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ในงานนี้เรานำเสนอการสร้างมาสก์เชิงอันดับเศษส่วนขนาด 5×5 โดยอาศัยตัวดำเนินการปรับค่า
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In this work, we propose a construction of a new 5× 5 fractional order differential

mask that uses sixteen directions of gradient operator and weights each pixel in the mask

by the Euclidean distance from the center of the mask. Then, we apply this new mask to

the Adaptive Fractional Differential Algorithm (AFDA). The AFDA allows the optimal

fractional order of each pixel to be obtained using an adaptive function constructed

based on the area feature of image. Experimental results for medical images, show

that the AFDA with the new mask gives better image enhancement than the original

AFDA. It makes edges clearer, preserving texture details and improving the contrast of

medical images. Moreover, we also use the proposed mask to restore the noisy images

which are corrupted by the Gaussian noise. We use the peak signal to noise ratio

(PSNR) and the structural similarity index measure (SSIM) to evaluate the quality of

the denoised images. Changing the values of the fractional orders allows adjusting

the mask coefficients for each image according to it characteristics. The experiments

provide that the proposed mask has an influence on preserving more texture detail than

the common used denoising filters. In addition, the output images have no significant

blurring which can be indicated by higher SSIM. We conclude that the proposed mask

can improve the result visually and in terms of PSNR and SSIM efficiently.
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CHAPTER I

INTRODUCTION

This chapter describes the motivation of this research, problems of previous works

and the scope of this research.

1.1 Motivation

Medical image quality has become an indispensable part of modern medicine and

directly influences the accuracy of doctors’ diagnoses and treatments. Low resolution

and low contrast in medical images have made correct diagnosis difficult; this directly

influences the speed and accuracy of doctor’s diagnoses. Therefore, it is necessary to

improve medical image enhancement to reflect the information of an illness more clearly

and accurately, for more details see [1], [2] and [3].

Fractional differential, which is a theory of arbitrary order derivatives, is generalized

from integral order differential (see [4] and [5] for definitions and properties). Compared

with integral order differential approaches, fractional differentials applied to image pro-

cessing can enhance edges, make texture details clearer and preserve smooth areas (see

[6], [7] and [8].) Moreover, fractional derivatives for image denoising problems have also

been considered in [9] and [10].

Traditional fractional differentials use the same fractional order to process edges,

textures and smooth areas of image; however, while edges would be enhanced by high

fractional orders, weak textures and smooth areas would be ignored while, weaker tex-

tures and smoother areas would be preserved by low fractional orders, edges would be

weakened. Thus, image enhancement is difficult to attain in practice. To handle with

these issues, traditional fractional differential algorithms have been developed for digital

image processing in [11], [12], [13] and [14]. Especially, in 2015, Li and Xie [15] proposed



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

the Adaptive Fractional Differential Algorithm (AFDA) for medical image enhancements

that can extract the edges of an image accurately and enhance them while preserving

smooth areas and weak textures. It is an evidence that the AFDA gives better results

comparing with the existing methods, namely the histogram equalization algorithm, So-

bel, Laplacian, traditional fractional differential methods, which are 0.5-order, 0.8-order

and 1-order, respectively.

1.2 Objectives

In this work, we propose a construction of the new 5×5 fractional order differential

mask that uses sixteen directions of gradient operator and weights each pixel in the mask

by the Euclidean distance from the center of the mask to reduce the over-valuation of the

gradient from distant pixels to improve the AFDA that proposed by Li and Xie [15]. Then,

we evaluate the effect of the image enhancement by visual analysis, quality of the edge

detection and some metrics and compare the results with the original AFDA. Moreover,

we use the proposed 5 × 5 fractional differential mask to restore the noisy images which

are corrupted by the Gaussian noise to provide other evidence that the proposed mask has

an influence on preserving more texture detail than the traditional denoising filters which

contain a mean filter, a Gaussian filter and a Weiner filter. To validate the performance,

we use the peak signal to noise ratio (PSNR) and the structural similarity index measure

(SSIM) to evaluate the quality of the denoised images.

1.3 Thesis Overview

The remainder of this thesis is organized as follows. In Chapter II, we present

some necessary related background knowledge using in this work. Chapter III presents

a construction of the new 5 × 5 fractional differential mask, discusses the experiments

and comparisons, and presents conclusions. Chapter IV demonstrates the results of a

denoising algorithm using the proposed filter comparing with existing common used filters.

The discussions and conclusions are provided.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

BACKGROUND KNOWLEDGE

The purpose of this chapter is to recall the necessary theoretical and mathematical

background about an image processing and fractional order derivative which will be used

in this research.

2.1 Digital image processing

Digital image processing is a method to perform some algorithms or some techniques

on an image in order to get an enhanced image or to extract some useful information from

it by using a digital computer to process. There are several applications in digital image

processing such as industry, agriculture, military, robotics, remote sensing, and medical

diagnosis [16].

2.1.1 Digital image definition

A digital image is defined via a two-dimensional function, f(x, y), where x and y

are discrete coordinates, and the value of f at any coordinates (x, y) is called the intensity

or gray level of the image at that point.

Figure 2.1: The coordinate convention used



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

Assume that an image f is considered overM rows andN columns of two-dimensional

XY -plane, shown in Figure 2.1. If the integer values are assigned for these discrete coor-

dinates as: x = 0, 1, 2,…,M −1 and y = 0, 1, 2,…, N −1, then the image f can be written

in the matrix form

f =



f(0, 0) f(0, 1) . . . f(0, N − 1))

f(1, 0) f(1, 1) . . . f(1, N − 1))

...
... . . . ...

f(M − 1, 0) f(M − 1, 1)) . . . f(M − 1, N − 1)


.

Each element of this matrix is called a pixel or an image element or an image intensity.

2.1.2 Grayscale image

A grayscale image is simply one in which the only colors are shades of gray. The

intensity is stored as an 8-bit integer giving 256 possible different shades of gray from

black to white. Therefore, the range of pixels is 0–255. All shades of gray are shown in

Figure 2.2.

Figure 2.2: The 256 intensity levels for an 8-bit shades of gray

2.2 Kernel, convolution and normalization

In image processing, a kernel is a matrix of real numbers [16]. It is invaluable to

image processing techniques. It can be use for blurring, edge detection and sharpening.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

In literature, this type of kernel maybe referred as a spatial kernel or mask or filter or

window. However, we use mask in Chapter III and use filter in Chapter IV of this thesis.

Convolution is a process of transforming an image by applying a kernel over each

pixel where the kernel lies entirely inside the image region and its local neighbors across

the entire image. The convolution process involves these steps. It places the kernel matrix

over each pixel of the image, multiplies each value of the kernel with the corresponding

pixel. Then, sums the resulting multiplied values and returns the resulting value as the

new value of the center pixel. This process is repeated across the entire image. The

general expression of a convolution at a coordinate (x, y) of an image f is

g(x, y) = ω ∗ f(x, y) =
a∑

s=−a

b∑
t=−b

ω(s, t)f(x+ s, y + t),

where g is the filtered image and ω is the kernel of size (2a+ 1)× (2b+ 1).

For example, an identity kernel shown in Figure 2.3, when applied to an image

through convolution, will have no effect on the resulting image. Every pixel will retain

its original value.

Figure 2.3: Identity kernel

Normalization is defined as the division of each element in the kernel by the sum

of all kernel elements, so that the sum of the elements of a normalized kernel is unity. To

ensure that the average pixel in the processed image is as bright as the average pixel in

the original image.
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2.3 Image smoothing

Image smoothing is a digital image processing technique that reduces and suppresses

image noises [16]. In the spatial domain, neighborhood averaging can generally be used

to achieve the purpose of smoothing. In literature, if one consider image smoothing, then

the followings are the commonly used filters for each technique.

2.3.1 Mean filter

The mean filter is a filter that all coefficients values have the same weight and

replaces the center value in the filter with the average of all pixel values in the filter.

The mean filter is also called a box filter. The mean filter simply smoothes or blurs local

variations in an image. Noise is reduced from an original image as a result of convolution

the original image with the mean filter.

Figure 2.4: 3× 3 mean filter

Figure 2.4 shows 3 × 3 mean filter. In general, an m × n mean filter has 1/mn as

its normalizing constant.

2.3.2 Gaussian filter

Gaussian filter is a filter commonly used in image processing for smoothing and

reducing noise of an image. Gaussian filter has the shape of the Gaussian distribution
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and define the coefficients inside the filter of the form

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 ,

where x is the horizontal distance from the origin of the filter, y is the vertical distance

from the origin of the filter and σ is the standard deviation of the Gaussian distribution

with mean (0, 0). The Gaussian distribution over [−3, 3]2 with σ = 1 is shown in Figure

2.5. A 5× 5 Gaussian filter with σ = 1 is shown in Figure 2.6.

Figure 2.5: Gaussian distribution with mean (0, 0) and σ = 1

Figure 2.6: 5× 5 Gaussian filter with σ = 1
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The center pixel’s value receives the heaviest weight and neighboring pixels receive

smaller weights as their distance to the center pixel increases. This results in a blur that

preserves boundaries and edges better than other filters with more uniform weight.

2.4 Image sharpening

Image sharpening is a digital image processing technique that sharpen and highlight

the edges [16]. It enhances the grayscale transition of an image, which is the opposite

process of image smoothing. While, image smoothing is based on the weighted summation

or integral operation on the neighborhood, the sharpening is based on the derivative

(gradient) or finite difference. In image smoothing, we try to smooth the noise and ignore

edges, but in sharpening, we try to enhance edges and ignore the noise. In literature, if

one consider image sharpening, then the followings are the commonly used filters for each

technique.

2.4.1 Sobel filter

The Sobel filter performs a two-dimensional spatial gradient measurement on an

image and is used for edge detection. Typically, it is used to find the approximate absolute

gradient magnitude at each point in an input grayscale image. The Sobel filters consist

of a pair of 3× 3 matrices as shown in Figure 2.7.

Figure 2.7: Sobel filters in x and y directions

These filters are designed to respond the edges vertically and horizontally relative

to the pixel grid. Note that the sums of coefficients in both filters are 0, indicating

that they would give a response of 0 in an area of constant gray level, as expected for a

derivative operator. The filters can be applied separately to the input image, to produce
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separate measurements of the gradient component in each orientation, namely Gx and

Gy. Moreover, it can be combined to find the absolute magnitude of the gradient at each

point which is given by |G| =
√

Gx2 +Gy2. Typically, an approximate magnitude is

computed using |G| = |Gx|+ |Gy| which is much faster to compute.

2.4.2 Laplacian filter

The Laplacian filter is a isotropic matrix that measure of the second spatial deriva-

tive of an image. It tries to highlight regions of rapid intensity change. It helps to find

out whether the changes we are observing are due to pixel change of continuous regions

or from an edge. The Laplacian filter of a pixel f(x, y) is defined as ∇2f = ∂2f
∂x2 + ∂2f

∂y2 .

Two commonly used discrete approximations to the Laplacian filter are shown in Figure

2.8.

Figure 2.8: Two commonly used discrete approximations to the Laplacian filter

2.5 Gaussian noise

Noise is basically a disturbance that distorts the information presented in the image

[16]. It is usually an unwanted signal that can create a variation in image intensity levels

of pixels which cause degradation of image quality. There are many types of noises occurs

in images, especially, medical images. One of the mostly occurred noise is the Gaussian

noise.

Gaussian noise involves a Gaussian distribution or a bell shaped distribution. The

probability density function pG of a Gaussian random variable z is given by

pG(z) =
1

σ
√
2π

e−
(z−µ)2

2σ2 ,
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where z represents the grayscale value, µ is the mean of the grayscale value and σ is the

standard deviation of the noise. An example of an image with Gaussian noise is shown

in Figure 2.9(b).

(a) Without noise (b) With Gaussian noise

Figure 2.9: A Noise-free image and an image with Gaussian noise

2.6 Fractional calculus

2.6.1 Definitions of fractional order derivative

There are three classical definitions of fractional calculus, namely, the Grünwald–

Letnikov (G-L) definition, the Riemann–Liouville (R-L) definition and the Caputo def-

inition. The G-L definition is deduced from the expression of integer-order differential,

whereas the R–L and Caputo definitions are derived from integer-order Cauchy integral

formula. Since the G–L definition is less complex than the others and only uses one co-

efficient, the G–L definition is suitable for signal processing and it is the most popular

definition used in digital image processing [4].

Let v ∈ R+. Considering a function f(t) on an interval [a, b] which has m-order

(m = ⌈v⌉) continuously differentiable. The v-order (G-L) fractional derivative of f(t) is

defined by

aD
v
bf(t) =

dvf(t)

dtv
= lim

h→0
h−v

[(b−a)/h]∑
j=0

(−1)j
(
v

j

)
f(t− jh), (2.1)

where [ ] is the integral part and
(
v
j

)
is the binomial coefficient.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

For a small value of h, (2.1) can be approximated by

dvf(t)
dtv ≈ h−v

(
f(t) + (−v)f(t− h) + (−v)(−v+1)

2 f(t− 2h) + · · ·+ Γ(−v+1)
n!Γ(−v−n+1)f(t− nh)

)
,

where Γ is the gamma function.

In term of image processing, we usually let h = 1. When the interval [a, b] of f(t)

is divided into equal parts by taking the duration of h = 1, then n = [(b− a)/h] = [b− a]

and the v-order fractional differential of f(t), aD
v
bf(t), can be approximated by

dvf(t)

dtv
≈ f(t)+(−v)f(t−1)+

(−v)(−v + 1)

2
f(t−2)+· · ·+ Γ(−v + 1)

n!Γ(−v − n+ 1)
f(t−n) (2.2)

.

2.6.2 Realization of fractional differential masks

For f(x, y) in the region [a, b]×[c, d], we can extend (2.2) to obtain the backward dif-

ference of the v-order fractional partial differentials on the x- and negative y-coordinates,

respectively, as

∂vf(x,y)
∂xv ≈ f(x, y) + (−v)f(x− 1, y) + (−v)(−v+1)

2 f(x− 2, y) + · · ·+ Γ(−v+1)
n!Γ(−v−n+1)f(x− n, y) (2.3)

∂vf(x,y)
∂yv ≈ f(x, y) + (−v)f(x, y − 1) + (−v)(−v+1)

2 f(x, y − 2) + · · ·+ Γ(−v+1)
m!Γ(−v−m+1)f(x, y −m), (2.4)

where n = [b − a] and m = [d − c]. Figure 2.10 shows the 3 × 3 partial fractional

order differential masks of the x- and y-axes which can be obtained from the first three

coefficients of (2.3) and (2.4), namely 1,−v and v2−v
2 .

Additionally, Li and Xie [15] can obtained eight masks in each direction (i.e., 0°,

45°, 90°, 135°, 180°, 225°, 270°, and 315°) and the 5×5 mask of eight directions shown

in Figure 2.11 is obtained by rotation and superimposing them. Each pixel of Figure

2.11 must be divided by 8×(1 + (−v) + (v2 − v)/2) = 8− 12v + 4v2 to acquire the final

5× 5 fractional order differential mask. Finally, they used the final 5× 5 fractional order
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Figure 2.10: 3× 3 partial fractional order differential masks of the x- and y-axes

differential mask to process the medical images.

Figure 2.11: 5× 5 fractional order differential mask

2.6.3 Adaptive fractional differential function

According to Li and Xie [15], they proposed the adaptive order v of fractional order

differential where v ∈ [0, 1] and (i, j) is a coordinate in the region of an image f of size

m× n as

v =



M(i,j)−t
M(i,j) if M(i, j) ≥ t and M(i,j)−t

M(i,j) ≥ v1

v1 if M(i, j) ≥ t and M(i,j)−t
M(i,j) < v1

v2 if 2 < M(i, j) < t and M(i,j)
t ≥ v2 ,

M(i,j)
t if 2 < M(i, j) < t and M(i,j)

t < v2

0 if 0 ≤ M(i, j) ≤ 2

(2.5)
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where

M(i, j) = |8f(i,j)−f(i−1,j−1)−f(i−1,j)−f(i−1,j+1)−f(i,j−1)−f(i,j+1)−f(i+1,j−1)−f(i+1,j)−f(i+1,j+1)|
8

is the average gradient of pixel f(i, j), t is the gradient threshold, v1 and v2 are the

thresholds of order which are defined by

v1 =
Med −Q

Med
and v2 =

Q−Mtex

Q
. (2.6)

Here, the parameter Q is the average gradient of the original image which is defined by

Q =

m−1∑
i=1

n−1∑
j=1

√
(f(i, j)− f(i+ 1, j))2 + (f(i, j)− f(i, j + 1))2

2
,

Med and Mtex are the average gradients of edges pixels and texture pixels segmented by

Otsu algorithm, respectively. Moreover, they determined threshold t via the improved

Otsu algorithm which will be elaborated in Section 2.7.

This adaptive order v conditionally determined by M(i, j) the average gradient of

each pixel to be greater or less than the threshold t to classify a pixel as an edge or

texture, if 0 ≤ M(i, j) ≤ 2, this pixel is defined as a smooth area. In addition, there is

also an order value condition, with order v1 categorizing it as a group of strong or weak

edges and order v2 as a classifying of a strong or weak texture group

2.7 Thresholding

In digital image processing, thresholding is a method of segmenting images which

aim to partition each pixels of an image into foreground and background [17]. For a

grayscale image, simple thresholding can be used to create binary images by selecting

some fixed constant T . We replace each pixel in an image with a black pixel if the image

intensity f(x, y) is less than T or by a white pixel if the image intensity f(x, y) is greater

than or equal that constant. For each (x, y) in the region of an image f , the segmented
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image using the simple thresholding with constant T , denoted by g(x, y), is defined as

g(x, y) =


1 if f(x, y) ≥ T,

0 if f(x, y) < T.

A problem with simple thresholding is that you have to manually specify the thresh-

old constant. We can manually check how good a threshold is by trying different values.

However, it is very slow and may break down in the real world. Thus, we need a way to

automatically determine the threshold. The Otsu’s method is one of a good example of

the auto thresholding.

The Otsu’s method was proposed by Otsu [17]. It is used to perform an automatic

image thresholding. This algorithm returns an optimal threshold constant that separate

pixels into two classes, foreground and background. By going through all possible thresh-

old values, it finds the optimal threshold value of input image by minimizing intra-class

intensity variance, or equivalently, by maximizing inter-class variance.

Let t be an integer in [0, 255]. Suppose a grayscale image f has n distinct integer

intensity values. The intra-class variance using a threshold constant t, denoted by σ2
ω(t),

is defined as a weighted sum of variances of the two classes. That is

σ2
ω(t) = ω1(t)σ

2
1(t) + ω2(t)σ

2
2(t),

where ω1(t) and ω2(t) are the probabilities of the two classes divided by a threshold

constant t, and σ2
1(t) and σ2

2(t) are variances of these two classes.

The quantity of the pixels with a specified grayscale value i denotes by ni. Since

there are n values of pixel intensity in the image, the probability of the grayscale value i

occurrence is

p(i) =
ni

n
.

The threshold constant t separates the pixel intensity values into two classes: C1 =
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{0, 1, 2, . . . , t} and C2 = {t+ 1, t+ 2, t+ 3, . . . , I}, where I is the maximum pixel value.

The class probabilities ω1(t) and ω2(t) are computed by

ω1(t) =

t∑
i=0

p(i) and ω2(t) =

I∑
i=t+1

p(i).

The next step is to obtain the class means for C1 and C2, which are denoted by µ1(t) and

µ2(t), respectively. That is

µ1(t) =

t∑
i=0

ip(i)

ω1(t)
and µ2(t) =

I∑
i=t+1

ip(i)

ω2(t)
.

Thus, the total mean µT is given by

µT = µ1(t)ω1(t) + µ2(t)ω2(t) =

I∑
i=0

ip(i).

Then, we have the class variances for C1 and C2, which are denoted by σ2
1(t) and σ2

2(t),

respectively. That is

σ2
1(t) =

t∑
i=0

(i− µ1(t))
2 p(i)

ω1(t)
and σ2

2(t) =

I∑
i=t+1

(i− µ2(t))
2 p(i)

ω2(t)
.

Finally, the optimal threshold constant t∗ is obtained by minimizing the intra-class vari-

ance σ2
ω(t). That is

t∗ = argmin
0≤t≤I

σ2
ω(t).

Note that for 2 classes, if σ2
b (t) is inter-class variance, then

σ2
b (t) = σ2 − σ2

ω(t) = ω1(t)(µ1(t)− µT )
2 + ω2(t)(µ2 − µT )

2 = ω1(t)ω2(t)(µ1(t)− µ2(t))
2.

Thus, minimizing the intra-class variance σ2
ω(t) is equivalent to maximizing inter-class

variance σ2
b (t). The desired threshold t∗ also corresponds to the maximum σ2

b (t).

Li and Xie [15] improved the traditional Otsu algorithm to obtain an improved
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image enhancement effect for AFDA, by replacing the grayscale value of each pixel f(i, j)

with the average gradient M(i, j). This improved Otsu algorithm can segment edges,

textures and smooth areas of an image more effectively. Considering the integer portion of

M(i, j) belongs to {0, 1, 2, . . . , k, . . . , N(i, j)}, the threshold t divides the image gradient

into two parts: C1 = {1, 2, 3, . . . , t} and C2 = {t+ 1, t+ 2, t+ 3, . . . ,max(N(i, j))}. The

gradient threshold t divides the gradient image into an edge and a background.

2.8 Performance evaluation metrics

To evaluate the performance of the image processing techniques, we have several

metrics to indicate. The following are metrics that will be used in this thesis [18], [19],

[20].

2.8.1 Peak signal-to-noise ratio (PSNR)

PSNR is the ratio between the maximum possible value (or power) of a signal and

the power of distorting noise that affects the quality of its representation. Note that, in

image processing, signal refers to an image f .

Given a noise-free m×n monochrome image f and its degraded image g, the mean

squared error (MSE) is defined by

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

(f(i, j)− g(i, j))2.

MSE represents the average of the squares of the difference between our actual image and

our degraded image.

PSNR is defined by

PSNR = 10 log10
MAX2

f√
MSE

,

where MAXf is the maximum possible pixel value of the noise-free image f .

The idea is that the higher the PSNR, the better the degraded image has been
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reconstructed to match the original image and the better the algorithm. This would

occur because we wish to minimize the MSE between images with respect to the maximum

intensity value of the image.

When we compute the MSE between two identical images, the value will be zero

and hence the PSNR will be undefined. The main limitation of this metric is that it

relies strictly on numeric comparison and does not actually take into account any level

of biological factors of the human vision system unlike the structural similarity index

measure.

2.8.2 Structural similarity index measure (SSIM)

SSIM is an image quality metric that assesses the visual impact of three character-

istics of an image, namely, luminance (l), contrast (c) and structure (s). The index is a

multiplicative combination of the three terms. That is

SSIM(f, g) = (l(f, g))α(c(f, g))β(s(f, g))γ ,

where

l(f, g) =
2µfµg + C1

µ2
f + µ2

g + C1
,

c(f, g) =
2σfσg + C2

σ2
f + σ2

g + C2
and

s(f, g) =
σfg + C3

σfσg + C3
.

Here, µf , µg, σf , σg and σfg are the local means, standard deviations and covariance for

images f and g. The default for exponents α, β and γ are 1 and the default selection of

C3 = C2/2. Then, the index can be simplified to

SSIM(f, g) =
(2µfµg + C1)(2σfσg + C2)

(µ2
f + µ2

g + C1)(σ2
f + σ2

g + C2)
.

Usually, the default setting for C1 and C2 is C1 = (0.01L)2 and C2 = (0.03L)2, where L

is the dynamic range of the pixel values and the default dynamic range is 255 for images
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of data type uint8. Two variables C1 and C2 are introduced to stabilize the division

with weak denominator or to avoid instability for image regions where the local mean or

standard deviation is close to zero.

The value of SSIM is in the range [0, 1]. The value 1 indicates the highest quality

and occurs when images f and g are equivalent. Smaller values correspond to poorer

quality. SSIM is used for measuring the similarity between two images.

2.8.3 Entropy of information

Entropy is a measure of image information content, which is interpreted as the

average uncertainty of information source. It is used in the quantitative analysis and

evaluation image details. The entropy value is used as it provides better comparison of

the image details. The higher value of entropy implies more detailed information. In

image processing, the entropy is defined by

H = −
255∑
k=0

p(k) ln p(k),

where p(k) is the frequency of grayscale values, i.e., p(k) = 1
m×n

∑
f(i,j)=k 1 for a digital

image f with size m× n.

From these background knowledge, we will apply them suitably in Chapters III and

IV thereafter.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

IMPROVED MASK FOR ADAPTIVE

FRACTIONAL ORDER DIFFERENTIAL

METHOD FOR MEDICAL IMAGE

ENHANCEMENT

This chapter describes a construction of the new 5× 5 fractional order differential

mask. Then, we apply this new mask to the Adaptive Fractional Differential Algorithm

(AFDA) to enhance the medical images.

3.1 An improved fractional differential mask

In this section, we describe how to construct a new fractional differentiation mask

and point out the advantages of the proposed mask. In order to strengthen the anti-

rotation performance of the Adaptive Fractional Differential Algorithm (AFDA), sixteen

directions of the gradient operator are used to construct the new 5×5 fractional differential

mask. First, Figure 3.1(a) shows a 0° direction of the gradient. Next, in Figure 3.1(b),

we add a 22.5° direction (red dashed line). Here, we notice that the red dashed line

passes through two pixels of the level of −v. Thus, we divide these −v neighbors into

two equal parts. After superimposing the gradient operator in 45° direction, the mask

becomes Figure 3.1(c). We repeat this process until we get a full cycle as shown in Figures

3.1(d− h). Figure 3.1(i) shows the 5× 5 mask of sixteen directions which is obtained by

the sum of every value in each pixel of Figure 3.1(h).

To reduce the over-valuation of the gradient from distant pixels, we weight each

pixel in the mask by the Euclidean distance from the center of the mask. Consider Figure

3.1(j). First, we label the center of the mask with ‘‘0”. Second, we label the layer of −2v

with ‘‘1” and ‘‘1′”. Third, we label the layer of (v2 − v)/2 with ‘‘2”, ‘‘2′” and ‘‘2′′”. In
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Figure 3.1(j), the pixels labeled by ‘‘1” and ‘‘1′” are 1 and
√
2 unit away from the center,

respectively. Therefore, we weight the gradient of 1-pixels and 1′-pixels with 1/1 and

1/
√
2, respectively, to decrease their values as shown in Figure 3.1(k). In Figure 3.1(j),

the pixels labeled by ‘‘2”, ‘‘2′” and ‘‘2′′” are 2,
√
5 and 2

√
2 unit away from the center,

respectively. Therefore, we weight the gradient of 2-pixels, 2′-pixels and 2′′-pixels with

2/2, 2/
√
2 and 2/(2

√
2), respectively, to decrease their values as shown in Figure 3.1(k).

Next, we multiply each pixel of Figure 3.1(i) by each pixel of Figure 3.1(k) componentwise

to obtain our new 5×5 weighted fractional differential mask of sixteen directions as shown

in Figure 3.1(l). Finally, we divide each pixel of Figure 3.1(l) by the sum of all values in

the mask, S = 16 + (−10− 5
√
2− 8

√
5/5)v + (2 +

√
2 + 8

√
5/5)v2. Note that S has no

real root which implies that the denominator cannot be zero.

3.2 Experimental Results and Discussion

We choose four medical images as shown in Figures 3.3(a) – 3.6(a) to represent

common medical images. Figure 3.3(a) shows an image of ultrasound in pregnancy. Figure

3.4(a) shows a lung sectional CT image, Figure 3.5(a) shows a knee-joint MRI and Figure

3.6(a) shows a target of breast molybdenum image, respectively. The resolutions of all

images are 256 × 256 and the gradient threshold t of these four original images can be

obtained by using the improved Otsu algorithm [15]. The parameters v1, v2 and t for

each image are shown in Table 3.1. The effect of image enhancement is evaluated by

visual analysis, quality of the edge detection and some metrics. Here, the procedure as

shown in Figure 3.2 given by Li and Xie [15] is used by changing the 5×5 fractional order

differential mask of eight directions to the one of sixteen directions. The procedure to

enhance the original image can be written in a flow chart as shown in Figure 3.2.

Image v1 v2 t

Ultrasonic image 0.7283 0.2406 5
CT image 0.7070 0.2875 13
MRI image 0.7324 0.2395 6
Target of breast molybdenum image 0.7514 0.2283 4

Table 3.1: Parameters of these four images
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.1: Construction of new fractional differential mask

According to Li and Xie [15], the effect of image enhancement of the original AFDA

was better when compared with those of the histogram equalization algorithm, Sobel,

Laplacian, traditional fractional differential methods, which are 0.5-order, 0.8-order and

1-order, respectively. The results of the histogram equalization method which improve

the brightness of the object. However, the local texture details are disappeared and the

grays change unnaturally. The results of the traditional fractional differential methods.

The 0.5-order method enhances edges and preserve some local texture details while the

0.8-order method strongly enhances edges but produces significantly more noise. The 1-



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22

Start

Input an image I

Resize the input image I to 256× 256 and convert to gray scale image.

Find M(i, j) the average gradients of each pixel in eight directions and
calculate a parameter Q the average gradient of the original image.

Find the optimal threshold t via the improved Otsu algorithm by replacing
the gray level of each pixel I(i, j) of the traditional Otsu algorithm with the
integer portion of average gradient M(i, j) belongs to {0, 1, 2, . . . , N(i, j)}.
Note that the threshold t can divides the image gradient into two parts

C1 = {1, 2, 3, . . . , t}︸ ︷︷ ︸
Textures and smooth areas

and C2 = {t+ 1, t+ 2, t+ 3, . . . ,max(N(i, j))}︸ ︷︷ ︸
Edges

.

Output the threshold t, Med and Mtex the average gradients of edges
pixels and texture pixels segmented by Otsu algorithm, respectively.

Calculate parameters v1 and v2 defined as v1 = Med−Q
Med

and v2 =
Q−Mtex

Q .

Create a matrix V that keeps the values of adaptive v-order fractional
differential function at pixel (i, j) by

V (i, j) =



M(i,j)−t
M(i,j)

; M(i, j) ≥ t and M(i,j)−t
M(i,j)

≥ v1 strong edge
v1 ; M(i, j) ≥ t and M(i,j)−t

M(i,j)
< v1 weak edge

v2 ; 2 < M(i, j) < t and M(i,j)
t

≥ v2 strong texture
M(i,j)

t
; 2 < M(i, j) < t and M(i,j)

t
< v2 weak texture

0 ; 0 ≤ M(i, j) ≤ 2 smooth area

v2−v
2

1√
2

v2−v
2

2√
5

v2−v
2

v2−v
2

2√
5

v2−v
2

1√
2

v2−v
2

2√
5

−
√
2v −2v −

√
2v v2−v

2
2√
5

v2−v
2

−2v 1× 16 −2v v2−v
2

v2−v
2

2√
5

−
√
2v −2v −

√
2v v2−v

2
2√
5

v2−v
2

1√
2

v2−v
2

2√
5

v2−v
2

v2−v
2

2√
5

v2−v
2

1√
2

Create the 5× 5 fractional order differential mask

Stop

Output the filtered original image with the mask

Figure 3.2: Procedure of image enhancement using adaptive fractional differential
method with the proposed mask
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order method can extract only the edges, it strongly vanishes weak textures and smooth

areas in the image. In other words, the 1-order method extracts a large amount of

marginal information, but weak textures and smooth areas are severely reduced, making

it hard to see the complete structure of the image. Thus, the enhancement effects of

the traditional fractional differential methods are not desirable. The original AFDA

comprehensively considered global and local information in medical images and yielded

better enhancement effects than the existing image processing methods. Thus, in this

section, instead of comparing with the existing methods as mentioned above, we only

compare the effect of image enhancement of the improved AFDA with the new mask with

the original AFDA.

3.2.1 Evaluation by visual analysis

The original images (Figures 3.3(a) - 3.6(a)) have a low resolution and significant

amounts of noise. Figures 3.3(b - c) - 3.6(b - c) show that the original AFDA and the

improved AFDA with the new mask have enhanced the original image to some extent.

Both of methods can enhance image edges and preserve weak textures and smooth areas

concurrently. Considering both global and local information, the images processed by the

improved AFDA with the new mask look clearer with weak textures and smooth areas

preserved more appropriately. On the other hand, the images processed by the original

AFDA sometimes look too sharp with undesirable noises (indicated by circles). Moreover,

we find that there are some black and white spots appear in the images processed by the

original AFDA (indicated by boxes) that do not occur on the original image. This effect

is improper for medical image enhancement. Therefore, the improved AFDA with the

new mask visually produces better medical image enhancement than the original AFDA

with higher adaptability and more appropriate.

3.2.2 Evaluation by edge detection

The validation of the improvement can also be assessed by the quality of the edge

detection. We use the Sobel and Laplacian operators to create an image emphasizing

edges. They are commonly used as edge detection schemes. The Sobel and Laplacian
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(a) Original image (b) Original AFDA (c) Improved AFDA

Figure 3.3: Type-B ultrasound image enhancement

(a) Original image (b) Original AFDA (c) Improved AFDA

Figure 3.4: CT image enhancement

(a) Original image (b) Original AFDA (c) Improved AFDA

Figure 3.5: MRI image enhancement

operators are the gradient based edge detector and the Laplacian based edge detector,

respectively. In other words, the Sobel and Laplacian operators are first-order and second-

order linear differential operators, respectively. They can strongly enhance edges while

strongly weaken weak textures and smooth areas of an image. We use the CT and MRI

images as examples to compare the quality of the edge detection.
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(a) Original image (b) Original AFDA (c) Improved AFDA

Figure 3.6: Target of breast molybdenum image enhancement

(a) Original image (b) Original AFDA (c) Improved AFDA

Figure 3.7: Edge detection results of CT images using Sobel(top) and Laplacian(bottom)

Figures 3.7 and 3.8 show the effect of image segmentation. The original AFDA and

the improved AFDA with the new mask are shown to be significantly better than that

of the original image. However, the edges enhanced by the original AFDA method is

too sharp because the gradient has been given over-valuation by the original 8-direction

mask. The improved AFDA with the new mask is shown to yield the better edge detection

quality.
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(a) Original image (b) Original AFDA (c) Improved AFDA

Figure 3.8: Edge detection results of MRI images using Sobel (top) and Laplacian (bottom)

3.2.3 Evaluation by some metrics

Finally, we use 5metrics, namely the proportion of edge pixels, the average gradients

of edge pixels, the average grays of texture pixels, the information entropy and the contrast

ratio to analyze the effect of image enhancement using the improved AFDA with the new

mask.

The proportion of edge pixels, the average gradients of edge pixels and the average

grays of texture pixels can be obtained from the improved Otsu algorithm. Here, the

definition of contrast ratio is Contrastratio = Cprocessed/Coriginal, where Coriginal and

Cprocessed are the contrast of the image before and after being processed, respectively. We

consider 3×3 pixels to be a unit of an image. The parameter C is the average contrast of

all 3×3 units. The evaluation parameters are given in Tables 3.2 - 3.5.
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Type/parameter Proportion of edge pixels Average gradient of edge pixels Average gray of texture pixels Entropy of information Contrast ratio

Original image 0.1188 9.4547 99.1850 6.4804 1.0000

Original AFDA 0.1410 37.3990 95.9056 6.6147 1.4607

Improved AFDA 0.1663 23.0451 98.0728 6.6195 1.3416

Table 3.2: The evaluation parameters of the ultrasonic image

Type/parameter Proportion of edge pixels Average gradient of edge pixels Average gray of texture pixels Entropy of information Contrast ratio

Original image 0.1149 22.3739 192.6722 6.9584 1.0000

Original AFDA 0.1365 82.1330 188.4240 6.7774 1.5560

Improved AFDA 0.1329 65.1363 187.7429 6.9197 1.4420

Table 3.3: The evaluation parameters of the lung sectional CT image

Type/parameter Proportion of edge pixels Average gradient of edge pixels Average gray of texture pixels Entropy of information Contrast ratio

Original image 0.0962 10.9120 81.0635 6.6909 1.0000

Original AFDA 0.1238 37.4280 77.9944 6.8983 1.6103

Improved AFDA 0.1250 24.8553 78.4106 6.8430 1.5370

Table 3.4: The evaluation parameters of the knee-joint MRI image

Type/parameter Proportion of edge pixels Average gradient of edge pixels Average gray of texture pixels Entropy of information Contrast ratio

Original image 0.1357 7.0911 43.6800 4.8078 1.0000

Original AFDA 0.1489 36.1885 42.0671 4.8315 2.3445

Improved AFDA 0.1318 22.5202 43.7205 4.7926 2.2659

Table 3.5: The evaluation parameters of the target of breast molybdenum image

From Tables 3.2 - 3.5, the improved AFDA with the new mask can enhance the

proportion of edge pixels significantly better than the original AFDA in the ultrasonic

image. However, the proposed mask produces no different the proportion of edge pixels

in enhancing the lung sectional CT image and the knee-joint MRI image to the original

AFDA. Although, the new mask has less proportion of edge pixels than the original

AFDA in the target of breast molybdenum image, the improved AFDA has the average

gray of texture pixels higher and has the entropy of information closer to the entropy of

the original image than the original AFDA which indicate that the improved AFDA with
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the new mask can preserve the weak textures more appropriate than the original AFDA.

The average gradient of edge pixels of every processed images by the improved AFDA

is significantly less than using the original AFDA because of the assigned weight in the

proposed mask. The closer entropy of images show that images processed by the improve

AFDA with the new mask have a similar information quality to that of the original images

more than the original AFDA. In addition, the average gradient of edge pixels and the

contrast ratio are considerably increase from the original image but still less than the

original AFDA which indicate that the improved AFDA with the new mask can enhance

the edges looking not too sharp.

3.3 Conclusion

In this chapter, we propose a construction of the new 5× 5 fractional order differ-

ential mask that uses sixteen directions of gradient operator and weights each pixel in the

mask by the Euclidean distance from the center of the mask to reduce the over-valuation

of the gradient from distant pixels. We performed both quantitative and qualitative

comparative analysis with existing edge detectors and some metrics, respectively. From

quantitative analysis, it is observed that an improvement of information entropy of image

through the improved AFDA with the new mask is more than the original AFDA, thus

enhancing more textural information. The proposed mask can improve the visual quality

of images while preserving more information in medical images and improving the clarity

and contrast of medical images. In addition, we find that there are some black and white

spots appear in the images processed by the original AFDA method that do not occur on

the original image. This effect is improper for medical image enhancement. Therefore, the

improved AFDA with the new mask visually produces better medical image enhancement

than other methods with higher adaptability and more appropriate which help doctors to

diagnose illness more efficiently and accurately.

3.4 Comparison of masks

From our proposed method, we both include more directions and apply some weights

to our new fractional differential mask used for enhancing the image. To see more clearly
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whether directions or weights has more effect to the enhancement, we perform these two

experiments. Here, we denote the original mask of eight directions by Mask 0, the mask

of eight directions with applying weight by Mask 1, the mask of sixteen directions without

applying weight by Mask 2 and the mask of sixteen directions with applying weight by

Mask 3. These four masks are shown in Figure 3.9.

Experiment 1 Using the mask of eight directions proposed by Li and Xie [15] with

applying weight due to the Euclidean distance from the center, we have the following

results.

According to Figures 3.10(b - c) -3.13(b - c), Mask 1 produces the processed images

which can preserve more texture better than Mask 0 as a result of applying weights. In

addition, Mask 1 visually gives the processed images as same as Mask 3, see Figures

3.10(c and e) - 3.13(c and e). Moreover, five metrics in Tables 3.6 - 3.9 also support

these conclusions because Mask 1 has these five metrics very similar to Mask 3 and Mask

3 provides a better enhancement than Mask 0 as we discussed in the previous section.

Thus, applying weights has more effect to the enhancement than increasing the directions.

Experiment 2 Using the mask of sixteen directions without applying weight due

to the Euclidean distance from the center, we have the following results.

From the experimental result, Mask 2 visually gives the processed images as same

as Mask 0 as shown in Figures 3.10(b and d) - 3.13(b and d). However, Mask 3 produces

the processed images which can preserve more texture better than Mask 2 as a result of

applying weights as shown in Figures 3.10(b - c) -3.13(b - c). Moreover, five metrics in

Tables 3.6 - 3.9 also confirm these conclusions because Mask 2 has these five metrics very

similar to Mask 0 and Mask 3 provides a better enhancement than Mask 0 as we discussed

in the previous section. Thus, adding a direction has almost no performance gain.
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(a) Mask 0 (b) Mask 1

(c) Mask 2 (d) Mask 3

Figure 3.9: Four fractional differential masks

(a) Original image (b) Mask 0 (c) Mask 1

(d) Mask 2 (e) Mask 3

Figure 3.10: Type-B ultrasound image enhancement
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(a) Original image (b) Mask 0 (c) Mask 1

(d) Mask 2 (e) Mask 3

Figure 3.11: CT image enhancement

(a) Original image (b) Mask 0 (c) Mask 1

(d) Mask 2 (e) Mask 3

Figure 3.12: MRI image enhancement
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(a) Original image (b) Mask 0 (c) Mask 1

(d) Mask 2 (e) Mask 3

Figure 3.13: Target of breast molybdenum image enhancement

Type/parameter Proportion of edge pixels Average gradient of edge pixels Average gray of texture pixels Entropy of information Contrast ratio

Original image 0.1188 9.4547 99.1850 6.4804 1.0000

Mask 0 0.1410 37.3990 95.9056 6.6147 1.4607

Mask 1 0.1658 22.9269 98.0925 6.6192 1.3352

Mask 2 0.1405 37.4720 95.9436 6.6151 1.4671

Mask 3 0.1663 23.0451 98.0728 6.6195 1.3416

Table 3.6: The evaluation parameters of the ultrasonic image

Type/parameter Proportion of edge pixels Average gradient of edge pixels Average gray of texture pixels Entropy of information Contrast ratio

Original image 0.1149 22.3739 192.6722 6.9584 1.0000

Mask 0 0.1365 82.1330 188.4240 6.7774 1.5560

Mask 1 0.1346 64.4145 187.7967 6.9200 1.4416

Mask 2 0.1366 82.2524 188.4213 6.7775 1.5616

Mask 3 0.1329 65.1363 187.7429 6.9197 1.4420

Table 3.7: The evaluation parameters of the lung sectional CT image
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Type/parameter Proportion of edge pixels Average gradient of edge pixels Average gray of texture pixels Entropy of information Contrast ratio

Original image 0.0962 10.9120 81.0635 6.6909 1.0000

Mask 0 0.1238 37.4280 77.9944 6.8983 1.6103

Mask 1 0.1248 24.7189 78.4078 6.8418 1.5485

Mask 2 0.1233 37.4516 78.0071 6.8983 1.6093

Mask 3 0.1250 24.8553 78.4106 6.8430 1.5370

Table 3.8: The evaluation parameters of the knee-joint MRI image

Type/parameter Proportion of edge pixels Average gradient of edge pixels Average gray of texture pixels Entropy of information Contrast ratio

Original image 0.1357 7.0911 43.6800 4.8078 1.0000

Mask 0 0.1489 36.1885 42.0671 4.8315 2.3445

Mask 1 0.1444 21.4870 42.6308 4.7923 2.2512

Mask 2 0.1484 36.3062 42.1070 4.8314 2.3450

Mask 3 0.1318 22.5202 43.7205 4.7926 2.2659

Table 3.9: The evaluation parameters of the target of breast molybdenum image

3.5 Future work

In this work, we proposed the new 5 × 5 fractional order differential mask. It is

interesting to study the new one of the size 7 × 7 because it has to use more coefficient

terms of the approximation of the fractional differential and can extend the direction

more than sixteen directions. Moreover, if we can recruit some expert medical doctors

who can give us some feedback on our results after we obtain the new enhanced image,

our algorithm should be strongly reliable.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

IMAGE DENOISING USING AN IMPROVED

MASK

In this chapter, we apply the proposed mask to restore the noisy images which are

corrupted by the Gaussian noise to provide other evidence that the proposed mask has

an influence on preserving more texture detail.

4.1 Introduction

From the previous section, we obtained the new 5 × 5 fractional differential mask

as shown in Figure 4.1. This section demonstrates that a denoising algorithm using the

proposed mask performs better than the traditional denoising filters which contain mean

filter, Gaussian filter and Weiner filter. All filters are considered to operate using 5 × 5

processing window mask. We use the peak signal to noise ratio (PSNR) and the structural

similarity index measure (SSIM) to evaluate the quality of the denoised images.

Figure 4.1: The proposed 5× 5 fractional differential mask
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4.2 Experiment, Results and Discussion

The test images employed here are the grayscale images “Peacock” and “Satellite”

with 512× 512 pixels as shown in Figures 4.2(a)-4.9(a). The Gaussian noise with a mean

of zero is added into the image with different variance values 0.01, 0.03, 0.05 and 0.10

as shown in Figures 4.2(b)-4.9(b). We do not consider the Gaussian noise of variance

values greater than 0.10 because we consider those levels of variances cause the image

to be overly damaged, making it irreparable. Tables 4.2-4.9 show the PSNR, SSIM and

PSNR*SSIM values.

The values of the fractional order of the proposed mask are taken with the negative

sign because each element of the proposed mask becomes non-negative for the propose of

being a smoothing filter. In this experiment, we considered values of v from −0.1 to −8

with a decrement −0.1. Table 4.1 shows the fractional orders v of the proposed filter that

we used for each image which obtained by maximizing the PSNR*SSIM. We performed

both qualitative and quantitative analysis to evaluate the quality of the denoised images

using the peak signal to noise ratio (PSNR) and the structural similarity index measure

(SSIM). The experimental results are shown in Figures 4.2-4.9 and Tables 4.2-4.9.

Image Variance of Gaussiance noise Fractional order v

Peacock

0.01 −0.5

0.03 −0.9

0.05 −1.1

0.10 −1.3

Satellite

0.01 −0.5

0.03 −0.7

0.05 −0.9

0.10 −1.1

Table 4.1: Fractional order for each image



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Comparison the denoised peacock images which corrupted by Gaussian
noise with variance 0.01

Metric/Type Original Noisy Mean Weiner Gaussian Proposed

PSNR ∞ 16.1444 17.3515 17.5880 17.1519 16.6569

SSIM 1 0.3970 0.2905 0.3474 0.4355 0.4234

PSNR*SSIM ∞ 6.4093 5.0406 6.1101 7.4697 7.0525

Table 4.2: Comparison of PSNR and SSIM of denoised peacock images which
corrupted by Gaussian noise with variance 0.01
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Comparison the denoised peacock images which corrupted by Gaussian
noise with variance 0.03

Metric/Type Original Noisy Mean Weiner Gaussian Proposed

PSNR ∞ 14.8280 17.1548 17.2937 16.1852 16.4064

SSIM 1 0.3076 0.2710 0.3175 0.3574 0.3610

PSNR*SSIM ∞ 4.5611 4.6490 5.4908 5.7846 5.9227

Table 4.3: Comparison of PSNR and SSIM of denoised peacock images which
corrupted by Gaussian noise with variance 0.03
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Comparison the denoised peacock images which corrupted by Gaussian
noise with variance 0.05

Metric/Type Original Noisy Mean Weiner Gaussian Proposed

PSNR ∞ 13.9338 16.9596 17.0412 15.4743 16.1600

SSIM 1 0.2575 0.2543 0.2933 0.3093 0.3247

PSNR*SSIM ∞ 3.5880 4.3128 4.9982 4.7862 5.2472

Table 4.4: Comparison of PSNR and SSIM of denoised peacock images which
corrupted by Gaussian noise with variance 0.05
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Comparison the denoised peacock images which corrupted by Gaussian
noise with variance 0.10

Metric/Type Original Noisy Mean Weiner Gaussian Proposed

PSNR ∞ 12.6257 16.5701 16.5578 14.3645 15.6911

SSIM 1 0.1938 0.2255 0.2515 0.2431 0.2731

PSNR*SSIM ∞ 2.4469 3.7366 4.1643 3.4920 4.2852

Table 4.5: Comparison of PSNR and SSIM of denoised peacock images which
corrupted by Gaussian noise with variance 0.10
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Comparison the denoised satellite images which corrupted by Gaussian
noise with variance 0.01

Metric/Type Original Noisy Mean Weiner Gaussian Proposed

PSNR ∞ 15.2165 15.8807 16.1836 16.0341 16.1424

SSIM 1 0.5470 0.4289 0.4804 0.5806 0.5685

PSNR*SSIM ∞ 8.3234 6.8112 7.7746 9.3094 9.1770

Table 4.6: Comparison of PSNR and SSIM of denoised satellite images which
corrupted by Gaussian noise with variance 0.01
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Comparison the denoised satellite images which corrupted by Gaussian
noise with variance 0.03

Metric/Type Original Noisy Mean Weiner Gaussian Proposed

PSNR ∞ 14.2180 15.6828 15.9303 15.3260 15.7638

SSIM 1 0.4650 0.4091 0.4546 0.5158 0.5149

PSNR*SSIM ∞ 6.6114 6.4158 7.2419 7.9052 8.1168

Table 4.7: Comparison of PSNR and SSIM of denoised satellite images which
corrupted by Gaussian noise with variance 0.03
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Comparison the denoised satellite images which corrupted by Gaussian
noise with variance 0.05

Metric/Type Original Noisy Mean Weiner Gaussian Proposed

PSNR ∞ 13.5198 15.5118 15.7124 14.7874 15.5245

SSIM 1 0.4126 0.3926 0.4330 0.4703 0.4794

PSNR*SSIM ∞ 5.5783 6.0899 6.8035 6.9545 7.4424

Table 4.8: Comparison of PSNR and SSIM of denoised satellite images which
corrupted by Gaussian noise with variance 0.05
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Comparison the denoised satellite images which corrupted by Gaussian
noise with variance 0.10

Metric/Type Original Noisy Mean Weiner Gaussian Proposed

PSNR ∞ 12.3698 15.1147 15.2594 13.8462 14.9964

SSIM 1 0.3313 0.3590 0.3910 0.3948 0.4213

PSNR*SSIM ∞ 4.0981 5.4262 5.9664 5.4665 6.3180

Table 4.9: Comparison of PSNR and SSIM of denoised satellite images which
corrupted by Gaussian noise with variance 0.10



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

44

Figures 4.2(c)-4.9(c) and Figures 4.2(d)-4.9(d) show the image processed by mean

filter and Weiner filter, respectively, in which there is a significant blurring. Figures 4.2(f)-

4.9(f) illustrate that the image processed by the proposed filter has a good denoising

performance for both testing images by different degrees of noise, in which there is no

significant blurring and the texture information has been well preserved. When the image

corrupted by Gaussian noise with very low level of variance as 0.01, the Gaussian filter

can perform a better result as shown in Figures 4.2(e) and 4.6(e) and the values of both

PSNR and SSIM of Gaussian filter is the highest among the other filters as shown in

Tables 4.2 and 4.6, respectively. However, when the image is corrupted by Gaussian

noise with higher levels of variance as 0.03, 0.05 and 0.10, the proposed filter has a better

denoising performance than the others which can be indicated by a higher PSNR higher

SSIM and higher PSNR*SSIM as shown in Figures 4.3(f)-4.5(f), Figures 4.7(f)-4.9(f),

Tables 4.3-4.5 and Tables 4.7-4.9, respectively. These results indicate that the proposed

filter can robustly denoise the image while preserving its detailed features.

The proposed filter for image denoising provides satisfactory results. According

to the assumption that higher PSNR indicates a better ability to eliminate the noise

while higher SSIM indicates a better performance to carry important information about

the structure of the objects in the visual scene, the highest PSNR*SSIM value of the

proposed mask acts as one of the important parameters to judge its performance. In

other words, the proposed filter well eliminates the noise while the output images have

no significant blurring.

However, in practice we do not have a noise-free image to calculate the PSNR and

the SSIM, so there is a problem that is what is an optimal order v that should be used

for each image. Since each image has its characteristics, so it would be complex work to

find out a formula of an optimal order v. To make it simple, we focus to find a range

of the order v that should be used under the assumption that if the image has a similar

characteristic, a similar order value should be used.

In this experiment, we consider two datasets of the medical images which are the
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grayscale images of the 500 chest X-ray images and the 500 retinal OCT images (optical

coherence tomography) with 512× 512 pixels, some of them are shown in Figures 4.10(a)

and 4.11(a). For each original image, the Gaussian noise with a mean of zero is added

into those images with variance 0.05 to generate the noisy images, an example of them is

shown in Figures 4.10(b) and 4.11(b).

(a) (b)

Figure 4.10: Original image and noisy image of chest X-ray image, respectively

(a) (b)

Figure 4.11: Original image and noisy image of retinal OCT image, respectively

For each noisy image, we considered values of the fractional order v from −0.1 with

a decrement −0.1. For each order v, we smooth the noisy image with the proposed filter

and plot PSNR, SSIM and PSNR*SSIM against the orders v. The order v that has the

highest values of PSNR, SSIM and PSNR*SSIM are collected. For example, the noisy

chest X-ray the retinal OCT and in Figure 4.10 and Figure 4.11 have the plots as shown

in Figure 4.12 and Figure 4.13, respectively. From the plots, while decreasing the order

v, the values of PSNR, SSIM and PSNR*SSIM continue to increase until they reach their
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peak, and then they keep decreasing slowly.

Figure 4.12: The value of PSNR, SSIM and PSNR*SSIM for each order v of the noisy
chest X-ray image in Figure 4.10

Figure 4.13: The value of PSNR, SSIM and PSNR*SSIM for each order v of the noisy
retinal OCT image in Figure 4.11

After we perform this process to the 500 images of each dataset, we plot the his-

togram of the collected optimal orders v according to PSNR, SSIM and PSNR*SSIM,

respectively, as shown in Figures 4.14 and 4.15. The range of the order v that should be
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used can be obtained from the histogram. For example, from the histogram (c) in Figure

4.14, [−4.1,−3.9] is a range of the fractional order v that should be used to smooth a

noisy chest X-ray image which corrupted by the Gaussian noise with variance 0.05. From

the histogram (c) in Figure 4.15, [−4.5,−0.5] is a range of the fractional order v that

should be used to smooth a noisy retinal OCT image which corrupted by the Gaussian

noise with variance 0.05. In addition, we also calculate their mean and standard deviation

as shown in Tables 4.10 and 4.11.

(a) (b) (c)

Figure 4.14: Histogram of the optimal orders v according to PSNR, SSIM and
PSNR*SSIM, respectively, of the 500 chest X-ray images

Stat/Metric PSNR SSIM PSNR*SSIM

Mean −4.108 −3.9772 −3.9868

SD 0.1468 0.0461 0.0409

Table 4.10: Mean and standard deviation of the optimal orders v according to
PSNR, SSIM and PSNR*SSIM, respectively, of the 500 chest X-ray images

(a) (b) (c)

Figure 4.15: Histogram of the optimal orders v according to PSNR, SSIM and
PSNR*SSIM, respectively, of the 500 retinal OCT images
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Stat/Metric PSNR SSIM PSNR*SSIM

Mean −3.1542 −3.0302 −3.049

SD 0.4506 0.6230 0.5940

Table 4.11: Mean and standard deviation of the optimal orders v according to
PSNR, SSIM and PSNR*SSIM, respectively, of the 500 retinal OCT images

4.3 Conclusion

In this chapter, we apply the proposed mask as a smoothing filter to perform an

image denoising. Changing the values of the fractional orders will allow adjusting the

filter coefficients to each image according to it characteristics. This makes the proposed

filter to have a higher PSNR than mean filter, Weiner filter and Gaussian filter. Moreover,

the experiments show that the proposed mask has a better denoising performance than

the Gaussian filter when the image corrupted by Gaussian noise with a higher levels of

variance. In addition, the proposed filter can preserve detailed features in rich texture

images so that the output images have no significant blurring which can be indicated by

higher SSIM. Thus, the proposed filter can improve the result visually and in terms of

PSNR and SSIM efficiently.

4.4 Future work

In this work, the proposed method aim to obtain a range of an optimal order v for

a specific noisy image because we do not have a noise-free image to calculate the PSNR

and the SSIM. However, the limitation of this solution is that it need a large dataset to

get the statistics together with computational cost. Therefore, we will find some way to

obtain a formula of an optimal order v based on the characteristics of the image which

could better deal with the limitation.
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