Chapter 3
Mathematical model

In this chapter, two-fluid (Eulerian) model of gas-solid turbulence pipe flow 18
formulated. A set of Overall balance equation, Reynold-averaged conservation
equation for the mass and momentum of both phases, gas kinetic energy of turbulent
and its dissipation can be derived as follows ; _

3 erall n uation

3.1a) Oversll continnity equation

Gas phase overail continuity equation

=,

¥.Ve = E" 3.1
Solid phase overall continuity equation

o~ G

Y. Ve = 7 (3.2)

3.1b) Overall momentum equation

The mixture momentum equation assuming constant gas properties and wall
friction is

',V. V. P _
P, dydz +p, Y29 151779428 (F.p.+¥.p)a—F (3.3)

Using equation (3.1) and (3.2), eqn.(3.3) can be rewritten to give the pressure
gradient in terms of the inertial, gravitational and wall friction forces. Thus

B N Ny o
FZ- - (G" dz + G’ dz )+ ('ano + Yopn)g + Fw (3.4)

Base on incompressible flow assumption, gas mean velocity gradient along z
direction can be said to be zero. Finally
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dP av, .. _ “
—_ = G,—z+(y,p,+y,p,)g+|=w (35)

dz

Whilst F, =F +F

Particulate wall friction force , F, can be evaluated from literature correlation
but these correlation differ so widely in results (Littman et al. [1993]). Louge et al.
[1991] show that particulate wall friction force in Tsuji et al. {1984]'s experiment did

* not exceed 8% of gas phase wall friction force, Fy, which can be calculated from the
expression for turbulent gas flow without particie.

The first step of mathematical model formulation is to state the assumptions

invoked in deriving the equations. These are

(i) Both phases behave macroscopically as a continuum, but only the carrier fluid
behaves microscopicatly as a continuum,

(ii) The dispersed phase consists of particles or droplets spherical in shape and
uniform in size.

(iii) Dispersed phase is dilute and the two phase is homogeneously coexist
everywhere, therefore, no phase separation regime occurs in flow system.

The instantaneous, volume averages conservation equations in Cartesian
tensor notations are thus

The continuity equation for carrier (lighter) phase

oLp,  oLpy
atp + B =0 (3.6)

The continuity equation for disperséd phase

61", [ al-; PV _
The global continuity equation

[[+1, =1 3.8
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The instantaneous, volume-averaged momentum equations of carricr phase are

Tow , T () Z ey, - w)
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l

(3.9)
The corresponding equations for the dispersed phase are
15 DY s ARG DY AVATA & Lp,
& F’ 5=+ )
0 a/Zi avzi 3_6_( _QV_z_,_)
+—a—(1pzr,[5x—i+5;i-)]—3 5L+ olles = p) +
(3.10)

It should be noted that, K is the local effectiveness of momentum transfer
from the dispersed phase to the fluid as discussed by Elgobashi & Abou-Arab [1983],
Soo [1967]. X=1 for iy l> | Vi, during acceleration of dispersed phase. When
dispersed phase is decelerated, or | Vyil< | Vi, 1> K 2 0. This does not constitute a
discontinuity in natural phenomena because K will change from 110 0 at V)= Vy;.

The instantaneous quantity V, I', P can be decomposed ih to time¢ mean
quantities and its fluctuating component as follows

v=v+v ; I=y+y | P=p+yp (3.11a; b;¢)
The above velocity represents for any phase in any direction.

Time mean quantities can be written as follows

v=%lym ; y=%frm ; p=1jpm (3.12a; b; ¢)

=0 =g

Time averaging value of fluctuating quantity must be zero;

1] i 1] ) 1j
~lvdt=0¢ , ~Jlydi=0 ; “lpdt=0 (3.13a;b;¢c)
1=0 t =0 ti=0

Substitute right hand side expressions of 3.11a, b, ¢ in instantaneous
conservation equation (3.6) through (3.10) and apply time-averaging operator, the
Reynolds-averaged conservation equations are obtained. The full form of equations
up to triple correlation are presented in Flgobashi and Abou-Arab [1983]. In this
study, Reynolds-averaged assumption are put forward as follows;
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(i) v, is independent of time so that ¥} = 0.
(ii) Triple correlations involving Y/ are negligible.

(iii) Time - averaged product between aay components of dispersed phase volume
fraction and fluctuating component of pressure is negligible.

Carrier phase mean continuity equation

1™ aY1p'|V‘I a 1’;_';
ayatg+ B + paxiv =90 (3.14)

Dispersed phase continuity equation

Q%tp’ + aYza‘-:szi + 6p,a~£5vg = ( (3.15)

Carrier phase mean momentum equation

Pr.+PY™) Opyy |
drp LI ) ok 2 2g) _K[Ier&(v,,—vz,)]

aas[ﬂv(gvx 2’()] sax(“” as) "‘p‘;'r"?"

Dispersed phase mean momentum equations

(3.16)

ayzp,vm + a}'?pzlv‘hvzn 'Y _a£+ pz'Yz ( V2|)+
av?l al?! -l 2 a
—-l-p,z'y 3x ax J 5"‘ ax'szszsz
+ordp = p) +1

(3.17)
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Turbulent kinetic energy equations for carrier phase

The first step in the derivation of the equations of carrier phase turbulent

— Oy, Ov
kinetic energy (k = viv / 2) and its dissipation rate {€ = V‘&—'a—x:' is to

obtain transport equation for v/, by subtracting equation (3.16) from equation (3.9) .
The k-equation is produced by multiplying the v/, equation throughout by v{; then

taking the time average of all terms. For turbulence gas-particle flow, the resulting
equation reduce to eleven terms ( Louge et.al [1991]) :

orpx , Bypk _ — OY,Pivs
& o LY
transient  convection  production

axi prvi; ax ¥ PvEYS a(j YiPivavi axj

turbulent diffusion extra production

o[04 o). 3, 8[o av%)
M LA s ,axi)”F G

viscous diffusion

viscous dissipation extra dissipation

(3.18)

The corresponding € - equation is obtained by differentiating the v/, equation

o,
with respect to x, multiplying throughout by V'a‘x:' and finally time averaging.

The full expression of € - equation contains a8 multitude of new fluctuation
correlation, none of which explicitly appear in any other transport equation and most
of which are practically impossible to experimentally quantify. According to
Elgobashi and Abou-Arab [1983] , the significant form of e - equation is reduced to
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aYsPF— {aY1P1V18 aY1P1V1} —<_ 0 ( , aV!u 1']

) + x +€ Ox =3-2Y.pP x kv“ Bx, Ox, 4+ extra prod.
transient convection total production

2VY PV, O '——avqi +32v*p 04 0 (avqi + O + extra dissipation
~ TP By, O, "8 Oux\Ox  Ox e
turbulent diffusion total dissipétion
(3.19)

3.3 ling of con ion ion for the flow consi

In this study, a steady, turbulent, developing, dilute flow system of gas-
massive particles in cylindrical vertical pipe is considered. Two dimensional
cylindrical coordinate (r-z) is employed following the assumption that the flow is
axisymetric and no centrifugal or corriolis motion involve in the flow. It is further
assumed that radial velocity component is very small compare with axial velocity
component, Carrier phase subscripts, 1, are all changed to ,, as well as dispersed
phase, 5, are changed to ,. Mathematical modeling of the flow is put forward by
establishing the specific assumption for the flow considered as follows;

(i) The flow is characterized as high Reynolds number flow, viscous diffusion and
dissipation can be neglected.

(ii) Particle density is much higher than gas density p,>>p,

(iii) Particle volume fraction is much lesser than gas volume fraction, therefore,
¥5<<1 (dilute flow assumption).

33.1 h nservation equati
3.3.1a Gas phase continuity equation

From (3.14), the transient term is cut off following steady flow assumption.
The gas phase fluctuating volume fraction term Y/ can be neglected since v, is
considered independent of time in this study. Gas phase continuity equation is written
in cylindrical coordinate as follows;

]
o

pn + pr v ar (320)
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3.3.1b Gas phase momentum equation
Applying high Reynolds number assumptions to equation (3.16), resulting
equation in z-direction is

oY,v, Oy, vez _ 9Y P P 5("}’—'_') N p,y( (v, -v.,)) |

Pv-"g, TP 5

+ (P,Y.)
(3.21)
Ov,, K
Where = —vvl, = l),—é— , U = Cu‘; (3.218)

In this study , C,=0.09

3.3.1c Gas phase kinetic energy equation and dissipation rate equation

According to equation (3.18) and (3.19), all terms are modeled using
correlation procedure of Elgobashi and Abou-Arab [1983] except extra dissipation
terms of both equations for which various expressions from the other authors are
employed as follows;

Turbulence kinetic energy equation
& &l py, a( v a<) &, )
{p”“’*az*'pm Ve a'}— r O G'ar p.Y.u or
convection diffusion production
—PY.® —FR

dissipation  extra dissipation

(3.22)



Rate of energy dissipation
{ & @.}_ P, a(g._@z)_ (?_v_)
PyYoVe & +PYq Vo ol & rO'g F) ceilPqY g O\ S
' convection diffusion total production

€
= CeaPyY g :' Fe
dissipation  extra dissipation
: (3.23)
Where 5,=1.0, §=1.3, ¢;;=1.44, c,;=1.92

The term P,, extra dissipation term in turbulence kinetic energy equation and
P, , the extra dissipation term in dissipation rate equation is produced by time
averaging process of slip velocity term as can be observed from equation (3.18).
Many researcher in turbulence two phase flow performed their mathematical
modeling for these two terms to account for the effect of gas turbulence promotion or
modulation due to the presence of particles in gas stream. If both terms are set to zero,
standard k-8 mode! for single phase flow is obtained. The standard k-¢ model and the
other two model of Chen and Wood [1986] and Mostafa and Mongia [1988] are given
as:

Standard k-& Model ; P,=0

k), Aow3)
. Chen-Wood ‘s Model ; Py = 2P,?’,7’,'77‘ I-e ]
4

0, —ve)
Where - T, = : p(kj 5 B = P -‘:':(sz_vw)
b
T, - 0165%
£
Mostafa-Mongia’s Model ; Pe==2p,7,7, m
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Where T, = ppyp(\l,FZI— Vﬁ)’ B = PpYs %(Vw—vw)

7,=035%
&

3.3.1d Gas phase boundary conditions

Because the momentum equation expressed above is based on high Reynolds
number assumptions, it is not valid for viscous and buffer layers adjacent to the wall
according to “no-slip” condition. Close to the solid walls, and some other interfaces,
there are inevitably regions where the local Reynolds number of turbulence is so.
small that viscous effects predominate over turbulence one. Launder and Spalding
[1974] presented wall-boundary mathematical treatment for computational purpose.
Their model, “wall-function-method” is developed as follows;

Dimensionless distance from the pipe wall is defined as;
_pR=1y
yt = el T (3.24)
u

YT
P,
The shear velocity at wall is calculated from global momentum balance

obtained by adding the momentum balances of the gas and particle phases and
integrating between r=0 and r=R (Louge et al. {1991]) : :

The shear velocity v: = : 1t is gas shear stress (3.25)

ang - ZPE(V;)W Y3

= =+ ! —7.P.0 (3.26)

Where S, is particle shear stress evaluated at the wall.

The gas velocity at 30< y* <130 is given by “logarithmic law of the wall” :

. -lln(Ey*‘) | (327
VG

Where x is Von Karman ‘s constant , x= 0.4 in this study. E is a function of
wall roughness, approximately equal to 9.0 for a smooth wall.
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Consider a computational point P, which locates in the distance (R-r)
correspond to 30 < y* < 130 and the second point W, locate on wall. The point P is
selected for the reason that it is remote from point W enough so that the viscous
effects are entirely overwhelmed by turbulent diffusivity effect. Assume that uniform
shear stress prevails in the layer from W to P, and generation and dissipation of
energy are in balance in this layer, then

T ¥y
Yo~ =Cpu k= constant (3.28)
Ps

Substitute the relation (3.28) in (3.27) The fluxes of momentum to the wall are

then supposed to obey the relations:

() e wolve)’ |
Y ¢ = Inl€ 5 J

(v

The quantity kp is supposed to be known. It should be calculated from the
regular balance based on the assumption that diffusion of energy to the wall being

equal to zero. When calculating k, it is necessary to assign the average energy
dissipation rate over control volume :

v{s dy = Cpgj-ln[Eyppn(.\/'ngfk,)ﬁ] | (3.30)

) uation

(3.29)

3.3.2a: Particle continuity equation

From equation 3.15 applying steady flow assumption

oy 9_(.5_) Jidlrpw) _am T
elo 2

f Or - r Or
(3.31)
aairad Lol
ince —7Y;Vvim=D, F) , equation (3.31) then become;
M gdﬂv) _ po DOy,
PY.=5 * . & = T3\ 5 (3.32)
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v
Phase mass diffusivitics D, is defined as D, =§c-'— where the turbulent

1

Schmidt number Sc,= 0.7, based on turbulent mass transfer data.

3.3.2b Momentum equation

From equation 3.17 apply high Reynolds number assumption:

. Ov._ —d p 6(rv.v:.v')
r

rr"'

L
+ p.,v.(;(v,. -v.,))+ P1.)o

(3.33)
Where T is hydrodynamic relaxation time or time constant for momentum
transfer from fluid to particle. T of a particle is defined in term of drag force on one

particle by :

P, 3p,
T = Colvg T Vi :;— (3.34)
Empirical expression for Drag coefficient is
24
Cp = —R——(1 + o.15Re:}°°7) ; o0<Re, <800 (3.35)
eP
Particle Reynolds number Re; is define as
Vo = VP,
Rep = L9 PR (3.36)
u !

The closure of particulate momentum equation (3.33) is obtained by the
following correlation:

v, v,
V=0 R 4 Y= (3.37)

The work of Louge et al. [1991] presented numerical simulation based on
kinetic granular theory .They compared their simulation result with Tsuji et al,
[1984] experimental result . They also showed the result of particle phase shear stress
term inclusive and exclusive calculation. They concluded that particle shear stress
play an important role for accuracy of simulation of this type of flow. Their particle
shear stress term in cylindrical coordinate

140s)

rodr (3.38)
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Define particle phase shear stress on surfaces at constant radius ;

§ =~ p,d,0: — (3.39)

where © is granular temperature which can be expressed in term of rm.s
particle velocity fluctuation ;

-0O= %vﬂ ~ (3.40)

In order to include particle phase shear stress into momentum equation solved
by our CFD code, we treat Louge et al, [1991] particle shear stress term  equal to
particulate phase diffustvity term described in equation (3.33 ) (first term in the right
hand side of equation (3.33) which involve particle volume fraction gradient is
negligible in fully developed flow).

14s) _ P, a(”*’m

3.41
rodr (3.41)
Substituting S expression defined in (3.39 ) into (3.41)
, v d
1 dV LW,
*!' — -& {(Yn q dr )
(3.42)
r dr r dr
Therefore ;
1
ER"’ U
dep@“ Yoy (3.43)

Insert v,and © expressed in (3.21a ) and (3.40 ) in (3.43)

_5__; 1'__ k2
gsnd 3" ypeo_ (3.44)
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Consider dimensional similarity, we have

k2
dpv:, = Yp -S_ (3.45)

Finally

O, = 1697

3.3.2¢ Particle phase boundary conditions

For particle-wall boundary conditions, we assume slip boundary condition so
that particle can slip along the pipe wall at the velocity solved by governing equation
after gas phase equation at and nearby wall has been solved and substituted. The
inelastic collisions between particles and wall is also assumed. These assumptions are
put forward for the main reason that the particles considered in this study, the
detergent powders, are relatively soft and brittle so that particle-wall restitution force
is considered minor. The other reason is that even in glass bead or polystyrene
particle flow, the negligible or assumed zero particle-wall interaction force is
reasonable as discussed and reported by Littman et al. [1993]. However, it should be
noted that this particle-wall boundary condition treatment is limited and applied only
for the flow studied.

The boundary condition at inlet of particulate phase velocity is dependent and
coupled with gas phase velocity, it can be calculated from the following mathematical
treatment .

" Let us assume that a particle enters into gas stream below pipe inlet in various
direction, say, cross flow or free falling. It enters in main gas stream and is then
accelerated by drag force toward pipe inlet. This is true for spouted bed feeding. In
experiment set up by Tsuji et.al, vertical pipe inlet was abruptly reduced from 40 mm
diameter pipe bend to 30.5 mm diameter, which we can assume well-mixing occur.
Therefore the above spouted bed feeding assumptions are satisfied.

According to Spouted bed feeding assumptions, inlet particle velocity can be
calculated using the correlation proposed by Littman et.al [1993] ;

: daP(0
k() = 0.923—-551—-21.23 (3.46)

Whereby (0) denoted pipe inlet condition.
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By definition; -

s =[c, = "d’p,(v V) ][ —;) (3.47)

G
Define Solid loading ratio; m= G—p
¢

From Overall material balance, assume Y, =1

p

3.48
Y (3.48)

Thus; =

Within feeding and pipe inlet area, Particle Reynolds number fall within
transition region, therefore, from standard drag curve equation (3.35);

= F—2—~(1+0.15Re§'“’) , 0 SRe, < 800

Substitute *f, and Cp into (3.47)
dl ; 0,687 w—
; W
k(o) = B o1{-—~—-—--—p° P s") s‘-,,rn-p—°===-g'-E (3.49)
H Po Vpz
Where VSIip = (ng_‘vpz)

Inlet mean particulate phase velocity can now be solved from (3.5), (3.46 )
and(3.49 ) numerically .

The above procedure can be calculated once axial pressure gradient at the
point of inlet is known.

However, if axial pressure gradient is unknown, but the distance between the
point that particle enter into main gas stream and the pipe inlet is known, Particle
velocity at pipe inlet can be calculated using method described by Morsi and
Alexander [1972] as follows;
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When a cloud of particles is introduced into free boundary gas stream and it is
assumed that there is no particle interaction and further that the presence of the
pamcles does not change the flow patterns, the resultmg equation of motion of single

particle is

= A=
My = Emp P
The drag coefficient can be approximated by an equation of the form
K,
+ K
Re Re? \

K;=29.1667 ,K,=-3.889 ,K;=1.222 for 1.0<Re,<10.0
K=46.50 ,K;=-116,67,K;=0.6167 for 10.0<Re,<100.0
K=9833 ,K2= -2778 ,K;=0.3644 for 100.0<Re;<1000.0

For constant v, equation (3.50) can be written in the form.
av

Comml-m) "

The root of equation 1,1, are g{ven by

oted(8] ]

¢ - 3P'K1V9 + 3“2K2 3p9K3V§
=
ap,d;  AP,Pd 4P,
— 3K, 3paK3Vu
¢2 - 2 + .
4deP 2deP
3PKs
4p,4,

Where:

A=

(3.50)

(3.51)

(3.52)

(3.53)
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Equation (3.53) can be written in term of traveling distance x, in the following
form:

Y

[}
dx
The solution of equation is

_ N v, — Th 111("»0 — VP)
KENY A, Ir(v:o - TIJ+ (\rp - 111)(\’,,0 - T|1) e
forn; =mn;

X = x, + —1-{ M Ir(vp —% )+ L Ir( % T )}(3.551;)
Ay (M — M Voo — T2 n. — 7, Voo — Tk
for 1, # 1

If traveling distance from the point where particle entering in gas stream to
pipe inlet (x-x,) is known and v, at entering point is set to zero (this is reasonable for
free stream or spouted bed feeding as particle enters in gas stream in almost radial
and downward direction), v,, inlet particle velocity can then be calculated from
equation (3.53).

v ¢, — by, + AV (3.54)
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