ่. (CHEMICAL CONSTITUENTS WITH ALPHA-GLUCOSIDASE INHIBITORY ACTIVITY FROM *DENDROBIUM BRAIANENSE* AND *DENDROBIUM KENTROPHYLLUM*) อ.ที่ปรึกษาหลัก : รศ.บุญชู ศรีตุลารักษ์, อ.ที่ปรึกษาร่วม : ศ.กิตติศักดิ์ ลิขิตวิทยาวุฒิ

การศึกษาองค์ประกอบทางเคมีจากส่วนทั้งต้นของเอื้องคำปือกลาวสามารถแยกสกัดสาร กลุ่มไบเบนซิลจำนวน 3 ชนิด ได้แก่ chrysotoxin moscatilin และ gigantol จากส่วนทั้งต้นของ เอื้องก้างปลาใหญ่พบสารกลุ่มฟลาโวนอยด์จำนวน 3 ชนิด ได้แก่ quercetin kaempferol และ rutin การศึกษาโครงสร้างของสารที่แยกได้อาศัยการวิเคราะห์คุณสมบัติทางสเปกโทรสโกปีร่วมกับ การเปรียบเทียบกับข้อมูลที่มีรายงานมาก่อน เมื่อนำสารทั้งหมดที่แยกได้มาทดสอบฤทธิ์ยับยั้ง เอนไซม์แอลฟา-กลูโคซิเดสพบสารที่มีฤทธิ์แรงได้แก่ gigantol quercetin และ kaempferol เมื่อ เปรียบเทียบกับ acarbose ที่เป็นสารควบคุมผลบวก ส่วนสาร chrysotoxin moscatilin และ rutin พบว่าไม่มีฤทธิ์ยับยั้งเอนไซม์

สาขาวิชา	เภสัชศาสตร์และเทคโนโลยี	ลายมือชื่อนสิต
ปีการศึกษา	2563	ลายมือชื่อ อ.ที่ปรึกษาหลัก
		ลายมือชื่อ อ.ที่ปรึกษาร่วม

6176139033 : MAJOR PHARMACEUTICAL SCIENCES AND TECHNOLOGY KEYWORD:

Mia Indria Permatasari : CHEMICAL CONSTITUENTS WITH ALPHA-GLUCOSIDASE INHIBITORY ACTIVITY FROM *DENDROBIUM BRAIANENSE* AND *DENDROBIUM KENTROPHYLLUM*. Advisor: Assoc. Prof. BOONCHOO SRITULARAK, Ph.D. Co-advisor: Prof. KITTISAK LIKHITWITAYAWUID, Ph.D.

To investigate the phytochemicals of the entire plants of *Dendrobium braianense* brought about in the isolation of three bibenzyls, which included chrysotoxin, moscatilin and gigantol. From the whole plant of *D. kentrophyllum* three flavonoids, namely, quercetin, kaempferol and rutin were isolated, the structures of which were decided by means of analysis of spectroscopic data to compare the values already reported. They were assessed for their alpha-glucosidase inhibitory activity. Gigantol, quercetin and kaempferolwere found to exhibit strong alpha-glucosidase inhibitory activity when compared with the positive control acarbose, while chrysotoxin, moscatilin and rutin were devoid of activity.

Field of Study:	Pharmaceutical Sciences	Student's Signature
	and Technology	
Academic Year:	2020	Advisor's Signature
		Co-advisor's Signature

ACKNOWLEDGEMENTS

To begin with and first, I would like to appreciate my thesis advisor, Associate Professor Dr. Boonchoo Sritularak, and my co-advisor Professor Dr. Kittisak Likhitwitayawuid as they gave me expert guidance, immense knowledge, support and ceaseless positive thinking that lead to effective completion of this study.

I would also like to thanks the members of my thesis committee for their valuable suggestion, and express my gratitude to all teachers and staff members of the Department of Pharmacognosy and Pharmaceutical Botany, as well as the staff members of the Faculty of Pharmaceutical Sciences, Chulalongkorn University for providing all facilities.

I want to extend my sincere gratitude to the Graduate School, Chulalongkorn University for CU-ASEAN scholarship for my M.Sc. study.

Thanks to the Rector of Pharmacy the University Muhmmadiyah of Surakarta (Indonesia) and Mr Radikin (Head of Wadaslintang 2 Government Public Health) for giving me permission to pursue this M.Sc. degree at Chulalongkorn University.

I would like to appreciate all of my friends in Thailand for their warmest heart and kindest help to me during this time.

Eventually, my greatest gratitude is also expressed to parents of mine for their mortal support throughout the course of this M.Sc. degree to accomplish.

Mia Indria Permatasari

TABLE OF CONTENTS

	Page
ABSTRACT (THAI)	iii
ABSTRACT (ENGLISH)	iv
ACKNOWLEDGEMENTS	V
TABLE OF CONTENTS	vi
LIST OF TABLES	1
LIST OF FIGURES	2
LIST OF SCHEMES	3
ABBREVIATIONS AND SYMBOLS	4
CHAPTER I INTRODUCTION	7
CHAPTER II LITERATURE REVIEW	11
1. Chemical constituents of <i>Dendrobium</i> species	11
2. Alpha-glucosidase inhibitory activity of <i>Dendrobium</i> species	77
CHAPTER III EXPERIMENTAL ค.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ.ศ	80
1. Source of plant materials	80
1.1 Dendrobium braianense (เอื้องคำป๊อกลาว)	80
1.2 Dendrobium kentrophyllum (เอื้องก้างปลาใหญ่)	80
2. General Techniques	80
2.1 Analytical thin-layer chromatography (TLC)	80
2.1.1 Normal phase thin-layer chromatography	80
2.1.2 Reverse phase thin-layer chromatography	81
2.2 Column chromatography (CC)	81

2.2.1 Vacuum liquid chromatography (VLC)
2.2.2 Flash column chromatography (FCC), normal phase
2.2.3 Flash column chromatography (FCC), reverse phase
2.2.4 Gel filtration chromatography82
2.2.5 Semi-preparative high pressure liquid chromatography (HPLC)82
2.3 Spectroscopy
2.3.1 Mass spectra
2.3.2 Proton and carbon-13 nuclear magnetic resonance (¹ H and 13 C-NMR)
spectra
2.4 Solvents
3. Extraction and isolation
3.1 Extraction and isolation of compounds from <i>Dendrobium braianense</i> 83
3.1.1 Extraction
3.1.2 Isolation
3.1.2.1 Isolation of compound DBra1 (Chrysotoxine) and
compound DBra2 (Moscatilin)85
3.1.2.2 Isolation of compound DBra3 (Gigantol)85
3.2 Extraction and isolation of compounds from Dendrobium kentrophyllum 87
3.2.1 Extraction
3.2.2 Isolation
3.2.2.1 Isolation of compound DK 1 (Kaempferol) and compound DK 2 (Quercetin)
3.2.2.2 Isolation of compound DK3 (Rutin)
4. Physical and spectral data of isolated compounds
4.1 Compound DBra 1 (Chrysotoxine)

4.2 Compound DBra 2 (Moscatilin)	90
4.3 Compound DBra 3 (Gigantol)	90
4.4 Compound DK 1 (Kaempferol)	90
4.5 Compound DK 2 (Quercetin)	91
4.6 Compound DK 3 (Rutin)	91
5. Assay for $lpha$ -glucosidase inhibitory activity	92
5.1 Materials and instruments	92
5.2 Determination of $lpha$ -glucosidase inhibitory activity	93
CHAPTER IV RESULTS AND DISCUSSION	94
1. Preliminary biological activity evaluation of <i>D. braianense</i> and <i>D.</i>	
kentrophyllum	94
2. Structure determination of isolated compounds from <i>D. braianense</i>	96
2.1 Identification of compound DBra1 (Chrysotoxine)	96
2.2 Identification of compound DBra2 (Moscatilin)	98
2.3 Identification of compound DBra3 (Gigantol)	100
3. Structure determination of isolated compounds from <i>D. kentrophyllum</i>	102
3.1 Identification of compound DK1 (Kaempferol)	102
3.2 Identification of compound DK2 (Quercetin)	104
3.3 Identification of compound DK3 (Rutin)	106
4. Biological activity of isolated compounds of Dendrobium braianense and	
Dendrobium kentrophyllum	108
CHAPTER V CONCLUSION	109
APPENDICES	110
Appendix 1: The spectral data of compound DBra 1	110

1.1 Ma	ss spectrum of compound DBra 1	.110
1.2 ¹ H	I-NMR (300 MHz) spectrum of compound DBra 1 (Acetone- d_6)	.110
1.3 ¹³ C	-NMR (75 MHz) spectrum of compound DBra 1 (Acetone- d_6)	.111
1.4 HS 6	5QC spectrum of compound DBra 1 (Acetone- d_6) expansion [δ H 2.82 5.83 ppm, δ C 37.6 – 120.4]	- .111
1.5 HS 6	5QC spectrum of compound DBra 1 (Acetone- d_6) expansion [δ H 6.49	_ .112
1.6 HM 6	MBC spectrum of compound DBra 1 (Acetone- d_6) expansion [δ H 2.825.83 ppm, δ C 37.6 – 149.3 ppm]	<u>2</u> – .112
1.7 HN 6	1BC spectrum of compound DBra 1 (Acetone- d_6) expansion [δ H 2.82 \cdot 5.83 ppm, δ C 106.0 – 149.3 ppm]	_ .113
1.8 NO 3	DESY spectrum of compound DBra 1 (Acetone- d_6) expansion [δ H 2.82 3.77 ppm (F1), δ H 6.49 – 6.83 ppm (F2)]	- .113
1.9 NO 6	DESY spectrum of compound DBra 1 (Acetone- d_6) expansion [δ H 2.82	_ .114
1.10 Ng	OESY spectrum of compound DBra 1 (Acetone- d_6) expansion [δ H 6.4	9 – .114
Appendix 2	2: The spectral data of compound DBra 2	.115
2.1 Ma	iss spectrum of compound DBra 2	.115
2.2 ¹ H-	NMR (300 MHz) spectrum of compound DBra 2 (Acetone- d_6)	.115
2.3 ¹³ C	C-NMR (75 MHz) spectrum of compound DBra 2 (Acetone- d_6)	.116
Appendix 3	3: The spectral data of compound DBra 3	.116
3.1 Ma	ass spectrum of compound DBra 3	.116
3.2 ¹ H	I-NMR (300 MHz) spectrum of compound DBra 3 (Acetone- d_6)	.117
3.3 ¹³ C	C-NMR (75 MHz) spectrum of compound DBra 3 (Acetone- d_6)	.117

Appendix 4: The spectral data of compound DK 1	118
4.1. Mass spectrum of compound DK 1	118
4.2 ¹ H-NMR (300 MHz) spectrum of compound DK 1 (Acetone- d_6)	118
4.3 13 C-NMR (300 MHz) spectrum of compound DK 1 (Acetone- d_6)	119
4.4 HSQC NMR spectrum of compound DK 1 (Acetone- $d_{\scriptscriptstyle 6}$) expansion [δ H	1 6.26 –
8.14 ppm, δ C 93.6 – 129.6 ppm]	119
4.5 HMBC NMR spectrum of compound DK 1 (Acetone- d_{6}) expansion [δ H	+ 6.26 –
12.17 ppm, δ C 93.6 – 164.1 ppm]	120
4.6 HMBC NMR spectrum of compound DK 1 (Acetone- d_6) expansion [δ H	+ 6.26 –
12.17 ppm, δ C 93.6 – 164.1 ppm]	120
Appendix 5: The spectral data of compound DK 2	121
5.1 Mass spectrum of compound DK 2	121
5.2 ¹ H-NMR (500 MHz) spectrum of compound DK 2 (Acetone-d6)	122
5.3 ¹³ C-NMR (75 MHz) spectrum of compound DK 2 (Acetone-d6)	122
Appendix 6: The spectral data of compound DK 3	123
6.1 Mass spectrum of compound DK 3	123
6.2 ¹ H-NMR (300 MHz) spectrum of compound DK 3 (DMSO- d_6)	123
6.3 13 C-NMR (300 MHz) spectrum of compound DK 3 (DMSO- d_6)	124
6.4 HSQC spectrum of compound DK 3 (Acetone- d_6) expansion [δ H 0.9	8 –
4.37 ppm, δ C 67.4 – 76.9 ppm]	124
6.5 HSQC spectrum of compound DK 3 (Acetone- d_6) expansion [δ H 4.3	37 –
7.54 ppm, δ C 94.0 – 122.0 ppm]	125
6.6 HMBC spectrum of compound DK 3 (Acetone- d_6) expansion [δ H 0.9	8 -
12.59 ppm, δ C 18.2 – 177.8 ppm]	126

LIST OF TABLES

Table 1 Stilbenoids from genus Dendrobium 14
Table 2 Flavonoids from genus Dendrobium 44
Table 3 Terpenoids from Dendrobium 49
Table 4 Miscellaneous compounds from Dendrobium 57
Table 5 Examples of α glucosidase inhibitors from <i>Dendrobium</i> spp
Table 6 $lpha$ -glucosidase inhibitory activity of crude extracts from <i>D. braianense</i> and <i>D.</i>
Kentrophyllum
Table 7 1 H NMR (300 MHz) and 13 C NMR (75 MHz) spectral data of compound DBra1
in acetone-d6 and 1 H NMR (300 MHz) and 13 C NMR (75 MHz) of chrysotoxine
in CDCl ₃
Table 8 ^{· 1} H NMR (300 MHz) and ¹³ C NMR (75 MHz) spectral data of compound DBra2
in acetone-d6 and 1 H NMR (300 MHz) and 13 C NMR (75 MHz) of moscatilin in
acetone- <i>d</i> ₆
Table 9 ¹ H NMR (300 MHz) and ¹³ C NMR (75 MHz) spectral data of compound DBra3
in acetone- $d6$ and 1 H NMR (300 MHz) and 13 C NMR (75 MHz) of gigantol in
acetone-d ₆
Table 10 1 H NMR (300 MHz) and 13 C NMR (75 MHz) spectral data of DK1 in acetone- d_{6}
and 1 H NMR (600 MHz) and 13 C NMR (150 MHz) of kaempferol in DMSO- d_6
Table 11 ^{1}H NMR (300 MHz) and ^{13}C NMR (75 MHz) spectral data of compound DK2 in
acetone- $d6$ and 1 H NMR (600 MHz) and 13 C NMR (150 MHz) of quercetin in
DMSO-d6
Table 12 1 H NMR (300 MHz) and 13 C NMR (75 MHz) spectral data of compound DK3 in
acetone- d_6 and ¹ H NMR (400 MHz) and ¹³ C NMR (100 MHz) of rutin in
DMSO- <i>d</i> ₆
DMSO- d_6

LIST OF FIGURES

Figure 1. Dendrobium braianense	. 9
Figure 2. Dendrobium kentrophyllum	. 9
Figure 3. Structures of stilbenoids from <i>Dendrobium</i>	. 27
Figure 4. Structures of flavonoids from <i>Dendrobium</i>	. 46
Figure 5. Structures of terpenoids from <i>Dendrobium</i>	. 52
Figure 6. Structures of miscellaneous compounds from <i>Dendrobium</i>	. 66
Figure 7. Structures of $lpha$ -glucosidase inhibitors from Dendrobium spp	79
Figure 8. Chrysotoxine	. 96
Figure 9. Moscatilin	. 98
Figure 10. Gigantol	. 100
Figure 12. Kaempferol	. 102
Figure 13. Quercetin	. 104
Figure 14. Rutin	. 106
จุหาลงกรณ์มหาวิทยาลัย	

LIST OF SCHEMES

Scheme 1 Extraction steps for Dendrobium braianense	. 84
Scheme 2 Isolation of compounds from Ethyl acetate extract of Dendrobium	
braianense	. 86
Scheme 3 Extraction steps for Dendrobium kentrophyllum	. 87
Scheme 4 Isolation of compounds from ethyl acetate extract of Dendrobium	
kentrophyllum	. 89
Scheme 5 Isolation of compounds from fraction H of Dendrobium	

ABBREVIATIONS AND SYMBOLS

Acetone- d_6	=	Deuterated acetone
APCI-MS	=	Atmospheric Pressure Chemical Ionization Mass
		Spectrometry
br s	=	Broad singlet (for NMR spectra)
°C	=	Degree celsius
CC	=	Column chromatography
CDCl ₃	=	Deuterated chloroform
CH ₂ Cl ₂	=	Dichloromethane
cm	= _	Centimeter
¹³ C-NMR	= /	Carbon-13 Nuclear Magnetic Resonance
1-D NMR	= 1	One-dimensional Nuclear Magnetic Resonance
2-D NMR	=	Two-dimensional Nuclear Magnetic Resonance
d	=	Doublet (for NMR spectra)
dd	= 24	Doublet of doublets (for NMR spectra)
δ	จิหา	Chemical shift
DMSO- d_6	ĊŦ	Deuterated dimethylsulfoxide
EtOAc	=	Ethyl acetate
FCC	=	Flash Column Chromatography
g	=	Gram
Gal	=	Galactose
GF	=	Gel Filtration
Glc	=	Glucose
HMBC	=	¹ H-detected Heteronuclear Multiple Bond Correlation
HR-ESI-MS	=	High Resolution Electrospray Ionization Mass
		Spectrometry

¹ H-NMR	=	Proton Nuclear Magnetic Resonance
HSQC	=	¹ H-detected Heteronuclear Single Quantum Coherence
Hz	=	Hertz
IC ₅₀	=	Concentration exhibiting 50% inhibition
IR	=	Infrared
J	=	Coupling constant
Kg	=	Kilogram
L	=	Liter
[M+H] ⁺	=	Protonated molecular ion
[M+Na] ⁺	=	Sodium-adduct molecular ion
m	= _	Multiplet (for NMR spectra)
MeOH	= /	Methanol
mg	=	Milligram
μg	=	Microgram
min	= @4	Minute
ml	= 25	Milliliter
μι	- จีฬา	Microliter
μΜ	CHULA	Micromolar
mm	=	Millimeter
mМ	=	Millimolar
MS	=	Mass spectrum
MW	=	Molecular weight
m/z	=	Mass to charge ratio
NA	=	Not applicable
nm	=	Nanometer
nM	=	Nanomolar
NMR	=	Nuclear Magnetic Resonance

NOESY	=	Nuclear Overhauser Effect Spectroscopy
OEt	=	Ethoxy group
OMe	=	Methoxy group
Rha	=	Rhamnose
5	=	Singlet (for NMR spectra)
t	=	Triplet (for NMR spectra)
TLC	=	Thin Layer Chromatography
UV-VIS	=	Ultraviolet and Visible spectrophotometry
VLC	=	Vacuum Liquid Column Chromatography
Xyl	= 4	Xylose
	لمطر	
	8	A START S
		ลงกรณ์มหาวิทยาลัย

CHAPTER I

INTRODUCTION

Diabetes mellitus (DM) is characterized by high blood sugar and metabolic disorders of fat, carbohydrates as well as protein due to absolute or relative insulin deficiency. This disease has several symptoms including increased appetite, thirst, and frequency of urination (Fatimah, 2015). There are several complications of DM such as retinopathy, neuropathy, cardiovascular disease, stroke, and chronic kidney disease (Ahamad *et al.*, 2011).

Diabetes Mellitus type 2 (DM II) stems from insulin resistance or abnormal insulin secretion. Pancreatic beta cells still produce insulin, therefore DM II is regarded as non-insulin-dependent diabetes mellitus (NIDDM) (Fatimah, 2015). DM II is more common in adulthood and elderly people. The exact causes of DM are unknown, but they are related to lifestyle factors and genetics such as obesity, lack of physical activity, poor diet, and stress (Patel *et al.*, 2012).

Normal insulin has the work as the main regulator of fat, carbohydrate, and protein metabolism. First, it inhibits lipolysis of fat in adipose tissue which inhibits the release of fatty acid release in adipose tissue. Second, prevent gluconeogenesis in the liver which reducing the liver's glucose output. Third, it makes the glucose transporter type 4 (GLUT-4) transport the glucose into the muscle cells, which makes skeletal muscle increase the glucose uptake (Sears & Perry, 2015).

Hyperglycemia and more circulating fatty acids in DM II result from many factors, for instance, adipokines as well as inflammation of the diabetes genes. These factors affect how insulin is secreted in the pancreas and works. The reduced insulin secretion reduces the insulin signal in the target tissue. Insulin resistance has impacts on the action of insulin in every major target tissue, causing hyperglycemia and an increase in circulating fatty acids. Insulin secretion and resistance were affected by the increase of glucose and fatty acids levels in the blood (Stumvoll *et al.*, 2005).

There are several ways to treat and prevent diabetes and its secondary complications. One of these is herbal medicine. There are different mechanisms of action for different antidiabetic drugs in the treatment of high glucose levels. The initial increase in insulin secretion from sulphonylureas and meglitinides. Decreased gastrointestinal glucose absorption (GIT) is a mechanism of α -glucosidase inhibitors (AGIs) and dipeptide peptidase-4 inhibitors. Reduction in glucagon secretion from amylin analog α -glucosidase inhibitors and dipeptide peptidase-4 inhibitors and dipeptide peptidase-4 inhibitors (Choudhury *et al.*, 2018).

Dendrobium plants have been reported to produce various classes of secondary metabolites, like phenanthrenes, bibenzyls, alkaloids, fluorenones as well as flavonoids, in which several compounds were found to possess antitumor, antiinflammatory, antimutagenic, and α -glucosidase inhibitory activities (Na Ranong., et. al., 2019).

Dendrobium braianense Gagnep. (เอื้องคำป๊อกลาว), is distributed in South-Central China, Laos, Thailand, and Vietnam (Plants of the world online, 2017). The leaves of *D. braianense* gagnep have medium-sized, warm to cool growing epiphyte with pseudobulbous, slightly clavate stems carrying variably deciduous leaves that blooms in the winter and spring. The structural compound of the *D. braianense* gagnep flower has 1.6 inches or 4 cm (The Plant List, 2018).

Figure 1. Dendrobium braianense

Dendrobium kentrophyllum Hook. f. (เอื้องก้างปลาใหญ่) stem is 10-30 cm long, erect or ascending; leaves, narrow, slightly curved outwards. Its flower has pale greenish-yellow or whitish-yellow petals. It flowering in October – November. Distribution in India, Borneo, Laos, Malaysia, Sumatra, and Thailand (Khuraijam & Roy, 2016).

Figure 2. Dendrobium kentrophyllum

Prior to this report, there were no records on phytochemical constituents of *Dendrobium braianense* and *D. kentrophyllum*. Both plant crude extracts were prepared through maceration of the dried powdered whole plants and methanol (MeOH). After being evaluated with α -glucosidase inhibitory activity, MeOH extracts of both plants at concentration of 100 µg/mL showed inhibition around 65% for *D. braianense* and around 80% for *D. kentrophyllum*. Isolation continues with liquid-liquid extraction of MeOH extracts with ethyl acetate (EtOAc), butanol (BuOH) and water (H₂O) to give EtOAc, BuOH and water extracts respectively. Both EtOAc and BuOH extracts then were tested with α -glucosidase inhibitory activity assay. The result showed that only EtOAc extracts of both plants have strong inhibitory effect with inhibition above 80% at the concentration of 100 µg/mL for *D. braianense* and *more than 90% for D. kentrophyllum*. Therefore the EtOAc extracts from *D. braianense* and *D. kentrophyllum* were selected for further chemical investigation. Regarding the biological activity of *D. braianense* and *D. kentrophyllum*, so far, there have been no previous reports.

The information of phytochemical constituents from *Dendrobium braianense* and *Dendrobium kentrophyllum* and their α -glucosidase inhibitory effect should be useful for the development of new anti-diabetic drugs from natural sources. To achieve this purpose, the objectives of this project are:

- 1. To isolate and purify the chemical constituents from *Dendrobium braianense* and *D. kentrophyllum* and analyze the chemical structure of each compound.
- 2. To investigate α -glucosidase inhibitory activity of isolated compounds.

CHAPTER II

LITERATURE REVIEW

1. Chemical constituents of Dendrobium species

Like other plants, orchids produce many phytochemicals. Chemical properties and biological activity have been studied in several of them. Dendrobine was the first alkaloid isolated from the orchid *Dendrobium nobile* and has been used in the Chinese traditional medicine "Shi-Hu" (Hossain, 2011). In Orchidaceae, *Dendrobium* is a large genus. In Chinese traditional medicine, dried *Dendrobium* spp. stems have been used to treat stomach, diabetes, kidney, and lung diseases (Xu *et al.*, 2017). In Thailand, some of these orchids are also used in traditional medicine (Chuakul, 2002). According to reports, several types of secondary metabolites are already isolated from *Dendrobium* spp. such as, bibenzyls, phenanthrenes, alkaloids, and flavonoids which have certain biological activities (Wang *et al.*, 2009).

Shi-Hu is deemed to be an important herb for replenishing yin (coldness, moistness, and so on) and is widely used in Chinese medicine. They are considered effective in some diseases or syndromes related to the deficiency of yin in the kidney, lung, and stomach—like thirst, fever, red tongue, faucitis, atrophic gastritis as well as diabetes (Bulpitt *et al.*, 2007).

There is some traditional belief that suggests the use of several orchids in treating diabetes. Some of these orchids have also been validated by several scholars throughout the world experimentally, while some are still under study. The examples of the orchids that have a pathological condition to treat diabetes are whole *Dendrobium aphyllum* plants (Roxb.), infusion of leaves from *Dendrobium auranticum*, leaves from *Dendrobium candidum* wall ex Lindl., whole plants of

Dendrobium chrysotoxum, and whole plants of *Dendrobium officinale* kimura et migo (Mukherjee & Jagtap, 2020).

Table 1 and Figure 3 show compounds belonging to stilbenoids which can be divided into stilbenes, bibenzyls, bisbibenzyls, and phenanthrenes derivatives. The main structural skeleton of this group composes of 2 aromatic rings linked by an ethylene bridge. Stilbenoids are constructed from *trans*-cinnamic acid and three malonyl-CoA units. In phenylpropanoid biosynthesis, L-phenylalanine is deaminated by phenylalanine ammonia-lyase (PAL) to give *trans*-cinnamic which is then hydroxylated by cinnamate-4-hydroxylase (C4H) to yield 4-coumaric acid. This compound is then activated by 4-coumaroyl CoA ligase (4CL) to form 4-coumaroyl CoA. Subsequently, three acetate extender units from malonyl-CoA are added to 4-coumaroyl CoA by stilbene synthase (STS) to make tetraketide intermediate which consequently folds and cyclizes to shape as a chalcone or a stilbene structure (Tsopmo *et al.*, 2013).

Bibenzyl is a type of active compound abundant in *Dendrobium* (Gong *et al.,* 2013). The Bibenzyls constitute small-molecular compounds of natural origin and are widely source. In previous studies, the bibenzyls were shown to have good anti-tumor, anti-diabetes and its complications, and neuroprotective effects. One of their primary sources is the *Dendrobium* genus. Currently, 89 bibenzyl derivatives, for example, moscatilin (1), gigantol (2), and chrysotoxine (3), have been found in 46 species of *Dendrobium*. Moscatilin (1) has anti-tumor, neuroprotection as well as improvement of retinal vascular diseases. Gigantol (2) has anti-tumor, anti-diabetes as well as its complications, antioxidant, anti-inflammatory, antibacterial, antiviral, and antimalarial effects. Chrysotoxine (3) exhibited anti-lung cancer activity (He *et al.,* 2020).

Flavonoids, one of the largest groups of low molecular weight secondary metabolites presenting common benzo- γ - pyrone structure, are naturally occurring

phenolic compounds. Due to the presence of aromatic hydroxyl groups, flavonoids have strong antioxidant properties. Many of the biological actions of flavonoids have been attributed to their powerful antioxidant properties. Since the beginning of the 1980s, the beneficial effects of flavonoids have been studied in DM. Flavonoids with antioxidant and free radical scavengering properties, in particular, prevent autopoly (ADP-ribosyl)-ation of poly synthetase polymerase and by stabilizing Reg gene transcriptional complex, result in the regeneration of β -cells and protect pancreatic islets. Recently, many biologically active flavonoids for treating DM and its complications have been found (Kumar, S., & Pandey, A. K., 2013).

Alkaloids is a very diverse group of compounds related only to the occurrence of a nitrogen atom in a heterocyclic ring. Plants are estimated to produce almost 12,000 different alkaloids, organized into groups based on their carbon skeletal structures (Ziegler, J., & Facchini, P. J., 2008).

Stilbenoids	Plant	Plant part	Reference
Aloifol I [1]	D. longicornu	Stem	(Hu <i>et al.,</i> 2008a)
	D. williamsonii	Whole plant	(Yang <i>et al.,</i> 2018)
	D. infundibulum	Whole plant	(Na Ranong <i>et al.</i> , 2019)
Amoenylin [2]	D. amoenum	Whole plant	(Majumder <i>et al.</i> , 1999)
	D. williamsonii	Whole plant	(Yang <i>et al.,</i> 2018)
Batatasin [3]	D. longicornu	Stem	(Hu <i>et al.,</i> 2008a)
	D. plicatile	Stem	(Yamaki & Honda, 1996)
Batatasin III [4]	D. aphyllum	Whole plant	(Chen <i>et al.</i> , 2008a)
		Stem	(Yang <i>et al.,</i> 2015)
	D. cariniferum	Stem	(Chen <i>et al.</i> , 2008b)
	D. rotundatum	Whole plant	(Majumder & Pal, 1992)
	D. chrysotoxum	Whole plant	(Y. P. Li <i>et al.,</i> 2009)
	D. draconis	Stem	(Sritularak, Anuwat <i>, et al.</i> ,
		£ 1	2011)
	D. formosum	Whole plant	(Inthongkaew <i>et al.</i> , 2017)
6	D. gratiosissimum	Stem	(C. F. Zhang <i>et al.</i> , 2008)
	D. loddigesii	Stem	(Ito <i>et al.</i> , 2010)
	D. loddigesii	Stem	(Ma <i>et al.,</i> 2019)
ର୍ ୪	D. venustum	Whole plant	(Sukphan <i>et al.,</i> 2014)
Сни	D. scabrilingue	Whole plant	(Sarakulwattana <i>et al.,</i> 2018)
	D. infundibulum	Whole plant	(Na Ranong <i>et al.,</i> 2019)
Brittonin A [5]	D. secundum	Stem	(Sritularak, Duangrak, <i>et al.</i> ,
			2011)
Chrysotobibenzyl [6]	D. aurantiacum	Stem	(L. Yang, Wang, et al., 2006)
	var. denneanum		
	D. capillipes	Stem	(Phechrmeekha <i>et al.,</i> 2012)
	D. chrysanthum	Stem	(L. Yang, Qin <i>, et al.</i> , 2006)
	D. venustum	Whole plant	(Sukphan <i>et al.,</i> 2014)

 Table 1. Stilbenoids from the genus Dendrobium

Stilbenoids	Plant	Plant part	Reference
	D. scabrilingue	Whole plant	(Sarakulwattana <i>et al.,</i> 2018)
	D. infundibulum	Whole plant	(Na Ranong <i>et al.,</i> 2019)
Chrysotoxine [7]	D. aurantiacum	Stem	(L. Yang, Wang <i>, et al.,</i> 2006)
	var. denneanum		
	D. chrysanthum	Stem	(L. Yang, Qin, <i>et al.</i> , 2006)
Crepidatin [8]	D. aurantiacum	Whole plant	(Liu <i>et al.,</i> 2009)
	var. denneanum	9	
	D. chrysanthum	Stem	(L. Yang, Qin <i>, et al.,</i> 2006)
	D. crepidatum	Whole plant	(Majumder & Chatterjee,
			1989)
	D. loddigesii	Stem	(R. J. Ma <i>et al.</i> , 2019)
Cumulatin [9]	D. cumulatum	Whole plant	(Majumder & Pal, 1993)
4,5-dihydroxy-3,3'-	D. nobile	Stem	(H. Wang <i>et al.,</i> 1985; Ye &
dimethoxybibenzyl [10]			Zhao, 2002)
3,3'-Dihydroxy-4,5-	D. williamsonii	Whole plant	(Rungwichaniwat <i>et al.</i> , 2014)
dimethoxybibenzyl [11]		Re-	
	D. infundibulum	Whole plant	(Na Ranong <i>et al.</i> , 2019)
3,4'-Dihydroxy-5-	D. amoenum	Whole plant	(Majumder <i>et al.</i> , 1999)
methoxybibenzyl [12] 🕤 👔	าลงกรณ์มห	าวิทยาลัย	
3,4'-Dihydroxy-5,5'-	D. nobile	Stem	(Hwang <i>et al.</i> , 2010)
dimethoxydihydrostilbene	LALONGKONN	UNIVENSI	
[13]			
4,5-Dihydroxy-3,3'-	D. nobile	Stem	(Ye & Zhao, 2002)
dimethoxybibenzyl [14]			
Erianin [15]	D. chrysotoxum	Stem	(Hu et al., 2012)
Gigantol [16]	D. aphyllum	Whole plant	(Y. Chen <i>et al.</i> , 2008)
	D. aphyllum	Stem	(D. Yang <i>et al.</i> , 2015)
	D. aurantiacum	Whole plant	(Liu <i>et al.,</i> 2009)
	var. denneanum		
	D. brymerianum	Whole plant	(Klongkumnuankarn <i>et al.</i> ,
			2015)

Stilbenoids	Plant	Plant part	Reference
	D. densiflorum	Stem	(C. Fan <i>et al.,</i> 2001)
	D. devonianum	Whole plant	(Sun <i>et al.</i> , 2014)
	D. draconis	Stem	(Sritularak, Anuwat, et al.,
			2011)
	D. formosum	Whole plant	(Inthongkaew <i>et al.,</i> 2017)
	D. gratiosissimum	Stem	(C. F. Zhang <i>et al.,</i> 2008)
	D. loddigesii	Whole plant	(Ito <i>et al.</i> , 2010)
	D. longicornu	Stem	(Hu <i>et al.</i> , 2008a)
	D. nobile	Stem	(X. Zhang, J. K. Xu, et al.,
		2	2007)
	D. officinale	Stem	(G. Y. Zhao <i>et al.,</i> 2018)
	D. polyanthum	Stem	(Hu <i>et al.</i> , 2009)
	D. trigonopus	Stem	(Hu <i>et al.,</i> 2008b)
	D. venustum	Whole plant	(Sukphan <i>et al.</i> , 2014)
	D. scabrilingue	Whole plant	(Sarakulwattana <i>et al.,</i> 2018)
	D. loddigesii	Stem	(Ma et al., 2019)
	D. palpebrae	Whole plant	(Kyokong <i>et al.,</i> 2019)
4-Hydroxy-3,5,3'-	D. nobile	Stem	(Ye & Zhao, 2002)
trimethoxybibenzyl [17]			
5-Hydroxy-3,4,3',4',5'-	D. secundum	Stem	(Phechrmeekha <i>et al.,</i> 2012)
pentamethoxybibenzyl	สาลงกรณ์มห	าวิทยาลัย	
[18] C HI	LALONGKORN	Universi	Y
Isoamoenylin [19]	D. amoenum	Whole plant	(Majumder <i>et al.</i> , 1999)
Moniliformine [20]	D. williamsonii	Whole plant	(Yang <i>et al.</i> , 2018)
Moscatilin [21]	D. amoenum	Whole plant	(Majumder <i>et al.</i> , 1999)
3,3´,4-Trihydroxybibenzyl	D. longicornu	Stem	(Hu <i>et al.</i> , 2008a)
[22]			
3,3′,5-Trihydroxy	D. cariniferum	Whole plant	(Liu <i>et al.</i> , 2009a)
bibenzyl [23]	D. loddigesii	Stem	(Ma et al., 2019b)
3,5,4´-Trihydroxy	D. gratiosissimum	Stem	(Zhang <i>et al.,</i> 2008a)
bibenzyl [24]			

Stilbenoids	Plant	Plant part	Reference
	D. secundum	Stem	(Sritularak, Duangrak and
			Likhitwitayawuid, 2011)
4,5,4´-Trihydroxy-3,3´-	D. ellipsophyllum	Whole plant	(Tanagornmeatar <i>et al.,</i> 2014)
dimethoxybibenzyl [25]	D. parishii	Whole plant	(Kongkatitham <i>et al.,</i> 2018)
	D. loddigesii	Stem	(Ma et al., 2019b)
	D. palpebrae	Whole plant	(Kyokong <i>et al.,</i> 2019)
	D. aphyllum	Stem	(Yang <i>et al.</i> , 2015)
	D. chrysotoxum	Stem	(Hu et al., 2012)
	D. densiflorum	Stem	(Fan <i>et al.</i> , 2001)
Triatin [26]	D. gratiosissimum	Stem	(Zhang <i>et al.,</i> 2008a)
Tristin [20]	D. longicornu	Stem	(Hu <i>et al.,</i> 2008a)
	D. officinale	Stem	(Zhao <i>et al.,</i> 2018)
	D. trigonopus	Stem	(Hu <i>et al.,</i> 2008b)
	D. loddigesii	Stem	(Ma et al., 2019b)
Dendromoniliside E [27]	D. moniliforme	Stem	(Zhao <i>et al.,</i> 2003)
5,4'-Dihydroxy-3,4,3'-	D. infundibulum	Whole plant	(Na Ranong <i>et al.</i> , 2019)
trimethoxybibenzyl [28]	Alkeered and		
4,3´,4´-trihydroxy-3,5-	D. parishii	Whole plant	(Kongkatitham <i>et al.</i> , 2018)
dimethoxybibenzyl [29]			
Dendrophenol [30]	D. candidum	Stem	(Li <i>et al.</i> , 2008)
3,4-Dihydroxy-5,4'-	D. palpebrae	Whole plant	(Kyokong <i>et al.</i> , 2019)
dimethoxybibenzyl [31]	LALONGKORN	Universi [®]	Y
	D. infundibulum	Whole plant	(Na Ranong <i>et al.</i> , 2019)
	D. signatum	Whole plant	(Mittraphab <i>et al.</i> , 2016)
	D. tortile	Whole plant	(Limpanit <i>et al.,</i> 2016)
4,4´-Dihydroxy-3,5-	D. candidum	Stem	(Y. Li <i>et al.,</i> 2008)
dimethoxybibenzyl [32]			
	D. ellipsophyllum	Whole plant	(Tanagornmeatar <i>et al.</i> , 2014)
	D. williamsonii	Whole plant	(M. Yang <i>et al.</i> , 2018)
Loddigesiinol C [33]	D. loddigesii	Whole plant	(Ito <i>et al.</i> , 2010)
3-O-Methylgigantol [34]	D. candidum	Stem	(Y. Li <i>et al.,</i> 2008)
	D. nobile	Stem	(Hwang <i>et al.</i> , 2010)
	D. plicatile	Stem	(Yamaki & Honda, 1996)

Stilbenoids	Plant	Plant part	Reference
Dendrocandin A [35]	D. candidum	Stem	(Y. Li et al., 2008)
Dendrocandin B [36]	D. candidum	Stem	(Y. Li et al., 2008)
	D. signatum	Whole plant	(Mittraphab <i>et al.,</i> 2016)
Dendrocandin C [37]	D. candidum	Stem	(Y. Li <i>et al.,</i> 2009a)
Dendrocandin D [38]	D. candidum	Stem	(Y. Li <i>et al.</i> , 2009a)
Dendrocandin E [39]	D. candidum	Stem	(Y. Li <i>et al.</i> , 2009a)
	D. parishii	Whole plant	(Kongkatitham <i>et al.</i> , 2018)
Dendrocandin F [40]	D. candidum	Stem	(Yan Li <i>et al.</i> , 2009b)
Dendrocandin G [41]	D. candidum	Stem	(Yan Li <i>et al.</i> , 2009b)
Dendrocandin H [42]	D. candidum	Stem	(Yan Li <i>et al.</i> , 2009b)
Dendrosinen A [43]	D. sinense	Whole plant	(X. J. Chen <i>et al.</i> , 2014)
Dendrosinen B [44]	D. sinense	Whole plant	(XJ. Chen <i>et al.</i> , 2014)
	D. infundibulum	Whole plant	(Na Ranong <i>et al.</i> , 2019)
Dendrosinen C [45]	D. sinense	Whole plant	(Chen <i>et al.</i> , 2014)
Dendroscabrol B [46]	D. scabrilingue	Whole plant	(Sarakulwattana <i>et al.,</i> 2018)
Dendrosinen D [47]	D. sinense	Whole plant	(X. J. Chen <i>et al.</i> , 2014)
Dendrocandin I [48]	D. candidum	Stem	(Y. Li <i>et al.</i> , 2008)
	D. signatum	Whole plant	(Mittraphab <i>et al.</i> , 2016)
Densiflorol A [49]	D. densiflorum	Stem	(C. Fan <i>et al.</i> , 2001)
	D. loddigesii	Stem	(R. J. Ma <i>et al.,</i> 2019)
Longicornuol A [50]	D. longicornu	Stem 216	(Hu <i>et al.,</i> 2008a)
Trigonopol A [51]	D. trigonopus	Stem VERS	(Hu <i>et al.,</i> 2008b)
Trigonopol B [52]	D. chrysotoxum	Stem	(Hu et al., 2012)
	D. trigonopus	Stem	(Hu <i>et al.,</i> 2008b)
	D. aphyllum	Stem	(D. Yang <i>et al.</i> , 2015)
Crepidatuol A [53]	D. crepidatum	Stem	(C. B. Li <i>et al.</i> , 2013)
Crepidatuol B [54]	D. crepidatum	Stem	(C. B. Li <i>et al.</i> , 2013)
Loddigesiinol D [55]	D. loddigesii	Whole plant	(Ito <i>et al.,</i> 2010)
Dencryol A [56]	D. crystallinum	Stem	(L. Wang <i>et al.</i> , 2009)
Dencryol B [57]	D. crystallinum	Stem	(L. Wang <i>et al.</i> , 2009)
Dengraol A [58]	D. gratiosissimum	Stem	(C. F. Zhang <i>et al.</i> , 2008)
Dengraol B [59]	D. gratiosissimum	Stem	(C. F. Zhang <i>et al.</i> , 2008)

Stilbenoids	Plant	Plant part	Reference
4-[2-(3-Hydroxyphenol)-1-	D. longicornu	Stem	(Hu <i>et al.,</i> 2008a)
methoxyethyl]-2,6-			
dimethoxyphenol [60]			
Nobilin A [61]	D. nobile	Stem	(X. Zhang <i>et al.</i> , 2006)
Nobilin B [62]	D. nobile	Stem	(X. Zhang <i>et al.</i> , 2006)
Nobilin C [63]	D. nobile	Stem	(X. Zhang <i>et al.,</i> 2006)
Nobilin D [64]	D. nobile	Stem	(X. Zhang, J. K. Xu, et al.,
			2007)
Nobilin E [65]	D. nobile	Stem	(X. Zhang, J. K. Xu, et al.,
		12	2007)
Dendrofalconerol A [66]	D. falconeri	Stem	(Sritularak & Likhitwitayawuid,
			2009)
	D. signatum	Whole plant	(Mittraphab <i>et al.</i> , 2016)
	D. tortile	Whole plant	(Limpanit <i>et al.,</i> 2016)
Dendrofalconerol B [67]	D. falconeri	Stem	(Sritularak & Likhitwitayawuid,
			2009)
Dendrosignatol [68]	D. signatum	Whole plant	(Mittraphab <i>et al.</i> , 2016)
2,2´-Dihydroxy-3,3´,4,4´,7,7-	D. nobile	Stem	(H. K. Yang <i>et al.</i> , 2007)
hexamethoxy-9,9′,10,10′-	Č.		
tetrahydro-1,1'-			
biphenanthrene [69]	หาลงกรณ์มา	าาวิทยาลั	2
2,2'-Dimethoxy-4,4',7,	D. plicatile	Stem	(Yamaki & Honda, 1996)
7'-tetrahydroxy-9,9',10,10'-			
tetrahydro-1,1'-			
biphenanthrene [70]			
Flavanthrin [71]	D. aphyllum	Whole plant	(Y. Chen <i>et al.,</i> 2008)
Phoyunnanin C [72]	D. venustum	Whole plant	(Sukphan <i>et al.,</i> 2014)
Phoyunnanin E [73]	D. venustum	Whole plant	(Sukphan <i>et al.,</i> 2014)
Amoenumin [74]	D. amoenum	Whole plant	(Veerraju <i>et al.</i> , 1989)
Crystalltone [75]	D. crystallinum	Stem	(L. Wang <i>et al.</i> , 2009)
Dendropalpebrone [76]	D. palpebrae	Whole plant	(Kyokong <i>et al.</i> , 2019)
Chrysotoxol A [77]	D. chrysotoxum	Stem	(Hu et al., 2012)
Chrysotoxol B [78]	D. chrysotoxum	Stem	(Hu et al., 2012)

Stilbenoids	Plant	Plant part	Reference
Confusarin [79]	D. chryseum	Stem	(Ma et al., 1998)
	D. chrysotoxum	Stem	(Hu et al., 2012)
	D. formosum	Whole plant	(Inthongkaew <i>et al.,</i> 2017)
	D. nobile	Stem	(X. Zhang, J. K. Xu, et al.,
			2008)
	D. officinale	Stem	(G. Y. Zhao <i>et al.,</i> 2018)
2,6-Dihydroxy-1,5,7-	D. densiflorum	Stem	(C. Fan <i>et al.</i> , 2001)
trimethoxyphenanthrene			
[80]	1411020	110	
Dendrochrysanene [81]	D. chrysanthum	Stem	(L. Yang, Qin, <i>et al</i> ., 2006)
Bulbophyllanthrin [82]	D. nobile	Stem	(H. K. Yang <i>et al.</i> , 2007)
5-Hydroxy-2,4-	D. loddigesii	Whole plant	(Ito <i>et al.</i> , 2010)
dimethoxyphenanthre	-///68		
ne [83]			
3-Hydroxy-2,4,7-	D. nobile	Stem	(H. K. Yang <i>et al.</i> , 2007)
trimethoxyphenanthre			
ne [84]	A Macado		
Cypripedin [85]	D. densiflorum	Stem	(C. Fan <i>et al.</i> , 2001)
Densiflorol B [86]	D. densiflorum	Stem	(C. Fan <i>et al.</i> , 2001)
	D. venustum	Whole plant	(Sukphan <i>et al.,</i> 2014)
Denbinobin [87]	D. moniliforme	Stem 21a	(Lin <i>et al.</i> , 2001)
Сн	D. nobile	Stem	(H. K. Yang <i>et al.</i> , 2007)
Fimbriatone [88]	D. nobile	Stem	(X. Zhang, J. K. Xu, et al.,
			2008)
	D. pulchellum	Stem	(Chanvorachote <i>et al.</i> , 2013)
Dendroscabrol A [8 9]	D. scabrilingue	Whole plant	(Sarakulwattana <i>et al.,</i> 2018)
Loddigesiinol B [90]	D. loddigesii	Whole plant	(Ito <i>et al.,</i> 2010)
Dendronone [91]	D. cariniferum	Whole plant	(Y. Chen <i>et al.,</i> 2008)
	D. longicornu	Stem	(Hu <i>et al.,</i> 2008a)
Ephemeranthoquinone	D. plicatile	Stem	(Yamaki & Honda, 1996)
[92]			

Stilbenoids	Plant	Plant part	Reference
5-Methoxy-7-hydroxy-	D. draconis	Stem	(Sritularak, Anuwat, et al.,
9,10-dihydro-1,4-			2011)
phenanthrenequinone	D. formosum	Whole plant	(Inthongkaew <i>et al.,</i> 2017)
[93]			
Moniliformin [94]	D. moniliforme	Stem	(Lin <i>et al.</i> , 2001)
Moscatin [95]	D. aphyllum	Whole plant	(Y. Chen <i>et al.,</i> 2008)
	D. chrysanthum	Stem	(L. Yang, Qin, <i>et al</i> ., 2006)
	D. chrysotoxum	Whole plant	(Y. P. Li <i>et al.,</i> 2009)
	D. densiflorum	Stem	(C. Fan <i>et al.</i> , 2001)
	D. polyanthum	Stem	(Hu <i>et al.,</i> 2009)
	D. rotundatum	Whole plant	(Majumder & Pal, 1992)
Coelonin [96]	D. nobile	Stem	(Hwang <i>et al.,</i> 2010)
	D. aphyllum	Whole plant	(Y. Chen <i>et al.,</i> 2008)
	D. formosum	Whole plant	(Inthongkaew <i>et al.</i> , 2017)
	D. nobile	Stem	(H. K. Yang <i>et al.,</i> 2007)
	D. scabrilingue	Whole plant	(Sarakulwattana <i>et al.,</i> 2018)
9,10-Dihydromoscatin	D. polyanthum	Stem	(Hu et al., 2009)
[97]	O CONTRACTO	and a	
9,10-Dihydrophenan	D. polyanthum	Stem	(Hu et al., 2009)
threne-2,4,7-triol [98]			
4,5-Dihydroxy-2,3-	D. ellipsophyllum	Whole plant	(Tanagornmeatar <i>et al</i> ., 2014)
dimethoxy-9,10-	ULALONGKORN	UNIVERS	ITY
dihydrophenanthrene	D. sinense	Whole plant	(Chen <i>et al.</i> , 2014)
[99]			
4,5-Dihydroxy-2,6-	D. chrysotoxum	Stem	(Hu et al., 2012)
dimethoxy-9,10-			
dihydrophenanthrene	D. devonianum	Stem	(Wu et al., 2019)
[100]			
4,5-Dihydroxy-3,7-	D. nobile	Stem	(Ye & Zhao, 2002)
dimethoxy-9,10-			
dihydrophenanthrene			
[101]			

Stilbenoids	Plant	Plant part	Reference
4,5-Dihydroxy-2-methoxy-	D. nobile	Stem	(H. K. Yang <i>et al.</i> , 2007)
9,10-			
dihydrophenanthrene	D. devonianum	Stem	(Wu et al., 2019)
[102]			
Lusianthridin [103]	D. brymerianum	Whole plant	(Klongkumnuankarn <i>et al.,</i> 2015)
	D. nobile	Stem	(Hwang <i>et al.,</i> 2010; H. K.
			Yang <i>et al.</i> , 2007)
	D. formosum	Whole plant	(Inthongkaew <i>et al.</i> , 2017)
	D. plicatile	Stem	(Yamaki & Honda, 1996)
	D. venustum	Whole plant	(Sukphan <i>et al.,</i> 2014)
	D. scabrilingue	Whole plant	(Sarakulwattana <i>et al.,</i> 2018)
	D. palpebrae	Whole plant	(Kyokong <i>et al.,</i> 2019)
2,7-Dihydroxy-3,4,6-	D. rotundatum	Whole plant	(Majumder & Pal, 1992)
trimethoxy-9,10-			
dihydrophenanthrene			
[104]	N (Lance & 10		
2,8-Dihydroxy-3,4,7-	D. nobile	Stem	(H. K. Yang <i>et al.</i> , 2007)
trimethoxy-9,10-	CA.		
dihydrophenanthrene			
[105]	หาลงกรณ์มห	าวิทยาลั	
4,7-Dihydroxy-2,3,6-	D. sinense	Whole plant	(X. J. Chen <i>et al</i> ., 2013)
trimethoxy-9,10-			
dihydrophenanthrene			
[106]			
Ephemeranthol A [107]	D. nobile	Stem	(Hwang <i>et al.</i> , 2010; H. K.
		<i>C</i> .	Yang <i>et al.</i> , 2007)
	D. officinale	Stem	(G. Y. Zhao <i>et al.</i> , 2018)
	D. Infundibulum	whole plant	(Na Kanong <i>et al.</i> , 2019)
		Stem	(Hwang <i>et al., 2010)</i>
Erianthridin [109]	D. formosum	Whole plant	(Inthongkaew <i>et al.</i> , 2017)
	D. nobile	Stem	(Hwang <i>et al.,</i> 2010; H. K.
			Yang <i>et al.</i> , 2007)

Stilbenoids	Plant	Plant part	Reference
	D. plicatile	Stem	(Yamaki & Honda, 1996)
Flavanthridin [110]	D. nobile	Stem	(Hwang <i>et al.,</i> 2010)
Hircinol [111]	D. nobile	Stem	(Hwang <i>et al.,</i> 2010)
	D. aphyllum	Stem	(D. Yang <i>et al.</i> , 2015)
	D. draconis	Stem	(Sritularak, Anuwat, <i>et al</i> .,
			2011)
	D. formosum	Whole plant	(Inthongkaew <i>et al.</i> , 2017)
3-Hydroxy-2,4,7-	D. nobile	Stem	(H. K. Yang <i>et al.,</i> 2007)
trimethoxy-9,10-	1 Still an	123	
dihydrophenanthrene		12	
[112]			
7-hydroxy-2,3,4-	D. hainanense	Aerial part	(Y. Y. Zhang <i>et al.</i> , 2019)
trimethoxy-9,10-	/////		
dihydrophenanthrene			
[113]			
Dendroinfundin A [114]	D. infundibulum	Whole plant	(Na Ranong <i>et al.,</i> 2019)
Dendroinfundin B [115]	D. infundibulum	Whole plant	(Na Ranong <i>et al.</i> , 2019)
3,4-Dimethoxy-1-	D. hainanense	Aerial part	(Y. Y. Zhang <i>et al.</i> , 2019)
(methoxymethyl)-9,10-	2 A		
dihydrophenanthrene-			
2,7-diol [116]	หาลงกรณ์มห	าาวิทยาลัง	2
2-Hydroxy-4,7-dimethoxy-	D. nobile	Stem VERS	(H. K. Yang <i>et al.</i> , 2007)
9,10-			
dihydrophenanthrene			
[117]			
7-Methoxy-9,10-	D. draconis	Stem	(Sritularak, Anuwat, <i>et al.</i> ,
dihydrophenanthrene-			2011)
2,4,5-triol [118]			
2,5,7-Trihydroxy-4-	D. formosum	Whole plant	(Inthongkaew <i>et al.,</i> 2017)
methoxy-9,10-			
dihydrophenanthrene			
[119]			
Plicatol C [120]	D. plicatile	Stem	(Honda & Yamaki, 2000)

Stilbenoids	Plant	Plant part	Reference
Rotundatin [121]	D. rotundatum	Whole plant	(Majumder & Pal, 1992)
2,5-Dihydroxy-3,4	D. nobile	Stem	(H. K. Yang <i>et al.</i> , 2007)
dimethoxyphenanthre			
ne [122]			
2,5-Dihydroxy-4,9-	D. nobile	Stem	(X. Zhang, J. K. Xu, et al.,
dimethoxyphenanthre			2008)
ne [123]	D. palpebrae	Whole plant	(Kyokong <i>et al.</i> , 2019)
2,8-Dihydroxy-3,4,7-	D. nobile	Stem	(H. K. Yang <i>et al.,</i> 2007)
trimethoxyphenanthre	L China	12.	
ne [124]		12	
Epheranthol B [125]	D. chrysotoxum	Stem	(Hu <i>et al.,</i> 2012)
Fimbriol B [126]	D. nobile	Stem	(H. K. Yang <i>et al.,</i> 2007);
Flavanthrinin [127]	D. brymerianum	Whole plant	(Klongkumnuankarn <i>et al.,</i>
			2015)
	D. nobile	Stem	(X. Zhang, J. K. Xu, et al.,
			2008)
	D. venustum	Whole plant	(Sukphan <i>et al.,</i> 2014)
	D. parishii	Whole plant	(Kongkatitham <i>et al.,</i> 2018a)
Loddigesiinol A [128]	D. loddigesii	Whole plant	(Ito <i>et al.,</i> 2010)
Nudol [129]	D. formosum	Whole plant	(Inthongkaew <i>et al.,</i> 2017)
କୁ	D. nobile	Stem 916	(H. K. Yang <i>et al.</i> , 2007)
Сн	D. rotundatum	Whole plant	(Majumder & Pal, 1992)
Plicatol A [130]	D. nobile	Stem	(H. K. Yang <i>et al.</i> , 2007)
	D. plicatile	Stem	(Honda & Yamaki, 2000)
Plicatol B [131]	D. plicatile	Stem	(Honda & Yamaki, 2000)
2,3,5-Trihydroxy-4,9-	D. nobile	Stem	(Yang, Sung and Kim., 2007)
dimethoxyphenanthre			
ne [132]			
3,4,8-Trimethoxy	D. nobile	Stem	(Hwang et al., 2010)
phenanthrene-2,5-diol			
[133]			
Aphyllone A [134]	D. aphyllum	Stem	(Yang et al., 2015)
Stilbenoids	Plant	Plant part	Reference
--------------------------------	-----------------	-------------	-----------------------------------
(S)-2,4,5,9-Tetrahydroxy-	D. fimbriatum	Stem	(Xu et al., 2014)
9,10-dihydro			
phenanthrene [135]			
1,5,7-Trimethoxy	D. nobile	Stem	(Kim <i>et al.,</i> 2015)
phenanthren-2-ol			
[136]			
1,5-Dihydroxy-3,4,7-	D. moniliforme	Whole plant	(Zhao <i>et al.</i> , 2016)
trimethoxy-9,10-			
dihydrophenanthrene	Lenna.	12.	
[137]		1/2	
2,5,95-Trihydroxy-9,10-	D. primulinum	Whole plant	(Ye <i>et al.,</i> 2016)
dihydro			
phenanthrene-4-O- $meta$ -D-			
glucopyranoside [138]			
Loddigesiinol G [139]	D. loddigesii	Stem	(Lu <i>et al.,</i> 2014)
Loddigesiinol H [140]	D. loddigesii	Stem	(Lu <i>et al.</i> , 2014)
Loddigesiinol I [141]	D. loddigesii	Stem	(Lu <i>et al.</i> , 2014)
Loddigesiinol J [142]	D. loddigesii	Stem	(Lu <i>et al.</i> , 2014)
Dendrowillol A [143]	D. williamsonii	Whole plant	(M. Yang <i>et al.,</i> 2018)
Dendrocandin P1 [144]	D. officinale	Stem	(G. Y. Zhao <i>et al.</i> , 2018)
Dendrocandin P2 [145]	D. officinale	Stem	(G. Y. Zhao <i>et al.</i> , 2018)
Orchinol [146]	D. officinale	Stem	(G. Y. Zhao <i>et al.</i> , 2018)
2,4,7-Trihydroxy-	D. officinale	Stem	(G. Y. Zhao <i>et al.</i> , 2018)
9,10-dihydro-			
phenanthrene [147]			
4-Methoxy-5,9 <i>R</i> -	D. nobile	Stem	(Zhou <i>et al.</i> , 2017)
dihydroxy-9,10-dihydro			
phenanthrene 2-O- $meta$ -D-			
glucopyranoside [148]			
Dihydroresveratrol [149]	D. aphyllum	Stem	(D. Yang <i>et al.</i> , 2015)
Aphyllone B [150]	D. aphyllum	Stem	(D. Yang <i>et al.</i> , 2015)
Aphyllal C [151]	D. aphyllum	Stem	(D. Yang <i>et al.,</i> 2015)
	D. loddigesii	Stem	(R. J. Ma <i>et al.,</i> 2019)

Stilbenoids	Plant	Plant part	Reference
Aphyllal D [152]	D. aphyllum	Stem	(D. Yang <i>et al.,</i> 2015)
Aphyllal E [153]	D. aphyllum	Stem	(D. Yang <i>et al.,</i> 2015)
(–)-dendroparishiol [154]	D. parishii	Whole plant	(Kongkatitham <i>et al.,</i> 2018a)
(R)-4,5,4 -trihydroxy-	D. loddigesii	Stem	(R. J. Ma <i>et al.</i> , 2019)
3,3 ',α -			
trimethoxybibenzyl			
[155]			
Dendrofindlaphenol A	D. findlayanum	Stem	(D. Yang <i>et al.,</i> 2018)
[156]	1411 200	120-	
6″-de-O-	D. findlayanum	Stem	(D. Yang <i>et al.</i> , 2018)
methyldendrofindlaph			
enol A [157]			
Dendrofindlaphenol B	D. findlayanum	Stem	(D. Yang <i>et al.</i> , 2018)
[158]			
Dendrofindlaphenol C	D. findlayanum	Stem	(D. Yang <i>et al.</i> , 2018)
[159]			
Dendrodevonin A [160]	D. devonianum	Stem	(Wu et al., 2019)
Dendrodevonin B [161]	D. devonianum	Stem	(Wu et al., 2019)
		10	

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

	R_1	К ₂	К ₃	R_4	R_5	К ₆
[1] Aloifol I	OMe	OH	OMe	OH	Н	Н
[2] Amoenylin	OMe	OH	OMe	Н	OMe	Н
[3] Batatasin	OMe	HAD	Н.	OH	Н	OH
[4] Batatasin III	ОН	H	OMe	Н	Н	OH
[5] Brittonin A	OMe	ОМе	OMe	OMe	OMe	OMe
[6] Chrysotobibenzyl	OMe	OMe	OMe	OMe	OMe	Н
[7] Chrysotoxine	OMe	ОН	OMe	OMe	OMe	Н
[8] Crepidatin	OMe	OMe	OMe	OMe	OH	Н
[9] Cumulatin	OMe	OMe	ОН	OH	OMe	OMe
[10] 4,5 Dihydroxy-3,3'-dimethox	ybiben	zyl	l a			
	ОН	ОН	OMe	Н	Н	OMe
[11] 3,3'-Dihydroxy-4,5-dimethoxy	ybibenz	zyl		3		
	OMe	OMe	ОН	н	Н	OH
[12] 3,4'-Dihydroxy-5-methoxybibenzyl						
	ОН	หาวิ	OMe	ศัย	OH	Н
[13] 3,4'-Dihydroxy-5,5'-dimethoxydihydrostilbene						
	OH	Н	OMe	OMe	OH	Н

Figure 3. Structures of stilbenoids from Dendrobium

	R_1	R_2	R_3	R_4	R_5	R_6	
[14] 4,5-Dihydroxy-3,3´-dimethoxybibenzyl							
	OMe	OH	OH	Н	Н	OMe	
[15] Erianin	OMe	OMe	OMe	Н	OMe	OH	
[16] Gigantol	OMe	Ή	H	Н	OH	OMe	
[17] 4-Hydroxy-3,5,3'-trimethoxyk	oibenzy	rl 📃					
	OMe	ОН	OMe	Н	Н	OMe	
[18] 5-Hydroxy-3,4,3',4',5'-pentam	nethoxy	ybibenz	zyl				
	OMe	OMe	OH	OMe	OMe	OMe	
[19] Isoamoenylin	OMe	OMe	OMe	Н	Н	OH	
[20] Moniliformine	ОН	OH	OMe	Н	OMe	Н	
[21] Moscatilin	OMe	OH	OMe	Н	OH	OMe	
[22] 3,3',4-Trihydroxybibenzyl	OH	OH	H	H	Н	OH	
[23] 3,3′,5-Trihydroxybibenzyl	OH	Н	ОН	Н	Н	OH	
[24] 3,5,4'-Trihydroxybibenzyl	OH	Н	OH	н	OH	Н	

Figure 3. Structures of stilbenoids from *Dendrobium* (continued)

	R_1	R_2	R_3	R_4	R_5
[25] 4,5,4´-Trihydroxy-3-3´-dimethoxybibenzyl	OMe	OH	OH	OH	OMe
[26] Tristin	OH	Н	OH	OH	OMe
[27] Dendromoniliside E	OGlc	OGlc	OMe	OMe	Н
[28] 5,4'-Dihydroxy-3,4,3'-trimethoxybibenzyl	OH	OMe	OMe	OH	OMe
[29] 4,3',4'-trihydroxy-3,5-dimethoxybibenzyl	OMe	ОН	OMe	OH	OH

Figure 3. Structures of stilbenoids from Dendrobium (continued)

	R_1	R_2	R_3	R_4	R_5	R_6
[96] Coelonin	OH	Н	OMe	Н	Н	OH
[97] 9,10-Dihydromoscatin	Н	Н	OH	OMe	Н	OH
[98] 9,10-Dihydrophenanthrene-	2,4,7-tri	iol				
	OH	HAD	ОН	Н	Н	OH
[99] 4,5-Dihydroxy-2,3-dimethox	y-9,10-0	dihydro	phenar	nthrene	2	
OMe	OMe	ОН	ОН	Н	Н	
[100] 4,5-Dihydroxy-2,6-dimetho	xy-9,10	-dihydr	ophena	anthrer	ne	
	OMe	н	OH	ОН	OMe	Н
[101] 4,5-Dihydroxy-3,7-dimetho	ху-9,10	-dihydr	ophena	anthrer	ne	
	н	OMe	OH	OH	Н	OMe
[102] 4,5-Dihydroxy-2-methoxy-9	9,10-dih	ydroph	enanth	nrene		
	OMe	н	ОН	OH	Н	Н
[103] Lusianthridin	ОМе	H	OH	L.	Н	OH
			1			

Figure 3. Structures of stilbenoids from *Dendrobium* (continued)

 R_5

 $R_4 R_3$

Figure 3. Structures of stilbenoids from Dendrobium (continued)

R₂R

Figure 3. Structures of stilbenoids from Dendrobium (continued)

Figure 3. Structures of stilbenoids from Dendrobium (continued)

-4-O-**β**-D-glucopyranoside

[**139**] Loddigesiinol G R = H

Figure 3. Structures of stilbenoids from Dendrobium (continued)

Figure 3. Structures of stilbenoids from Dendrobium (continued)

QМе

[161] Dendrodevonin B

Figure 3. Structures of stilbenoids from Dendrobium (continued)

Flavonoids	Plant	Plant part	Reference
(25)-Homoeriodictyol [162]	D. densiflorum	Stem	(C. Fan <i>et al.,</i> 2001)
	D. ellipsophyllum	Whole plant	(Tanagornmeatar <i>et al.</i> ,
			2014)
Naringenin [163]	D. aurantiacum	Stem	(L. Yang, Wang, et al.,
	var. denneanum		2006)
	D. densiflorum	Stem	(C. Fan <i>et a</i> l., 2001)
	D. longicornu	Stem	(Hu <i>et al.,</i> 2008a)
(2 <i>S</i>)-Eriodictyol [164]	D. trigonopus	Stem	(Hu <i>et al.,</i> 2008b)
	D. ellipsophyllum	Whole plant	(Tanagornmeatar <i>et al.</i> ,
2		1	2014)
	D. tortile	Whole plant	(Limpanit <i>et al.,</i> 2016)
Vicenin-2 [165]	D. aurantiacum	Stem	(Xiong <i>et al.</i> , 2013)
L. L	var. denneanum		
Apigenin [166]	D. crystallinum	Stem	(L. Wang <i>et al.</i> , 2009)
	D. williamsonii	Whole plant	(Rungwichaniwat et al.,
04	EQUAL ALEA	B	2014)
5,6-Dihydroxy-4'-	D. chrysotoxum	Stem	(Hu <i>et al.,</i> 2012)
methoxyflavone [167]			
Chrysoeriol [168]	D. ellipsophyllum	Whole plant	(Tanagornmeatar <i>et al.</i> ,
CHULA	LONGKORN UNI	VERSITY	2014)
Luteolin [169]	D. aurantiacum	Whole plant	(Liu <i>et al.,</i> 2009)
	var. denneanum		
	D. ellipsophyllum	Whole plant	(Tanagornmeatar <i>et al.,</i>
			2014)
6-C-(a-Arabino	D. huoshanense	Aerial part	(C. C. Chang <i>et al.</i> , 2010)
pyranosyl)-8-C-[(2-O-a-			
rhamnopyranosyl)- $oldsymbol{eta}$ -			
galactopyranosyl] apigenin			
[170]			

Flavonoids	Plant	Plant part	Reference
6-C-(a-Arabinopyranosyl)-8-C-	D. huoshanense	Aerial part	(C. C. Chang <i>et al.</i> , 2010)
[(2-O-a-rhamnopyranosyl)- $meta$ -			
glucopyranosyl] apigenin			
[171]			
6 -Glucosyl-vitexin [172]	D. crystallinum	Stem	(L. Wang <i>et al.</i> , 2009)
Isoschaftoside [173]	D. huoshanense	Aerial part	(C. C. Chang <i>et al.</i> , 2010)
Isoviolanthin [174]	D. crystallinum	Stem	(L. Wang <i>et al.</i> , 2009)
6-C-[(2-O-a-Rhamno	D. huoshanense	Aerial part	(C. C. Chang <i>et al.</i> , 2010)
pyranosyl)- $oldsymbol{eta}$ -gluco	Still 120.		
pyranosyl]-8-C-(a-			
arabinopyranosyl) apigenin			
[175]			
6-C-(β -Xylopyranosyl)-8-C- 🥔	D. huoshanense	Aerial part	(C. C. Chang <i>et al.</i> , 2010)
[(2-O-a-rhamnopyranosyl)- eta -			
gluco			
pyranosyl]apigenin [176]		1	
Kaempferol [177]	D. aurantiacum	Stem	(L. Yang, Wang, et al.,
	var. denneanum		2006)
Kaempferol-3- <i>O</i> -a-L	D. secundum	Stem	(Phechrmeekha et al.,
rhamnopyranoside [178]			2012)
Kaempferol-3,7-0-di-a-L-	D. secundum	Stem	(Phechrmeekha et al.,
rhamnopyranoside [179]	I ONGKORN UNI	VERSITY	2012)
Kaempferol-3-0-a-L-	D. capillipes	Stem	(Phechrmeekha et al.,
rhamnopyranosyl-(1 \rightarrow 2)- eta -			2012)
D-gluco pyranoside [180]			
Kaempferol-3- <i>O</i> -a-L-	D. capillipes	Stem	(Phechrmeekha et al.,
rhamnopyranosyl-(1 $ ightarrow$ 2)- $oldsymbol{eta}$ -			2012)
D-xylopyranoside [181]			
Quercetin-3-O-a-L-	D. secundum	Stem	(Phechrmeekha et al.,
rhamnopyranoside [182]			2012)
Quercetin-3-O-a-L-	D. capillipes	Stem	(Phechrmeekha et al.,
rhamnopyranosyl-(1 $ ightarrow$ 2)- eta -			2012)
D-xylopyranoside [183]			

Flavonoids	Plant	Plant part	Reference
5-Hydroxy-3-methoxy-	D. devonianum	Stem	(Sun <i>et al.</i> , 2014)
flavone-7-0-[eta -D-apiosyl-			
(1 → 6)]- β -D-glucoside [184]			
Isorhamnetin-3-0- β -D-	D. nobile	Stem	(Zhou <i>et al.,</i> 2017)
rutinoside [185]			
(S)-5,5',7-trihydroxy-3',4'-	D. loddigesii	Stem	(R. J. Ma <i>et al.</i> , 2019)
dimethoxyflavanone [186]			

Figure 4. Structures of flavonoids from Dendrobium

Figure 4. Structures of flavonoids from Dendrobium (continued)

[182] Quercetin-3-O-a-L-rhamnopyranoside

R = O-Rha

[183] Quercetin-3-O-a-L-rhamnopyranosyl-(1 \rightarrow 2)- β -D-xylopyranoside R = O-Xyl-Rha

[184] 5-Hydroxy-3-methoxy-flavone-7-O-[β -D-apiosyl-(1 \rightarrow 6)]- β -D-glucoside

[185] Isorhamnetin-3-O- β -D-rutinoside [186] (S)-5,5',7-trihydroxy-3',4'-dimethoxyflavanone

Figure 4. Structures of flavonoids from Dendrobium (continued)

Table 3.	Terpenoids	from <i>L</i>)endrobium
----------	------------	---------------	------------

Terpenoids	Plant	Plant part	Reference
Aduncin [187]	D. aduncum	Whole plant	(Gawell & Leander, 1976)
Amoenin [188]	D. amoenum	Whole plant	(Dahmen & Leander, 1978;
			Majumder <i>et al.</i> , 1999)
Amotin [189]	D. amoenum	Whole plant	(Dahmen & Leander, 1978;
			Majumder <i>et al.</i> , 1999)
asiatic acid [190]	D. parishii	Whole plant	(Klongkumnuankarn <i>et al.</i> ,
	5 6 M 1 1 1 1		2015)
a-Dihydropicrotoxinin [191]	D. moniliforme	Stem	(Bi <i>et al.</i> , 2004)
Dendrobane A [192]	D. nobile	Stem	(X. Zhang, H. Gao, et al.,
			2007)
Dendronobilin A [193]	D. nobile	Stem	(Xue Zhang <i>et al.</i> , 2007)
Dendronobilin B [194]	D. nobile	Stem	(Xue Zhang <i>et al.</i> , 2007)
Dendronobilin C [195]	D. nobile	Stem	(Xue Zhang <i>et al.</i> , 2007)
Dendronobilin D [196]	D. nobile	Stem	(Xue Zhang <i>et al.</i> , 2007)
Dendronobilin E [197]	D. nobile	Stem	(Xue Zhang <i>et al.</i> , 2007)
Dendronobilin F [198]	D. nobile	Stem	(Xue Zhang <i>et al.,</i> 2007)
Dendronobilin G [199]	D. nobile	Stem	(Xue Zhang <i>et al.</i> , 2007)
Dendronobilin H [200]	D. nobile	Stem	(Xue Zhang <i>et al.</i> , 2007)
Dendronobilin I [201]	D. nobile	Stem	(Xue Zhang <i>et al.</i> , 2007)
Chill A	D. findlayanum	Stem	(D. Yang <i>et al.</i> , 2019)
Dendronobilin J [202]	D. nobile	Stem	(X. Zhang, H. Gao, <i>et al</i> .,
			2007)
Dendronobilin K [203]	D. nobile	Stem	(X. Zhang, F. J. Tu, et al.,
			2008)
Dendronobilin L [204]	D. nobile	Stem	(X. Zhang, F. J. Tu, et al.,
			2008)
Dendronobilin M [205]	D. nobile	Stem	(X. Zhang, F. J. Tu, et al.,
			2008)
Dendronobilin N [206]	D. nobile	Stem	(X. Zhang, F. J. Tu, et al.,
			2008)
	D. findlayanum	Stem	(D. Yang <i>et al.</i> , 2019)

Terpenoids	Plant	Plant part	Reference
Dendrowardol A [207]	D. wardianum	Stem	(W. W. Fan <i>et al.,</i> 2013)
Dendrowardol B [208]	D. wardianum	Stem	(W. W. Fan <i>et al.,</i> 2013)
Dendrowardol C [209]	D. wardianum	Stem	(W. W. Fan <i>et al.,</i> 2013)
Corchoionoside C [210]	D. polyanthum	Stem	(Hu et al., 2009)
Crystallinin [211]	D. crystallinum	Stem	(L. Wang <i>et al.,</i> 2009)
	D. findlayanum	Whole plant	(Qin <i>et al.,</i> 2011)
Findlayanin [212]	D. findlayanum	Whole plant	(Qin <i>et al.</i> , 2011)
3-Hydroxy-2-oxodendrobine	D. nobile	Stem	(H. Wang <i>et al.</i> , 1985)
[213]	Sam 112.		
Dendrobine [214]	D. nobile	Stem	(H. Wang <i>et al.</i> , 1985)
	D. findlayanum	Stem	(D. Yang <i>et al.</i> , 2018)
2-Hydroxydendrobine [215]	D. findlayanum	Stem	(D. Yang <i>et al.</i> , 2018)
Findlayine A [216]	D. findlayanum	Stem	(D. Yang <i>et al.,</i> 2018)
Findlayine B [217]	D. findlayanum	Stem	(D. Yang <i>et al.</i> , 2018)
Findlayine C [218]	D. findlayanum	Stem	(D. Yang <i>et al.</i> , 2018)
Findlayine D [219]	D. findlayanum	Stem	(D. Yang <i>et al.,</i> 2018)
Dendromoniliside A [220]	D. moniliforme	Stem	(C. S. Zhao <i>et al.</i> , 2003)
Dendromoniliside B [221]	D. moniliforme	Stem	(C. S. Zhao <i>et al.</i> , 2003)
Dendromoniliside C [222]	D. moniliforme	Stem	(C. S. Zhao <i>et al.,</i> 2003)
Dendromoniliside D [223]	D. moniliforme	Stem	(C. S. Zhao <i>et al.</i> , 2003)
Dendronobiloside A [224]	D. nobile	Stem	(W. M. Zhao <i>et al.</i> , 2001);
Chula	ONGKORN UI	IVERSITY	(Ye & Zhao, 2002)
Dendronobiloside B [225]	D. nobile	Stem	(Ye & Zhao, 2002; W. M.
			Zhao <i>et al.</i> , 2001)
Dendronobiloside C [226]	D. nobile	Stem	(Ye & Zhao, 2002; W. M.
			Zhao <i>et al.</i> , 2001)
Dendronobiloside D [227]	D. nobile	Stem	(Ye & Zhao, 2002; W. M.
			Zhao <i>et al.</i> , 2001)
Dendronobiloside E [228]	D. nobile	Stem	(Ye & Zhao, 2002; W. M.
			Zhao <i>et al.</i> , 2001)
Dendroside A [229]	D. moniliforme	Stem	(C. S. Zhao <i>et al.</i> , 2003)
	D. nobile	Stem	(W. M. Zhao <i>et al.</i> , 2001)
		Stem	(Ye & Zhao, 2002)

Terpenoids	Plant	Plant part	Reference
	D. findlayanum	Stem	(D. Yang <i>et al.</i> , 2019)
Dendroside B [230]	D. nobile	Stem	(Ye & Zhao, 2002)
Dendroside C [231]	D. moniliforme	Stem	(C. S. Zhao <i>et al.,</i> 2003)
	D. nobile	Stem	(Ye & Zhao, 2002)
Dendroside D [232]	D. nobile	Stem	(Ye & Zhao, 2002)
Dendroside E [233]	D. nobile	Stem	(Ye <i>et al.,</i> 2002)
Dendroside F [234]	D. moniliforme	Stem	(Ye <i>et al.,</i> 2002)
Dendroside G [235]	D. nobile	Stem	(Ye <i>et al.,</i> 2002)
Dendrowillin A [236]	D. williamsonii	Whole plant	(M. Yang <i>et al.,</i> 2019)
Dendrowillin B [237]	D. williamsonii	Whole plant	(M. Yang <i>et al.,</i> 2019)
(–)-Picrotin [238]	D. williamsonii	Whole plant	(M. Yang <i>et al.,</i> 2019)
10 β ,12,14-	D. findlayanum	Stem	(D. Yang <i>et al.</i> , 2019)
trihydroxyaromadendrane [239]	////		
10 β ,13,14-	D. findlayanum	Stem	(D. Yang <i>et al.</i> , 2019)
trihydroxyaromadendrane [240]	A CONTRACTOR		
Dendrofindlayanoside A [241]	D. findlayanum	Stem	(D. Yang <i>et al.</i> , 2019)
Dendrofindlayanoside B [242]	D. findlayanum	Stem	(D. Yang <i>et al.</i> , 2019)
Dendrofindlayanoside C [243]	D. findlayanum	Stem	(D. Yang <i>et al.</i> , 2019)
Dendrofindlayanobilin [244]	D. findlayanum	Stem	(D. Yang <i>et al.</i> , 2019)
(+)-(1R,2S,3R,4S,5R,6S,9R)-	D. nobile	Stem	(C. Ma et al., 2019)
3,11,12-trihydroxypicrotoxane-	างกรณ์มหาวิ	ทยาลัย	
2(15)-lactone [245]	ongkorn Ui	IVERSITY	
(-)-(1S,2R,3S,4R,5S,6R,9S,12R)-	D. nobile	Stem	(C. Ma et al., 2019)
3,11,13-trihydroxypicrotoxane-			
2(15)-lactone [246]			
(+)-(1R,5R,6S,8R,9R)-	D. nobile	Stem	(C. Ma <i>et al.</i> , 2019)
8,12-dihydroxy-copacamphan-			
3-en-2-one [247]			
Dendroterpene A [248]	D. nobile	Stem	(P. Wang <i>et al.</i> , 2019)
Dendroterpene B [249]	D. nobile	Stem	(P. Wang <i>et a</i> l., 2019)
Dendroterpene C [250]	D. nobile	Stem	(P. Wang <i>et al.</i> , 2019)
Dendroterpene D [251]	D. nobile	Stem	(P. Wang <i>et al.,</i> 2019)

Figure 5. Structures of terpenoids from Dendrobium

Figure 5. Structures of terpenoids from Dendrobium (continued)

Figure 5. Structures of terpenoids from Dendrobium (continued)

[**227**] Dendronobiloside D

[230] Dendroside B R = OGlc[231] Dendroside C R = OH

-OGlc

HOGIC

Ò

[232] Dendroside D

[228] Dendronobiloside E

HQ_₌

[229] Dendroside A

[233] Dendroside E

[238] (-)-Picrotin

[234] Dendroside F R = H[236] Dendrowillin A R = OH[235] Dendroside G R = OH[237] Dendrowillin B R = H

[239] 10 β , 12, 14-trihydroxyaromadendrane [240] 10 β , 13, 14-trihydroxyaromadendrane

Figure 5. Structures of terpenoids from Dendrobium (continued)

Figure 5. Structures of terpenoids from Dendrobium (continued)

[250] Dendroterpene C R = H [251] Dendroterpene D R = OH

Figure 5. Structures of terpenoids from *Dendrobium* (continued)

Table 1 Miscellaneous compounds from Dendrobium

Categories and compounds	Plant	Plant part	Reference	
Aliphatic acid derivatives	Aliphatic acid derivatives			
Aliphatic acids [252]	D. clavatum var. aurantiacum	Stem	(S. J. Chang <i>et al.</i> , 2001)	
Aliphatic alcohols [253]	D. clavatum var. aurantiacum	Stem	(S. J. Chang <i>et al.</i> , 2001)	
Malic acid [254]	D. huoshanense	Aerial part	(C. C. Chang <i>et al.</i> , 2010)	
Dimethyl malate [255] 🎈 🕅	D. huoshanense	Aerial part	(C. C. Chang <i>et al.</i> , 2010)	
(-)-Shikimic acid [256]	D. fuscescens	Whole plant	(Talapatra <i>et al.</i> , 1989)	
	D. huoshanense	Aerial part	(C. C. Chang <i>et al.</i> , 2010)	
	D. longicornu	Stem	(Hu <i>et al.</i> , 2008a)	
	D. pulchellum	Stem	(Chanvorachote <i>et al.,</i> 2013)	
Isopentyl butyrate [257]	D. huoshanense	Aerial part	(C. C. Chang <i>et al.</i> , 2010)	
Dendrodevonic acid A [258]	D. devonianum	Stem	(Wu et al., 2019)	
Dendrodevonic acid B [259]	D. devonianum	Stem	(Wu et al., 2019)	
Benzoic acid derivatives and phenolic compounds				
3-Hydroxy-2-methoxy-5,6-	D. crystallinum	Stem	(L. Wang <i>et al.,</i> 2009)	
dimethylbenzoic acid [260]				
Salicylic acid [261]	D. huoshanense	Aerial part	(C. C. Chang <i>et al.</i> , 2010)	

Categories and	Diant	Diant part	Deference
compounds	Flant	Flant part	Reference
	D. williamsonii	Whole plant	(M. Yang <i>et al.,</i> 2018)
Vanilloside [262]	D. denneanum	Stem	(Pan <i>et al.</i> , 2012)
	D. moniliforme	Stem	(C. S. Zhao <i>et al.,</i> 2003)
Gallic acid [263]	D. longicornu	Whole plant	(J. T. Li <i>et al.,</i> 2009)
Syringic acid [264]	D. crystallinum	Stem	(L. Wang <i>et al.,</i> 2009)
Vanillic acid [265]	D. chrysotoxum	Whole plant	(Y. P. Li <i>et al.</i> , 2009)
	D. williamsonii	Whole plant	(Rungwichaniwat et al.,
	Still 122.		2014)
Antiarol [266]	D. chrysotoxum	Stem	(Hu <i>et al.</i> , 2012)
Ethylhaematommate [267]	D. longicornu	Whole plant	(J. T. Li <i>et al.,</i> 2009)
<i>p</i> -Hydroxy benzaldehyde	D. devonianum	Whole plant	(Sun <i>et al.</i> , 2014)
[268]	D. falconeri	Stem	(Sritularak &
			Likhitwitayawuid, 2009)
	D. tortile	Whole plant	(Limpanit <i>et al.,</i> 2016)
	D. williamsonii	Whole plant	(M. Yang <i>et al.</i> , 2018)
Methyl eta -orsellinate [269]	D. longicornu	Stem	(Hu <i>et al.</i> , 2008a)
Tachioside [270]	D. denneanum	Stem	(Pan <i>et al.</i> , 2012)
Alkyl 4'-hydroxy-trans-	D. clavatum var.	Stem	(S. J. Chang <i>et al.,</i> 2001)
cinnamates [271]	aurantiacum		
Alkyl <i>trans</i> -ferulate [272]	D. clavatum var.	Stem	(S. J. Chang <i>et al.,</i> 2001)
Сни	aurantiacum	IIVERSITY	
	D. scabrilingue	Whole plant	(Sarakulwattana <i>et al.,</i>
			2018)
Defuscin [273]	D. fuscescens	Whole plant	(Talapatra <i>et al.</i> , 1989)
	D. aurantiacum	Stem	(L. Yang, Wang, <i>et al.</i> , 2006)
	var. denneanum		
n-Octacosyl ferulate [274]	D. aurantiacum	Stem	(L. Yang, Wang, et al., 2006)
	var. denneanum		
	D. moniliforme	Stem	(Bi <i>et al.</i> , 2004)
<i>n</i> -Triacontyl <i>p</i> -hydroxy-cis-	D. moniliforme	Stem	(Bi <i>et al.</i> , 2004)
cinnamate [275]			

Categories and	Plant	Plant part	Reference
compounds			
Tetratriacontanyl-trans-p-	D. williamsonii	Whole plant	(Rungwichaniwat et al.,
coumarate [276]			2014)
p-hydroxyphenethyl-trans-	D. loddigesii	Stem	(R. J. Ma <i>et al.</i> , 2019)
ferulate [277]			
n-Docosyl trans-ferulate	D. longicornu	Whole plant	(J. T. Li <i>et al.,</i> 2009)
[278]			
	D. williamsonii	Whole plant	(Rungwichaniwat et al.,
	5 mil 1 2 4		2014)
trans-Tetracosyl ferulate	D. tortile	Whole plant	(Limpanit <i>et al.,</i> 2016)
[279]			
cis-Hexacosanoyl ferulate	D. tortile	Whole plant	(Limpanit <i>et al.,</i> 2016)
[280]			
Ferulaldehyde [281]	D. longicornu	Whole plant	(J. T. Li <i>et al.,</i> 2009)
Ferulic acid [282]	D. secundum	Stem	(Sritularak, Duangrak, et al.,
			2011)
2-(p-Hydroxyphenyl)	D. falconeri	Stem	(Sritularak &
ethyl <i>p</i> -coumarate			Likhitwitayawuid, 2009)
[283]		Les la companya de la	
Dihydroconiferyl dihydro-p-	D. formosum	Whole plant	(Inthongkaew <i>et al.,</i> 2017)
coumarate [284]	D. loddigesii	Stem	(R. J. Ma et al., 2019)
Cuu	D. devonianum	Stem	(Wu et al., 2019)
Unu	D. hainanense	Aerial part	(Y. Y. Zhang <i>et al.</i> , 2019)
1-[4-(β -D-	D. aurantiacum var.	Stem	(Xiong <i>et al.</i> , 2013)
Glucopyranosyloxy)-3,5-	denneanum		
dimethoxyphenyl]-1-			
propanone [285]			
3-Hydroxy-1-(4-hydroxy-3,5-	D. williamsonii	Whole plant	(M. Yang <i>et al.,</i> 2018)
dimethoxyphenyl)-1-			
propanone [286]			

Categories and	Plant	Plant part	Reference
compounds			
2-Hydroxy-3-(4-hydroxy-3-	D. hainanense	Aerial part	(Y. Y. Zhang <i>et al.</i> , 2019)
methoxyphenyl)-3-			
methoxypropyl-3-(4-			
hydroxylphenyl)-			
propanoate [287]			
Coniferyl alcohol [288]	D. trigonopus	Stem	(Hu <i>et al.</i> , 2008b)
(E)-Coniferyl aldehyde [289]	D. hainanense	Aerial part	(Y. Y. Zhang <i>et al.</i> , 2019)
Sinapicaldehyde [290]	D. hainanense	Aerial part	(Y. Y. Zhang <i>et al.</i> , 2019)
Decumbic acid A [291]	D. nobile	Stem	(Zhou <i>et al.</i> , 2016)
Decumbic acid B [292]	D. nobile	Stem	(Zhou <i>et al.</i> , 2016)
(-)-Decumbic acid [293]	D. nobile	Stem	(Zhou <i>et al.</i> , 2016)
(+)-Dendrolactone [294]	D. nobile	Stem	(Zhou <i>et al.</i> , 2016)
4-(3-Hydroxyphenyl)-2-	D. nobile	Stem	(Zhou <i>et al.</i> , 2016)
butanone [295]			
3-Hydroxy-1(3-methoxy-4-	D. nobile	Stem	(Zhou <i>et al.</i> , 2016)
hydroxyphenyl)-propan-1-			
one [296]			
3',4',5'-Trimethoxy	D. nobile	Stem	(Zhou <i>et al.</i> , 2016)
cinnamyl acetate [297]			
Alatusol A [298]	D. hainanense	Aerial part	(Y. Y. Zhang <i>et al.</i> , 2019)
<i>p</i> -Hydroxyphenyl	D. aphyllum	Whole plant	(Yegao Chen <i>et al.,</i> 2008)
propionic methyl ester	ALONGKONN OI	IVENSIT	
[299]			
Phloretic acid [300]	D. ellipsophyllum	Whole plant	(Tanagornmeatar et al.,
			2014)
Dihydroconiferyl alcohol	D. longicornu	Stem	(Hu <i>et al.</i> , 2008a)
[301]			
Salidrosol [302]	D. chrysotoxum	Stem	(Hu <i>et al.,</i> 2012)
Shashenoside [303]	D. aurantiacum	Stem	(Xiong <i>et al.</i> , 2013)
	var. denneanum		
Syringin [304]	D. aurantiacum	Stem	(Xiong <i>et al.</i> , 2013)
	var. denneanum		
Categories and	Plant	Plant part	Reference
--	---------------------------------	-------------	--
	D falcoperi	Whole plant	(Sritularak &
[305]	D. Juconen		Likhitwitavawuid 2009)
(75 8 <i>R</i>)-Debydrodiconiferyl	D nobile	Stem	(7 hou et al. 2017)
alcohol $\alpha' \mathbf{B}$ D	D. HOOKE	Stem	
$f(x) = \frac{1}{2} - \frac{1}{2}$			
Koaburaside [307]	D nobile	Stem	(Zhou <i>et al.</i> 2017)
luniperoside [308]	D nobile	Stem	(Zhou et al. 2017)
	D. nobile	Stem	(Zhou et al. 2017)
A B D alucosido [200]	D. HOORE	Juli	
$(2D)^{2}(C)^{2}(D)^{2}(C)^{2}(D)^{2$	D willionsopii	Whale plant	(M. Vang et al. 2018)
(3K, 3 S, 4K, 4 S)- 3, 5 , 4, 4 -	D. WIWAMSONI	whole plant	(M. Yang <i>et al.</i> , 2018)
directhous (2.2' bi 2//			
a = 200 and			
benzopyranj-4,4 -diot $[310]$	D laddiaasii	Chang	
threo-1-0-ethyl-9-0-(4-	D. loddigesii	Stem	(Ma, R. J., <i>et al.</i> , 2019b)
hydroxyphenyl) propionyl-			
	Contract Support	~	
Coumarins			(
Ayapin [312]	D. densiflorum	Stem	(Fan <i>et al.,</i> 2001)
Coumarin [313]	D. aurantiacum	Stem	(L. Yang, Wang <i>, et al.</i> , 2006)
ຈຸ ເຈ	var. denneanum	ทยาลัย	
Сни	D. clavatum var. aurantiacum	Stem	(S. J. Chang <i>et al.</i> , 2001)
Denthyrsin [314]	D. thyrsiflorum	Stem	(G. N. Zhang <i>et al.</i> , 2005)
Scoparone [315]	D. densiflorum	Stem	(Fan <i>et al.,</i> 2001)
	D. thyrsiflorum	Stem	(G. N. Zhang <i>et al.</i> , 2005)
	D. williamsonii	Whole plant	(M. Yang <i>et al.,</i> 2018)
	D. palpebrae	Whole plant	(Kyokong <i>et al.,</i> 2019)
Scopoletin [316]	D. densiflorum	Stem	(Fan <i>et al.,</i> 2001)
Lignans and neolignans	•		•
Episyringaresinol [317]	D. chrysotoxum	Stem	(Hu <i>et al.,</i> 2012)
	D. longicornu	Stem	(Hu <i>et al.,</i> 2008a)
	D. nobile	Stem	(X. Zhang <i>et al.</i> , 2008)

Categories and	Plant	Plant part	Reference	
compounds				
Episyringaresinol 4"-O- β -D-	D. moniliforme	Stem	(C. S. Zhao <i>et al.,</i> 2003)	
glucopyranoside				
[318]				
(-)-(7 <i>S</i> ,8 <i>R</i> ,7′ <i>E</i>)-4-Hydroxy	D. aurantiacum	Stem	(Xiong <i>et al.</i> , 2013)	
-3,3',5,5'-tetramethoxy-8,4'-	var. denneanum			
oxyneolign-7'-ene- 7,9'-bis-				
$\mathit{O} extsf{-}eta extsf{-}D extsf{-}glucopyranoside$				
[319]	- 1 h 1 1 1 1 .			
Lyoniresinol [320]	D. chrysanthum	Stem	(Ye <i>et al.</i> , 2004)	
(-)-Syringaresinol-4,4'-bis-O-	D. aurantiacum	Stem	(Xiong <i>et al.,</i> 2013)	
β –D- glucopyranoside [321]	var. denneanum			
Syringaresinol-4- <i>O</i> -D-	D. aurantiacum	Stem	(Xiong <i>et al.</i> , 2013)	
monoglucopyranoside	var. denneanum			
[322]				
Dendrocoumarin [323]	D. nobile	Stem	(Zhou <i>et al.</i> , 2018)	
Itolide A [324]	D. nobile	Stem	(Zhou <i>et al.</i> , 2018)	
(-)-Medioresinol [325]	D. loddigesii	Whole plant	(Ito <i>et al.</i> , 2010)	
10	D. nobile	Stem	(X. Zhang <i>et al.</i> , 2008)	
(-)-Pinoresinol [326]	D. loddigesii	Whole plant	(Ito <i>et al.</i> , 2010)	
จุห	D. nobile	Stem	(X. Zhang <i>et al.</i> , 2008)	
(+)-Pinoresinol [327]	D. devonianum	Stem	(Wu <i>et al.,</i> 2019)	
Erythro-1-(4- <i>O</i> - β -D-	D. longicornu	Stem	(Hu <i>et al.,</i> 2008a)	
glucopyranosyl-3-				
methoxyphenyl)-2-[4-(3-				
hydroxypropyl)-2,6-				
dimethoxyphenoxy]-1,3-				
propanediol [328]				
Syringaresinol [329]	D. nobile	Stem	(X. Zhang <i>et al.</i> , 2008)	
	D. secundum	Stem	(Sritularak, Duangrak, <i>et al.</i> ,	
			2011)	
	D. williamsonii	Whole plant	(M. Yang <i>et al.</i> , 2018)	
Acanthoside B [330]	D. chrysanthum	Stem	(Ye <i>et al.,</i> 2004)	

Categories and	Plant	Plant part	Reference
compounds	ranc		herefellee
Liriodendrin [331]	D. brymerianum	Whole plant	(Chen <i>et al.,</i> 2014)
	D. pulchellum	Stem	(Chanvorachote <i>et al.</i> ,
			2013)
(-)-(8 <i>R</i> ,7´ <i>E</i>)-4-Hydroxy-	D. auranticum var.	Stem	(Li <i>et al.</i> , 2014)
3,3',5,5'-tetramethoxy-8,4'-	denneanum		
oxyneolign-7'-ene-9,9'-diol			
4,9-bis-O- β -D-			
glucopyranoside [332]			
(-)-(8 <i>S</i> ,7' <i>E</i>)-4-Hydroxy-	D. auranticum var.	Stem	(Li <i>et al.</i> , 2014)
3,3',5,5'-tetramethoxy-8,4'-	denneanum		
oxyneolign-7´-ene-9,9´-diol			
4,9-bis-O- β -D-			
glucopyranoside [333]			
(-)-(8 <i>R</i> ,7´ <i>E</i>)-4-Hydroxy-	D. auranticum var.	Stem	(Li <i>et al.</i> , 2014)
3,3′,5,5′,9′-penta	denneanum		
methoxy-8,4′-oxyneolign-7′-	100000		
ene-9-ol 4,9-bis-Ο- β -D-	AND		
glucopyranoside [334]		AS I	
Fluorenones			
Denchrysan B [335]	D. brymerianum	Whole plant	(Klongkumnuankarn <i>et al.,</i>
Cuu	ALONGKODN III	IIVEDEITV	2015)
Denchrysan A [336]	D. chrysotoxum	Whole plant	(Y. P. Li <i>et al.</i> , 2009)
Dendroflorin [337]	D. aurantiacum	Stem	(L. Yang, Wang, <i>et al.</i> , 2006)
	var. denneanum		
	D. brymerianum	Whole plant	(Klongkumnuankarn <i>et al.</i> ,
			2015)
	D. palpebrae	Whole plant	(Kyokong <i>et al.</i> , 2019)
Dengibsin [338]	D. aurantiacum	Stem	(L. Yang, Wang, <i>et al.</i> , 2006)
	var. denneanum		
	D. chrysanthum	Stem	(L. Yang, Qin, <i>et al.</i> , 2006)
	D. chrysotoxum	Whole plant	(Y. P. Li <i>et al.</i> , 2009)

Categories and	Plant	Plant part	Pafaranca
compounds	rtant	i tant part	herefence
Nobilone [339]	D. brymerianum	Whole plant	(Klongkumnuankarn et al.,
			2015)
	D. nobile	Stem	(X. Zhang <i>et al.</i> , 2007)
	D. palpebrae	Whole plant	(Kyokong <i>et al.</i> , 2019)
1,4,5-Trihydroxy-7-	D. chrysotoxum	Whole plant	(Y. P. Li <i>et al.</i> , 2009)
methoxy-9H-			
fluoren-9-one [340]			
2,4,7-Trihydroxy-1,5-	D. chrysotoxum	Stem	(H. Yang <i>et al.,</i> 2004)
dimethoxy-9-fluorenone			
[341]			
Others			
3,6,9-Trihydroxy-3,4-	D. chrysotoxum	Stem	(Hu et al., 2012)
dihydroanthracen-1-(2H)-			
one [342]			
Palmarumycin JC2 [343]	D. crystallinum	Stem	(L. Wang <i>et al.,</i> 2009)
Dehydrovomifoliol [344]	D. loddigesii	Whole plant	(Ito <i>et al.,</i> 2010)
2,6-Dimethoxy	D. chryseum	Stem	(Ma et al., 1998)
Benzoquinone [345]		XS)	
4-(2-Hydroxypropyl)- 2(5 <i>H</i>)-	D. tortile	Whole plant	(Limpanit <i>et al.,</i> 2016)
furanone [346]	าลงกรณ์มหาวิ	ทยาลัย	
5,7-Dihydroxy chromen-4-	D. ellipsophyllum	Whole plant	(Tanagornmeatar et al.,
one [347]	ALUNGKURN UI	IIVENƏLLİ	2014)
Balanophonin [348]	D. williamsonii	Whole plant	(M. Yang <i>et al.,</i> 2018)
Ergosta-8(9),22-diene-	D. williamsonii	Whole plant	(M. Yang <i>et al.,</i> 2018)
3,5,6,7-tetraol [349]			
Stigmast-4-	D. williamsonii	Whole plant	(M. Yang <i>et al.,</i> 2018)
en-3a, 6 β -diol [350]			
3 β -Hydroxy-5a,8a-	D. williamsonii	Whole plant	(M. Yang <i>et al.,</i> 2018)
epidioxyergosta-6,9,22-			
triene [351]			
β-Sitosterol [352]	D. williamsonii	Whole plant	(M. Yang <i>et al.</i> , 2018)
Daucosterol [353]	D. williamsonii	Whole plant	(M. Yang <i>et al.</i> , 2018)

Categories and compounds	Plant	Plant part	Reference
Anosmine [354]	D. parishii	Whole plant	(Hemscheidt & Spenser,
			1991)
di-p-	D. chrysanthum	Whole plant	(Cai <i>et al.,</i> 2018)
hydroxyphenylpropionic			
acidic-p-coumaric acid			
lactone [355]			
RF-3192C [356]	D. scabrilingue	Whole plant	(Sarakulwattana <i>et al.,</i>
			2018)
Crepidatumine C [357]	D. crepidatum	Stem	(Xu et al., 2019)
Crepidatumine D [358]	D. crepidatum	Stem	(Xu et al., 2019)
Crepidine [359]	D. crepidatum	Stem	(Xu et al., 2019)
Isocrepidamine [360]	D. crepidatum	Stem	(Xu et al., 2019)
Crepidamine [361]	D. crepidatum	Stem	(Xu et al., 2019)

จุฬาลงกรณมหาวทยาลย Chulalongkorn University

CH_3 - $(CH_2)_n$ - CH_2 -R

 [252] Aliphatic acids
 R = COOH
 n = 19-31

 [253] Aliphatic alcohol
 R = OH
 n = 22-32

Figure 6. Structures of miscellaneous compounds from Dendrobium

Figure 6. Structures of miscellaneous compounds from Dendrobium (continued)

Figure 6. Structures of miscellaneous compounds from Dendrobium (continued)

[287] 2-Hydroxy-3-(4-hydroxy-3-methoxyphenyl)-3-methoxypropyl-3-(4-

hydroxylphenyl)propanoate

[291] Decumbic acid A [292] Decumbic acid B [293] (-)-Decumbic acid [294] (+)-Dendrolactone

[297] 3',4',5'-Trimethoxy cinnamyl acetate

[298] Alatusol A

[299] *p*-Hydroxyphenyl propionic methyl ester $R = CH_3$ [300] Phloretic acid R = OH

[301] Dihydroconiferyl alcohol

Figure 6. Structures of miscellaneous compounds from Dendrobium (continued)

Figure 6. Structures of miscellaneous compounds from Dendrobium (continued)

[**319**] (-)-(7*S*,8*R*,7'*E*)-4-Hydroxy-

3,3',5,5'-tetramethoxy-8,4'-oxyneolign-

7'-ene-7,9'-bis-O- β -D-glucopyranoside

Figure 6. Structures of miscellaneous compounds from Dendrobium (continued)

Figure 6. Structures of miscellaneous compounds from *Dendrobium* (continued)

Figure 6. Structures of miscellaneous compounds from Dendrobium (continued)

[**351**] 3β-Hydroxy-5a,8a-epidioxyergosta-6,9,22-triene

Figure 6. Structures of miscellaneous compounds from *Dendrobium* (continued)

2. Alpha-glucosidase inhibitory activity of Dendrobium species

One of the largest genera of Orchidaceae is the *Dendrobium* genus. Thousands of species of *Dendrobium* can be found all over the world. Dozens of species, such as *D. officinale*, *D. nobile*, *D. huoshanense*, and *D. chrysanthum*, are grown in China. Among all of these *Dendrobium* species, *D. officinale* is one of the most widely known due to its functions in Traditional Chinese Medicine (TCM), like tonifying the stomach, promoting fluid, nourishing yin, and clearing heat. The fresh stem of *D. officinale* can be orally consumed directly and used as a soup stock or tea too. On the other hand, modern pharmacology research has shown some beneficial bioactivities of *D. officinale*, like anti-oxidant, anti-tumor, hypoglycemic activities as well as gastrointestinal regulatory functions (Zhou, C., Xie, Z., et. al., 2018).

Alpha-glucosidase inhibitors (AGIs) are a class of Oral Hypoglycemic Agents (OHAs) for the treatment of DM II. The mechanism of AGIs is to inhibit binding the active centers of α -glucosidase enzyme with oligosaccharides. The treatment of DM II patients can use AGIs as drugs that inhibit the absorption of carbohydrates from the gut. Because of their nitrogen component, AGIs can block the enzymatic reaction of α -glucosidase (Joshi *et. al.*, 2015). Acarbose, miglitiol and voglibose are drugs that include AGIs (Patel *et al.*, 2012). Among the AGIs, acarbose has the most robust evidence base for the treatment of DM II. It is the most studied drug with proven efficacy in lowering insulin dose in postprandial hyperglycemia (PPHG) and improving insulin resistance/secretion and dyslipidemia in patients with DM II (Joshi *et al.*, 2015).

The inhibitory effect of α -glucosidase in type 2 diabetes can be used to absorb postprandial glucose. α -Glucosidase has a role in carbohydrates into glucose conversion. By inhibiting α -glucosidase, blood glucose levels can be returned within the normal range (Van de Laar, 2008). In previous reports, several compounds from *Dendrobium* spp. have been found to possess α -glucosidase effect. Table 5 showed examples of α -glucosidase inhibitors from *Dendrobium* spp.

Structure name	Plant	Plant part	Parts
Flavonoids			
5-Hydroxy-3-methoxy-flavone-			
7- <i>O</i> -[β -D-apiosyl-(1→6)]- β -D-	D. devonianum	(Sun <i>et al.,</i> 2014)	whole
glucoside [363]			plant
Bisbibenzyls			
Dendrofalconerol A [364]	D. tortile	(Limpanit <i>et al</i> .,	whole
		2016)	plant
Phenanthrene Quinones			
5-Methoxy-7-hydroxy-9,10-	D. formosum	(Inthongkaew <i>et al.,</i>	stem
dihydro-1,4-		2017)	
phenanthrenequinone [365]	Canavara a	2	
Bibenzyl derivatives			
Loddigesiinol J [366]	D. loddigesii	(Lu <i>et al.,</i> 2014)	stem
3,4-Dihydroxy-5,4'-	I ONGKORN IINIVER	(Limpanit <i>et al.,</i>	whole
dimethoxybibenzyl [367]	D. tortile	2016)	plant

Table 5. Examples of α -glucosidase inhibitors from *Dendrobium* spp.

Figure 7. Structures of α -glucosidase inhibitors from *Dendrobium* spp.

CHAPTER III

EXPERIMENTAL

1. Source of plant materials

1.1 Dendrobium braianense (เอื้องคำป๊อกลาว)

Dendrobium braianense samples were bought from Chatuchak market, Bangkok, in March 2018. This plant was identified by Mr. Yanyong Punpreuk, Department of Agriculture, Bangkok. Voucher specimens (BS-DB-032561) has been saved at the herbarium of the Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University.

1.2 Dendrobium kentrophyllum (เอื้องก้างปลาใหญ่)

Dendrobium kentrophyllum samples were purchased from an orchid farm, Suphanburi, in August 2018. They were identified by Mr. Yanyong Punpreuk, Department of Agriculture, Bangkok. Voucher specimens (BS-DK-072561) have been saved at the herbarium of the Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University.

จุหาลงกรณํมหาวิทยาลัย

2. General Techniques LALONGKORN UNIVERSITY

2.1 Analytical thin-layer chromatography (TLC)

2.1.1 Normal phase thin-layer chromatography

Technique	One-dimension ascending
Absorbent	Silica gel 60 F254 precoated plate (E. Merck)
Temperature	Laboratory temperature (30-35 °C)
Detection	1. Ultraviolet light at wavelengths of 254 and 365 nm.

2. Spraying with anisaldehyde reagent (p-anisaldehyde 15 g in ethanol 250 mL and concentrated sulfuric acid 2.5 mL) and heating at 105 $^{\circ}$ C for 10 minutes.

2.1.2 Reverse phase thin-layer chromatography

Technique	One-dimension ascending
Absorbent	RP C-18 precoated on aluminum sheet (Anal Tech)
Temperature	Laboratory temperature (30-35 °C)
Detection	Ultraviolet light at wavelengths of 254 and 365 nm.

2.2 Column chromatography (CC)

2.2.1 Vacuum liquid chromatography (VLC)

Adsorbent	Silica gel 60 (No. 107734), size 0.063-0.200 mm (E. Merck)
Packing method	Dry packing
Sample loading	The sample was dissolved in a small volume of organic
	solvent, triturated with a slight amount of the adsorbent, dried,
	and then gradually put on the top of the column.
Detection	Each fraction was studied by TLC under UV light at the
	wavelengths of 254 and 365 nm.

2.2.2 Flash column chromatography (FCC), normal phase

Adsorbent Silica gel 60 (No. 109385), size 0.040-0.063 mm (E. Merck)

- Packing method Wet packing
- Sample loading The sample was dissolved in a minor volume of organic solvent, triturated with a small amount of the adsorbent, dried, and then gradually put on the top of the column.
- **Detection** Fractions were studied as described in section 2.2.1

2.2.3 Flash column chromatography (FCC), reverse phase

Adsorbent C-18 (No. 113900), size 40-63 µm (E. Merck)

Packing method Wet packing

Sample loading	The sample was dissolved with a little volume of organic
	solvent, and then gradually loaded on the top of the column.
Detection	Fractions were studied as described in section 2.2.1

2.2.4 Gel filtration chromatography

Gel filter	Sephadex LH-20,	particle size 25-100 µm	(GE Healthcare)
------------	-----------------	-------------------------	-----------------

- Packing method The gel filter was suspended in an appropriate solvent, left standing for about 24 hours, and then poured into the column and left to set tightly.
- Sample loading It was liquefied in a little volume of the eluent and then gradually dispensed on the top of the column.

Detection Fractions were studied as described in section 2.2.1.

2.2.5 Semi-preparative high pressure liquid chromatography (HPLC)

Column	COSMOSIL 5C18-AR-II (10ID x 250 mm)
Flow rate	3 ml/min
Mobile phase	Isocratic 50% methanol in water
Sample preparation	It was liquefied in a little volume of the eluent and filtered
	through Millipore filter paper before it was injected.
Injection volume	1 ml HULALONGKORN UNIVERSITY
Pump	LC-8A (Shimadzu)
Detector	SPD-10A UV-Vis Detector (Shimadzu)
Recorder	C-R6A Chromatopac (Shimadzu)
Temperature	Room temperature

2.3 Spectroscopy

2.3.1 Mass spectra

Mass spectra (MS) were recorded using a Bruker micro TOF mass spectrometer (Department of Chemistry, Faculty of Science, Mahidol University).

2.3.2 Proton and carbon-13 nuclear magnetic resonance (¹H and ¹³C-NMR) spectra

¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were recorded utilizing a Bruker Avance DPX-300 FT-NMR spectrometer (Faculty of Pharmaceutical Sciences, Chulalongkorn University). ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were recorded on a Bruker Avance III HD 500 NMR spectrometer (Scientific and Technology Research Equipment Center, Chulalongkorn University).

Solvents for NMR spectra constituted deuterated acetone (acetone- d_6), deuterated dimethyl sulfoxide (DMSO- d_6), or deuterated chloroform (CDCl₃). Chemical shifts were described in ppm scale using the chemical shift of the solvent as the reference signal.

2.4 Solvents

All organic solvents used throughout this work were of commercial grade and were redistilled before being used.

3. Extraction and isolation LONGKORN UNIVERSITY

3.1 Extraction and isolation of compounds from Dendrobium braianense

3.1.1 Extraction

The dried whole plant of *Dendrobium braianense* (2 kg) was ground into a powder then mixed with MeOH solvent at room temperature. After three days the liquid extracts were taken and filtered to the flask. Then the extracts were evaporated to remove the solvent with a rotary evaporator at 40°C to get concentrated MeOH extract. This process was repeated 3 times with the same

volume of solvent. Finally, the extracts were weighed and stored in the fridge till their usage in the different tests (Scheme 1).

Scheme 1. Extraction steps for Dendrobium braianense

3.1.2 Isolation

3.1.2.1 Isolation of compound DBra1 (Chrysotoxine) and

compound DBra2 (Moscatilin)

Ethyl acetate extract (92 g) was initially divided using vacuum liquid chromatography (silica gel, hexane-EtOAc) to give five fractions (A to E). Fraction B was isolated with Sephadex LH-20 with acetone to give five fractions (B1 – B5). Fraction B2 was divided by silica gel column (EtOAc: Hexane) gradient to give five fractions B2.1 – B2.5 (Scheme 2).

Fraction B2.3 after drying gave compound DBra1 (97 mg) as a white powder. Compound DBra1 was later identified as chrysotoxine. Fraction B2.4 after drying gave compound DBra2 (10 mg) as brown amorphous. Compound DBra2 was then known to be moscatilin.

3.1.2.2 Isolation of compound DBra3 (Gigantol)

Fraction B3 (2.38 g) was subjected to column chromatography (CC) on a silica gel column (hexane-EtOAc) **(Scheme 2)**. Three subfractions (B3.1 to B3.3) were obtained. Fraction B3.2 gave brown amorphous after being left standing at room temperature overnight. The precipitates were collected, washed with EtOAc, and dried to give Compound DBra3 (170 mg). This compound was identified as gigantol.

Scheme 2. Isolation of compounds from ethyl acetate extract of *Dendrobium* braianense

3.2 Extraction and isolation of compounds from Dendrobium kentrophyllum

3.2.1 Extraction

The dried whole plant of *Dendrobium kentrophyllum* (3.8 kg) was ground into powder then macerated with MeOH solvent at room temperature. After three days the liquid extracts were taken and filtered to the flask. Then the extracts were evaporated to remove the solvent with a rotary evaporator at 40°C to get concentrate MeOH extract. This process was repeated 3 times with the same volume of solvent. Finally, the extracts were weighed and stored in the fridge till their usage in the different tests (Scheme 3).

Scheme 3. Extraction steps for Dendrobium kentrophyllum

3.2.2 Isolation

3.2.2.1 Isolation of compound DK 1 (Kaempferol) and compound DK 2 (Quercetin)

The ethyl acetate extract (72 g) was separated by vacuum-liquid chromatography (silica gel, hexane-acetone gradient) to give 7 fractions (A-H). Fraction G (27 g) was fractionated by column chromatography over silica gel (acetone-hexane, gradient) to give 11 fractions (G1-G11) (**Scheme 4**). Compound DK 1 (302 mg) was obtained from fractions G7 and G8 as a yellow powder and identified as kaempferol. Fraction G10 (1 g) was further divided by column chromatography (silica gel, toluene) to yield compound DK 2 (245 mg) as a yellow powder and identified as quercetin.

3.2.2.2 Isolation of compound DK3 (Rutin)

Fraction H (2 g) was purified by column chromatography (C-18, methanolwater, gradient) to give 4 fractions (H1 – H4) (**Scheme 5)**. Compound DK3 (84 mg) was obtained from H2 as a yellow powder and identified as rutin.

Scheme 5. Isolation of compounds from fraction H of Dendrobium kentrophyllum

4. Physical and spectral data of isolated compounds

4.1 Compound DBra 1 (Chrysotoxine)

Compound **DBra 1** was gained as a white powder (97 mg, 0.00485% based on dried weight of plant). It was soluble in acetone.

¹H NMR δ ppm, 300 MHz, in acetone- d_6 ; Table 7

¹³C NMR δ ppm, 75 MHz, in acetone- d_6 ; Table 7

4.2 Compound DBra 2 (Moscatilin)

Compound **DBra 2** was gained as brown amorphous (10 mg, 0.0005% based on the dried weight of the plant. It was soluble in acetone.

¹H NMR δ ppm, 300 MHz, in acetone- d_6 ; Table 8

¹³C NMR δ ppm, 75 MHz, in acetone- d_6 ; Table 8

4.3 Compound DBra 3 (Gigantol)

Compound DBra 3 was gained as white crystals (170 mg, 0.0085% based on dried weight of root). It was soluble in acetone.

¹H NMR δ ppm, 300 MHz, in acetone- d_6 ; Table 9

¹³C NMR δ ppm, 75 MHz, in acetone- d_6 ; Table 9

4.4 Compound DK 1 (Kaempferol)

Compound **DK 3** was gained as a yellow powder (302 mg, 0.00795% based on dried weight of plant). It was soluble in acetone.

¹H NMR δ ppm, 300 MHz, in acetone- d_6 ; Table 10

¹³C NMR δ ppm, 75 MHz, in acetone- d_6 ; Table 10

4.5 Compound DK 2 (Quercetin)

Compound **DK 2** was gained as a yellow powder (245 mg, 0.00645% based on dried weight of plant). It was soluble in acetone.

¹H NMR δ ppm, 300 MHz, in acetone- d_6 ; Table 11

¹³C NMR δ ppm, 75 MHz, in acetone- d_6 ; Table 11

4.6 Compound DK 3 (Rutin)

Compound **DK 3** was gained as a yellow powder (84 mg, 0.00221% based on dried weight of plant). It was soluble in acetone- d_{6} .

- ¹H NMR δ ppm, 300 MHz, in DMSO- d_6 ; Table 12
- ¹³C NMR δ ppm, 75 MHz, in acetone- d_6 ; Table 12

Chulalongkorn University

5. Assay for lpha-glucosidase inhibitory activity

The *in vitro* α -glucosidase inhibition assay was performed by spectrophotometric method, involving hydrolysis of substrate *p*-nitrophenyl α -D-glucopyranoside (Srianta *et al.*, 2013).

In this research, α -glucosidase inhibitory activity was assessed using the spectrophotometric measurement of the amount of *p*-nitrophenol (pNP) discharged from the hydrolytic reaction of *p*-nitrophenyl- α -D-glucopyranoside (p-NPG) catalyzed by α -glucosidase enzyme. p-NPG is a synthetic substrate representing the α -linked terminal glucose of polysaccharides. The experiment was conducted at microscale *in vitro* in a 96-well plate following established protocols (Inthongkaew *et al.*, 2017).

5.1 Materials and instruments

- p-Nitrophenyl- α -D-glucopyranoside (p-NPG) (Sigma-Aldrich, USA)
- α -Glucosidase enzyme (Sigma-Aldrich, USA)
- Na₂CO₃ (Sigma-Aldrich, USA)
- DMSO (Sigma-Aldrich, USA)
- Acarbose (Sigma-Aldrich, USA)
- Vortex mixer (Vortex-Genie2, Scientific Industries)
- Incubator (BM500, Memmert)
- Microplate reader (Perkin Elmer, BMG LABTECH)

5.2 Determination of α -glucosidase inhibitory activity

Prepare the sample 1 mg in 1 ml of 50% DMSO. Briefly, 10 μ l of the test samples and 40 μ L of α -glucosidase solution (0.1 U/ml) were mixed in 96 well microplates. Incubate 96-well plate at 37°C for 10 minutes. After pre-incubation, 50 μ L of 20 Mm *p*-nitrophenol- α -D-glucopyranoside (p-NPG) in 50 M phosphate buffer (pH 6.8) was added to each well and incubated at 37 °C for 20 minutes. Finally, Na₂CO₃ (100 μ L, 1 Mm) was added to each well to stop the reaction. The mixture was measured with a microplate reader at 405 nm. The α -glucosidase inhibitory activity was shown to be the percentage of inhibition and was calculated as follows :

% Inhibition =
$$\frac{\left(Neg - Neg'\right) - \left(\frac{S}{A} - \frac{S'}{A'}\right)}{(Neg - Neg')}$$

Neg' = Buffer 40 µL + 50% DMSO 10 µL	Neg = Enzyme 40 μ L + 50% DMSO 10 μ L
A' = Buffer 40 1μL + Acarbose 10 μL	A = Enzyme 40 μL + Acarbose 10 μL
S' = Buffer 40 µL + Sample 10 µL	S = Enzyme 40 μL + Sample 10 μL
Neg = Negative Control	S = Sample
A = Acarbose	ʻ = blank (no enzyme)

Chulalongkorn University

CHAPTER IV

RESULTS AND DISCUSSION

In this research, the extracts were prepared from *Dendrobium braianense* and *D. kentrophyllum*. They were found to have significant α -glucosidase inhibitory potential and thus were subjected to further research to identify the active principles. This chapter is divided into four main sections. Each section describes the results and discussion on the phytochemical and biological studies of each plant.

1. Preliminary biological activity evaluation of *D. braianense* and *D. kentrophyllum*

Dendrobium braianense crude extract was prepared by maceration of the dried powdered whole plants with methanol. The MeOH extract was evaluated for α -glucosidase inhibitory activity and found to show 64.7% inhibition at a concentration of 50µg/ml.

The MeOH extract was divided using ethyl acetate, butanol, and water to give ethyl acetate and butanol extracts. These extracts were then assessed for their α glucosidase inhibitory property. The ethyl acetate extract was found to show a strong α -glucosidase inhibitory effect with 82.1% inhibition at a concentration of 100 µg/ml, whereas the butanol extract exhibited 68.6% inhibition (**Table 6**). Therefore the ethyl acetate extract was chosen for further chemical research.

Dendrobium kentrophyllum crude extract was prepared by maceration of the dried powdered whole plants with methanol. The MeOH extract was assessed for α -glucosidase inhibitory activity and had 69.7 % inhibition at a concentration of 50 µg/ml. The MeOH extract was divided using ethyl acetate, butanol, and water to give ethyl acetate and butanol extracts. These extracts were then assessed for their α -glucosidase inhibitory property. The ethyl acetate extract was found to show a strong α -glucosidase inhibitory effect with 76.4% inhibition at a concentration of 50 µg/ml,

whereas the butanol extract exhibited 12.74 % inhibition (**Table 6**). Therefore the ethyl acetate extract was chosen for further chemical research.

Table 6. α -glucosidase inhibitory activity of crude extracts from *D. braianense* and *D.*

Dendrobium spp.	Extracts (100 µg/ml)	% Inhibition
D. braianense	Methanol Extract	64.7
	Ethyl acetate Extract	82.1
	Butanol Extract	68.6
D. kentrophyllum	Methanol Extract	69.7
	Ethyl acetate Extract	76.4
	Butanol Extract	12.7
Acarbose (positive		74.8
control)		
จุหาลงกรณ์มหาวิทยาลัย Chulalongkorn University		

kentrophyllum

2. Structure determination of isolated compounds from D. braianense.

2.1 Identification of compound DBra1 (Chrysotoxine)

Compound DBra1 was detached as a white powder. It's HR-ESI-MS (Appendix 1.1) showed an $[M+Na]^+$ ion at m/z 341.1389 (calcd. For $C_{18}H_{22}O_5Na$, 341.1364) and the molecular formula $C_{18}H_{22}O_{5}$. The ¹H NMR spectrum (Appendix 1.2 and Table 7) showed a characteristic signals of bibenzyl for five aromatic protons [δ 6.49 (2H, br s, H-2, H-6), 6.71 (1H, dd, J = 8.1, 1.8 Hz, H-6'), 6.82 (1H, br s, H-2'), 6.83 (1H, d, J = 8.1 Hz, H-5')], four methoxy groups at δ 3.77 (9H, s) and 3.76 (3H, s), and four methylene protons at δ 2.82 (4H, br s, H₂-lpha and H₂-lpha'). It was confirmed by the presence of twelve aromatic carbons and two methylene carbons at δ 38.0 (C- α) and δ (C- α') in ¹³C NMR and HSQC spectrum (Appendix 1.3 and 1.4). The position of H-2 and H-6 were assigned based on their HMBC correlations with C-lpha (Appendix 1.7). The assignments of H-2' and H-6' were based on their HMBC correlations with C- α' . The substitution of two symmetric methoxyls at C-3 and C-5 was confirmed by their NOESY correlations with H-2 and H-6 (Appendix 1.9). The other two methoxyls were located at C-3' and C-4', as shown by their NOESY interactions with H-2' and H-5', respectively. Compound DBra1 was known to be chrysotoxine based on the above spectral data. Its ¹H and ¹³C NMR properties are in line with previously reported values (**Table 7**) (Ono *et* al., 1995).

Figure 8. Chrysotoxine
	Compound DBra1		Chrysotoxine ^a	
Position	$\delta_{ extsf{H}}$ (mult., J in Hz)	δ _c	$\delta_{\scriptscriptstyle H}$ (mult., J in	δ _c
			Hz)	
1	-	132.2	-	132.8
2, 6	6.49 (s)	106.0	6.36 (s)	105.2
3, 5	- 	147.6	-	146.8
4	-	134.1	-	132.8
α	2.82 (br s)	38.0	2.83 (s)	38.3
α	2.82 (br s)	37.6	2.83 (s)	37.8
1'	- ////	134.7	-	134.3
2'	6.82 (br s)	112.7	6.66 (d, 1.8)	111.9
3'	-	147.8	-	147.2
4'	-	149.3	-	148.7
5 '	6.83 (d, 8.1)	112.0	6.79 (d, 8.1)	111.2
6 '	6.71 (dd, 8.1, 1.8)	120.4	6.70 (dd, 1.8, 8.1)	120.4
MeO-3, MeO-5	3.77 (s)	55.7	3.84 (s)*	56.2
MeO-3'	3.77 (s)	55.3*	3.85 (s)*	55.9*
MeO-4 ′	3.76 (s)	55.1*	3.84 (s)*	55.8*

Table 7. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectral data of compound DBra1 in acetone- d_6 and ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) of chrysotoxine in CDCl₃

^a (Ono *et al.,* 1995) * Value in the same column are interchangeable.

2.2 Identification of compound DBra2 (Moscatilin)

Compound DBra2 was gained as a brown amorphous solid. The HR-ESI-MS of this compound showed an $[M+Na]^+$ ion at m/z 327.1216 (calcd. for $C_{17}H_{20}O_5Na$, 327.1208), corresponding to the molecular formula $C_{17}H_{20}O_5$. (Appendix 2.1). The ¹H and ¹³C NMR spectrum (Appendix 2.2, 2.3 and Table 8) of compound DBra2 were similar to compound DBra1, except for the substitution of a hydroxyl instead of a methoxyl at C-4'. The ¹H NMR revealed the signals of five aromatic protons at δ 6.49 (2H, br s, H-2, H-6), 6.65 (1H, dd, J = 8.1, 1.5, H-6'), 6.72 (1H, d, J = 8.1 Hz, H-5'), 6.79 (1H, d, J = 1.5 Hz, H-2'), three methoxyls at 3.77 (6H, s, MeO-3,5) and 3.79 (3H, s, MeO-3'), and two methylene protons at δ 2.79 (4H, br s, H₂- α and H₂- α'). The ¹³C NMR spectrum (Appendix 2.3) exhibited 14 carbon signals of 17 carbons.

Compound DBra2 was identified as moscatilin based on the above spectral evidence and by comparing it with prior reported data (**Table 8**) (Klongkumnuankarn *et al.*, 2015).

Figure 9. Moscatilin

Table 8. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectral data of compound DBra2 in acetone- d_6 and ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) of moscatilin in acetone- d_6

	Compound DBra2		Moscatilin ^a	
Position	$oldsymbol{\delta}_{ extsf{H}}$ (mult., J in Hz)	δ_{c}	$\delta_{ extsf{H}}$ (mult., J in Hz)	δ_{c}
1	-	132.3	-	133.1
2, 6	6.49 (br s)	106.0	6.48 (s)	106.7
3, 5	-	147.6	-	148.3
4	-	134.1	-	134.8
α	2.79 (br s)	38.2	2.78 (m)	38.3
α'	2.79 (br s)	37.6	2.78 (m)	38.8
1'	-	133.3	-	134.1
2'	6.79 (d, 1.8)	112.1	6.78 (d, 2.0)	112.9
3'	-	147.2	-	147.9
4'	-	144.7	0	145.3
5'	6.72 (d, 7.8)	114.7	6.75 (d, 8.0)	115.4
6'	6.65 (dd, 8.1, 1.8)	120.8	6.64 (dd, 8.0, 2.0)	121.6
MeO-3, MeO-5	3.77 (s)	55.7	3.75 (s)	56.5
MeO-3'	3.79 (s)	55.3	3.76 (s)	56.1

^a (Klongkumnuankarn *et al.,* 2015)

2.3 Identification of compound DBra3 (Gigantol)

Compound DBra3, a brown amorphous solid, possesses a molecular formula $C_{16}H_{18}O_4$, as suggested by an $[M+Na]^+$ ion at m/z 297.1113 (calcd. For $C_{16}H_{18}O_4Na$, 297.1102) in the HR-ESI-MS (**Table 9**). The ¹H NMR (**Appendix 3.2**, **Table 9**) showed signals for two methylene protons at δ 2.76 (4H, br s, H₂- α and H₂- α'). The ¹H NMR also displayed six aromatic proton signals at δ 6.26 (1H, br d, J = 2.1 Hz, H-4), 6.31 (1H, br s, H-2), 6.33 (1H, br s, H-6), 6.66 (1H, dd, J = 8.1, 1.5 Hz, H-6'), 6.74 (1H, d, J = 8.1 Hz, H-5') and 6.80 (1H, d, J = 1.5 Hz, H-2'), and two methoxyl protons at δ 3.70 (3H, s, MeO-3) and 3.79 (3H, s, MeO-3'). The ¹³C (**Appendix 3.3**) exhibited 16 carbon signals, corresponding to six quaternary carbons, six methines, two methylenes, and two methoxyls (**Appendix 3.3**).

This compound was identified as gigantol based on above spectral evidence. Its ¹H and ¹³C NMR data are in line with previously reported data (**Table 9**) (Klongkumnuankarn *et al.*, 2015).

Figure 10. Gigantol

Desition	Compound DBra3		Gigantol ^a	
Position	$\delta_{ extsf{H}}$ (mult., J in Hz)	δ _c	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ _c
1	-	144.6	-	145.4
2	6.31 (br s)	108.1	6.22 (t, 2.0)	108.8
3	-	160.9	-	159.1
4	6.26 (t, 2.1)	98.9	6.28 (t, 2.0)	99.6
5	-	158.4		161.7
6	6.33 (br s)	105.4	6.30 (t, 2.0)	106.2
α	2.76 (s)	38.2	2.78 (m)	39.0
α	2.76 (s)	37.1	2.78 (m)	37.9
1'	-	133.3		134.0
2'	6.80 (d, 1.5)	112.0	6.79 (d, 1.5)	115.4
3'	-	147.2)_	147.9
4 ′	-	144.3		145.1
5 '	6.74 (d, 8.1)	114.7	6.69 (d, 8.0)	112.8
6 '	6.66 (dd, 8.1, 1.5)	120.7	6.64 (dd, 8.0, 1.5)	121.5
MeO-3	3.70 (3H, s)	54.4	3.69 (s)	55.2
MeO-3'	3.79 (3H, s)	55.3	3.78 (s)	56.0

Table 9. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectral data of compound DBra3 in acetone- d_6 and ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) of gigantol in acetone- d_6

^a (Klongkumnuankarn *et al.*, 2015)

3. Structure determination of isolated compounds from D. kentrophyllum

3.1 Identification of compound DK1 (Kaempferol)

Compound DK1 was gained as a yellow powder. The molecular formula of $C_{15}H_{10}O_6$ was analyzed from its $[M+H]^+$ ion at 287.0545 (calcd. for $C_{15}H_{11}O_6$ 287.0555) in the HR-APCI-MS. The ¹H and ¹³C NMR spectra (**Appendix 4.1** & **4.2**) of this compound exhibited the characteristics of flavonoid nucleus by a sharp singlet proton signal at δ 12.17 (chelated hydroxyl) and the carbon signal at δ 175.7 (C-4). The ¹H NMR showed two doublets at δ 6.26 (1H, d, J = 1.8 Hz) and δ 6.52 (1H, d, J = 1.8 Hz) assignable to H-6 and H-8 of ring A, respectively. The assignment of H-6 was based on the HMBC of H-6 with C-5 (δ 161.4) (**Appendix 4.6**). It also showed a pair of doublets, 2H each at δ 7.02 (2H, d, J = 9.0 Hz, H-3' and H-5') and 8.14 (2H, d, J = 9.0 Hz, H-2' and H-6'), suggesting the *para*-hydroxyl substitution of ring B. The ¹³C NMR and HSQC spectra (**Appendix 4.2** & **4.4**) displayed 13 signals corresponding to 15 carbons including nine quaternary carbons and six methines. By comparing the above spectroscopic data with reported values (Lin *et al.*, 2016). Thus, compound DK1 was known to be kaempferol (**Table 10**).

Figure 11. Kaempferol

Position	Compound DK1		Kaempferolª	
	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ_{c}	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ_{c}
2	-	146.1	-	146.8
3	-	135.7	-	135.6
4	-	175.7	-	175.9
5	-	161.4	-	160.7
6	6.26 (d, 1.8)	98.3	6.19 (d, 1.8)	98.2
7		164.1		164.9
8	6.52 (d, 1.8)	93.6	6.44 (d, 1.8)	93.5
9		156.9		156.2
10	-	103.3		103.0
1'	-	122.4		121.7
2′	8.14 (d, 9.0)	129.6	8.04 (d, 9.0)	130.5
3'	7.02 (d, 9.0)	115.4	6.92 (d, 9.0)	115.4
4'		159.3	25	159.2
5 '	7.02 (d, 9.0)	115.4	6.92 (d, 9.0)	115.4
6 '	8.14 (d, 9.0)	129.6	8.04 (d, 9.0)	130.5
HO-5	12.17 (s)	<u>G</u> KORN UN	IVERSITY	-

Table 10. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectral data of DK1 in acetone d_6 and ¹H NMR (600 MHz) and ¹³C NMR (150 MHz) of kaempferol in DMSO- d_6

^a Lin LJ, Huang XB, Lv ZC. Isolation and identification of flavonoids components from *Pteris vittata* L. 2016; 5: 1649.

3.2 Identification of compound DK2 (Quercetin)

Compound DK2 was detached as a yellow powder. The molecular formula was $C_{15}H_{10}O_7$ by HR-APCI-MS of its $[M+H]^+$ ion at 303.0492 (calcd. for $C_{15}H_{11}O_7$ 303.0504). The ¹H and ¹³C NMR data were the same as those of **1**, except for the presence of a hydroxyl group at C-3' of ring B. This was confirmed by the presence of the ABM spin system of ¹H NMR spectrum at δ 7.00 (1H, d, J = 8.4 Hz, H-5'), δ 7.69 (1H, dd, J = 8.4, 2.1 Hz, H-6') and 7.82 (1H, d, J = 2.1 Hz, H-2'). The ¹H NMR also exhibited two doublets of H-6 (1H, J = 1.8 Hz) and H-8 (1H, J = 1.8 Hz), and a sharp singlet of 5-OH at δ 12.17. The ¹³C NMR (Appendix 5.2) displayed 15 signals corresponding to ten quaternary carbons and five methines. Compound DK2 was identified to be quercetin by comparing with prior reported data (**Table 11**) (Lin *et al.*, 2016).

	Compound DK2		Quercetinª	
Position	$\delta_{ extsf{H}}$ (mult., J in Hz)	δ _c	${f \delta}_{\scriptscriptstyle \sf H}$ (mult., J in Hz)	δ_{c}
2	-	146.1	-	146.7
3	-	135.9	-	135.6
4	-	175.7	-	175.8
5	-	161.4		160.4
6	6.26 (d, 1.8)	98.3	6.19 (d, 1.8)	98.1
7	- //	164.1		163.8
8	6.51 (d, 1.8)	93.6	6.40 (d, 2.4)	93.3
9	-	156.9		156.1
10	-	103.2	6	102.9
1'	-	122.8	- 65	121.8
2'	7.82 (d, 2.1)	114.8	7.67 (d, 2.4)	114.9
3'	- CHULALONG	144.9	IVERSITY	144.9
4'	-	147.5	-	147.6
5 '	7.00 (d, 8.4)	115.3	6.88 (d, 8.4)	115.5
6 '	7.69 (dd, 8.4, 2.1)	120.6	7.54 (dd, 8.4, 2.4)	119.9
HO-5	12.17 (s)	_	-	-

Table 11. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectral data of compound DK2 in acetone- d_6 and ¹H NMR (600 MHz) and ¹³C NMR (150 MHz) of quercetin in DMSO- d_6

^a Lin LJ, Huang XB, Lv ZC. Isolation and identification of flavonoids components from *Pteris vittata* L. 2016; 5: 1649.

3.3 Identification of compound DK3 (Rutin)

Compound DK3, a yellow powder, showed its [M+Na]⁺ ion at 633.1436 (calcd. for C₂₇H₃₀O₁₆Na 633.1431) in the HR-ESI-MS, suggesting a molecular formula C₂₇H₃₀O₁₆. The ¹H NMR spectrum (Appendix 6.1) showed the presence of the ABM splitting system of ring B at δ 7.52 (1H, br s, H-2'), δ 7.54 (1H, br d, J = 8.7 Hz, H-6') and δ 6.82 (1H, d, J = 8.7 Hz, H-5') and two broad singlets of H-6 and H-8 at δ 6.18 and δ 6.37. In addition, the appearance of two anomeric proton signals at δ 5.33 (1H, d, J = 6.9 Hz, H-1") and δ 4.37 (1H, s, H-1""), which revealed HSQC correlations with the carbon at δ 101.6 (C-1") and δ 101.2 (C-1""), respectively, suggest that this compound should be a diglycoside of compound DK2. The ¹³C NMR and HSQC spectra (Appendix 6.5) exhibited 12 carbon signals of sugar carbons and 15 carbon signals of the quercetin nucleus. The sugars were identified as rutinose (lpharhamnopyranosyl- β -glucopyranose) by comparison with reported values (Sintayehu et al., 2012). The connection of glucose and rhamnose was maintained by the HMBC correlations of C-1^{'''} with H-6^{''} (Appendix 6.8). The rutinose was located at C-3 of quercetin based on the HMBC correlations of C-3 (δ 133.7) with H-1". Compound DK3 was determined as quercetin-3-O-rutinoside or rutin by comparing with prior reported data (Table 9) (Sintayehu et al., 2012).

UHULALONGKORN UNIVERSITY

Figure 13. Rutin

	Compound DK3		Rutinª	
Position	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ _c	$\delta_{\scriptscriptstyle H}$ (mult., J in	δ _c
2	-	156.9	-	157.1
3	-	133.7	-	133.7
4	-	177.8	-	177.8
5	-	161.7	-	161.6
6	6.18 (br s)	99.1	6.20 (d, 1.6)	99.1
7		164.6	-	164.5
8	6.37 (br s)	94.0	6.39 (d, 1.6)	94.1
9	-	157.0	-	156.9
10	- ////	104.4	-	104.4
1'	-	121.6	-	121.6
2'	7.52 (br s)	116.7	7.52 (s)	115.7
3'	- ///200	145.2	-	145.2
4'	-	148.9	-	148.8
5 '	6.82 (d, 8.7)	115.7	6.85 (d, 8.4)	116.7
6 '	7.54 (br d, 8.7)	122.0	7.55 (d, 8.4)	122.1
HO-5	12.59 (s)	OSHICE C	12.56 (s)	-
1″	5.33 (d, 6.9)	101.6	5.33 (d)	101.6
2″	3.22-3.28 (m)	74.5	3.32-3.81	74.5
3″	3.22-3.28 (m)	76.9	3.32-3.81	76.9
4 ''	3.22-3.28 (m)	71.0	3.32-3.81	71.1
5 ″	3.22-3.28 (m)	76.4	3.32-3.81	76.3
6 ''	3.68, 3.29 (m)	67.4	3.32-3.81	67.4
1'''	4.37 (s)	101.2	4.38 (s)	101.2
2'''	3.22-3.28 (m)	70.8	3.32-3.81	70.8
3'''	3.03-3.09 (m)	70.4	3.32-3.81	70.4
4'''	3.03-3.09 (m)	72.3	3.32-3.81	72.3
5 '''	3.22-3.28 (m)	68.7	3.32-3.81	68.7
6'''	0.98 (d, 6.0)	18.2	1.11 (d, 6.0)	18.2

Table 12. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectral data of compound DK3 in acetone- d_6 and ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) of rutin in DMSO- d_6

^a Sintayehu B, Asres K, Raghavendra Y. Radical scavenging activities of the leaf extracts and a flavonoid glycoside isolated from *Cineraria abyssinica* Sch. Bip. Exa. Rich. Journal of Applied Pharmaceutical Science. 2012; 2: 44-49.

4. Biological activity of isolated compounds of *Dendrobium braianense* and *Dendrobium kentrophyllum*

In this study, the isolated compounds were assessed for lpha-glucosidase inhibitory activity (Table 13). Chrysotoxine and moscatilin did not possess lpha-glucosidase inhibitory activity (28.71% and 14.44 % inhibition at 100 μ g/ml), in line with prior research (Inthongkaew, et al., 2013). Gigantol exhibited a stronger inhibitory effect (IC₅₀ 349 μ M) than acarbose (IC₅₀ 532.4 μ M). These findings show that those compounds have lpha-glucosidase inhibitory activity compared with earlier reported $(|C_{50}|)$ 79.87 µM) than acarbose 724.74 values. Gigantol (IC_{50}) μM) (San, H. T., et al., 2011). Kaempferol (IC₅₀ 42.59 μ M) and Quercetin (IC₅₀ 30,67 μ M), than acarbose (IC₅₀ 177,5 μ M) (Habtemariam, S., 2011). Rutin did not possess α -gluco sidase inhibitory activity which is in agreement with a previous report (Habtemariam, S., 2011). Kaempferol and guercetin exhibited strong inhibitory effects with IC_{50} of 87.5 and 109.1 μM compared with acarbose. These findings were in agreement with previously reported values (Habtemariam, S., 2011).

A M 161 / 11 9 16 M M	
compounds	IC ₅₀ (μΜ)
DBra 1 (Chrysotoxine)	NA

Table 13. α -Glucosidase inhibitory activity of *D. braianense* and *D. kentrophyllum*

I	50 4
DBra 1 (Chrysotoxine)	NA
DBra 2 (Moscatilin)	NA
DBra 3 (Gigantol)	349.0 ± 9.3
DK 1 (Kaempferol)	87.5 ± 6.2
DK 2 (Quercetin)	109.1 ± 7.6
DK 3 (Rutin)	NA
Acarbose	532.4 ± 19.6

CHAPTER V

The ethyl acetate extracts prepared from the whole plant of Dendrobium braianense and D. kentrophyllum exhibited α -glucosidase inhibitory activity 82.1% and 76.4%, respectively, at a concentration of 100 µg/mL. Phytochemical research of the ethyl acetate extract of *D. braianense* led to the isolation of three bibenzyls, which included chrysotoxine, moscatilin, and gigantol. Chromatographic separation of the ethyl acetate extract of Dendrobium kentrophyllum led to the isolation of three flavonoids, namely kaempferol, quercetin, and rutin. The structures of these isolates were determined utilizing the analysis of their ¹H NMR, ¹³C NMR, and MS data and compared with the prior reported values. All the isolated compounds were assessed for their α -glucosidase inhibitory activity. Gigantol, kaempferol, and guercetin were found to exhibit strong lpha-glucosidase inhibitory activity with IC₅₀ 349.0, 87.5, and 109.1 μ M, respectively, in comparison with positive control acarbose (IC₅₀ 532.4 μ M). These findings show that those compounds have α -glucosidase inhibitory activity compared with earlier reported values. Gigantol (IC50 79.87 µM) than acarbose (IC₅₀ 724.74 μM) (San, H. T., et al., 2011). Kaempferol (IC₅₀ 42.59 μM) and Quercetin $(IC_{50} 30,67 \mu M)$, than acarbose ($IC_{50} 177,5 \mu M$) (Habtemariam, S., 2011).

Chrysotoxine, moscatilin, and rutin were devoid of activity. Finally, the writer suggest for further experiments to broaden scientific information.

APPENDICES

Appendix 1: The spectral data of compound DBra 1

1.1 Mass spectrum of compound DBra 1

1.3 ¹³C-NMR (75 MHz) spectrum of compound DBra 1 (Acetone- d_6)

1.4 HSQC spectrum of compound DBra 1 (Acetone- d_6)

expansion [δH 2.82 – 6.83 ppm, δC 37.6 – 120.4]

1.5 HSQC spectrum of compound DBra 1 (Acetone- d_6)

expansion [δ H 6.49 – 6.83 ppm, δ C 106.0 – 120.4]

1.6 HMBC spectrum of compound DBra 1 (Acetone-d₆) expansion [δ H 2.82 – 6.83 ppm, δ C 37.6 – 149.3 ppm] MeO-3', MeO-4 Dbral 4 1 C:\ MeO-3, MeO-5 α, α' 2,6 5 6 F1 [ppm] α,α 00 0 63 0 99 8 Chrysotox 100 ià 120 0 8 C 1 140 0 Õ 1200 3 F2 [ppm] 6 5 4

1.7 HMBC spectrum of compound DBra 1 (Acetone- d_6)

expansion [δ H 2.82 – 6.83 ppm, δ C 106.0 – 149.3 ppm]

1.8 NOESY spectrum of compound DBra 1 (Acetone- d_6)

1.9 NOESY spectrum of compound DBra 1 (Acetone- d_6)

expansion [δ H 2.82 – 6.83 ppm]

Appendix 2: The spectral data of compound DBra 2

2.1 Mass spectrum of compound DBra 2

2.2 ¹H-NMR (300 MHz) spectrum of compound DBra 2 (Acetone-d₆)

2.3 ¹³C-NMR (75 MHz) spectrum of compound DBra 2 (Acetone- d_6)

Appendix 3: The spectral data of compound DBra 3

3.2 ¹H-NMR (300 MHz) spectrum of compound DBra 3 (Acetone- d_6)

3.3 ¹³C-NMR (75 MHz) spectrum of compound DBra 3 (Acetone- d_6)

Appendix 4: The spectral data of compound DK 1

4.1. Mass spectrum of compound DK 1

4.2 ¹H-NMR (300 MHz) spectrum of compound DK 1 (Acetone-d₆)

4.5 HMBC NMR spectrum of compound DK 1 (Acetone- d_6)

expansion [δ H 6.26 – 12.17 ppm, δ C 93.6 – 164.1 ppm]

4.6 HMBC NMR spectrum of compound DK 1 (Acetone- d_6)

expansion [δ H 6.26 – 12.17 ppm, δ C 93.6 – 164.1 ppm]

Appendix 5: The spectral data of compound DK 2

5.1 Mass spectrum of compound DK 2

5.2 ¹H-NMR (500 MHz) spectrum of compound DK 2 (Acetone-*d6*)

ppm

Appendix 6: The spectral data of compound DK 3

6.3 13 C-NMR (300 MHz) spectrum of compound DK 3 (DMSO- d_6)

DK5 HMBCGP F1 [ppm] 60 65 Rutin 6 5" 3" 20 00 2" 4" 2" 25 5" 3" 80 4 3 2 F2 [ppm]

6.5 HSQC spectrum of compound DK 3 (Acetone- d_6)

expansion [δ H 4.37 – 7.54 ppm, δ C 94.0 – 122.0 ppm]

6.6 HSQC spectrum of compound DK 3 (Acetone- d_6)

expansion [δH 67.4 – 76.9 ppm]

6.6 HMBC spectrum of compound DK 3 (Acetone- d_6)

expansion [δ H 0.98 – 12.59 ppm, δ C 18.2 – 177.8 ppm]

6.7 HMBC spectrum of compound DK 3 (Acetone- d_6)

expansion [δH 3.22 – 12.59 ppm, δC 94.0 – 177.8 ppm]

6.8 HMBC spectrum of compound DK 3 (Acetone- d_6)

expansion [δ H 0.98 – 4.37 ppm, δ C 67.4 – 76.9 ppm]

6.9 HMBC spectrum of compound DK 3 (Acetone- d_6)

6.10 HMBC spectrum of compound DK 3 (Acetone- d_6)

REFERENCES

Chulalongkorn University

REFERENCES

- Ahamad, J., Naquvi, K. J., Mir, S. R., Ali, M., & Shuaib, M. (2011). Review on role of natural Alpha-Glucosidase inhibitors for Management of Diabetes Mellitus. <u>International Journal of Biomedical Research</u>, 2(6), 374-380.
- Bi, Z. M., Wang , Z. T., & Xu, L. S. (2004). Chemical constituents of *Dendrobium moniliforme*. <u>Acta Botanica Sinica</u>, 46(1), 124-126.
- Bulpitt, C. J., Li, Y., Bulpitt, P. F., & Wang, J. (2007). The use of orchids in Chinese medicine. Journal of the Royal Society of Medicine, 100(12), 558-563.
- Cai, J., Yang, C., Chen, T., & Zhao, L. (2018). Detection of new phenylpropanoids from Dendrobium chrysanthum. <u>Natural Product Research</u>, 32(13), 1600-1604. doi:10.1080/14786419.2017.1385006
- Chang, C. C., Ku, A. F., Tseng, Y. Y., Yang, W. B., Fang, J. M., & Wong, C. H. (2010). 6,8di-C-glycosyl flavonoids from *Dendrobium huoshanense*. <u>Journal of Natural</u> <u>Products</u>, 73(2), 229-232. doi:10.1021/np900252f
- Chang, S. J., Lin, T. H., & Chen, C. C. (2001). Constituents from the stems of *Dendrobium clavatum* var. *aurantiacum*. <u>Journal of Chinese Medicine</u>, 12(3), 211-218.
- Chanvorachote, P., Kowitdamrong, A., Ruanghirun, T., Sritularak, B., Mungmee, C., & Likhitwitayawuid, K. (2013). Anti-metastatic activities of bibenzyls from *Dendrobium pulchellum*. <u>Natural product communications</u>, 8, 115-118.
- Chen, C. C., Wu, L. G., Ko, F. N., & Teng, C. M. (1994). Antiplatelet aggregation principles of *Dendrobium loddigesii*. Journal of Natural Products, 57(9), 1271-1274. doi:10.1021/np50111a014
- Chen, X. J., Mei, W. L., Cai, C. H., Guo, Z. K., Song, X. Q., & Dai, H. F. (2014). Four new bibenzyl derivatives from *Dendrobium sinense*. <u>Phytochemistry Letters</u>, 9, 107-112. doi:10.1016/j.phytol.2014.04.012
- Chen, X. J., Mei, W. L., Zuo, W. J., Zeng, Y. B., Guo, Z. K., Song, X. Q., & Dai, H. F. (2013). A new antibacterial phenanthrenequinone from *Dendrobium sinense*. <u>Journal of Asian Natural Products Research</u>, 15(1), 67-70. doi:10.1080/10286020.2012.740473

- Chen, Y., Li, J., Wang, L., & Liu, Y. (2008). Aromatic compounds from *Dendrobium aphyllum*. <u>Biochemical Systematics and Ecology</u>, 36(5-6), 458-460. doi:10.1016/j.bse.2007.11.004
- Chen, Y., Liu, Y., Jiang, J., Zhang, Y., & Yin, B. (2008). Dendronone, a new phenanthrenequinone from *Dendrobium cariniferum*. <u>Food Chemistry</u>, 111(1), 11-12. doi:10.1016/j.foodchem.2008.03.017
- Chen, Y. G., Yu, H., & Liu, Y. (2014). Chemical constituents from *Dendrobium brymerianum* Rchb. f. <u>Biochemical Systematics and Ecology</u>, 57, 175-177. doi:10.1016/j.bse.2014.08.027
- Choudhury, H., Pandey, M., Hua, C. K., Mun, C. S., Jing, J. K., Kong, L., Yee, T. S. (2018). An update on natural compounds in the remedy of diabetes mellitus: A systematic review. Journal of traditional and complementary medicine, 8(3), 361-376.
- Chuakul, W. (2002). Ethnomedical uses of Thai orchidaceous plants. <u>Mahidol Univ J</u> <u>Pharm Sci</u>, 29(3-4), 41-45.
- Dahmen, J., & Leander, K. (1978). Amotin and amoenin, two sesquiterpenes of the picrotoxane group from *Dendrobium amoenum*. <u>Phytochemistry</u>, 17(11), 1949-1952. doi:10.1016/S0031-9422(00)88740-3
- Dong, H.-Q., Li, M., Zhu, F., Liu, F.-L., & Huang, J.-B. (2012). Inhibitory potential of trilobatin from *Lithocarpus polystachyus* Rehd against α -glucosidase and α -amylase linked to type 2 diabetes. <u>Food Chemistry</u>, 130(2), 261-266.
- Fan, C., Wang, W., Wang, Y., Qin, G., & Zhao, W. (2001). Chemical constituents from Dendrobium densiflorum. <u>Phytochemistry</u>, 57(8), 1255-1258. doi:10.1016/s0031-9422(01)00168-6
- Fan, W. W., Xu, F. Q., Dong, F. W., Li, X. N., Li, Y., Liu, Y. Q., Hu, J. M. (2013). Dendrowardol C, a novel sesquiterpenoid from *Dendrobium wardianum* Warner. <u>Natural Products and Bioprospecting</u>, 3(3), 89-92. doi:10.1007/s13659-013-0024-9

Fatimah, R. N. (2015). Diabetes melitus tipe 2. Jurnal Majority, 4(5).

- Gawell, L., & Leander, K. (1976). The constitution of aduncin, a sesquiterpene related to picrotoxinin, found in *Dendrobium aduncum*. <u>Phytochemistry</u>, 15(12), 1991-1992. doi:10.1016/s0031-9422(00)88869-x
- Gong, C. Y., Lu, B., Yang, L., Wang, L., & Ji, L.-L. (2013). Bibenzyl from *Dendrobium* inhibits angiogenesis and its underlying mechanism. <u>Acta pharmaceutica</u> <u>Sinica</u>, 48(3), 337-342.
- Habtemariam, S. (2011). **α**-Glucosidase inhibitory activity of kaempferol-3-*O*rutinoside. <u>Natural Product Communications</u>, 6(2), 1934578X1100600211
- He, L., Su, Q., Bai, L., Li, M., Liu, J., Liu, X., Shi, J. (2020). Recent research progress on natural small molecule bibenzyls and its derivatives in *Dendrobium* species. <u>European Journal of Medicinal Chemistry</u>, 204, 112530.
- Hemscheidt, T., & Spenser, I. D. (1991). Biosynthesis of anosmine, an imidazole alkaloid of the orchid *Dendrobium parishii*. Journal of the Chemical Society, <u>Chemical Communications</u> (7), 494. doi:10.1039/c39910000494
- Honda, C., & Yamaki, M. (2000). Phenanthrenes from *Dendrobium plicatile*. <u>Phytochemistry</u>, 53(8), 987-990. doi:10.1016/S0031-9422(99)00497-5
- Hossain, M. M. (2011). Therapeutic orchids: traditional uses and recent advances—an overview. <u>Fitoterapia</u>, 82(2), 102-140.
- Hu, J. M., Chen, J. J., Yu, H., Zhao, Y. X., & Zhou, J. (2008a). Five new compounds from *Dendrobium longicornu*. <u>Planta Medica</u>, 74(5), 535-539. doi:10.1055/s-2008-1074492
- Hu, J. M., Chen, J. J., Yu, H., Zhao, Y. X., & Zhou, J. (2008b). Two novel bibenzyls from Dendrobium trigonopus. Journal of Asian Natural Products Research, 10(7-8), 653-657. doi:10.1080/10286020802133605
- Hu, J. M., Fan, W. W., Dong, F. W., Miao, Z. H., & Zhou, J. (2012). Chemical components of *Dendrobium chrysotoxum*. <u>Chinese Journal of Chemistry</u>, 30(6), 1327-1330. doi:10.1002/cjoc.201100670
- Hu, J. M., Zhao, Y. X., Miao, Z. H., & Zhou, J. (2009). Chemical components of Dendrobium polyanthum. <u>Bulletin of the Korean Chemical Society</u>, 30(9), 2098-2100. doi:10.5012/bkcs.2009.30.9.2098
- Hwang, J. S., Lee, S. A., Hong, S. S., Han, X. H., Lee, C., Kang, S. J., Hwang, B. Y. (2010).
 Phenanthrenes from *Dendrobium nobile* and their inhibition of the LPSinduced production of nitric oxide in macrophage RAW 264.7 cells.
 <u>Bioorganic & Medicinal Chemistry Letters</u>, 20(12), 3785-3787. doi:10.1016/j.bmcl.2010.04.054
- Inthongkaew, P., Chatsumpun, N., Supasuteekul, C., Kitisripanya, T., Putalun, W., Likhitwitayawuid, K., & Sritularak, B. (2017). **α**-Glucosidase and pancreatic lipase inhibitory activities and glucose uptake stimulatory effect of phenolic compounds from *Dendrobium formosum*. <u>Revista brasileira de</u> <u>farmacognosia</u>, 27(4), 480-487.
- Ito, M., Matsuzaki, K., Wang, J., Daikonya, A., Wang, N. L., Yao, X. S., & Kitanaka, S. (2010). New phenanthrenes and stilbenes from *Dendrobium loddigesii*. <u>Chemical and Pharmaceutical Bulletin</u>, 58(5), 628-633. doi:10.1248/cpb.58.628.
- Joshi, S. R., Standl, E., Tong, N., Shah, P., Kalra, S., & Rathod, R. (2015). Therapeutic potential of **α**-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review. <u>Expert opinion on pharmacotherapy</u>, *16*(13), 1959-1981.
- Kashima, Y., Yamaki, H., Suzuki, T., & Miyazawa, M. (2013). Structure-activity relationships of bergenin derivatives effect on α -glucosidase inhibition. Journal of enzyme inhibition and medicinal chemistry, 28(6), 1162-1170.
- Khuraijam, J. S., & Roy, R. K. (2016). *Dendrobium kentrophyllum* (Orchidaceae)–<u>a new</u> record for the orchid flora of Manipur, India. Richardiana, 17, 273-276.
- Kim, J. H., Oh, S. Y., Han, S. B., Uddin, G. M., Kim, C. Y., & Lee, J. K. (2015). Antiinflammatory effects of *Dendrobium nobile* derived phenanthrenes in LPSstimulated murine macrophages<u>. Archives of Pharmacal Research</u>, 38(6), 1117-1126. doi:10.1007/s12272-014-0511-5
- Klongkumnuankarn, P., Busaranon, K., Chanvorachote, P., Sritularak, B., Jongbunprasert, V., & Likhitwitayawuid, K. (2015). Cytotoxic and antimigratory activities of phenolic compounds from *Dendrobium brymerianum*. <u>Evidence-</u>

based Complementary and Alternative Medicine, 2015, 1-9. doi:10.1155/2015/350410

- Kongkatitham, V., Muangnoi, C., Kyokong, N., Thaweesest, W., Likhitwitayawuid, K., Rojsitthisak, P., & Sritularak, B. (2018). Anti-oxidant and anti-inflammatory effects of new bibenzyl derivatives from *Dendrobium parishii* in hydrogen peroxide and lipopolysaccharide treated RAW264.7 cells. <u>Phytochemistry Letters</u>, 24, 31-38. doi:10.1016/j.phytol.2018.01.006
- Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: an overview. <u>The scientific world journal</u>, *2013*.
- Kyokong, N., Muangnoi, C., Thaweesest, W., Kongkatitham, V., Likhitwitayawuid, K., Rojsitthisak, P., & Sritularak, B. (2019). A new phenanthrene dimer from *Dendrobium palpebrae*. <u>Journal of Asian Natural Products Research</u>, 21(4), 391-397. doi:10.1080/10286020.2018.1429416
- Li, C. B., Wang, C., Fan, W. W., Dong, F. W., Xu, F. Q., Wan, Q. L., Zhou, J. (2013). Chemical components of *Dendrobium crepidatum* and their neurite outgrowth enhancing activities. <u>Natural Products and Bioprospecting</u>, 3(2), 70-73. doi:10.1007/s13659-012-0103-3
- Li, J. T., Yin, B. L., Liu, Y., Wang, L. Q., & Chen, Y. G. (2009). Mono-aromatic constituents of *Dendrobium longicornu*. <u>Chemistry of Natural Compounds</u>, 45(2), 234-236. doi:10.1007/s10600-009-9293-2
- Li, X.-h., Guo, L., Yang, L., Peng, C., He, C.-j., Zhou, Q.-m., Zhang, T.-m. (2014). Three new neolignan glucosides from the stems of *Dendrobium aurantiacum* var. *denneanum*. <u>Phytochemistry Letters</u>, 9, 37-40.
- Li, Y., Wang, C. L., Guo, S. X., Yang, J. S., & Xiao, P. G. (2008). Two new compounds from *Dendrobium candidum*. <u>Chemical and Pharmaceutical Bulletin</u>, 56(10), 1477-1479. doi:10.1248/cpb.56.1477
- Li, Y. P., Qing, C., Fang, T. T., Liu, Y., & Chen, Y. G. (2009). Chemical constituents of Dendrobium chrysotoxum. <u>Chemistry of Natural Compounds</u>, 45(3), 414-416. doi:10.1007/s10600-009-9329-7
- Li, J. T., Yin, B. L., Liu, Y., Wang, L. Q. and Chen, Y. G. (2009a). Mono-aromatic constituents of *Dendrobium longicornu*. <u>Chemistry of Natural Compounds</u>

45(2), 234-236.

- Li, Y., Wang, C. L., Wang, Y. J., Guo, S. X., Yang, J. S., Chen, X. M. and Xiao, P. G. (2009b). Three new bibenzyl derivatives from Dendrobium candidum<u>.</u> <u>Chemical and Pharmaceutical Bulletin (Tokyo)</u> 57(2), 218-219.
- Limpanit, R., Chuanasa, T., Likhitwitayawuid, K., Jongbunprasert, V., & Sritularak, B. (2016). **α**-Glucosidase inhibitors from *Dendrobium tortile*. <u>Records of Natural</u> <u>Products</u>, 10, 609-616.
- Lin, L. J., Huang, X. B., & Lv, Z. C. (2016). Isolation and identification of flavonoids components from Pteris vittata L. <u>SpringerPlus</u>, *5*(1), 1-3.
- Lin, T. H., Chang, S. J., Chen, C. C., Wang, J. P., & Tsao, L. T. (2001). Two phenanthraquinones from *Dendrobium moniliforme*. <u>Journal of Natural</u> <u>Products</u>, 64(8), 1084-1086. doi:10.1021/np010016i
- Liu, Y., Jiang, J. H., Yin, B. L. and Chen, Y. G. (2009a). Chemical constituents of *Dendrobium cariniferum*. <u>Chemistry of Natural Compounds</u> 45(2), 237-238.
- Liu, Y., Jiang, J. H., Zhang, Y., & Chen, Y. G. (2009b). Chemical constituents of Dendrobium aurantiacum var. denneanum. <u>Chemistry of Natural</u> <u>Compounds</u>, 45(4), 525-527. doi:10.1007/s10600-009-9393-z
- Lu, Y., Kuang, M., Hu, G. P., Wu, R. B., Wang, J., Liu, L., & Lin, Y. C. (2014). Loddigesiinols G-J: alpha-glucosidase inhibitors from *Dendrobium loddigesii*. <u>Molecules</u>, 19(6), 8544-8555. doi:10.3390/molecules19068544
- Ma, G. X., Wang, T. S., Yin, L., Pan, Y., Xu, G. J., & Xu, L. S. (1998). Studies on chemical constituents of *Dendrobium chryseum*. Journal of Chinese Pharmaceutical <u>Sciences</u>, 7(1), 52-54.
- Ma, C., Meng, C. W., Zhou, Q. M., Peng, C., Liu, F., Zhang, J. W., Xiong, L. (2019a). New sesquiterpenoids from the stems of *Dendrobium nobile* and their neuroprotective activities. <u>Fitoterapia</u>, 138, 104351. doi:10.1016/j.fitote.2019.104351
- Ma, R. J., Yang, L., Bai, X., Li, J. Y., Yuan, M. Y., Wang, Y. Q., Zhou, J. (2019b). Phenolic Constituents with Antioxidative, Tyrosinase Inhibitory and Anti-aging Activities

from *Dendrobium loddigesii* Rolfe. <u>Natural Products and Bioprospecting</u>, 9(5), 329-336. doi:10.1007/s13659-019-00219-y

- Majumder, P. L., & Chatterjee, S. (1989). Crepidatin, a bibenzyl derivative from the orchid *Dendrobium crepidatum*. <u>Phytochemistry</u>, 28(7), 1986-1989. doi:10.1016/S0031-9422(00)97904-4
- Majumder, P. L., Guha, S., & Sen, S. (1999). Bibenzyl derivatives from the orchid *Dendrobium amoenum*. <u>Phytochemistry</u>, 52(7), 1365-1369. doi:10.1016/S0031-9422(99)00370-2
- Majumder, P. L., & Pal, S. (1992). Rotundatin, a new 9,10-dihydrophenanthrene derivative from *Dendrobium rotundatum*. <u>Phytochemistry</u>, 31(9), 3225-3228. doi:10.1016/0031-9422(92)83480-M
- Majumder, P. L., & Pal, S. (1993). Cumulatin and tristin, two bibenzyl derivatives from the orchids *Dendrobium cumulatum* and Bulbophyllum triste. <u>Phytochemistry</u>, 32(6), 1561-1565. doi:10.1016/0031-9422(93)85180-Y
- Majumder, P. L., & Sen, R. C. (1987). Moscatilin, a bibenzyl derivative from the orchid *Dendrobium moscatum*. <u>Phytochemistry</u>, 26(7), 2121-2124. doi:10.1016/S0031-9422(00)81777-X
- Mittraphab, A., Muangnoi, C., Likhitwitayawuid, K., Rojsitthisak, P., & Sritularak, B. (2016). A new bibenzyl-phenanthrene derivative from *Dendrobium signatum* and its cytotoxic activity. <u>Natural Product Communications</u>, 11(5), 657-659. doi:10.1177/1934578X1601100526
- Miyazawa, M., Shimamura, H., Nakamura, S., Sugiura, W., Kosaka, H., & Kameoka, H. (1999). Moscatilin from *Dendrobium nobile*, a naturally occurring bibenzyl compound with potential antimutagenic activity. <u>Journal of Agricultural and Food Chemistry</u>, 47(5), 2163-2167. doi:10.1021/jf970930a
- Mukherjee, S., & Jagtap, S. (2020). Use of Orchids in treating Diabetes and related diseases. <u>The Journal of Phytopharmacology</u>, 9(2) : 130-138.
- Na Ranong, S., Likhitwitayawuid, K., Mekboonsonglarp, W., & Sritularak, B. (2019). New dihydrophenanthrenes from *Dendrobium infundibulum*. <u>Natural product</u> <u>research</u>, 33(3), 420-426.

- Nkobole, N., Houghton, P. J., Hussein, A., & Lall, N. (2011). Antidiabetic activity of Terminalia sericea constituents. <u>Natural product communications</u>, 6(11), 1934578X1100601106.
- Ono M, Ito Y, Masuoka C, Koga H, Nohara T. (1995) Antioxidative constituents from Dendrobii Herba (stems of Dendrobium spp.). <u>Food Science and Technology</u> <u>International</u>, 2, 115-120.
- Pan, H. M., Chen, B., Li, F., & Wang, M. K. (2012). Chemical Constituents of Dendrobium denneanum. <u>Chinese Journal of Appplied Environmental</u> <u>Biology</u>, 18(3), 378-380. doi:10.3724/sp.j.1145.2012.00378
- Patel, D., Kumar, R., Laloo, D., & Hemalatha, S. (2012). Diabetes mellitus: an overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. <u>Asian Pacific Journal of Tropical Biomedicine</u>, 2(5), 411-420.
- Phechrmeekha, T., Sritularak, B., & Likhitwitayawuid, K. (2012). New phenolic compounds from *Dendrobium capillipes* and *Dendrobium secundum*. <u>Journal of Asian Natural Products Research</u>, 14(8), 748-754. doi:10.1080/10286020.2012.689979
- Plants of the World Online. (2017). *Dendrobium braianense* Gagnep. Retrieved from http://plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:626961-1
- Qi, L.-W., Liu, E.-H., Chu, C., Peng, Y.-B., Cai, H.-X., & Li, P. (2010). Anti-diabetic agents from natural products—an update from 2004 to 2009. Current Topics in Medicinal Chemistry, 10(4), 434-457.
- Qin, X. D., Qu, Y., Ning, L., Liu, J. K., & Fan, S. K. (2011). A new picrotoxane-type sesquiterpene from Dendrobium findlayanum. <u>Journal of Asian Natural</u> <u>Products Research</u>, 13(11), 1047-1050. doi:10.1080/10286020.2011.620952
- Rungwichaniwat, P., Sritularak, B., & Likhitwitayawuid, K. (2014). Chemical constituents of *Dendrobium williamsonii*. <u>Pharmacognosy Journal</u>, 6(3), 36-41. doi:10.5530/pj.2014.3.6
- San, H. T., Boonsnongcheep, P., Putalun, W., Mekboonsonglarp, W., Sritularak, B., & Likhitwitayawuid, K. (2020). **α**-Glucosidase inhibitory and glucose uptake

stimulatory effects of phenolic compounds from Dendrobium christyanum. <u>Natural Product Communications</u>, *15*(3), 1934578X20913453.

- Sarakulwattana, C., Mekboonsonglarp, W., Likhitwitayawuid, K., Rojsitthisak, P., & Sritularak, B. (2018). New bisbibenzyl and phenanthrene derivatives from *Dendrobium scabrilingue* and their alpha-glucosidase inhibitory activity. <u>Natural Product Research</u>, 1-8. doi:10.1080/14786419.2018.1527839
- Sears, B., & Perry, M. (2015). The role of fatty acids in insulin resistance. Lipids in health and disease, 14(1), 1-9.
- Sintayehu B, Asres K, Raghavendra Y. Radical scavenging activities of the leaf extracts and a flavonoid glycoside isolated from *Cineraria abyssinica* Sch. Bip. Exa. Rich. <u>Journal of Applied Pharmaceutical Science</u>. 2012; 2: 44-49.
- Srianta, I., Kusumawati, N., Nugerahani, I., Artanti, N., & Xu, G. R. (2013). In vitro [alpha]-glucosidase inhibitory activity of Monascus-fermented durian seed extracts. <u>International Food Research Journal</u>, 20(2), 533.
- Sritularak, B., Anuwat, M., & Likhitwitayawuid, K. (2011). A new phenanthrenequinone from *Dendrobium draconis*. Journal of Asian Natural Products Research, 13(3), 251-255. doi:10.1080/10286020.2010.546354
- Sritularak, B., Duangrak, N., & Likhitwitayawuid, K. (2011). A new bibenzyl from Dendrobium secundum. Zeitschrift fur Naturforschung. C, <u>Journal of</u> <u>Biosciences</u>, 66(5-6), 205-208. doi:10.1515/znc-2011-5-602
- Sritularak, B., & Likhitwitayawuid, K. (2009). New bisbibenzyls from *Dendrobium falconeri*. <u>Helvetica</u> <u>Chimica</u> <u>Acta</u>, 92(4), 740-744. doi:10.1002/hlca.200800391
- Stumvoll, M., Goldstein, B. J., & Van Haeften, T. W. (2005). Type 2 diabetes: principles of pathogenesis and therapy. <u>The Lancet</u>, 365(9467), 1333-1346.
- Sukphan, P., Sritularak, B., Mekboonsonglarp, W., Lipipun, V., & Likhitwitayawuid, K. (2014). Chemical constituents of *Dendrobium venustum* and their antimalarial and anti-herpetic properties. <u>Natural Product Communications</u>, 9(6), 825-827.
- Sun, J., Zhang, F., Yang, M., Zhang, J., Chen, L., Zhan, R., Chen, Y. (2014). Isolation of alpha-glucosidase inhibitors including a new flavonol glycoside from

Dendrobium devonianum. <u>Natural Product Research</u>, 28(21), 1900-1905. doi:10.1080/14786419.2014.955495

- Talapatra, B., Das, A. K., & Talapatra, S. K. (1989). Defuscin, a new phenolic ester from *Dendrobium fuscescens*: Conformation of shikimic acid. <u>Phytochemistry</u>, 28(1), 290-292.
- Tanagornmeatar, K., Chaotham, C., Sritularak, B., Likhitwitayawuid, K., & Chanvorachote, P. (2014). Cytotoxic and anti-metastatic activities of phenolic compounds from *Dendrobium ellipsophyllum*. <u>Anticancer Research</u>, 34(11), 6573-6580. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25368260
- The Plant List. (2018). IOSPE Photos. *Dendrobium braianense* Gagnep. Retrieved from http://www.orchidspecies.com/denbraianense.htm
- Tsopmo, A., Awah, F. M., & Kuete, V. (2013). Lignans and stilbenes from African medicinal plants. In Medicinal plant research in Africa. <u>Elsevier</u> (pp. 435-478).
- Van de Laar, F. A. (2008). Alpha-glucosidase inhibitors in the early treatment of type 2 diabetes. <u>Vascular health and risk management</u>, 4(6), 1189.
- Veerraju, P., Rao, N. S. P., Rao, L. J., Rao, K. V. J., & Rao, P. R. M. (1989). Amoenumin, A
 9, 10-dihydro-5H-phenanthro-(4, 5-b, c, d)-pyran from *Dendrobium* amoenum. <u>Phytochemistry</u>, 28(3), 950-951. doi:10.1016/0031-9422(89)80154-
- Wang, H., Zhao, T., & Che, C.-T. (1985). Dendrobine and 3-hydroxy-2-oxodendrobine from Dendrobium nobile. Journal of Natural Products, 48(5), 796-801.
- Wang, L., Zhang, C. F., Wang, Z. T., Zhang, M., & Xu, L. S. (2009). Five new compounds from *Dendrobium crystallinum*. <u>Journal of Asian Natural Products Research</u>, 11(11), 903-911. doi:10.1080/10286020903128942
- Wang, P., Chen, X., Wang, H., Huang, S., Cai, C., Yuan, J., Dai, H. (2019). Four new picrotoxane-type sesquiterpenes from *Dendrobium nobile* Lindl. <u>Frontiers in</u> <u>Chemistry</u>, 7, 812. doi:10.3389/fchem.2019.00812
- Wu, L., Lu, Y., Ding, Y., Zhao, J., Xu, H., & Chou, G. (2019). Four new compounds from *Dendrobium devonianum*. <u>Natural Product Research</u>, 33(15), 2160-2168. doi:10.1080/14786419.2018.1490900

- Xiong, L., Cao, Z. X., Peng, C., Li, X. H., Xie, X. F., Zhang, T. M., Guo, L. (2013). Phenolic glucosides from *Dendrobium aurantiacum* var. denneanum and their bioactivities. <u>Molecules</u>, 18(6), 6153-6160. doi:10.3390/molecules18066153
- Xu, Fan, W.-W., Zi, C.-T., Dong, F.-W., Yang, D., Zhou, J., & Hu, J.-M. (2017). Four new glycosides from the stems of *Dendrobium fimbriatum* Hook. <u>Natural product</u> <u>research</u>, 31(7), 797-801.
- Xu, F. Q., Xu, F. C., Hou, B., Fan, W. W., Zi, C. T., Li, Y., Hu, J. M. (2014). Cytotoxic bibenzyl dimers from the stems of *Dendrobium fimbriatum* Hook. <u>Bioorganic and Medicinal Chemistry Letters</u>, 24(22), 5268-5273. doi:10.1016/j.bmcl.2014.09.052
- Xu, X., Li, Z., Yang, R., Zhou, H., Bai, Y., Yu, M., Li, B. (2019). Crepidatumines C and D, two new indolizidine alkaloids from *Dendrobium crepidatum* Lindl. ex Paxt. <u>Molecules</u>, 24(17). doi:10.3390/molecules24173071
- Yamaki, M., & Honda, C. (1996). The stilbenoids from *Dendrobium plicate*. <u>Phytochemistry</u>, 43(1), 207-208.
- Yang, D., Cheng, Z.-Q., Zi, C.-T., Yang, L., Dong, F.-W., Hu, J.-M., & Zhou, J. (2019). Four new sesquiterpene derivatives from *Dendrobium findlayanum*. <u>Chinese</u> <u>Journal of Natural Medicines</u>, 17(12), 900-905. doi:10.1016/s1875-5364(19)30110-4
- Yang, D., Cheng, Z. Q., Yang, L., Hou, B., Yang, J., Li, X. N., Hu, J. M. (2018). Seco-Dendrobine-Type Alkaloids and Bioactive Phenolics from *Dendrobium findlayanum*. <u>The Natural Products Journal</u>, 81(2), 227-235. doi:10.1021/acs.jnatprod.7b00150
- Yang, D., Liu, L. Y., Cheng, Z. Q., Xu, F. Q., Fan, W. W., Zi, C. T., Hu, J. M. (2015). Five new phenolic compounds from *Dendrobium aphyllum*. <u>Fitoterapia</u>, 100, 11-18. doi:10.1016/j.fitote.2014.11.004
- Yang, H., Chou, G. X., Wang, Z. T., Guo, Y. W., Hu, Z. B., & Xu, L. S. (2004). Two new compounds from *Dendrobium chrysotoxum*. <u>Helvetica Chimica Acta</u>, 87(2), 394-399. doi:10.1002/hlca.200490037

- Yang, H. K., Sung, S. H., & Kim, Y. C. (2007). Antifibrotic phenanthrenes of *Dendrobium nobile* stems. <u>Journal of Natural Products</u>, 70(12), 1925–1929. doi:10.1021/np070423f
- Yang, L., Qin, L. H., Bligh, S. W., Bashall, A., Zhang, C. F., Zhang, M., Xu, L. S. (2006). A new phenanthrene with a spirolactone from *Dendrobium chrysanthum* and its anti-inflammatory activities. <u>Bioorganic and Medicinal Chemistry</u>, 14(10), 3496-3501. doi:10.1016/j.bmc.2006.01.004
- Yang, L., Wang, Z. T., & Xu, L. S. (2006). Phenols and a triterpene from *Dendrobium* aurantiacum var. denneanum (Orchidaceae). <u>Biochemical Systematics and</u> <u>Ecology</u>, 34(8), 658-660. doi:10.1016/j.bse.2006.03.003
- Yang, M., Chen, L. J., Zhang, Y., & Chen, Y. G. (2019). Two new picrotoxane-type sesquiterpenoid lactones from *Dendrobium williamsonii*. <u>Journal of Asian Natural Products Research</u>, 21(2), 129-133. doi:10.1080/10286020.2017.1394294
- Yang, M., Zhang, Y., Chen, L., & Chen, Y. (2018). A new (propylphenyl) bibenzyl derivative from *Dendrobium williamsonii*. <u>Natural Product Research</u>, 32(14), 1-7. doi:10.1080/14786419.2017.1396599
- Ye, Q. H., Mei, Y., Yang, P. M., Cheng, L., & Kong, D. Y. (2016). A New 9,10dihydrophenanthrene glycoside from *Dendrobium primulinum*. <u>Chemistry of</u> <u>Natural Compounds</u>, 52(3), 381-383. doi:10.1007/s10600-016-1653-0
- Ye, Q. H., Qin, G. W., & Zhao, W. M. (2002). Immunomodulatory sesquiterpene glycosides from *Dendrobium nobile*. <u>Phytochemistry</u>, 61(8), 885-890. doi:10.1016/s0031-9422(02)00484-3
- Ye, Q. H., & Zhao, W. M. (2002). New alloaromadendrane, cadinene and cyclocopacamphane type sesquiterpene derivatives and bibenzyls from *Dendrobium nobile*. <u>Planta Medica</u>, 68(8), 723-729. doi:10.1055/s-2002-33786
- Ye, Q. H., Zhao, W. M., & Qin, G. W. (2004). Lignans from *Dendrobium chrysanthum*. Journal of Asian Natural Products Research, 6(1), 39-43. doi:10.1080/1028602031000119808

- Zhang, C. F., Wang, M., Wang, L., Iinuma, M., Zhang, M., Xu, L. S., & Wang, Z. T. (2008). Chemical constituents of *Dendrobium grastiosissimum* and their cytotoxic activities. <u>Indian Journal of Chemistry</u>, 47B, 952-956.
- Zhang, G. N., Zhong, L. Y., Bligh, S. W., Guo, Y. L., Zhang, C. F., Zhang, M., Xu, L. S. (2005). Bi-bicyclic and bi-tricyclic compounds from *Dendrobium thyrsiflorum*. <u>Phytochemistry</u>, 66(10), 1113-1120. doi:10.1016/j.phytochem.2005.04.001
- Zhang, X., Gao, H., Han, H. Y., Liu, H., Wang, N. L., Yao, X.-S., & Wang, Z. (2007). Sesquiterpenes from *Dendrobium nobile*. <u>Chinese Traditional and Herbal</u> <u>Drugs</u>, 38, 1771-1774.
- Zhang, X., Gao, H., Wang, N. L., & Yao, X. S. (2006). Three new bibenzyl derivatives from *Dendrobium nobile*. Journal of Asian Natural Products Research, 8(1-2), 113-118. doi:10.1080/10286020500480654
- Zhang, X., Liu, H.-W., Gao, H., Han, H.-Y., Wang, N.-L., Wu, H.-M., Wang, Z. (2007). Nine New Sesquiterpenes from *Dendrobium nobile*. <u>Helvetica Chimica Acta</u>, 90(12), 2386-2394. doi:10.1002/hlca.200790245
- Zhang, X., Tu, F. J., Yu, H. Y., Wang, N. L., Wang, Z., & Yao, X. S. (2008). Copacamphane, picrotoxane and cyclocopacamphane sesquiterpenes from *Dendrobium nobile*. <u>Chemical & Pharmaceutical Bulletin</u>, 56(6), 854-857. doi:10.1248/cpb.56.854
- Zhang, X., Xu, J. K., Wang, J., Wang, N. L., Kurihara, H., Kitanaka, S., & Yao, X. S. (2007).
 Bioactive bibenzyl derivatives and fluorenones from *Dendrobium nobile*.
 <u>The Natural Products Journal</u>, 70(1), 24-28. doi:10.1021/np060449r
- Zhang, X., Xu, J. K., Wang, N. L., Kurihara, H., & Yao, X. S. (2008). Antioxidant phenanthrenes and lignans from *Dendrobium nobile*. <u>Journal of Chinese</u> <u>Pharmaceutical Sciences</u>, 17, 314-318.
- Zhang, Y. Y., Wang, P., Song, X. Q., Zuo, W. J., Wang, H., Chen, L. L., Dai, H. F. (2019).
 Chemical constituents from *Dendrobium hainanense*. Journal of Asian
 <u>Natural</u> Products Research, 21(9), 873-880.
 doi:10.1080/10286020.2018.1475476
- Zhao, C. S., Liu, Q. F., Halaweish, F., Shao, B. P., Ye, Y. Q., & Zhao, W. M. (2003). Copacamphane, picrotoxane, and alloaromadendrane sesquiterpene

glycosides and phenolic glycosides from *Dendrobium moniliforme*. <u>Journal</u> <u>of Natural Products</u>, 66(8), 1140-1143. doi:10.1021/np0301801

- Zhou, C., Xie, Z., Lei, Z., Huang, Y., & Wei, G. (2018). Simultaneous identification and determination of flavonoids in Dendrobium officinale. <u>Chemistry Central</u> Journal, 12(1), 1-9.
- Zhao, N., Yang, G., Zhang, Y., Chen, L., & Chen, Y. (2016). A new 9, 10dihydrophenanthrene from Dendrobium moniliforme. <u>Natural product</u> <u>research</u>, 30(2), 174-179.
- Zhao, G. Y., Deng, B. W., Zhang, C. Y., Cui, Y. D., Bi, J. Y., & Zhang, G. G. (2018). New phenanthrene and 9, 10-dihydrophenanthrene derivatives from the stems of *Dendrobium officinale* with their cytotoxic activities. <u>Journal of Natural</u> <u>Medicines</u>, 72(1), 246-251. doi:10.1007/s11418-017-1141-2
- Zhao, N., Yang, G., Zhang, Y., Chen, L., & Chen, Y. (2016). A new 9,10dihydrophenanthrene from *Dendrobium moniliforme*. Natural <u>Product</u> <u>Research</u>, 30(2), 174-179. doi:10.1080/14786419.2015.1046379
- Zhao, W. M., Ye, Q. H., Tan, X. J., Jiang, H. L., Li, X. Y., Chen, K. X., & Kinghorn, A. D. (2001). Three new sesquiterpene glycosides from *Dendrobium nobile* with immunomodulatory activity. <u>Journal of Natural Products</u>, 64(9), 1196-1200. doi:10.1021/np0102612
- Zhou, X. M., Zhang, B., Chen, G. Y., Han, C. R., Jiang, K. C., Luo, M. Y., Lin, S. D. (2018). Dendrocoumarin: a new benzocoumarin derivative from the stem of *Dendrobium nobile*. <u>Natural Product Research</u>, 32(20), 1-4. doi:10.1080/14786419.2017.1419241
- Zhou, X. M., Zheng, C. J., Wu, J. T., Chen, G. Y., Chen, J., & Sun, C. G. (2016). Five new lactone derivatives from the stems of *Dendrobium nobile*. <u>Fitoterapia</u>, 115, 96-100. doi:10.1016/j.fitote.2016.10.002
- Zhou, X. M., Zheng, C. J., Wu, J. T., Chen, G. Y., Zhang, B., & Sun, C. G. (2017). A new phenolic glycoside from the stem of *Dendrobium nobile*. <u>Natural Product</u> <u>Research</u>, 31(9), 1042-1046. doi:10.1080/14786419.2016.1266352
- Ziegler, J., & Facchini, P. J. (2008). Alkaloid biosynthesis: metabolism and trafficking. <u>Annu. Rev. Plant Biol.</u>, *59*, 735-769.

VITA

NAME	Mia Indria Permatasari
DATE OF BIRTH	15 February 1992
PLACE OF BIRTH	Ungaran, Indonesia
INSTITUTIONS ATTENDED	Faculty of Pharmaceutical Sciences, Chulalongkorn
	University
HOME ADDRESS	St. Kakap Raya No. 1A RT 12 RW 05, Sebantengan,
	Ungaran, Central Java, Indonesia
PUBLICATION	Mia Indria Permatasari, Kittisak Likhitwitayawuid,
4	Boonchoo Sritularak.
	CHEMICAL CONSTITUENTS OF Dendrobium braianense
	AND THEIR ALPHA-GLUCOSIDASE INHIBITORY ACTIVITY.
	The 46th International Congress on Science, Technology
	and Technology-based Innovation. 2020; 988.
AWARD RECEIVED	ASEAN SCHOLARSHIP, Chulalongkorn University
	ลงกรณ์มหาวิทยาลัย

CHULALONGKORN UNIVERSITY