CATALYTIC PYROLYSIS OF WASTE TIRE USING NICKEL PROMOTED CATALYSTS AND CORE-SHELL COMPOSITES

Witsarut Namchot

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2015

T28368988

Waste Tire Using Nickel Promoted
ll Composites
ogy
arnka

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

-

(Assoc. Prof. Sirirat Jitkarnka)

Em

(Assoc. Prof. Apanee Luengnaruemitchai)

War Kit.

(Asst. Prof. Wanida Kooamornpattana)

ABSTRACT

5671034063:	Petrochemical Technology Program
	Witsarut Namchot: Catalytic Pyrolysis of Waste Tire Using Nickel
	Promoted Catalysts and Core-Shell Composites
	Thesis Advisor: Assoc. Prof. Sirirat Jitkarnka 164 pp.
Keywords:	Tire/ Pyrolysis/ HBETA/ HY/ HMOR/ KL/ HZSM-5/ Nickel/ MCM
	41/ Core-shell/ Composite/ Sulfur

In this work, the effects of nickel-promoted catalysts and different zeolite cores of core-shell structure composite materials on the species of waste tire pyrolysis products are investigated. Ni-doped catalysts were expected to enhance of the formation of petrochemical and reduce of sulfur content in tire-derived oil. In addition, HY/MCM-41 and HBETA/MCM-41 core-shell composite were expected to reduce the formation of polycyclic aromatics and enhance the petrochemical in tirederived oil. Furthermore, the different zeolite cores were expected to give different petrochemical selectivity. From the experimental results, nickel on different zeolite supports enhance the reduction of sulfur content in oil and promote aromatic formation, but the selectivity of hydrocarbons products and desulfurization activity depended on the zeolite supports. In order to obtain the oil with the high petrochemicals and low sulfur contents by using Ni promoter, the zeolite supports must have a suitable pore size (5.5-7 Å) and 1D channel structure that allows hydrocarbons and sulfur compounds can stay inside the pore at enough contact time for forming of valuable petrochemical and sulfur removal of sulfur compounds. For the second scope of work, The HBETA/MCM-41 and HY/MCM-41 core-shell composite were successfully synthesized, the MCM-41 shell thickness of both composite were varied in the range of 50-100 nm. The both core-shell composite catalysts provide a higher cracking and sulfur removing activities and better petrochemical selectivity than the non-composite catalysts. Different zeolite cores were found to govern different petrochemical species, HY core selectively produced ethylbenzene and toluene, whereas HBETA core selectively produced benzene, ethylbenzene and toluene.

บทคัดย่อ

วิศรุฒม์ นามโชติ:ไพโรไลซิสของยางรถยนต์หมดสภาพโดยใช้ตัวเร่งปฏิกิริยาที่ ปรับปรุงด้วยนิกเกิล และคอมพอสิตที่มีโครงสร้างแบบ Core-shell (Catalytic Pyrolysis of Waste Tire Using Ni- Promoted Catalysts and Core-shell Composites) อ. ที่ปรึกษา: รศ. ดร. ศิริรัตน์ จิต การค้า 164 หน้า

้งานวิจัยนี้ศึกษาผลของการเติมโลหะนิกเกิลบนตัวรองรับต่างชนิดกันและผลของการใช้ซี-โอไลท์ที่ต่างชนิดกันใน core ของตัวเร่งปฏิกิริยาคอมพอสิตที่มีโครงสร้างแบบ core-shell ต่อ ้ผลิตภัณฑ์ที่ได้จากการไพโรไลซิส การเติมโลหะนิกเกิลบนตัวรองรับต่างๆอาจจะทำให้เพิ่มสาร แอโรแมติกในเชิงปิโตรเคมีและลดปริมาณกำมะถันในน้ำมัน นอกจากนั้นการใช้ตัวเร่งปฏิกิริยา ้คอมพอสิตที่มีโครงสร้างแบบ core-shell ที่ประกอบขึ้นจาก HY/MCM-41 และ ตัวเร่งปฏิกิริยา คอมพอสิตที่มีโครงสร้างแบบ core-shell ที่ประกอบขึ้นจาก HBETA และMCM-41 อาจจะ สามารถลดสารแอโรแมติกขนาดใหญ่ และเพิ่มสารแอโรแมติกในเชิงปีโตรเคมีในน้ำมัน ้นอกจากนั้นได้การใช้ซีโอไลท์ต่างชนิดกันใน core ของตัวเร่งปฏิกิริยาคอมพอสิตที่มีโครงสร้าง แบบ core-shell อาจจะให้ความจำเพาะเจาะจงต่อการผลิตสารแอโรแมติกในเชิงปีโตรเคมีที่ แตกต่างกัน จากผลการทดลองพบว่า การเติมโลหะนิกเกิลบนซีโอไลท์ต่างชนิดกัน สามารถลด ้งโร้มาณสารกำมะถันในน้ำมันและช่วยเพิ่มสารแอโรแมติก แต่ความจำเพาะเจาะจงต่อการผลิตสาร ้ไฮโครคาร์บอนและความสามารถในการกำจัดกำมะถันจะแตกต่างกันขึ้นอยู่กับชนิดตัวรองรับซี-โอไลต์ การปรับปรุงตัวเร่งปฏิกิริยาด้วยโลหะนิกเกิล จะต้องเลือกใช้ตัวรองรับซีโอไลท์ที่มีขนาครู เปิดที่เหมาะสม ระหว่าง 5.5 ถึง 7 อังสตรอม และมีโครงสร้างไม่ซับซ้อน (หนึ่งมิติ) ซึ่งเพียง พอที่จะทำให้สารประกอบไฮโคร์คาร์บอนและสารประกอบกำมะถัน สามารถอยู่ในรูเปิคได้ใน ระยะเวลาที่เหมาะสมให้กลายเป็นสารแอโรแมติกที่มีความสำคัญในเชิงปีโตรเคมีและกำจัด ้ กำมะถันในสารประกอบกำมะถัน เพื่อที่จะได้น้ำมันที่มีองค์ประกอบของสารแอโรแมติกที่มี ้ความสำคัญในเชิงปีโตรเคมีสูงและมีปริมาณกำมะถันน้อย สำหรับงานวิจัยอีกส่วนนั้น ตัวเร่ง-ปฏิกิริยาคอมพอสิตที่มีโครงสร้างแบบ core-shell ทั้งสองตัว ใค้แก่ HY/MCM-41 และ HBETA/MCM-41 ถูกสังเคราะห์ขึ้นได้สำเร็จ โดยความหนาของ shell ของทั้งสองคอมพอสิตจะ ้ไม่สม่ำเสมอ ซึ่งจะอยู่ระหว่าง 50 ถึง 100 นาโนเมตร ตัวเร่งปฏิกิริยาคอมพอสิตที่มีโครงสร้างแบบ core-shell ทั้งสองตัวนั้น เพิ่มการแตกพันธะของสารโมเลกุลใหญ่ให้เป็นสารโมเลกุลเล็กลง (Cracking) และช่วยปรับปรุงความสามารถในการกำจัดกำมะถันและเพิ่มความจำเพาะเจาะจงใน การผลิตสารแอโรแมติกในเชิงปีโตรเคมีได้ดีกว่าการใช้ตัวเร่งปฏิกิริยาแบบไม่ใช้การคอมพอสิต การใช้ซีโอไลท์ต่างชนิดกันเป็นองค์ประกอบ core ของตัวเร่งปฏิกิริยาคอมพอสิต พบว่าจะควบคุม การผลิตสารแอโรแมติกต่างชนิดกัน การใช้ core ที่เป็น HY จะมีความจำเพาะเจาะจงต่อการผลิต เอทิลเบนซีนและโทลูอีน ในขณะที่การใช้ core ที่เป็น HBETA นั้นจะมีความจำเพาะเจาะจงต่อการ ผลิตเบนซีน เอทิลเบนซีน และโทลูอีน

ACKNOWLEDGEMENTS

This work was accomplished with the assistance, facilities and generous assistance from all nice following people and organization as follows;

First of all, I would like to take this opportunity to give a special acknowledgement to my advisor, Assoc. Prof. Sirirat Jitkarnka, who is the most responsible for helping me complete the work, intensive attention, valuable recommendation, important supports, and encouragement throughout this work.

Unforgettably, I am grateful for valuable guidance and comments by my thesis committee, Assoc. Prof. Apanee Luengnaruemitchai and Asst. Prof. Bussarin Ksapabutr.

I would like to thank for the scholarship and the mutual financial supports of this thesis work by The Petroleum and Petrochemical College, the Center of Excellence on Petrochemical and Materials Technology, and Thailand Research Fund.

This research work was partially supported by the Ratchadapisek Sompoch Endowment Fund (2013), Chulalongkorn University (CU-56-900-FC) and Thailand Research Fund (IRG5780012).

My gratitude is extended to all staff of The Petroleum and Petrochemical College for kind helps, valuable suggestions and other important supports throughout my study period at PPC.

Moreover, I would like to give appreciation to all my friends who shared their friend cheerful, valuable suggestions and useful assistance.

In addition. I am deeply grateful to my family for their love, encouragement, understanding and all supports.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	vi
Table of Contents	x
List of Tables	xvi
List of Figures	xx
Abbreviations	XXV

CHAPTER

I	INTRODUCTION	1
II	THEORETICAL BACKGROUND AND LITERATURE	
	REVIEW	4
	2.1 Pyrolysis of Waste Tire	4
	2.1.1 Mono-aromatics as Upstream Petrochemicals	4
	2.1.2 Catalytic Pyrolysis Using Zeolites as a Catalyst	5
	2.1.3 Catalytic Pyrolysis of Waste Tire Using Supported	
	Nickel Catalysts	9
	2.1.4 Limitations of Tire-derived Oil for Commercial	
	Applications	10
	2.2 Composite of Microporous and Mesoporous	
	Materials	11
	2.2.1 Synthesis of Composites of Mesoporous	
	and Microporous Materials	11
	2.2.2 Core-shell Structure Composite Materials	14
	2.2.3 Utilization of Composite Materials as a Catalyst in	
	Cracking Reaction	18

Ш

2.2	2.4 Utilization of Composite Material as a Catalyst in	
	Desulfurization of Fuel	19
2.3 Ni	ckel-promoted Catalysts	20
2.2	3.1 Desulfurization Activity of Nickel-promoted	
	Catalysts	20
2	3.2 Cracking and Isomerization Activities of Nickel-	
	promoted Catalysts	22
2	3.3 Aromatization Activity of Nickel-promoted	
	Catalysts	23
2.4 Re	esearch Motivation	23
2.5 Ol	ojectives	25
2.6 Sc	ope of Research	25
Exper	imental	27
3.1 M	aterials	27
3.2 Ec	quipment	27
3.3 Cl	nemicals and Solvents	28
3.4 Ex	periment Procedures	28
3.	4.1 Synthesis of HY-MCM-41 Composites	28
3.	4.2 Synthesis of HBETA-MCM-41 composites	28
3.	4.3 Synthesis of Mesoporous MCM-41	29
3.	4.4 Metal Loading on Supports	29
3.	4.5 Pyrolysis of Waste Tire	29
3.	4.6 Gas Analysis	30
3.	4.7 Tire-derived Oil Analysis	30
3.	4.8 Residual Char Analysis	32
3.	4.9 Catalyst Characterization	32

48

UPGRADING OF WASTE TYRE-DERIVED OIL FROM		
WASTE TYRE PYROLYSIS OVER NI CATALYST		
SUPPORTED ON H	HZSM-5 ZEOLITE	
4.1 Abstract		
4.2 Introduction		
4.3 Experimental		
4.3.1 Catalyst P	reparation	
4.3.2 Catalyst C	Characterization	
4.3.3 Waste Tire	e Pyrolysis	
4.3.4 Product A	nalysis	
4.4 Results and Disc	cussion	
4.4.1 Catalyst C	Characterization	
4.4.2 Pyrolysis	Yields	
4.4.3 Waste Tyr	re-derived Oil	
4.5 Conclusions		
4.6 Acknowledgeme	ents	
4.7 References		

V ENHANCEMENT OF VALUABLE PETROCHEMICALS FORMATION IN WASTE TIRE- DERIVED OIL OVER 5 WT%NiKL

5.1 Abstract	48
5.2 Introduction	48
5.3 Experimental	50
5.3.1 Sample and Catalyst Preparation	50
5.3.2 Catalyst Characterization	50
5.3.3 Waste Tire Pyrolysis	50
5.3.4 Product Analysis	51
5.4 Results and Discussion	51
5.4.1 Catalyst Characterization	51

VI

	5.4.2 Pyrolysis Yields	52
	5.4.3 Waste Tire-derived Gas	53
	5.4.4 Waste Tire-derived Oil	53
5.5	Conclusions	57
5.6	Acknowledgements	57
5.7	References	58
IM	PACT OF NICKEL SUPPORTED ON DIFFERENT	
ZE	OLITES ON WASTE TIRE-DERIVED OIL AND	
FO	RMATION OF SOME PETROCHEMICALS	59
6.l	Abstract	59
6.2	Introduction	60
6.3	Experimental	62
	6.3.1 Catalyst Preparation	62
	6.3.2 Catalyst Characterization	62
	6.3.3 Waste Tire Pyrolysis	63
6.4	Results and Discussion	64
	6.4.1 Catalyst Characterization	64
	6.4.2 Pyrolysis Yields	66
	6.4.3 Effect of Ni Loading on Zeolites with Different	
	Pore sizes	67
	6.4.4 Effect of Ni Loading on Zeolites with Different	
	Channel Structure	73
	6.4.5 Effect of Ni Loading on Zeolites with Different	
	Acid Densities	79
6.5	Conclusions	83
6.6	Acknowledgements	84
6.7	References	84

VII	CATALYTIC PYROLYSIS OF WASTE TIRE USING			
	HBETA/MCM-41 CORE-SHELL COMPOSITE	87		
	7.1 Abstract	88		
	7.2 Introduction	88		
	7.3 Experimental	89		
	7.3.1 Synthesis of Core-shell Composite	89		
	7.3.2 Catalyst characterization	90		
	7.3.3 Waste Tire Pyrolysis	90		
	7.3.4 Product Analysis	91		
	7.4 Results and Discussion	92		
	7.4.1 Characterization of Core-shell Composite of			
	HBETA and MCM-41	92		
	7.4.2 Pyrolysis Yields	97		
	7.4.3 Waste Tire-derived Gas	98		
	7.4.4 Waste Tire-derived Oil	99		
	7.4.5 Sulfur Distribution and Sulfur Content in Oils	105		
	7.5 Conclusions	109		
	7.6 Acknowledgements	109		
	7.7 References	110		
VIII	CATALYTIC PYROLYSIS OF WASTE TIRE OVER			
	HY/MCM-41 CORE-SHELL COMPOSITE	112		
	8.1 Abstract	112		
	8.2 Introduction	113		
	8.3 Experimental	115		
	8.3.1 Synthesis of Core-shell Composite	115		
	8.3.2 Catalyst Characteriztion	116		
	8.3.3 Waste Tire Pyrolysis	116		
	8.3.4 Product Analysis	117		

8.4 Results and Discussion 118

IX

8.4.1 Characterization of Core-shell Composite of	
HY and MCM-41	118
8.4.2 Pyrolysis Yields	124
8.4.3 Waste Tire-derived Oil	125
8.4.4 Sulfur Content in Oils	131
8.5 Conclusions	135
8.6 Acknowledgements	135
8.7 References	136
CONCLUSIONS AND RECOMMENDATIONS	138
REFERENCES	138
APPENDICES	146
Appendix A Product Distribution	146
Appendix B Oil Compositions	149
Annendix C Petrochemicals in Oils	153

R

I ENDICES		140
Appendix A	Product Distribution	146
Appendix B	Oil Compositions	149
Appendix C	Petrochemicals in Oils	153
Appendix D	Distribution of Sulfur-containing	
	Compound Species in Oils	156
Appendix E	Sulfur Analysis by Using S-Analyzer	158
Appendix F	GCxGC-TOF/MS Chromatograms	160

CURRICULUM VITAE	164
------------------	-----

LIST OF TABLES

TABLEPAGE

2.1	Properties of zeolites (Tosoh Corporation, Singapore)	5
2.2	Experimental design of nickel-promoted catalysts	26
2.3	Experimental design of core-shell composite catalysts	26
4.1	BET specific surface area and pore volume of catalysts	39
4.2	XPS result of Ni-promoted catalyst	39
4.3	Sulphur content in oils	43
5.1	BET specific surface area and pore volume of catalysts	55
5.2	Petrochemical productivity	60
4.6	Average carbon number of major sulfur-containing compounds in	
	maltenes in HY and HMOR cases	38
4.7	Average carbon numbers of each chemical group in maltenes in	
	HMOR and KL cases	40
4.8	Average carbon numbers of major sulfur-containing	
	compounds in maltenes in HMOR and KL cases	41
5.1	BET specific surface area and pore volume of catalysts	52
5.2	Petrochemicals productivity from waste tire pyrolysis	57
6.1	BET specific area and pore volume of catalysts	65
6.2	Sulfur content in oils obtained from Ni/HBETA and Ni/HZSM-5	69
6.3	Dominant di-and poly-aromatics in maltene obtained from	
	Ni/HBETA and Ni/HZSM-5	71
6.4	Sulfur content in oil obtained from Ni/HBETA and	
	Ni/HMOR catalysts	75
6.5	Dominant poly-aromatics species in maltenes obtained from	
	Ni/HBETA and Ni/HMOR catalysts	77
6.6	Sulfur content in oils obtained from Ni/HBETA and Ni/HY catalysts	81
6.7	Dominant di- and poly-aromatics in maltene obtained from	
	Ni/HBETA and Ni/HY catalysts	83

TABLE

6.7 Dominant di- and poly-aromatics in maltene obtained from		
	Ni/HBETA and Ni/HY catalysts	85
7.1	Textural properties of HBETA, MCM-41 and	
	HBETA/MCM-41 composite	94
7.2	Sulfur contents in pyrolysis oil obtained from HBETA/MCM-41	
	catalyst	106
8.1	Textural properties of HBETA, MCM-41 and	
	HBETA/MCM-41 composite	120
8.2	Sulfur contents in pyrolysis oil from using HY, MCM-41 and	
	the HY/MCM-41 core-shell composite	132
Al	Effect of zeolite on product distribution (wt %)	146
A2	Effect of Ni-loaded catalyst on product distribution (wt %)	146
A3	Effect of core-shell composite of HBETA and MCM-41 on	
	product distribution (wt %)	146
A4	Effect of core-shell composite of HY and MCM-41 on	
	product distribution (wt %)	147
A5	Effect of zeolites on gas composition (wt%)	147
A6	Effect of Ni-loaded catalysts on gas composition (wt %)	147
A7	Effect of core-shell composites (HY/MCM-41 and	
	HB/MCM-41) on gas composition (wt %)	148
B1	Effect of zeolites on petroleum fractions (wt %)	149
B2	Effect of Ni-loaded catalysts on petroleum fractions (wt %)	149
B3	Effect of core-shell composite of HBETA and MCM-41	
	on petroleum fractions (wt %)	149
B4	Effect of core-shell composite of HY and MCM-41 on	
	petroleum fractions (wt %)	150
B5	Effect of zeolites on maltene composition (wt %)	150
B6	Effect of Ni-loaded catalysts on maltene composition (wt %)	151
B 7	Effect of core-shell composite of HBETA and MCM-41	
	on maltene composition (wt %)	151

TABLE

B8	Effect of core-shell composite of HY and MCM-41 on	
	maltene composition (wt %)	152
Cl	Effect of zeolites on petrochemicals in maltene (wt %)	153
C2	Concentration of petrochemical in maltene obtained	
	from zeolite (wt %)	153
C4	Concentration of petrochemical in maltene obtained from	
	Ni-loaded catalysts (wt %)	154
C5	Effect of core-shell composite of HBETA and MCM-41	
	on the petrochemicals in maltene (wt %)	154
C6	Concentration of petrochemical obtained from core-shell	
	composite of HBETA and MCM-41(wt %)	154
C7	Effect of core-shell composite of HY and MCM-41 on	
	the petrochemicals in maltene (wt %)	155
C8	Concentration of petrochemical obtained from core-shell	
	composite of HY and MCM-41(wt %)	155
DI	Effect of zeolites on the distribution of of sulfur-containing	
	compounds in oils (wt % in maltene)	156
D2	Effect of Ni-loaded catalysts on the distribution of	
	sulfur-containing compounds in oils (wt % in maltene)	156
D3	Effect of core-shell composite of HBETA and MCM-41	
	on the distribution of sulfur-containing compounds in oils	
	(wt % in maltene)	157
D4	Effect of core-shell composite of HY and MCM-41 on	
	the distribution of sulfur-containing compounds in oils	
	(wt % in maltene)	157
El	Effect of zeolites on overall sulfur distribution (wt %)	158
E2	Effect of Ni-loaded catalysts on overall sulfur distribution (wt %)	158
E3	Effect of core-shell composite of HBETA and MCM-41 on	
	overall sulfur distribution (wt %)	158

TABLE		PAGE	
E4	Effect of core-shell composite of HY and MCM-41 on		
	overall sulfur distribution (wt %)	159	

LIST OF FIGURES

FIGURE

2.1 TEM image of bifunctional porous material. 12 2.2 12 TEM image of alkaline-treated zeolite. 2.3 TEM images of hierarchical meso/microporous material. 13 2.4 Drawing of possible orientations of MCM-41 on the zeolite surface 14 2.5 TEM image of composite of MCM-48 and Y zeolite. 15 2.6 TEM image of core-shell structure of MSU-S and aluminosilicate. 16 2.7 TEM images of the yolk-shell or egg-shell composite material. 17 24 2.8 Schematic of core-shell composite materials. 4.1 Schematic of waste tire pyrolysis system for collection and analysis of 37 products. 4.2 XRD patterns of HZSM-5 zeolite and impregnated catalysts. 38 39 4.3 XPS spectrum of Ni-promoted catalyst. Effect of nickel loaded on HZSM-5 on pyrolysis yields. 40 4.4 4.5 42 Oil analysis. 44 4.6 Sulphur analysis. 5.1 52 XRD patterns of KL zeolite and impregnated catalysts. 53 5.2 Effect of nickel loaded on KL on pyrolysis yields. 53 5.3 Effect of nickel loaded on KL on gas composition. 5.4 Effect of nickel loaded on KL on petroleum fractions in maltene. 54 5.5 Effect of nickel loaded on KL on maltene composition. 55 5.6 Yields of petrochemical in maltene.obtianed from Ni/KL 55 5.7 Possible reaction pathways for transformation of ethylbiphenyl, 4-isopropylbiphenyl and methylphenanthrene to valuable aromatics. 56 6.1 Schematic of waste tire pyrolysis system for collection and analysis of 63 products. 6.2 XRD patterns of zeolites and impregnated catalysts. 65 6.3 Effect of nickel based catalysts on pyrolysis yields. 66

6.4	Concentration of each group in maltenes using Ni-loaded on	
	HBETAand HZSM-5 zeolites.	68
6.5	Petroluem fractions in tire-derived oils using Ni-loaded on	
	HBETAand HZSM-5 zeolites.	68
6.6	Overall sulfur distribution on in waste tire pyrolysis products	
	and spent catalysts obtained from Ni-loaded catalysts.	69
6.7	Distribution of sulfur compounds in maltenes obtained from	
	Ni/HBETA and Ni/HZSM-5	70
6.8	Petrochemicals in maltenes obtained from Ni/HBETA and	
	Ni/HZSM-5	71
6.9	Possible reaction pathways for transformation of 2-methyl-	
	biphenyl and 4,4'-Dimethylbiphenyl to valuable aromatics	
	by Ni/HZSM-5.	72
6.10	Possible reaction pathways of naphthalene, 1-methyl-	
	naphthalene and 1,3-dimethylnaphthalene by Ni/HZSM-5	73
6.11	Petroluem fractions in tire-derived oils using Ni-loaded on	
	HMORand HBETA zeolites	74
6.12	Concentration of each group in maltenes using Ni-loaded on	
	HMOR and HBETA zeolites	75
6.13	Distribution of sulfur compounds in maltenes using Ni-loaded	
	on HMOR and HBETA zeolites	76
6.14	Petrochemicals in maltenes using Ni-loaded on HMOR and	
	HBETA zeolites	76
6.15	Possible reaction pathways for transformation of 2-ethyl-	
	biphenyl,4-methylbiphenyl to valuable aromatics promoted	
	by Ni/HMOR	78
6.16	Concentration of each group in maltene using Ni-loaded on	
	HBETA and HY zeolites.	80
6.17	Petroluem fractions in tire-derived oil using Ni-loaded on	
	HBETA and HY zeolites	80

6.18	.18 Distribution of sulfur-containing compounds in maltenes	
	obtained from Ni/HBETA and Ni/HY catalysts.	82
6.19	Petrochemicals in maltenes obtained from Ni/HBETA and	
	Ni/HY catalysts	82
7.1	Schematic of waste tire pyrolysis system for collection and	
	analysis of products.	91
7.2	XRD patterns of HBETA, MCM-41 and composite of HBETA	
	and MCM-41.	92
7.3	N ₂ adsorption-desorption isotherms of HBETA, MCM-41	
	and HBETA/MCM-41	93
7.4	Pore size distribution of HBETA, MCM-41 and	
	HBETA/MCM-41.	94
7.5	TEM image and STEM images of HBETA/ MCM-41	
	core-shell composite.	95
7.6	EDS positions (A-C) taken on TEM and STEM images of	
	HBETA/ MCM-41core-shell composite and	
	(D) drawing of HBETA/MCM-41 core shell composite.	95
7.7	EDS spectra of (A) HBETA core and (B) MCM-41 shell.	96
7.8	Pyrolysis yields from using HBETA, MCM-41 and their	
	core-shell composite.	97
7.9	Compositions of gaseous products from using HBETA,	
	MCM-41 and their core-shell composite.	98
7.10	Maltene compositions (pare=paraffins, ole=olefins,	
	nap=naphthenes, mono=mono-aromatic, di=di-aromatics,	
	poly=poly-aromatics, and polar=polar-aromatics) from using	
	HBETA, MCM-41 and their core-shell composite.	100
7.11	Petroleum fractions in maltene) from using HBETA,	
	MCM-41 and their core-shell composite.	101
7.12	Concentration of petrochemicals in maltenes.(a-b) and	
	concentration of biphenyl in maltene (c).	102

7.13	3 Possible reaction pathways for transformation of biphenyl	
	and styrene to valuable aromatics using the core-shell	
	composite of HBETA and MCM-41.	104
7.14	Role of core-shell composite of HBETA and MCM-41.	105
7.15	Sulfur reduction (a), overall sulfur distribution on pyrolysis	
	products and spent catalysts (b) and Distribution of	
	sulfur-containing compounds in maltenes from using	
	HBETA, MCM-41 and their core-shell composite (c).	107
7.16	The role of core-shell composite on sulfur removal	
	from tire-derived oil.	108
8.1	Schematic of waste tire pyrolysis system for collection	
	and analysis of products.	117
8.2	XRD patterns of HY, MCM-41 and the composite of	
	HY and MCM-41.	118
8.3	N_2 adsorption-desorption isotherms of HY, MCM-41 and	
	HY/MCM-41 composite.	119
8.4	Pore size distribution of HY, MCM-41 and	
	HY/MCM-41 composite.	120
8.5	TEM image of the core-shell composite of HY and MCM-41.	121
8.6	TEM image (a) and STEM images of the core-shell	
	composite of HY and MCM-41(b,c) and drawing of	
	core-shell composite of HY and MCM-41 (d).	122
8.7	EDS spectra of MCM-41 shell (a) and HY core (b).	123
8.8	Pyrolysis yields (a) and compositions of gaseous products	
	from using HY, MCM-41 and the HY/MCM-41	
	core-shell composite (b).	124

8.9	Maltene compositions (pare=paraffins, ole=olefins,	
	nap=naphthenes, mono=mono-aromatic, di=di-aromatics,	
	poly=poly-aromatics, and polar=polar-aromatics) from using	
	HY, MCM-41 and the HY/MCM-41 core-shell composite.	127
8.10	Petroleum fractions in maltene from using HY, MCM-41	
	and the HY/MCM-41 core-shell composite.	128
8.11	Concentration of petrochemicals in maltenes (a) and	
	concentration of mono and poly-aromatics from using	
	HY, MCM-41 and the HY/MCM-41 core-shell composite (b).	129
8.12	Possible reaction schemes for transformation of ethylbiphenyl,	
	methylbiphenyl, styrene and 1-ethyl-3-methyl-benzene to	
	valuable aromatics.	130
8.13	The role of core-shell composite of HY and MCM-41.	131
8.14	Sulfur reduction (a), overall sulfur distribution on pyrolysis	
	products and spent catalysts (b) and Distribution of	
	sulfur-containing compounds in maltenes from using HY,	
	MCM-41 and their core-shell composite (c).	133
8.15	The role of core-shell composite on sulfur removal from	
	tire-derived oil.	135
Fl	GCxGC-TOF/MS Chromatogram of non-cat.	160
F2	GCxGC-TOF/MS Chromatogram of HBETA.	160
F3	GCxGC-TOF/MS Chromatogram of MCM-41.	161
F4	GCxGC-TOF/MS Chromatogram of core-shell composite of	
	HBETA and MCM-41.	161
F5	GCxGC-TOF/MS Chromatogram of HY.	162
F6	GCxGC-TOF/MS Chromatogram of core-shell composite of	
	HY and MCM-41.	162

ABBREVIATIONS

1 D	One-dimension
3D	Three-dimension
ASTM	American Society for Testing and Materials
BT	Benzothiophenes
BTX	Benzene, Toluene, and Xylenes
BTz	Benzothiazoles
DBT	Dibenzothiophenes
di	Di-aromatics
E	Ethylbenzene
FID	Flame ionization detector
GC	Gas chromatography
HVGO	Heavy vacuum gas oil
ID	Internal diameter
ITC	Isothiocyanates
IWI	Incipient wetness impregnation
LVGO	Light vacuum gas oil
mono	Mono-aromatics
MS	Mass spectrometry
nap	Naphthenes
NT	Naphthothiophenes
ole	Olefins
para	Paraffins
polar	Polar-aromatics
poly	Poly-aromatics
SIMDIST	Simulated distillation
TCD	Thermal conductivity detector
TG/DTA	Thermogravimetric/Differential Thermal Analysis
Th	Thiophenes
TOF	Time of Flight

TPDRO	Temperature-programmed desorption/reduction/oxidation
TPR	Temperature-programmed reduction
XPS	X-Ray photoelectron spectroscopy
XRD	X-Ray diffraction