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CHAPTER 1
INTRODUCTION

In finance, an option is a derivative that represents a contract rights to buy

(call) or to sell (put) the underlying asset by the writer to the holder. The buyer

has to pay premium for the rights granted. Two types of option widely used in

applications are the American option and the European option. The American

option can be exercised at any time prior to expiration and the other option can

be exercised only at expiration. In this work, we are interested in the European

call option. We denote

So

and o

as the current stock price,

as the strike price,

as the risk-free rate of interest,
as time to maturity

as the volatility of the asset price.

A formula that has been widely used to calculate the theoretical option price

in many stock markets is the Black-Scholes formula (Cgg). It was introduced by

three economists, Black, Scholes and Merton ([5], 1973). This formula is given by

CBS = Soq)(dl) — Ke_’"Tq)(dQ), (11)

where

. log(So/K) + (r + %)T
1 J\/T )
d2 = dl - O'\/T

1 v 2
and ®(z) = — / e~ 7 dt is the standard normal distribution function.

V2T J_so



The binomial formula which is derived from the binomial model is another tool
that is used to calculate the option price.

In the binomial model, we divide T into n periods. For k =0,1,2...,n, let Sy
be the stock price at the end of k' period and assume that the current stock price
Sk either rises to Spup with probability p or falls to Siydp with probability 1 — p
at the (k + 1) period, where 0 < p < land 0 < dp <1< e < up. Figure 1.1
(a) and Figure 1.1 (b) are examples of the binomial model where n = 1 and n = 2,

respectively.

Soug

(b)y n=2

Figure 1.1: Binomial model

Cox, Ross and Rubinste in ([9], 1979) showed that the binomial formula B,, for

option price is

B,=¢"T Z (Z)pk(l — p)" *max {Sou%d"B_k - K, O} , (1.2)
k=0
where
en —d
p= —B, ug = e"\/; and dp=e¢° . (1.3)
up — dB

It is well-known that the binomial formula converges to the Black—Scholes for-
mula. Moreover, there are many researchers who found the rate of this convergence
such as Leisen and Reimer ([17], 1996), Diener and Diener ([10], 2004), Heston and
Zhou ([12], 2000), and Ratibenyakool and Neammanee ([20], 2019).



At the end of each period, the current stock price in the binomial model either
rises or falls. In this work, we are interested in the model where the current stock
price can steady at the end of period. That is the trinomial model. We assume
that for £k =0,1,2,...,n — 1, the current stock price S; either rises to S,pur with
probability p,, falls to Sydr with probability p; or steadies at Sy with probability
Pm = 1 — pu — pa, where 0 < pu,pa,pm < L and 0 < dp < 1 < e < up. The

example of the trinomial model where n = 2 is shown in Figure 1.2.

Figure 1.2: Trinomial model for n = 2

If updy # 1, then the pattern is quite complicated. We can simplify the
trinomial model if we impose the condition urdy = 1. The example is shown in

Figure 1.3.

Figure 1.3: Trinomial model in case of urdy =1

Assuming urdy = 1, Boyle ([6], 1988) showed that the trinomial formula 7, is



given by

n n—=k

n

T,=e¢"" ( )pfjp&pzjk_l max {Soug_l - K, O} , (1.4)
prr e k,l,n—k—1

where " = n!
kln—k—1)  kKll(n—k—1)

In 2007, Ahn and Song ([2]) considered the trinomial model in case of ur = u%,

dr = up', py = p* and pg = (1 — p)?, where up and p are defined in (1.3). They
gave an idea that T,, = B», and converges to the Black—Scholes formula. We can

see Figure 1.4 for n = 1.

(a) 2-step binomial model (b) 1-step trinomial model

Figure 1.4: Trinomial model of Ahn and Song

After that, Intarapanya and Neammanee ([14]) confirmed their conjecture by

giving the rigorous proof in 2019. The result is stated in Theorem 1.1.

Theorem 1.1. Let T, be defined in (1.4) with ur = u%, p, = p* and pg = (1—p)?,
where up and p are defined in (1.3). Then,

T, =By, and lim T, = Cpgg,

n—oo

where Cpg and B, are defined in (1.1) and (1.2), respectively.

In 1988, Boyle ([6]) gave the trinomial model in case of

ur = e’\“'\/g7 (1.5)



(V+ M- M)up — (M —1)

P D@ o)
(V4 M?— M)uj — (M —1)uj
1 S o
and Pm =1 — Dy — Da, (1.8)

where A > 1,

52

M=¢% and V= (eTT—1>M2
and Entit et al. ([11], 2013) presented an example to show that the price of this
formula is closed to Black—Scholes formula.
In this work, we give the rigorous proof of this conjecture by showing that the
trinomial formula converges to the Black—Scholes formula. We also provide the

1
rate —= of this convergence. Our result is stated in Theorem 1.2.

vn
Theorem 1.2. Let T,, be defined in (1.4) with ur, p., pa, and p,, be defined in
(1.5)—(1.8), respectively. If K > Sy, then

lim Tn = CBS; (19)

n—oo

1
where Cpg is defined in (1.1). Moreover, the rate of this convergence is —.

NLD
That s

1

To prove the theorem, we divide it into four parts. The first part is a basic
knowledge of the formulas which is in Chapter 2. After that, we give the Berry-
Esseen theorem for trinomial random vector in Chapter 3. The proof of (1.9) is
presented in Chapter 4. For the last part, we show that the rate of the convergence

1
is — in Chapter 5.

Jn



CHAPTER II
APPROXIMATION OF OPTION PRICES

In this chapter, we will present the formulas used in approximating the option
price. In the first section, we will present the Black-Scholes formula which has
been widely used to calculate the theoretical option price in many stock markets.
Next, we will present the binomial formula in the second section and the trinomial

formula which extends the concept of the binomial formula in the last section.

2.1 The Black-Scholes formula

In this section, we will present the source of a shortened version of the Black-
Scholes formula (see more details in [7] and [13]). The Black-Scholes formula was
introduced by three economists Fischer Black, Myron Scholes and Robert Merton
in 1973 ([5]). It has been used to calculate the option price. The model makes

certain assumptions, including:

1. the option can only be exercised at expiration;

2. no dividends are paid out during the life of the option;

3. the market movements cannot be predicted;

4. there is no commissions;

5. the risk-free rate and volatility of the underlying are constant; and

6. the returns on the underlying are normally distributed.
Assume that the stock price S; obeys a stochastic process of the form

2

ds, = (u n %) Sydt + 08, dW,,



where ¢ > 0 and W, is a standard Brownian motion.
Let F'(S;,t) be the price of an option as a function of the underlying asset S(t),
at time ¢.

By Ito’s lemma, we have

OF 1 0*F OF
dF (S, t) = ((u + ) Stas (S, t) + 253 952 (S, t) + E(St,t)) dt
t
oF
-+ UStaS (St7 )th

Let P be a value of the portfolio that is created by selling one option and
buying 0 stocks. Then, P = F — §S; which implies that

AP = d(F — 5S,)

0?\ g OF 1, ,0'F OF OF

0.2

(0425 (2 - o) o 1 O or

OF
Note that the coefficient of dIV; contains the factor 95 0. This equation can
t

F
be simplified if we assume that ¢ = g—s Then,
t

(1, ,O*F  OF
dP_< S5 T o) &

Since the return of the portfolio should be equal to the return of the riskless

account, we have

dP = rPdt.

Then,

1 , ,0?F OF OF
( oSt g5 + o ) A= \F ~ Sigg; ) vt



That is

2Q2 52
_OF L ISOE 608 (2.1)

=
S T a5 T,

This equation is called that the Black-Scholes equation.

If F' is an option price, then the boundary conditions are

1. F(ST,T) = IIlaX{ST - K, O}
2. F(0,t) =0forall t € [0,T]

3. For each t € [0,T], F(S,t) ~ S;, where S; — oo.

From these conditions, we can show that a solution of the Black-Scholes equa-

tion (2.1) is the Black—Scholes formula for an option price which is given by

CBS = Soq)(dl) F— K€_TT(I)(d2), (22)

~ log(So/K) + (r + 5)T
oT ’
d2 = d1 - U\/T,

where 1

1 v 2
and ®(z) = N / e~ zdt is the standard normal distribution function (see [7]
T J—-c0

for more details).

Example 2.1. Let Sy, K, r, 0 and T be defined in Chapter 1.
Assume that Sy = $42, K = $40, r = 10%, 0 = 20% and T' = 0.5 years. Then,

~ log(42/40) + (0.1 +0.2%/2) x 0.5

d — 0.7693
! 0.2v05
log (42 /4 1-0.22/2) 0.
and 4, — 08(42/40) + (0.1 — 0.27/2) x 05 _ ) oo
0205

Hence,

Cps = 43®(0.7693) — 40e "1 *%5®(0.6278) = $4.76.



2.2 The binomial formula

The binomial formula was given by Cox, Ross and Rubinstein (][9], 1979). They
divide T into n periods, where n € N. For each k = 1,2,...,n, let S be the stock
price at the end of the k' period. Assume that for k = 0,1,2,...,n — 1, the
current stock price Sy either rises to Spup with probability p or falls to Spdp
with probability 1 — p at the end of the & 4+ 1 period, where 0 < p < 1 and

0<dp <1<ug. That is

Spup with probability p
Skl = for k=0,1,2,...,n— 1.

Sidp  with probability 1 — p,

From this fact, we see that

(

Soup  with probability p

S1 =9
Sodp with probability 1 — p

/

Siup with probability p

and Sy = ¢

Sidp  with probability 1 — p.
\

Then,

;

Sou with probability p?

S2 = § Soupdp  with probability 2p(1 — p)

Sod% with probability (1 — p)?2.
\

Hence, 2-step binomial formula is presented in Figure 2.1.

Figure 2.1: 2-step binomial model



In general case, the binomial formula satisfies the following diagram

Soug
L Soup~t
T Soup~'dg
SugFesme e Soui?d:
Solp e : .
So< Sougdp <T_ . ;
Sod Ty :
ovs 2 Sy =
Sedg~=z=o____ nRE Souddi?
TRl eewmggnsd
“H’“.._ Sgugdg_l
) ~=Sdp
Sodp
T 2T (n—1)T T
n n

Figure 2.2: n-step binomial model

We can show that
S, = Souldy 7 with probability (n>p7 (1-p)",
J

I
where (n) = n— and 7 =0,1,2,...,n.
i) (n=j)y!

Let C,, be an option price at the end of the n'” period. Then,

C, =max {5, — K,0}.

That is

Cy = max { Spupdyy ’ — K,0}  with probability (7>pf (L=p)",
J
forj:O,1727...,n.

Let E'[C,] be the representative of the option price at the end of the n'" period
and B, be the current option price. Then, B, = e "7 E[C,], i.e.,

B,=¢"" Z (?)]ﬂ(l — p)"7 max {Soujéd%_j —K,0}. (2.3)
=0
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From the risk neutrality hypothesis, we know that in a risk-neutral economy,
the expected yield from all assets equals the risk-free rate of interest. Therefore,

for k=0,1,2,...,n—1,

which implies that Sgugp + Skdp(l —p) = Ske%. That is

rT

en —dp
- 2.5
T (2.5)

(see [1], p.330 for more details).

If the binomial model is arbitrage free, then we need to assume that
rT
O<dp<l<enr <up

which implies that 0 < p < 1.
From (2.3), (2.4) and (2.5), Cox, Ross and Rubinstein ([9]) showed that

B, =5 Z (et -om- KZ (ra-sr o

where a=min{j € {0,1,2,...,n} | j > b},
b log (K /Sp) —nlogd
B log (u/d)
and q :pue_%.

We observe that the formula p depends on up and dg. There are many re-
searchers who gave the formula of ug and dg. In 1976, Cox, Ross, and Rubinstein

([9]) obtained CRR formula by taking

T

ug = V% and dgp =¢e 7V, (2.7)



12
In 1983, Jarrow and Rudd ([15]) defined
up = VEH=3T  and dg = eV m =4 T

After that, Tian (28], 1993) gave

n o2 led a
ug = € 5 (enT—Fl{—\/e?jT—eriT—?))
EM ) > -
and dg = 5 (ech +1-— \/e¥ + QQT—3)

and Walsh ([30]) gave
up = VI and dp = e=oVE+E

in 2003.
In general, Chang and Palmer ([8], 2007) defined up and dp by

2 2
ug = e"\/ngA”Z = and dB = e_"\/ngé”Z T’ (28)

where )\, is a general bounded sequence.
We observe that Chang and Palmer model generalized CRR model, Jarrow and
Rudd model and Walsh model by setting

1
=0, N\, = Iz and A, = L, respectively.
o2 2 o2
For CRR formula, Cox, Ross and Rubinstein showed that the binomial formula

converges to the Black—Scholes formula. Their result is stated in Theorem 2.2.
Theorem 2.2. Let B, be defined in (2.6) with p, up and dg are defined in (2.5)

and (2.7). Then

lim Bn = CBS-

n—o0
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After that, Heston and Zhou ([12], 2000) showed that the rate of this conver-
1
gence is 7 and Diener and Diener ([10], 2004) improved Heston and Zhou by
n

adding an additional term in approximation B,,. Their result is stated in Theorem

2.3.

Theorem 2.3. Let B, be defined in (2.6) with p, ug and dp defined in (2.5) and
(2.7). Assume that So =1 and T'= 1. Then, for large n, we have

B, =Cpgs +

e F A—1202 (02 — 1) +0( 1 )
24027 n nyn)’

log(1/K) +nlogd =
log(u/d)
A= —02(6+ d? + d3) + 4(d3 — d3)r — 12r* with frac[x] the fractional part of the

where o, = 1 — 2frac

real number x.

Leisen and Reimer ([17], 1996) showed that the rate of convergence in Jarrow

and Rudd formula is l Their result is
n

1
Bn:OBS+O(_)
n

1
In general, Chang and Palmer showed that B, converges to C'gg at the rate —.
n

Theorem 2.4 is their result.

Theorem 2.4. Let B, be defined in (2.6) with p, up and dp defined in (2.5) and
(2.8). Then, for large n, we have

2
41

)

Bn = C1BS—i_

Soe_ Agn - ].20'2T (A%n — 1) i O (1)
240/ 27T n ’

log(So/K) +nlogd
log(u/d)
and Ay, = —0°T (6 +d; + d3) +4T (d} — d3) (r — A\po®) — 1277 (r — )\n02)2 :

where Ay, =1 — 2frac
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In 2018, Ratibenyakool and Neammanee ([20]) improve Theorem 2.4 by giving

the better rate of convergence which is showed in Theorem 2.5.

Theorem 2.5. Let up and dg be defined in (2.8) and 0 < r,o,T < 1. For large n
such that

60 1.2657 max{d?,d2}

4

n > max {1OOT, ;30 max{d%, d%}}

ot’ o
and |r — X\,0?| < 1, we have

Spe~ /2 A,y —120°T (An12 — 1) + Aps + Co(dy, dy,0)
240 27T L o

Bn = CBS+

where A1 and A,o defined as in Theorem 2./,

Apz = =0T <2d% +AdY—~ azﬁ) + (24T2 + 4T\/T> (r — )\naz)2

+ 4T (20(11 + 40\/Td1 — VT + 402T> (7“ — )\nUQ) ,

~ 1.7185|z* + 19.3659
L= 4

|Co(d1, dQ, 0'>| S S()T’(dl) + KT(dQ) and T’(ZL’) + 49.9851.

g

2.3 The trinomial formula

The trinomial model is an extension of the binomial model. We know that
the current stock price in the binomial formula either rises or falls at the end of
each period. In the trinomial formula, we assume that for £ = 0,1,2,...,n — 1,
the current stock price Sy either rises to Spur with probability p,, falls to Sidr
with probability pg or steadies at S, with probability p,, = 1 — p, — p4, where

0 < pu,Pa,pm <1land 0 < dy <1 < up. That is

/

Srur with probability p,

Sk+1 =14 S with probability p,,

Skdr  with probability pg,
\



for k=0,1,2,...,n—1. Then

Sour with probability p,

S = So with probability p,,

and

Siur  with probability p,

So =145 with probability p,, =

Sidr  with probability py
(

\

Sou
Sour
So
Sourdr
Sodr

Syl

Sodr  with probability py

with probability pz
with probability 2p,p.m,
with probability p?,
with probability 2p,p4
with probability 2p,,pq

with probability p3.

15

(2.9)

We note that if updr # 1, then the pattern is quite complicated as shown in

the Figure 2.3.

Figure 2.3: 2-step trinomial model in case of urdy # 1

If we impose the condition urdr = 1, then (2.9) can be simplified into this

equation
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Sou?  with probability p?

Sour with probability 2p,p,

So So with probability 2p,pa + p2,

Sodr  with probability 2p,,pq

Syd%  with probability p2

\

and the trinomial model in Figure 2.3 can be simplified into the trinomial model

shown in Figure 2.4.

Figure 2.4: 2-step trinomial model in case of urdr =1

Under assumption updr = 1, we can show that
Sp = Sou];l with probability | . " . pi pil pnmfjfl 7
Js la n—jy— l

where

n B n!
jhn—j—1)  jW(n—j-0

for 5,0 =0,1,2,...,nand j+ 1 <n.

Let E [max {S,, — K, 0}] represent an option price at the end of the n'* period
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and T}, be the current option price. Then,

T, = ¢ "' E [max {S, — K, 0}]

n n—j
_r n o .
- TZZ(M,n—j_l)PLPZPmJ lmaX{Sou%l—K,O}. (2.10)

=0 1=0

There are 2 approaches to define p,, ps and p,,. In 2007, Ahn and Song ([2])
considered a trinomial formula from the binomial formula with ug and dg defined

in (2.7). From the 2-step binomial model as depicted in Figure 2.5.

Figure 2.5: Binomial Model for n = 2

It is similar to the trinomial model with 1 period as depicted in Figure 2.6,

where p, = p?, ps = (1 — p)? and p,,, = 2p(1 — p) with ur = u% and dr = d%.

Souf = Sour

Figure 2.6: Trinomial Model for n =1

They showed by example that the value T}, should be B,,, and converges to the
Black—Scholes formula.

After that, Intarapanya and Neammanee ([14]) confirm the conjecture of Ahn
and Song by giving the rigorous proof in 2019. The result is stated in Theorem
2.6.
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Theorem 2.6. Let T, be defined in (2.10) with ur = u%, p, = p* and py = (1—p)?,

where p and up are defined in (2.5) and (2.7), respectively. Then

T, =By, and lim T, = Cgg,

n—oo

where Cps and By, are defined in (2.2) and (2.6), respectively.

Another approach is given by Boyle ([6], 1988). He assumed that the expected
yield from all assets equals the risk-free rate of interest and the second moment

from all assets equals the volatility. That is for £ =0,1,2,...,n — 1,

E[Sit1 | Si] = Spe' (2.11)
and E[S2A/1Sk = SkeozTT.

From these conditions, Boyle showed that

(V4+ M? = M)uy — (M —1)

P T N E ) 212
2 2 3
and Pm = 1= Du— Pa,
where M=e% jand V= (eUQTT - 1) M2

We observe that the formulas of p,, ps and p,, depend on ur. Boyle gave an
example to show that we can not use the rising rate ur = e(’\/g of Cox et al. If
welet 0 =0.2,r=0.1, T =1 and n = 20, then uy = 1.045736 which implies that
pm = —0.0184 < 0.

Boyle suggested to use

up = eV (2.14)

where A > 1. In this case, we show in Lemma 5.1 that the values of p,, ps and p,,

are between 0 and 1.
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After that, Entit et al. ([11], 2013) gave an example to show that an option price
from Boyle’s formula is closed to the price from Black—Scholes formula. Example

2.7 is an example of Entit et al.

Example 2.7. Let Sy = 100, K = 110, »r = 0.05, 0 = 0.3 and T" = 1. Table 2.2
presents the option prices from the trinomial formula of Boyle which is closed to

the option prices from the Black—Scholes formula C'gg = 10.0201.

n 50 100 175 242
T, | 10.0274 | 10.0195 | 10.0263 | 10.0202

Table 2.1: Option price from Boyle’s formula

From Example 2.7, Entit et al. gave the conjecture that the trinomial formula
of Boyle should converge to the Black-Scholes formula. In our work, we give the

rigorous proof of this conjecture.



CHAPTER I11
BERRY-ESSEEN THEOREM FOR TRINOMIAL
DISTRIBUTION

In the proof that the binomial formula B,, converges to the Black—Scholes for-

mula Cpg, from (2.6), there are 2 terms of binomial probability, i.e.,

n

> (?) ¢(1-g)"7 and ZZ: (?)p]’(l -

Jj=a

In order to prove Theorem 2.2, we need to show that that

. n n . i \ & n . n—j _
5> (j)qfa gy = () and - Jim ) (j)pfu ) = B(dy)
Jj=a Jj=a
To do this, we need Berry-Esseen theorem for binomial distribution which is

stated in Theorem 3.1.

Theorem 3.1 ([4], 1941). Let X be a binomial random variable with paramiter
(n,q) and Z be the standard normal random variable. Then there exists a positive

constant C' such that for a,b € R,

<<

Pla<—22" <y _Pla<z<p
nq(l—q)

To prove that the trinomial formula 7}, converges to the Black—Scholes formula
Cpgg, we also need the Berry-Esseen theorem for trinomial distribution. In this
chapter, we will prove this theorem.

We will say that a random vector (X,1, X,2, ..., Xu) has a multinomial dis-

tribution with parameters n and (py, pe, ..., px) such that 0 < py,...,pr < 1 and
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k
Zpl = 1 if the joint probability mass function of X,1, X,0,..., X, is
=1

n

k
(L st e Y=o
P(Xpy=x1,..., X =) = L2y -5 Pk =1

0, ortherwise,

o n n!
where x1, To, . . ., x) are non-negative integers and =
T1,To, ..., Tk x1lwg! - ay!
A random vector (X,,1, X9, ..., Xnk) is called a trinomial random vector if k = 3.
For a random vector (X;, Xs,...,X}) in R*  the characteristic function of

(X1, X, ..., X}) is defined by

E (ei(t1,tg,...,tk)-(X1,X2,...,Xk))

k
where (tl,tQ, ,tk) S Rk and (tl,tQ, = ,tk> { (Xl,XQ, e ,Xk) = ZtJXJ
j=1

It is showed that the characteristic function of the multinomial random vector

(Xn1, Xn2, - - -, Xpg) with parameters n and (py, pa, ..., pg) 18

(Z pw“’) (3.1)

for (t1,tq, ..., tx) € R*. ([24], p.82 for more details).

The covariance matrix for a random vector (X, Xs,...,Xy) is ¥ = [0y],,,,
where 0;; is the covariance of X; and X; fori,j =1,2,... k.

We will give some properties of trinomial random vector in Lemma 3.2 and

Proposition 3.3.

Lemma 3.2. Let (X1, X0, Xp3) be a trinomial random vector with parameters
n and (p1,p2,p3). Then there exists a sequence of independent random wvectors
Y1, Yo, ..., Y, in R® such that for each j = 1,2,...,n, Y; = (Y;1,Y)2,Y}s) and the

random vectors Y1, Ys, ..., Y, satisfies the following conditions.
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13"V & (X, X, Xo3), where X £ Y means that X and Y have the same
j=1

distribution.
2. Foreachl=1,2,3, ZY]l 4 X
j=1
3. For eachl =1,2,3, Y1, Yo,..., Y, are independent Bernoulli random vari-

ables with parameter py.

Proof. Let Y1,Y5,....Y, be independent random vectors in R? such that for each
i=1,2,3,...n,

(
pr if ($1,$2,x3):(1a0>0)

P2 lf (.Tl,xg,l’g) = (0, 1,0)
P(}/; - (‘r17x27x3)) = <

D3 if (I17$27x3> - <O’ 071)

{ 0 otherwise.

1. For j =1,2,...,n, let ¢; and ¢ be the characteristic functions of Y; and Z Y;,
j=1
respectively.

For (t1,ts,t3) € R3, we have

o(t1,ta, t3) = @;i(t1,t2,t3)

—.

<
Il
—

I
=

E (ei(tl7t2:t3)'(yj1:YjQijB))

1

<.
Il

(108099 P (71,5, ¥,) = (1,0,0)

<
Il
—

I

ei(tht%tg).(o’l’())P ((}/ﬂ? }/j27 }/J3> = (07 L, 0))

_l_

+ ilt1t2,t3)-(0,0,1) p ((Yﬂ: Yo, YJS) = (0,0,1)) )

n 3
j=1 \i=1
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3 n
= (Z pleitl> .
=1

n
From (3.1), we see that Z Y; has a trinomial distibution with parameters n and
j=1

(p17p27p3)7 i'ea ZE/J i (anaXn27Xn3)'

j=1
2. Let z € {0,1,2...,n}. Since

Z Y} i (ana Xn27 Xn?)) )
j=1

we have
P(Xun<z)=) P(Xu=y)
y=0
T n—y
= P (X1, X2, Xn3) = (y,2,n —y — 2))
y=0 2=0
Tz n—y n
= P(ZYjZ(y,z,n—y—Z)>
y=0 z=0 =
r n—y n n n
= ZP<<ZY]1,ZY}2,ZY}5>:(y,z,n—y—2)>
y=0 2=0 Jj=1 Jj=1 j=1
“3r (3]
y=0 Jr=Il.
j=1
Then,

znj Yji £ X,
j=1

Similarly, we can show that Z Y;; and X,,; have the same distribution for [ = 2, 3.
j=1
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3. Let x1,29,...,2, € {0,1,2,...,n}. Then,

Tl Tn
P(}/ngh...,ynlgl'n):Z"'ZP(Y&lzyla"anlzyn) (32)

y1=0 yn=0

Since Y7, Ys, ..., Y, are independent, we can show that

P(ifllzylayél :y27’”7Yn1:yn)

n—yi n—=yYn
- Z Z P(Yi = <y1,21,n—y1 _21)7"'7Yn: (yn,zn,n—yn—zn))
2120 ano
n—yi n—Yn
= <Z P(Yi = (3/172177”0—211 = Zl))) T2 (Z P(Yn = (ynaznan_yn - Zn)))
z1=0 A}

ZP(YM:y1)P(Y21:y1)“'P(Yn1:yn)-

From this fact and (3.2), we have

P(Yn§901,-~,Yn1Sl‘n):HP(Yﬂij)-

Then, Y1, Yo, ..., Y, are independent.
We see that

P(Yji=1)=P((Yj1,Y)2,Y3) = (1,0,0)) =p
and

P(Yj =0)=P((Yj1,Y)2,Y;3) = (0,1,0)) + P ((Yj1, Y2, Yj3) = (0,0,1))
=Dp2+Pp3

:1_p17

which implies that Y}, is a Bernoulli independent random variable with parameter
p1, forall j =1,2,...,n.

Similarly, for each j = 1,2,...,n, we can show that Y}, and Yj3 are independent
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Bernoulli random variables with parameter p, and ps, respectively. ]

Proposition 3.3. Let (X1, Xpn2, Xu3) be a trinomial random vector with param-

eters n and (p1,p2,ps). Then

1. Var(Xu) =np(1 —p) forl=1,2,3 and

pP1ip2
1—p1)(1—po)

Proof. From Lemma 3.2, there exists a sequence of independent random vectors

1Y, = (3?1,3/}273/}3)}]'6{1,2 ,,,,, ny 0 R? such that ZY} < (X1, X2, Xn3), ZYJZ =

j=1 j=1
X and Yy, Yy, ..., Y, are independent Bernoulli random variables with parame-

2. the correlation between X,,1 and X, s p, = —\/(

ter p;, for 1 = 1,2, 3.
1. Let I € {1,2,3}.

We see that Z Y, is a binomial random variable with parameter (n,p;).
j=1

Since ZY;; 4 X, forall [ =1,2,3, we have
j=1

Var (X,;) = Var <i Y]l> =np(1—p).

J=1

2. Let j €{1,2,...,n}. Since P (Y;; = 1,Y,, = 1) =0, we have

EY;1Y = Z 1Yo P (Y1 = y1, Yo = y2) = 0. (3.3)

y1792€{071}

Let j,l € {1,2,...,n} such that j # [ and x1, 29 € {0, 1}.

Since Y; and Y; are independent,

P(Y}‘l =21, Y = 5172)
1—.1}1 1—5!72

= Z ZP(Y} = (v, y1, L =21 —31), Y1 = (Yo, T2, 1 — 12 — 2))
y1=0 y2=0
1—z1 1—x9

=Y ) P = (1 — 21— 3)) P (Vi = (g2, 22,1 — 22 — 12))

y1=0 y2=0
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= (i P(Y; = (x1,11,1 — 21 — yl))> (i P (Y= (y2, 22,1 — 29 — y2))>

y1=0 y2=0

=P (Yj1=21) P (Y2 = 22

which implies that Y}; and Y}, are independent.
Then,

EYﬂYlQ = EleEYzz = P1p2-

From this fact and (3.3), we obtain
Cov (an, an) = Cov <Z ij ZYE2>
j=1 =1

—E < Y1 — np1> <Z Yip — np2>
j=1 =1

=E < le) (Z Ym) —np1Y Yo —np2) Yp+ n2p1p2>
=y =1 j=1

j=1
=3 > EYpYo—np Y EYip—npy Y EYj +n’pipa
j=1 =1 I=1 j=1
=Y EYiYjs+ Y > EYjYi — n’pips — n’pips + n’pips
j=1 J=1 %7:&1
J

= n(n - 1)171]?2 == n2p1p2

= —np1p2.
Hence
on = Cov (X1, Xp2) _ _\/ P1P2 . =
V/Var (X,1) Var (X,.) (1 =p)(1 —p2)
A random vector (Zi,Z,,...,7;) in RF is the multivariate normal random

vector in R¥ with mean vector y in R* and covariance matrix ¥ = [oy;], . if its
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probability density function is defined by

1
f(2) 1 —m((af—u)?l(w—u)ﬂ
xr) = € 9
(v2r)" /det (3)
for all x = (21, 9,...,2;) € R, In case of = 0 and ¥ = I, where 0 is the zero
vector and I, is the identity matrix, we say that (Z;, Zs, ..., Zx) is the multivariate

standard normal random vector. For a special case k = 2, (7, Z,) is said to be

a bivariate standard normal random vector and the probability density function f

1 ﬂc%ﬂc%

of (Z1, Zs) is defined by f(x1,xs) = 2—6_ 2, for (xq,25) € R%
T

We know that the binomial distribution converges to the normal distribution.
We can find the rate of this convergence by the Berry-Esseen Theorem for the
binomial distribution which is stated in Theorem 3.1 (see Korolev and Shevtsova
([16], 2010), Shevtsova ([26], 2011), Shevtsova ([25], 2013), Schulz (23], 2016),
and Zolotukhin, Nagaev and Chebotarev ([31], 2018) for more details). Moreover,
some authors improved the rate of this convergence from O (%) to O (%) . For
examples, see Uspensky ([29], 1937), Neammanee ([18], 2005). and Ratibenyakool
and Neammanee ([21], 2017).

In order to prove the Berry-Esseen theorem for trinomial distribution in The-

orem 3.7, we need following theorems.

Theorem 3.4 ([19], 2018). Let Wy, Ws, ..., W, be a sequence of independent ran-
dom wvectors in R* and (Z1,Z,, ..., 7)) be the multivariate standard normal ran-

dom vector. Assume that EW; = 0 for all j = 1,2,...,n and covariance matrix

sz W, is L. If A is a conver set in R¥, then

j=1
P (ij € A) = P((Z1,Zy,...,Z) € A) + A,
7=1

where |A,| < <42\4/E—|- 16) ZE W,|I° and || - || is the Euclidean norm.

j=1
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Theorem 3.5. Let (X1, X2, Xu3) be a trinomial random vector with parameters

n and (p1,p2,ps3) and (Z1, Z3) be a bivariate standard normal random vector. For

a convex subset A in R3, we define

A" ={(a], 23) | (21, 22,0 — 11 — 1) € A},

where

o = T1 — NPy i Lo — NP2
1 7
\/2”?91(1 —p1) (L+pn) \/anQ(l —p2) (1 + pn)
* 1 — np1 To — NPo
Ty ’

T2 - p) A p) (- po) (L)

Pn s the correlation between X, and X,o. Then,
P ((anaXn%XnS) € A) == ((ZhZZ) S A*> + An(p17p2)7

where

|AL(p1,p2)| < (42\/§+ 16) ( . + ! ) )

Vapi(l=p1)  /npa(1—p2)

\/ (1 A pn)3

Proof. Let Y1,Ys,...,Y, be defined in Lemma 3.2.

For each j = 1,2,...,n, we define random variables W;; and Wj, by
W = Yii—m n Yio —p2
T 2 (T=p) (T4 pn)  mpa(l = p2)y/2(1+ o)
W, le — D1 _ Y}z — P2
j

2 2 (=) A= pn) el — p2)y/2(1 = pu)

and define a random vector W; by

Wi = (Wi, W) .

(3.4)

(3.7)

(3.8)

(3.9)

(3.10)

We see that Wy, Ws, ..., W, are independent and EW;; = EW,, = 0, for all
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7=12,...,n. Thus,

EZWJ = (EZWijEZWjQ) = (Z Ele,ZEWp) =(0,0). (3.11)
j=1 j=1 j=1 j=1 j=1
Let B = {(x1,13) € R?* | (21, 22,n — 21 — x5) € A}. Then,
A" = {(a1,73) | (21, 22) € B}.

We divide the proof into 3 steps as follows.
Step 1. We will show that

P((anaXn27Xn3 € A <ZW € A*>

We note that P (X1, Xne, Xn3) € A) = P ((Xn1, Xpne2) € B) and for (x1,25) € B,
(«%, x3) which are defined by (3.5) and (3.6) is unique.

Hence, it is sufficient to prove that for all (z1,x2) € B,

P (X1, Xn2) = (21, 22)) (ZW (2, 2% )

Let (z1,22) € B.

Since Z Y, = (Z GH Z Yia Z Y;3>
j=1 j=1 j=1 j=1

1=

(Xn1, Xn2, Xp3), we have

P((Xm,Xm) = (xl,ﬁz))
=P Zyyl = X1, Zyﬂ = 132)
j=1 j=1
SV > Ve s
j=1

_ Tr1 — npp j=1 _ Lo — NP2
Vipi(L=p1)  /api(L—p1) /npe(1— po) np2(1 — p2)

(3.12)



We note that for random variables X and Y,
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X=x and Y =y ifandonlyif X+Y =24y and X -Y =zx-—y.

Then,
P(X=z2,Y=y)=P(X+Y=z+y and X -Y =2 —y).
From this fact and (3.12), we have

P ((Xn1, Xn2) = (21, 22))

—n To — N
—P<\/Tpnzwjl T1 P1 4 2 D2

Vipi(L—p1)  /npa(1—ps)

mzmzz 1 — np1 _ To — NP2 )

= npi(1 —p1) npa(1 = p2)

((ZWJI,ZWﬂ) xl,x2)>
(S <)

Thus,
P (X1, Xn2, Xn3) € A) = P (X1, Xy2) € B) (ZW € A*>
Step 2. we will show that A* is a convex set.
That is for all x* = (27, 23), y* = (vi,y5) € A%,
x"y={tx"+(1-t)y" | 0<t <1} C A"

Let x* = (x3,23), y* = (y},y3) € A*.



Then there exist (z1,x2,n — x1 — x2) and (y1, Y2, 7 — y1 — y2) in A such that

o T —npy N Ty — Npy
1 — 9
\/2np1(1 —p1) (14 pn) \/2np2(1 —p2) (1+ pn)
o T1 = npy B T2 — NP2
2 )
V2np1(T—p1) (1= pn)  /2npa(1—p2) (1= py)
Yt = Y1 —np; I Y2 — NP2
¥ =
V20pi(1=p1) (T+pn)  /2np2(1 = p2) (1 + pn)
% Y1 —np Y2 — NP2
and Ys

T V2 (A=) A 2pa(l—p2) (L= pu).

Let 0 <t < 1. Then tx* + (1 — t)y* = (1, Uz), where

- 1 —np1 T2 — NP2
(751 =1 +
(\/2np1(1 —p) (L+pn)  /20pa(1 —p2) (1 +pn)>

Y1 — np1 Y2 — NP2
+ (1 -1 -
<¢2np1(1—p1)(1+pn) V2npa(1 — po) (1+pn)>
try + (1 —t)ys — npy g trg + (1 — t)ys — npo

T V2 (L —p) (L pn) - N2l —p2) (L+ o)

and

ﬂ2:t< 1 —np1 - Lo — NP2 )
V2np1(1—p1) (T +pa)  V/2np2(1— p2) (14 pn)

Y1 —np1 Yo — NP2
+(1—1) —
V2np1(L—p1) 1+ pn)  /2np2(1 — p2) (1 + pn)
try+ (1 =ty —np1 trg+ (1= )y, — npy

T2 —p) (o) 2l —pa) (Lt pu).

Let uy = txy + (1 — t)y; and uy = x5 + (1 — t)ys. Then

n—u —uy =t(n—ax;+x3) + (1 —t)(n—y1 + o).

Since A is a convex set, we have

(ug,ug,m — up — ug) € A.

31
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Thus,
u = Ur — NPy i Uz — NP2 — &
1= — U1
\/an1(1 —p1) (1+ pn) \/2np2(1 —p2) (1 + pn)
% U — nNp1 U2 — NP2 ~
and Uy = Ug.

B V2oL —p) L+ p) /20p2(1 — p2) (1 + o)

Hence, tx* + (1 — t)y* = (u}, uj) € A* which implies that A* is a convex set.
Step 3. We will show that

P (Z W; € A*> = P((Z1, Z2) € A") + Du(p1, p2),
j=1

where A, (p1, p2) is defined in (3.7).
To apply Theorem 3.4 for Z W;, where W; is defined in (3.10), we have to show

=1

n
that the covariance matrix of Z W; is L.
j=1

For each j = 1,2,...,n, we have
1 Y. ¥ ’
EW? — B j1 — D1 1 j2 — D2
7 2(1+ pa) <\/np1(1—p1) Vnpa(1 — po)

2(1+ py) npi(1 —p1) n\/p1p2(1 —p1)(1 —p2) np1(1—p1)

1 L, 2, ]
S 2(l4+p)\n n o m

1 I ( (Y — p1)? 2(Yj1 — p1)(Yj2 — po) (Yiz — p2)® )

S

Then,
Var (Z le) = ZVar(le) = X:EI/V]?1 = 1.
=1 j=1 =1

Similarly, we can show that Var <Z ng) =1.
j=1

Let 7,1 € {0,1,2,...,n}. If j =1, then
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E ]1—]91 sz—Pz Yi—m _ Yo — p2
Vvnpi(1—pr) \/npz 1 —po) Vipi(L—p1)  /npa(l —pa)

2 2
L0 St 2 N N R - Bt -
npi(1 —p1) npa(1 — pa)

&=

SRS

1
n
0

Suppose that j # [. Then,

E( le—pl i Y}2—p2 )( Yi—m _ Yio — po )
Vapi(L—p1)  rpas(L=pa) ) \/npi(1—p1)  /npa(1 — po)

—F Yii—m I Yio — pa E Yi—p B Yio — po
npi(1 —p1) npa(1 — po) np1(1 —py) np2(1 — po)

= 0.
Hence,
EW;1 Wiy
E Y}'l—pl 1 sz—pz Yi—m _ Yo — p2
npl(l _pl) np2(1 —p2) \/npl(l _pl) \/npg(l —p2)
2/1-p2
=0

for all j,1 =1,2,...,n. This implies that
Cov (Z Wi, > %) =0
j=1 =1

n
Then, the covariance matrix of E W; is I.
Jj=1
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From this fact, Step 2 and (3.11), we can apply Theorem 3.4 for Z W;. Then,

J=1

j=1

where |A,(p1,p2)| < (42v2+16) > E||(Wj, W)
j=1
To show (3.7), we have to show that

n , 1 1 !
ZEH(WJ‘MWJ’?)H < <\/np1(1 — 1) ! ) |

i=1 \/(1 + o)’ np2(1 — p2)
For 7 =1,2,...,n, we observe that
Yii—p 1 3
E|—= (L =p)’pr+pi(1 = p1))
npi(1—pi1) npi(1 —pi)

(1 —py)? + p?

ny/npi(1 = p1)

1

ny/npi(l —pr)

IN

Similarly, we can show that

I
~ ny/npa(1 = p2)

Yjo —po
np2(1 —p2)

E

forall j =1,2,...,n.
From this fact, (3.8), (3.9) and Proposition 3.3 (2), we obtain —1 < p,, < 0 and

E||(Wj, W)l

[N

=FE (Wj21 + Wj22)

=F

2
1 Yii—p N Yio — po
2(1+pa) \ /npi(1 —p1) npa(1 — ps)
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3
2

P ( Yi—p  Yp—p )2]
2(1=pn) \V/npr(T=p1)  /npa(1—p2)
< 1 g
\/8 (14 pn)?

+< Yii—m _ Yio — po )213

Vipi(L—p1)  /npa(1—ps)
= 1 E—< Yii—m >2+< Yijo — p2 >22
V84 )t [\l —p1) npa(1 — pa)
S—l E |2max <—Yj1_p1 >7< Yio — po )
V8 (L+pn)’ | npy(1—p1) npa(1 — p2)
;maX{E }
(1+pn)3

1 ( 1 i 1 )
n\/(l +on)° Vnpi(1 = pi) npa(1 — po)

2
Yii—m n Yjo — p2
Vipi(L—p1)  /npa(1 —p2)

le — D1
np1(1 —p1)

IN

Y}z — D2
npa(1 — p2)

IN

forall j =1,2,...,n.

Hence,

_ 1298 1 1 1
'17VVj2 a~
SN <;W(Hpn)3<mﬁ(1pl)+mz(1p2)>

< 1 ( 1 N 1 >
- \/(1—|—pn)3 Vipi(L=p1)  /ape(1—pa) )

From Step 1 and Step 3, we have

P ((Xn17Xn27Xn3) € A) =P ((ZhZQ) € A*> + An(pl;pZ),

where A, (p1, p2) is defined in (3.7). O
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Proposition 3.6. For 0 <a, <n, let
A, = {(ml,xg,xg) ER? | 2,29 >0, o1 +29<n and x; — 29 > an} (3.13)

and A* be defined in (3.4). Then,

1 bn2(p2,an)  fen(p1,p2)—cn(p1,p2)u2 W24l
P((Z1,Zy) € A) = —/ / ez dujduy,
2T Joui2)  Jbu(prpzian) ten(prpo)uz
where b1 (p2) = i, (3.14)
Vnpa(l = pa)
n— ap — 2nps
bna(p2, an) = = 3.15
2(])2 ) 2 np2(1 N p2) ( )
Qp — NP1 + NP2
bn(p1>p27 an) = , (316>
\/npl(l —p1)(1=p2)
cn(p1,p2) = npa(l = p2) = poy/pnl = py) (3.17)
o Vpi (1= p) (1= 7)
and en(p1,p2) = - il (3.18)

Vapi(1=p)(1—p2)

Proof. Let g : R? — R? be defined by

g(ur, ug) = (g1 (w1, uz), g2(u1, uz)),

where
g1(ug,ug) = U and  go(ui,ug) = S
(U1, U2) = —F———es 2(U1, U2) = —F———m.
2(1 +‘pn) V 2(1 __pn)
Then,

P((Zy,2,) € A}) :/ f(a], x%)dxidas = // 1 f(g (u1,u2)) | D] duydus,
A 97 (AR)

(3.19)

1 2324z
where f(z3,x3) = o€ = is the probability density function of bivariate stan-
T
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dard normal random vector (7, Z3) and

1 1
V 2(11+ pn)  V/2(1 ‘1|' Pn) - _ !

Og1(u1, uz)  9gi(u1, us)
o 8u1 8uz _ -
D = det g2 (ur,uz)  Oga(uy,us) | — B -2
Ouy Ous V2(1 = py) V21 = pn)

(see [22] pp.153-154 for more details).
From (3.19) and the fact that

(g1(u1,u2))* + (ga(us, us))” = (%) ’ (%)

u? + 2uyuy + Ul - u? — 2uiug + ul
2(1 + pn) 2(1 = pa)
(ui +2wruz +u3) (1 = pn) + (uf — 2urus + uj) (1 + pn)

2(1+ pn)(1 = pn)
p, u? — 2ppuis + us

1497
_ (u = paug)® 4+ (1= pp) uj
Lg2 ’

we have

P(znz)es)=[ [ oy, J(0 ) 1D
9 (A5

1 // _(91(u17u2))2+(92(u1»u2))2d d
= e 2 U1 aU2
r
2n\/1=pp J Jo1(ap)

7(“1*Pnu2)2+(1*0%)“§

2072 duydus.  (3.20)

=/
= e
2m/1 = p2 ) Jg1(ay)

We know that (z7],z3) € A} if and only if there exists a unique

(x1,22,n — 21 — x9) € A, such that

_ X1 —np1 I To — NPa
V2npi(L=p1) (T+pa)  /2npa(1—po) (1 + pa)

—g Ty —np Ty — NP2
=q ,
V(1= p1) /1pa(1 = ps)

*
Ly
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and
* I —np1 Ty — NP2
ZL‘2 — -
\/an1(1 —p1) (1+ pn) \/2np2(1 —p2) (1+ pn)
—g L1 — NP L2 — NP2
= g , )
Vp (1 —p1) /npa(1 = p2)
That is
g Ty — Np1 Lo — NP2 = (2%, %)
’ - 1»+%2/ -
Vrpi(1—p1) /npa(l — p2)

Then,

1 4 1 —Nnp1 Lo — NP2
g (An) = ) | (I’l,l‘g,n — X1 — 1'2) S An .
{ <\/”p1(1 —p1) /npa(l —p2))

We know that for (z1,x9,23) € Ay, 21,22 > 0, 21 + 22 < n and x5 — 21 < —a,,.

Then

n—a
0<zy, < .

and z9+a, <x1 <n-—x.

_an

n
We can show that if 0 < 29 < and x5 + a, < 1 < n— x9, then x1,29 > 0,
1+ 29 <nand s — 21 < —a,.

Thus,

n—a
Anz{(ﬁl,xz,n—xl—wz)ERs!()Swzé 5 andan+x2§x1§n—xz}.

T1 —np Lo — NP2

Vnpi(1=p1) /npa(1— ps)

Note that for (uj,us) = ( > € g~ (Ar), we have

n—a
0<z < =

and a, + 22 <21 <n-—x.
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These imply that

n— ay — 2npo

—n
P2 <

———— < uy < , 1e., bpi(p2) < ug < bpa(pe, an)
npz(1 — p2) 2y/np2(1 — p2)

and

A, — np1 + npa + usr/npa(1 — po) <y < T PP NP2 — U np2(1 — po)
np1(1 —p1) - np1(1 —p1)

From this fact and (3.20), we obtain

P((Z1,2,) € Ay)

n—npy—npg—ug/nps(1—pg) (Ulfpnu2)2+(17p%)u%
v/np1(1—p1) — 202 dusd
n U1aUs.

1 n2
- (&
21+/1 — p% by an—npj+npg+ugy/npa(1-p3)

/np1(1—-p1)

We can show that

n—np) —npy—up/npa(l1-p3) ( )2
Vnp1(1—p1) _\ Y onido) 7,
e 20—-p3) duy
an—npi+npytugy/npa(l1—pg)

V/np1(1-p1)

n(p1,p2)—Ccn(p1,p2)u2 2 Ut — Prlls
=+/1—p2 e zdu |u=—F—e|,
b (P1,02,0n)+Cn (P1,p2)u2 V - Pn

where by, ¢, and e,, are defined in (3.16)—(3.18), respectively. Then,

1 bn2(p2,an)  ren(p1,p2)—cn(p1,p2)u2 wZ 42
P ((Z17Z2) € A;) = —/ / e 2 duldug.
b (

2m bn1(p2) P1,P2,0n)+Cn (P1,p2)u2

]

Theorem 3.7. Let A, be defined in (3.13) and (X1, Xn2, Xn3) be a trinomial

random vector with parameters n and (p1,p2,p3). Then

1 bn2(p2,an)  pen(p1,p2)—cn(p1,p2)u2 w24l
P((an,XnQ,Xng) €A ) / / e 2 duldug
b (

27T bn1(p2) P1,p2,an)+cn (p1,p2)u2

+ An(p17p2>7
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where bu1(p2), bn2(P2,an), bu(p1,p2,an), cu(p1,p2), en(p1,p2) and A, (p1,p2) are
defined in (3.14)—(3.18) and (3.7), respectively.

Proof. To prove this Theorem, it is sufficient to show that A,, is a convex set.
Let t € (0,1) and (21, xa,x3) , (Y1, Y2, y3) € Ay.

Then x1, %2, y1,92 2 0, 21 + 22 <0, Y1 + Y2 <N, 1 — T2 > a, and Y1 — Yo > ayp.
Let

(u17u27u3) =t (x17x2a$3) + (1 - t) (yhy%yiﬁ)

= (t&?l + (1 — t)yl, t!ITQ + (1 — t)yg, t$3 —+ (1 — t)yg) .

We see that uq, us > 0.

Since 1 + x5 < n and y; + yo < n, we have

u tug =t(xy +x2) + (1 =t)(h +y2) <tn+ (1l —t)n=n

and  wup —ug = t(xy —x2) + (1 =) (11 — o) > ta, + (1 — t)a, = a,.

Then, (uq,us,u3) € A, which implies that A,, is a convex set.

From this fact, Theorem 3.5 and Proposition 3.6, the proof is complete. 0



CHAPTER IV

CONVERGENCE OF TRINOMIAL FORMULA

In this chapter, we will show that the trinomial formula converges to the Black—

Scholes formula, i.e.,

n—o0

from both trinomial formula and Black—Scholes formula.

4.1 Convergence of trinomial formula

lim 7}, = Cgs. In addition, we give examples of option prices

In the showing that lim B, = Cpg, we write B, in form (2.6) which have 2

n—oo

terms of binomial probability. To prove lim T,, = Cgg, we also need to write T,

in form which have 2 terms of trinomial probability as the lemma 4.1.

n—oo

Let p, and p, be defined in (2.12) and (2.13) with ur is defined in (2.14). Then,

and

<V+M2—M)UT—(M—1)

DPu =
(up = 1) (ug — 1)
(( —1)M2+M2 M>uT-(M—1)
ud — us — up + 1
(M )u; — (M — 1) uz?
ur — 1 —up' + up?
<62:LT601T o 6 = > —)\g\/_ (e i 1) 72A0’\/§
AoVnT —Aov/nT —2Xov/nT
e n —1l—e" n +e =
2rT+02T—Ao/nT rT—AovnT rT—2Xoy/nT —2X0V/nT
- Nov/nT rovnT —orov/nT
e n —1l—e n H4e =»
Dy = (V+M? - M)uk — (M —1)u

(ur — 1) (uf — 1)

M2 — M — (M — 1) ur

up — 1 —up' +ug?

(4.1)
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2rT o2 rT T
enen—eT—(en—l)e’\" n
- AovnT —AovnT —2XovnT
e n —1l—e = e n
2rT+cr2T rT rT+AovnT AovnT
(& n —€eén —¢€ n e n
- . (4.2)
AovnT —AovnT —2X ovnT
e n _ ]_ — e n + e n

We defined ¢,, g4 and g, by

Qu = puure ",

(4.3)
-1 T
qd = paur € (4.4)
and G = P, (4.5)

where p,, =1 — p, — pa.
By (2.11), we have
Skpuur + Skpdug?l + Sppm = Ske%

which implies that

£rT g gD _rT
UTpye ™ + pgup € +ppe =1,

Le, qu+qa+gm =1

From this fact and the fact that ¢, ¢4, ¢, > 0, we obtain

0< Qu; qd, Gm < 1.

Lemma 4.1. Let (X1, Xn2, Xn3) and (Ya1, Yoo, Yas) be trinomial random vectors
with parameters n and (qu, 4a, m), and n and (Pu, Pa, Pm), Where pu, pa, qu, qa and

qm are defined in (4.1)~(4.5) and py, = 1 — p, — pa. Let T, be defined in (2.10).
Then

Tn == SOP ((anXnQa Xn3) S An) - Ke_rTP ((Ynla Yn?a Yn3) S An) 5



where A,, is defined in (3.13) with

s (K/S0)
" AoV T .

Proof. By (2.10), we note that

n n—j

7=0 [=0

— T Z (],l,l{;) updpmmax{SOuT K,O},

(jlk)EB

where B = {(j,1,k) e R® | j, L,k e NU{0} and j+I1+k=n}.
Since ur = e/\"\/% we observe that for (4,1, k) € B,

Sgugfl—KZO if and only if j —1>

log (K /So) _ vnlog (K/S) _

— logur \o/T
Then
_ T Z ( )p]pdpm <SOUT —K>
(4,1, k)eC Iy
= S < ) puuTe E pcluT16 z:)l<pme_%)k
(,l,k)eC gL
- K —rT
e Ty, (J,l, >pjpdpm
(4,l,k)eC
:S K —rT i1k
( il k>quqdqm ey (J,l, k)pipdpm
(4,l,k)eC (J,l,k)eC
= SoP ((Xn1, Xna, Xn3) € C) — Ke™'P ((Yn1, Yo, Ya3) € C),
where

C=Bn{(GLk)eR|j—1>a,}

43

(4.6)

n-.

(4.7)

:{(j,l,k;)€R3|j,l,k€NU{0}, j+l+k=n and j—lZan}.
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We know that for (xy,xs,x3) € R? such that x; + zo + 13 # n,
P (X1, X2, Xnsg) = (21,29, 23)) = 0= P ((Yn1, Yno, Yu3) = (21, 22, 23)) .
By (3.13), we have
A, = {(z1,22,23) ER® | 21,20 >0, 21 +22 <n and 1 — 22 > a,}

with a,, is defined in (4.6).

We can see that

P ((anaXnZ)XnS) € An) = P((anaXn27Xn3) € C)
and P((Yn17Yn27Yn3) € An) i P((Yn17Yn2>Yn3) € C) .

From these facts and (4.7), the proof of this lemma is complete. [l

Lemma 4.2. Let p, and py be defined in (4.1) and (4.2). Then,

) 1
1. lim p, = >,
2. Jingopd = e and

_ 2r — o?) VT
3. lim /n(pg — pu) = —Q.
n—00 2Xo
T
Proof. 1. Let x = {/—. Then, by (4.1), we have
n

(& (& — €

u — = X 4.8
p ez\az - 1= 6—/\055 + 6—2)\090 g($) ( )

2, 2.2 2_ 2_ _
2rec4o r —Aoxr __ re*—Aox rT 2Acr:1:+e 2M\ox f(l’)

where

f(ZE) _ €2rm2+a2x2—)\ar . eTm2—>\az . erm2—2)\o—m + 6—2)\ar (49)

and g(x) = e — 1 — 9% 4 72T, (4.10)
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We see that

f/ (z) = (47“90 + 20%x — )\0) p2ra’tota’ o (2rz — Ao) Tt —Aow
— (27".73 — 2)\0‘) 67’932*2)\090 _ 2/\0.672)\095

and g(k)(x) — \egheroz _ (_1)k)\k0,k€f)\a:c + (_z)k)\ka,kefQ)\crx‘ (4.11)

Note that lim M and lim M

. 0
- are in the form —.
z—0 g(:p) z—0 ¢ (gc) 0

By the L’hopital’s rule, we obtain

[@) @)

Jim py, = lim gx) w00 g () (4.12)
Since
f// (.1') — (47a$ + 2021, 2 )\0_)2 62r;1:2+o'2552—)\o'z + (47_ + 20_2) €2T$2+U2x2—)\aac
— (2rz — )\0.)2 ot AT o rat—ow (2rz — 2)\0_)2 20w
o 2T€rx2—2)\ox 4 4)\20,26—2)\01
and (4.11), we have
o £ @) N0+ dr 4 20° — No® — 2r —AN0” — 2 +4N%0% _ 1
im = -
z—0 g”(x) 4)\2q2 2)\2
From this fact and (4.12), we finish the proof.
2. By (4.2), we have
2rT402T T rT+Ao/nT Aov/nT
_6 n —Eén — e n e n _h(x) (413)
pd - eAU\»,{ﬁ . 1 . e—)\an\/ﬁ + 6_2>\2\/ﬁ - g($)7 .

h(.fE) — 6(2r+02)1‘2 — e er:t2+/\aa: + eAax (414)
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and g(z) is defined in (4.10).

By the same argument of 1., we can use the L’hopital’s rule to show that

. . h(z) 1
i pa = lim g (x) 22
3. From (4.8) and (4.13), we have
n _ ) — fl=)

T
where f(z), g(x) and h(z) are defined in (4.9), (4.10) and (4.14) with z = \/;

We can see that lim M lim (UHEENS f(:c))/ and lim (h(z) f(x))” are

=0 xg(z) a0 (zg(x)) =0 (xg(r))”

in the form —. Hence,

: Jhoxainrndi(e) = f ()
nh—>nc>10 Vi (pa = pu) = :lci% xg(x)
@)
a0 29" (x) + 39" ()
(2r — o) VT
= 2Xo ' -

Lemma 4.3. Let q, and q; be defined in (4.3) and (4.4). Then

) 1
1. i qu = 55
2 im qa =535
. 2r + o2 \/T
3. lim /n(qq— qu) = _Q'
n—oo 2)\0’

Proof. 1. We see that

) T _rT
lim e’\”\/:e n = 1.

n—oo



From this fact, (4.3) and lemma 4.2 (1.), we have

. . T . T _iT 1
lim ¢, = lim pyure” » = lim pue’\”\/:e n = —.
n—00 n—00 n—00 2)\2

2. Similar to 1., we can show that

. L ao /T 1
Jim ga = Jim pae™ VR = 55
3. By (2.14), (4.3) and (4.4), we obtain

_rT _
VN (qa — qu) = € v/n (pauzr' — pyur)

rT rT

=ug'e” nVn(pa—pu) +pue” vV (up' — ur)

= VR (pa = pa) + o VIV (1= V).

1— 2)\0'\/;
Note that lim /n (1 — e”"\/§> = lim —— " is in the form g

n—o0 n—oo n-

NI

We use the L’hopital’s rule to show that

= —2)\20\/?.

. )\20'\/771_%6”\0\/;
=lim 3

1 8
n—oo —Y 2
27’L

lim v/n (1 - 62/\0\/2)

n—oo

From this fact and lemma 4.2 (1.) and (3.), we have

lim pue*%*)“’ﬁ\/ﬁ <1 — €2>\o—\/§) = (lim pu> (lim vn (1 — eQA”\/;))
n—o00 n—0o0

n—oo

- (2—;2) (—2A20\/T>
_ VT
)
and

r 2r — a2 )\T
tim 7V EeE Vi (py - p) = lim v (a— ) = — 22TV
n—oo

n—oo

47
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Hence,

. . oy /T _iT
nlgrgox/ﬁ(qd—qu) = lim e 2o R e 5/ (pa — Pu)
1 lim pyemn (e’)“’\/; — emﬁ>
n—oo

o (2r + 02) VT 0
N 2\o )

Lemma 4.4. Let (Y1, Y2, Ya3) be trinomial random vector with parameters n and
(Pu, Pay 1 — pu — pa), where p, and qq are defined in (4.1) and (4.2). Let A, be
defined in (3.13) with a,, is defined in (4.6). If K > Sy, then

lim P ((an Yn27 YTL3) € An) = (d2) )

n—oo

where

2

| log(So/K) +(r = )T

d
2 o\/T

(4.15)

Proof. Since K > Sy, we have a,, > 0. From Theorem 3.7, we have

i bn2(pd,an) en(Pu,pd)—cn(Pu,pd)T2 z%JrIg
P((Yn17Yn27Yn3> € An) 5 _/ / e 2 dxldl’g
b b

2 n1(pa) n (Pu,Dds0n ) +Cn(Pu,pa) T2

where

(422 + 16) ( 1 1 )
An wy Pd)| = ,
|An(pu; pa)| < \/(1 +on)? Va1 — py) ! Vnpa(l — pa)

bnl(pd)a an(pd7an)7 bn(pmpdaan)a Cn(puapd) and en(puypd) be defined in (314)*
(3.18) with p,, is the correlation between Y,,; and Y.

By Proposition 3.3 (2.), we have

_ PuPda
Pn = \/( (4.17)

L —pu)(1—pa)
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From Lemma 4.2, we see that

_ (42v2+16) 1 1
lim =0
" 1+ p)? VWml—pu npa(1l — pa)

which implies that
lim A, (pu, pa) = 0.
n—oo

Next, we will show that

1 bn2(pdsan)  fen(PusPd)—Cn(Pu,Pd)®2 wﬁwg
- = del dl‘Q (dg) .
27T bn(

br1(pa) PusPd>an)+Cn(Pu,Pd)T2

For convenience, we write b1, bna, bn, ¢, and e, instead of b,1(pa), bn2(Pa, an),

bn(pu7pd7an)a Cn(pu7pd) and en(puapd)7 respectively.

By lemma 4.2, we have

lim b,; = lim L) (s i) (8 —00, (4.18)
n—00 n—00 npd(l _pd)
)
lm b,y = lire—ae——_tPd
n—00 n—oc0 9 npd(]- _ pd)
= lim —<1 — 2pa) V' — lim an
n=00 24 /pa(1 —pg) "7 2y/npa(l — pq)
o log (K
e Gm2VE o (K/S)
n=00 24 /pa(1 — pg) 70 2Ma/Tpa(1 — pg)
=00 (4.19)
. . Puld 1
and oo P T T 5% \/(1 o)1 —pa)  1—2X2

From this fact and lemma 4.2, we obtain

. ~ o v/ mpa(l = pa) = pay/mpu(l — pu)
lim ¢, = lim

oo oo \/npu — Pu (1 - p721)

-(+5%) ( N 1)
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A
S 4.20
A (420)
lim e, = lim (1 —Pu—Pa) = 00 (4.21)
1 a
and lim b, = lim (—n + v (pa — pu))
_AW2R -1 (og(K/Sy)  (2r — o) VT
A2 —1 Aov/T 2Xo
_ _GHv2N -1 (4.22)
N1 '
Note that
en—CnT2 x% —entcnT2 x%
/ e 2dr = —/ e 2 dxy
bn+cnx2 —bpn—cnx2
—en+enT2 x% —bp—cnx2 o2
- _ (/ T3dry — / 6_2d$1)
—bn:cnmg z% —enlcan z%
— / 6_7dx1 B / 6_7dI1.
Then,
b2 ren—cnm2 zl+12
e d(L‘ldCL’Q R1 — RQ, (423)
bnl bn+cnx2

I?HE
2 d.’lfldIQ

n2
where = / /
nl
bn2  p—entcnz2 $1+$2
and = dridzs.

We observe that
b"2 (z+cn12)2+12

0< Ry = drdrs (r =21 — Cpg)
nl

—€n an oz +20n121+cn12+z§
= e 2 drodx
- bn1




o1

2
cnT
Zm-&- xg\/cn+1+\/”_+1)
cn

n2
= / / - dradx
bnl

2
o/ 3 +14—Snt
—€n z2 bn2 ( o A /cn+1>
:/ e 2(°%+1)/ e drodx
- bnl

oo

2
—en 12 0o ( \/cn+1+ Ccnz+1)
</ e 2(C%ﬂ”)/ e~ dxodx

[e.o] —0o0

—en 2
= / e 2(cn+1 / - 2 dudzx U = Ty + 1+ —fﬂ
oo \/02 c2+1

cn+1) dx

\/02 /
= \/27r/ \% C%“ e_édv v = BN
—o0 2 +1

—ond [ —— ). (4.24)
2 +1

By (4.20) and (4.21), we have lim ——%— = oo which implies that
n—o0 0721 _|_ 1

e T
n—00 6721_‘_]_

and lim Ry, = 0. (4.25)

n—oo

We can follow the arguments of (4.24) to show that

Ry < 271® <_—b”> . (4.26)

Note that

Ry

bnz  p=bn cnx2> a2
= e drdry (v =21+ cpxs)
bnl -

[e.e]
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n2 T —2cn:z721+c 12+12
/ / dxodx
bnl

Cn+1 JﬂL)

22
n2 Cnil 39 A /c%+1
/ / 2 dzodx
bnl
2
—bn, _ 22 bn2 (952 C%+1_ A /CC%Z+1)
= / e 2(en+1) / e 3 dzodx
- bnl

o0

1 —bn _ z2 ﬁn(w) w2 -
= —/ e 2cht1) / e Tdudr |u=x9\/2+1— ot
V2 - o () 2 +1
Bn(z)

/ e 2(cn+1) /
\/ C2 + 1 Jbnt L"+1 Yn ()

w2
e 2 dudz, (4.27)

where

AL IATINSS

Ve +1
and Bn(x) = bpar/c2 + 1 — \/%

Since p, = —\/(1 — pi;](?il — < 0, we have

_ V(1 —p2) — pu/1pi (1 — p1) -

Vnpi (1= p)(1 = p2)

n

which implies that

by (2 +1 by (2 +1
M<C’rzx<_cnbn7 for M

< < —=b, .
9 = Ol = %, =T

Then,

b | by, 2+1
< bnl\/ﬁ— nl (Cn+ ) = ! ;n =!"Yn

Cn T
W) = bR+ 1 — ——— < 2
(@) = bar VT 2,/c2 + 1

(4.28)



and

n _bn 2 - n
VA o a1

Hence, [y, Bn] € [yn(2), B ()] and

B () w2 Bn w2
/ e zdu > / e~ 2 du.
n(x) Tn

From this fact and (4.27), we have

o2 Bn 2
\/2* / by ) / s
C C”
Bn

= _ 9 e 2(3n+1) dq; (/ >
\/027 242

\/Cn+1

cn+1

2cn

> b c2+1+6"—::5n.

W) i
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:2ﬂ<@<_§%7> ( V%+1>> (B) =@ (). (4.30)

By (4.18), (4.19), (4.20) and (4.22), we obtain

bnl\/c +1

lim ~, = = —0Q,
n—oo TL-)OO
. : Cnbp
lim 3, = lim b, ci—i—l—i——:oo,
n—00 n—00 C% +1
by, 24+ 1
i Vet
n—00 2¢,,
. _bn
and lim ——— = d,

n—00 C% +1

which imply that
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and

i (o () - () 6ot -0

From these facts, (4.26) and (4.30), we have

n—00

Hence, by (4.23), (4.25) and (4.31),

b2 pren—cnuz udtud
lim — / / =2 duydity = Tim By — lim Ry = @ (dy).
n—00 27T Fenun n—00

7'L

]

Lemma 4.5. Let (X1, Xn2, Xp3) be trinomial random vector with parameters n
and (qu, Qd, Gm), where qu, qq and q,, are defined in (4.3), (4.4) and (4.5).
Let A, be defined in (3.13) with a,, is defined in (4.6). If K > So, then

lim P ((an,Xng,Xng) € An) = (dl) ,

n—oo
where

o Jos(S/K) + (r + )T
= U\/T .

(4.32)
Proof. We can follow the arguments of the proof in lemma 4.4 and replace p, and
pq by ¢, and g to show that the conclusion of this lemma holds. [

Using lemma 4.1 and lemma 4.4-4.5, we have the following Theorem.

Theorem 4.6. Let T, be defined in (2.10). If K > Sy, then

lim 7, = Chgg,

n—oo

where Cpg is defined in (2.2).
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4.2 Numerical examples

In the following examples, we compare the option prices from trinomial and

Black—Scholes formulas for different values of n.

Example 4.7. The option prices obtained from the trinomial formula with pa-
rameters Sop = $100, K = $110, r = 5%, 0 = 30%, T' = 1 year and A = 1.3 are
plotted in Figure 4.1 for n = 5,10,15,...,170. The black solid line indicates the
corresponding Black—Scholes option price. Table 4.1 shows some explicit trinomial

option prices along with the Black—Scholes option price.

n 20 40 60 30 100 120 140
T, |10.0236 | 10.0633 | 10.0233 | 10.0293 | 10.0372 | 10.032 | 10.0215
Cps 10.0201

Table 4.1: Option price using trinomial formula and Black—Scholes formula with
S = %100, K = $110, » = 5%, 0 = 30%, T =1 year and A = 1.3

-----------

Figure 4.1: Option prices using trinomial formula and Black—Scholes formula with
S = $100, K = $110, r = 5%, 0 = 30%, T =1 year and A = 1.3

Example 4.8. Similarly, the results of an example with parameters Sy = $110,
K =$120, r = 4%, 0 = 40%, T = 1 year and A = 1.5 are shown in Figure 4.2 and
Table 4.2.

n 20 40 60 80 100 120 140
T, | 15.4346 | 15.3067 | 15.3256 | 15.3517 | 15.3553 | 15.3504 | 15.3422
Chs 15.3310

Table 4.2: Option prices using trinomial formula and Black—Scholes formula with

S = $110, K = $120, r = 4%, 0 = 40%, T = 1 year and A = 1.5
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Figure 4.2: Option prices using trinomial formula and Black—-Scholes formula with
S =$110, K = $120, r = 4%, 0 = 40%, T =1 year and A = 1.5

Based on Figure 4.1 and Figure 4.2, we can see that option prices from trinomial
formula converges to the option price from the Black Scholes formula when n

increases which is in accordance with theorem 4.6.



CHAPTER V
RATE OF CONVERGENCE OF TRINOMIAL
FORMULA

In chapter 4, we know that the trinomial formula converges to the Black—Scholes

formula, i.e., lim T, = Cpgg. In this chapter, we will show that the rate of this
n—oo
L e, Ty = Cpg+0 2
—.ie., T, = — .
Jn 22 NG

Before we prove the main result in Theorem 5.6, we need the following 4 lem-

convergence is

mas.

Lemma 5.1. Let p, and pg be defined in (4.1) and (4.2). Then, for a large n,

2r\T — 02T 1

1. py==—+ T 7 +0|-]).
2)2 4 o/n n
1 2rV/T — 02T 1

2. pa= == — T U\/_—FO = .
2)2 4 o/n n

Proof. 1. For a,b € R, we have

00 k 2 3
AR R (L | L AR LA LR
‘ ( A +ﬁ+ T 6nyv/n M

where

a> 1 /[/a®> 3a?b 3ab2 =1 a F
=gt lost s Z —(=+—=) .
2n? n? n2\/_ k! \/—

It is easy to show that, for large n, we have

S (e )] A ) S (1) o)




o8

which implies that

Hence,

en TV =14 — +

Vn 2n +6n\/ﬁ+

2 2 3 1
b a+b 6ab + b O( ) (5.1)

n?
We can apply this fact to show that

to?
@reo®)T | 2oyT

2, \2,.2
o :1+)\0\/T+(47”+20 + A2o?)T

vn 2n
N (12r 4 602 + N202) Ao T/T L0 < 1 ) 7
6n+/n
- L n AoV T i (2r + \20?)T N (6r + X202 Ao TVT
vn 2n 6ny/n

1
+0<E),
r T 1
n n

oN/T AoV T — K2XN2a?T  kE*MN3a3T\T 1
and ekkﬁ =1+ o + = =+ U + O
vn 2n 6n+/n

(&

n2

for all £ € R.

From these facts and (4.1), we obtain

3AoVT 220 VT AoVT I\252T 3>\30'3T\/T 1
e Vi —e Vi —e Vi 4 1= + +0| =
n ny/n n
and

2rT+o'2T7)\o'\/nT rT—XovnT rT—2X ov/nT —2XovVnT

pu = AovnT —dovnT —2XovnT
e n —1l—e n H4e =n
(2r+o’2)T+)\o-\/T T | AoVT T
e vio—en ' Vro—en +1
- 3A0V/T 2X0V/T AoVT

e Vi —e vn —e vn 41
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) \orTNT + \o3TVT
o°T +

i i 0l)

+0
3 3
2\202T + A T\/_ ()

1
1 +27’\/T—02\/T+ O(E)
C2)2 dho+/n

2)\202T+M+0 1
vn n
2 2

_ L VTV (1,

2)\2 d\a+/n n

2. Similarly to 1., we have

2rT+o2T
n

rT rT4+ ov/nT AoV/nT
e —en —f n ==
pd - AovnT —AovnT —2XaovnT
e n —1l—e n e n
(2r+02)T+2Aa\F rT | 220 VT T | 8XoV/T 3Aa VT
e NG en Vn en vno 4 e Vn
3o VT 220 VT AoV/T
e”vr/ FenilAl e VRNl

2003 TNT — AorTNT
o’T +

_ Jn (%)

3.3
2\202T + —3A ATYT + O <l)
n

Jn
1
1 2rvVT — 02T — o (ﬁ)
T 2N AXo\/n o Na3TT N (_)
Vn n
1 2T -o*T 1
v bovh *O(;)-

]

1
Remark 5.2. We see that for large n, p, and p, are between 0 and = which imply
that Pm=1—pu—pa € (07 1)

Lemma 5.3. Let g, and qq be defined in (4.3) and (4.4) with ur, p, and pg defined
in (2.12), (2.13) and (2.14). Then, for a large n,

1 2rv/T VT 1
1. ¢ =+ VT to \/_—1—0(—);

2)2 4 o/n

n
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1 2rv'T 2T 1
2. dd = = — T\/_+U +0 | —].
2)2 d\o+/n n

Proof. 1. We apply (5.1) to show that

oVT _rT )\ T 1
’ U\/_+0<—).

\/ﬁ”:]_
‘ +\/ﬁ n

From this fact, (4.3) and lemma 5.1 (1.), we obtain

rT

Gu = puuTe_ n

MouT et < 1 2rﬁ—02ﬁ+0(1)>

= Vn n =S
‘ 2)\2 * A a+/n

1 2rv/’T 2T 1
_ L r\/_+0\/_+0 =\
2)2 A av/n n

2. Similarly to 1., we have

rT

Ga = paug'e” ™
_AeyT _rT
=e Yr  "Dpq
T —o2/T 1
:1_)\0\/_+Ol _1___2rP a\/_+0_
NZD n 2)\2 d\a+/n n
1 2r\/T 2T 1
_ 1 7‘\/—+0\/_+O 1) o
2)2 Aho+/n n

Lemma 5.4. Let (Y1, Y2, Ya3) be trinomial random vector with parameters n and

pa), where p, and pg are defined in (4.1) and (4.2). Let A, be

(pu7pd7 I - Pu —
defined in (3.13) with a,, is defined in (4.6). If K > Sy, then for large n,

P ((Yn1, Y2, Ya3) € A,) = @(ds) + O (\}ﬁ) :

where dy is defined in (4.15).
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Proof. From (4.16), we have

1 [bn2(pasan)  ren(pupa)—cn(pu.pa)ra 22402
P((Yn17Yn27Yn3) € An) = _/ / e 2 dl’ldl‘g
b

27 Jo1 (a) 2 (PusPasan)+0n (Pu,pa)o2

+ An(pu:pd)»

where

(42V/2 + 16) ( 1 . 1 )
\/(1 +on? \Wrpal=pa)  Vpa(l=pa) )

bnl (pd)a bn2(pda CLn), bn(pwpda CLn), Cn(puapd>> en(puapd) and Pn be defined in (314)_
(3.18) and (4.17).

Note that lim p,, lim p; and lim p, exist, then
n—oo n—oo n—o0

(42{‘/§+16)< 1 1 ):0 1
\/(1+pn)3 Vipu(l = pu) : Vpa(l — pa) (\/ﬁ)
which implies that

Ay (puspa) = O (%) :

Next, we will show that

1 [be2(paan) /en@uvpd)c"‘p“’pd)“ e ed o(d )+O( ! )
e T1dTg = 2 =
b \/ﬁ

2m bn1(pa) n (PusPdsan)+cn (Pu,pa) 2

For convenience, we write b1, by, b,, ¢, and e, instead of b,1(pa), bn2(Pa,an),

b (Pus Pds @)y Cn(Pu, pa) and e, (pu, pa), respectively.
By (4.23) and (4.24), we have

bnz  pen—cnzz 2,2
/ / e 2 d:cldxg = Rl — RQ, (52)
b1 Vb

n+CnT2




where

bno _bn_cnIQ a“%+x2
Rl = d[[‘l dl’g
bn1 —00

and

bna —en+cnxa x%-&-w% —e
0< Ry = / / e” 2 dridry < 2P | ——— | .
bui J—oo 2 +1

Since lim p,, lim pg and lim p, exist and lim p, + lim p; < 1, we have
n—oo n—oo n—oo n—o0 n—oo

€n = \/_ (\/pul Lo "4 ) Z Cl\/ﬁa

—pu)(1 = p7)
for some positive constant Cy. We know that for ¢t € (—o0,0),

I
2(1) < ——e

[T

<N

wl»—

([27], p-26) which implies that

o(-0vin =0( =],

for all positive constant C. By (5.4) and lim ¢, exists, we have
n—oo

0_2—63_1 S _CQ\/E7

for some positive constant Cy. From this fact, (5.3) and (5.5), we obtain

€n

1
0< Ry <27d <ﬁ) <27d (—C’g\/ﬁ) =0 <%> ,

ie.,
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(5.3)

(5.4)

(5.5)

(5.6)
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By Lemma 5.1, we have

1 1 1

which implies that
1
( ) (5.7)

Pu(l = pu) + 2pupa + pa(l — pa) = pu + pa — (pu — pa)” =

We know that for v,y € R,

k=0
N 7(7—1)"];57—’?-*‘1) if keN
where (k;) £ :
1 if k=0

(see [3], p. 356 for more details). Hence, for k € N,

Then,

_1 _1 1

2 < 2 == > 1.

()] =|(7)| =g twe=
8)
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Hence, by (5.9) and lemma 5.1,

by _ 1 _ an o
_m \/pu+pd—(pu—19d)2< \/ﬁ+\/_(pu pd)>

_ <,\ +0 <%>) (10%\253/;{) + 2“/2;002\/? +0 (L))

40 (7).

From this fact, we have

by
1

bn
2
/ R
da

C

sk

which implies that

St

@ _bn — L \/\/C%Jrl e_gdu
Ve +1 V2T J—so
R Y 1 [T e
— Xy e” 2 du+ —/ At eT T du
V 27T /—oo V 271_ da

— B(dy) +O (%) . (5.10)

By (4.26), (4.30) and (5.10), we have

and
Ry > 2n (cp ( —bn ) g (b— V“)) (@ (B) — ® (1)
c2+1 2en
~or <@<d2> ro () - (b— g“)) (1@ (=5.) = ().

(5.12)

where v, and 3, are defined in (4.28) and (4.29).
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Since lim p, exists, we have
n— o0

for some positive constant Cj.

From this fact and the fact that lim ¢, exists, we obtain
n—oo

bn, \/
watl o oom (5.13)
and Yo = buve 1 02 < —Csv/n, (5.14)

for some positive constants Cy and Cs.

By (5.5), (5.13) and (5.14), we have

o (b— VQ“) < & (~Civ/n) = O (

and D (y,) <P (—05\/5) =0 (

) (5.15)

) . (5.16)

S-Sl

Since lim py, hm ¢, and lim b, exist, we have
n—oo n— n—o0

_ (1 —2pg)\/1 a) log (K/So) -
" pa(1 —pa)  2Xo/Tpa(l — pa) 2 Covn

and

—— 2> C7V/n,

\/cn +1

for some positive constants Cs and Cr, i.e., —3, < —Cr/n.
From this fact and (5.5), we have

(—B,) <P (~Crv/n) = O (%) . (5.17)
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By (5.12) and (5.15)—(5.17), we obtain

rizon (w40 (2 )) (1r0 () ) =2me@) 10 (). Gy

Hence, by (5.2), (5.6), (5.11) and (5.18),

1 bn2(pPa,an) en(Puspd)—cn(Pu,pd)T2 z%_‘_m% 1
— / e 2 delde’Q = R1 — R2 = (I)(dg) + 0 (—) .
2 bn1(pa) br (PusPd;an)+cn (PusPa) T2 Vvn

]

Lemma 5.5. Let (X1, X2, Xp3) be trinomial random vector with parameters n
and (Gu, qd, @m), where q., qq and q., are defined in (4.3)—(4.5). Let A, be defined
in (3.13) with ay, is defined in (4.6). If K > Sy, then for large n,

P (Xo1, Xop, Xog) € Ay) = ®(dy) + O (%) ,

where dy is defined in (4.32).

Proof. We can follow the arguments of the proof in lemma 5.4 and replace p, and

pa by ¢, and g4 to show that the conclusion of this lemma holds. [
Using lemma 4.1 and lemma 5.4-5.5, we have the following Theorem.
Theorem 5.6. Let T,, and Cpg defined in (2.10) and (2.2). If K > Sy, then, for

large n,

1



CHAPTER VI
FUTURE RESEARCH

In this Chapter, we will give some idea of future research for trinomial formula.

In case of binomial formula, Heston and Zhou ([12], 2000) showed that the rate of
1 1

convergence is N After that, Diener and Diener ([10]) improved the rate to —
n n

in 2004. To do this, they used the Berry-Esseen theorem for binomial distribution

with a collection term, i.e.,

X — C 1
pl——=—Z2 <, =(I>(x)—|——+0(—), (6.1)
np(L —p) Vn n
where X is a binomial random variable with parameter (n,p), C' is a known con-

stant and ® is the standard normal distribution function.

1
In [10], when they applied (6.1) to B,, the term of order — is zero. Hence,

vn

1
Bn:CBS+O<_)
n

From Chapter 5, we know that the rate of convergence in case of trinomial

1
formula is —. We have an idea to use the same technique of [10] to improve

NG

1
the rate of convergence to —. To prove this conjecture, we need the Berry-Esseen
n

theorem for trinomial distribution with a correction term.
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