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CHAPTER I

INTRODUCTION

The detection of buildings in a given place is a primary step for close observation

applications, which allows for the classification of specific buildings. There have been

various researches in this branch, which have had many benefits; for instance, an urban

planning, a state cadastral inspection, and an infrastructure development of cellular and

telecommunication companies. The major problem is that many factors can affect this

process, such as the complicated shapes of specific buildings, the building size, image

occlusion by other buildings or trees, and remote sensing image clarity. The examples of

images are shown in the following figures.

Figure 1.1: Complex shapes of specific buildings [1]
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Figure 1.2: Different sizes of the buildings in the airport [1]

Figure 1.3: Remote sensing image [1]
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Figure 1.4: Buildings and trees obscured airport buildings [1]

To analyze remote sensing images for detecting or classifying buildings, computer

scientists may have to do these manually, which requires a lot of processing time and it is

hardly impractical when applied to regional or global scales. Thus, it is very important

to develop methods that can accurately and automatically detect buildings from high-

resolution remote sensing images.

This study addresses the specific building detection within the data set of 322

airports in Asia, collected from a satellite, with some assumptions. One is that each

image includes only the airport areas. We are only interested in the main building for the

detected buildings, namely, passenger terminal buildings, control towers, cargo buildings,

and hangars. Next, each collected image is labeled with the specific building detected

using a built-in function of the Visual Object Tagging Tool program.

In technical terms, the concept of the convolutional neural network (CNN) is applied

to manipulate the labeled images [25]. CNN has been used in many ways for the detection

of interesting objects on images, such as in the region-based convolutional neural network

(R-CNN), Faster R-CNN, You Only Look Once (YOLO), and YOLO9000 or YOLOv2
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[26, 27, 20, 22]. To achieve our objectives effectively, the concept of Darknet53 in YOLOv3

is utilized to detect the buildings in the labeled images.

Redmon and Farhad have proposed the YOLOv3. It is a method that uses single

CNN to predict the boundary of the box and to classify [28]. YOLOv3 is also a regression-

based object detection method that transforms the detection problems into regression

problems. Because of its high efficiency, which consumes less computational time for

an object detection, the regression-based object detection methods are more suitable for

our work than those of the region-based methods. In 2019, Zheng et al.[29] improved

the structure of YOLOv3 and proposed some applications of the improvement in aircraft

recognition through remote sensing images. In addition, the improved method has also

been tested by the aircraft industry, with both low and high-quality remote sensing of

images. The results have pointed to extremely high accuracy and recall rates of 99.72 %

and 98.34 %, respectively. It shows that the improved method is better than the original

YOLOv3, even though the images have overexposure and cloud occlusion. Recently, to

detect an aircraft in a given place, Sun et al. [30] and also Lilek [31] employed the model

based on the CNN method, which has been named as the practical saliency map and

makes the background noise decrease significantly.

As mentioned in this work, we have studied the detection of buildings at the airport

area using the remote sensing of images through the concept of YOLOv3, which is a CNN-

based object detection method with a saliency map. The study aims to use YOLOv3 to

efficiently detect airport buildings through remote sensing images with improved accuracy.

Since our data is collected from different remote sensing images, the colors of buildings

and background become quite similar. This makes it difficult to separate the buildings

from the background visually. To overcome this issue, we need to adjust their colors to

be more different before the step of detection by applying the Jet colormap. For instance,

for detecting people, Ren et al. [32] has recommended the jet colormap method to encode

the raw depth of an image rather than using the gray-scale encoding method directly.

In this thesis, we divide the thesis into five chapters. In Chapter I, we discuss the
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scope of our study and the details of the materials and methods used. And in Chapter

II, the methodology is described in detail, including the basic knowledge used and some

evaluation indicators used to investigate our improved method. Chapter III explains the

improvement of our work. Chapter IV discusses the accuracy and efficiency of our results

through experiments involved with the model. The last Chapter V concludes an overview

of the work in this thesis.

1.1 Objective

To detect the building in an airport from remote sensing images using the You Only

Look Once deep learning method.

1.2 Scopes and Assumptions

1. The remote sensing images used in this work are acquired 0.6 km, 0.8 km, and

1.0 km above ground. The datasets were collected from 322 Asian airports during the

period of May 1, 2019, through January 31, 2020.

2. The whole buildings in Asian airports should be clearly visible from remote

sensing images.

3. The resolution of images must be at least 416 × 416 pixels.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

BACKGROUND KNOWLEDGE

2.1 Image Processing

Image processing means processing or computerized calculations to get the required

information in qualitative and quantitative terms. It is a method to perform some oper-

ations on an image, for example, enhancing an image, removing signal noise, extracting

the interesting objects from the image in order to analyze for quantitative data such as

size, shape, and direction of object movement in the image. Then, we can analyze these

quantitative data and create a system to exploit tasks such as fingerprint recognition

to determine whose the existing fingerprint image belongs to, the industrial production

quality inspection system, the quality sorting system of agricultural crops. The auto-

matic postal code reading system is for sorting out the destination of a large number

of daily mail by using an image of the postal code on the envelope. The system stores

vehicle information in and out of the building using pictures of license plates for safety

purposes. The system monitors road traffic by counting the number of cars on the road

in CCTV photos at different intervals. Face recognition systems to monitor terrorists in

landmark buildings or immigration and medical imaging analysis. From the various sys-

tems mentioned above, it can be seen that image processing requires mass images which

are repeated several times. If humans manually analyze these images, it takes a lot of

time and labor. The manual analysis may cause fatigue, resulting in a crash in image

processing, so computers play an essential role in performing these functions. It is also

known that computers can speedily calculate and process large amounts of data, making

it extremely useful to optimize image processing and analyze data from images in different

systems. Examples of the utilization of image processing as shown in Figures 2.1, 2.2,

2.3, and 2.4.
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Figure 2.1: Teleconference via teleconferencing system using image compression tech-
niques [2]

Figure 2.2: Fingerprint examination using the fingerprint scanning system [3]
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Figure 2.3: Satellite imagery using the principle of image processing [4]

Figure 2.4: Applying rescue robots as accident prevention and first aid provision
system [5]
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We will explain the basics and details about digital images involved in this thesis

in the following sections.

2.1.1 Digital Image Definitions

A digital image is a two-dimensional display of an image in a unit called a pixel.

It can be defined as a two-dimensional function 𝑓(𝑥, 𝑦), where 𝑥 and 𝑦 are the image

coordinates. The amplitude of 𝑓 at any (𝑥, 𝑦) within the image is the intensity of the

image at that position. Provided that 𝑥 and 𝑦 are the image coordinates, defined by

𝑥 = 1, 2, 3, ..., 𝑀 − 1 and 𝑦 = 1, 2, 3, ..., 𝑁 − 1, and the amplitude of 𝑓 are finite values,

so this image is called a digital image. Let 𝑓(𝑥, 𝑦) be an 𝑀 × 𝑁 matrix where the origin

of the image is at the coordinate (𝑥, 𝑦) = (0, 0). Then, 𝑓(𝑥, 𝑦) can be written in a matrix

form as follows

𝑓(𝑥, 𝑦) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑓(0, 0) 𝑓(0, 1) ⋯ 𝑓(0, 𝑁 − 1)
𝑓(1, 0) 𝑓(1, 1) ⋯ 𝑓(1, 𝑁 − 1)

⋮ ⋮ ⋱ ⋮
𝑓(𝑀 − 1, 0) 𝑓(𝑀 − 1, 1) ⋯ 𝑓(𝑀 − 1, 𝑁 − 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

All values in the matrix are referred to as pixels, and pixels begin at (0, 0) in the

top left corner of the image. The positions of the pixel are arranged in order from left to

right and top to bottom. A bit-mapped image or raster image collects the intensity of a

digital image in memory in this way.
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Figure 2.5: The example of a grayscale image (left), a grayscale image combined with
the intensity arrays (middle), the image intensity arrays (right) [6]

Now that we describe the basics and details about digital images, we’ll describe

digital images operators related to this thesis in the next section.

2.1.2 Basic Mathematical Tools Used in Image Processing

For image processing tasks, mathematical tools are helpful and essential because

they can help in many ways, such as the image enhancement, the noise reduction, and

the feature extraction.

2.1.2.1 Elementwise Operations

An elementwise operation between one or two images is used to perform actions

pixel by pixel. For example, consider the following 3 × 3 image array:

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

⎞⎟⎟⎟⎟⎟⎟
⎠

and
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑏11 𝑏12 𝑏13

𝑏21 𝑏22 𝑏23

𝑏31 𝑏32 𝑏33

⎞⎟⎟⎟⎟⎟⎟
⎠

.
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This formula defines the elementwise ⊙ product between these two matrices:

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

⎞⎟⎟⎟⎟⎟⎟
⎠

⊙
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑏11 𝑏12 𝑏13

𝑏21 𝑏22 𝑏23

𝑏31 𝑏32 𝑏33

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑎11𝑏11 𝑎12𝑏12 𝑎13𝑏13

𝑎21𝑏21 𝑎22𝑏22 𝑎23𝑏23

𝑎31𝑏31 𝑎32𝑏32 𝑎33𝑏33

⎞⎟⎟⎟⎟⎟⎟
⎠

.

2.1.2.2 Arithmetic Operations

Arithmetic operations such as addition, subtraction, multiplication, and division

are often applied to tasks involving images. Arithmetic operations between two images,

the dimensions 𝑀 × 𝑁 , 𝑓(𝑥, 𝑦), and 𝑔(𝑥, 𝑦) are expressed as

1. Addition: 𝐴(𝑥, 𝑦) = 𝑓(𝑥, 𝑦)+𝑔(𝑥, 𝑦). The image enhancement is used to average

the image to reduce noise. This type of operation is performed in the image enhancement.

2. Subtraction: 𝑆(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) − 𝑔(𝑥, 𝑦). The image subtraction is commonly

used in medical images, especially, removing the background data or increasing the promi-

nence of objects.

3. Multiplication: 𝑀(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) × 𝑔(𝑥, 𝑦).

4. Division: 𝐷(𝑥, 𝑦) = 𝑓(𝑥, 𝑦)÷𝑔(𝑥, 𝑦). Both the image multiplication and division

are used to correct the grayscale due to varying intensity.

𝐴(𝑥, 𝑦), 𝑆(𝑥, 𝑦), 𝑀(𝑥, 𝑦) and 𝐷(𝑥, 𝑦) are images of the same size 𝑀 × 𝑁 .

2.1.2.3 Logical Operations

Logical operations like AND, OR, and NOT are frequently used to combine two

binary images, each of which has two colors: black (0) and white (1). The logical operation

is applied elementwise (bitwise) to integer images. A truth table for AND, OR, and NOT

operators are shown in table 2.1. Figures 2.6, 2.7, and 2.8 show the results of using the

AND, OR, and NOT operators with a binary image, respectively.
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Table 2.1: The example of a truth table for AND, OR, and NOT operators

A B (A) AND (B) (A) OR (B) NOT (A)

1 1 1 1 0

1 0 0 1 0

0 1 0 1 1

0 0 0 0 1

Figure 2.6: The AND operator gives out 1 only if both (A) and (B) are equal to 1

Figure 2.7: The OR operator gives out 1 if (A) or (B) or both equal 1

Figure 2.8: The COMPLEMENT (NOT) operator gives out 0 when (A) = 1

After describing the digital images operators, we will describe spatial filtering as
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necessary in computer vision and essential to this work in the next section.

2.1.3 Spatial Filtering

Spatial filtering is a relatively simple technique and emphasizes low-frequency spa-

tial sharpness and high-frequency spatial sharpness and emphasizes the edge line in nu-

merical image data. Spatial filtering is an average set of points using square grid points,

which has dimensions, such as 3 × 3, 5 × 5, and 7 × 7, which always have an odd number

of vertical and horizontal points. We will use a square grid to calculate the image pixel

mean at the center of the image matrix. The matrix of numbers used to average the

values of each pixel image from the neighborhood is called a coefficient to calculate the

resulting value of the center image.

First, we multiply the coefficients with the intensity of the image data in the cor-

responding positions. Then, we combine the results obtained together. Finally, we take

all sums divided by the sum of the coefficients. The result is shown in Figure 2.9.

Figure 2.9: Example of spatial filtering

2.1.3.1 Gaussian Filters

The Gaussian filter is a spatial filter with an inverted bell shape extensively used

in image processing for smoothing, noise reduction, and computing derivatives.

The one-dimensional gaussian filter equation has the following equation:
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𝐺(𝑥) = √ 𝑎
𝜋𝑒−𝑎𝑥2 .

It can be defined using the deviation parameter with the following equation:

𝐺(𝑥) = 𝑒− 𝑥2
2𝜎2

√
2𝜋𝜎 ,

where 𝑥 is variable value in the x-axis, and 𝜎 is a deviation value.

Figure 2.10: The graphical representation of the one-dimensional Gaussian distribu-
tion

The two-dimensional Gaussian distribution equation used to create the gaussian

kernel has the following equation

𝐺(𝑥, 𝑦) = 𝐾𝑒− 𝑥2+𝑦2
2𝜎2 ,

where 𝑥 is the variable value in the x-axis, 𝑦 is the variable value in the y-axis, 𝜎 is the

standard deviation value, and 𝐾 is the amplitude.
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Figure 2.11: (a) The graphical representation of 2-dimensional Gaussian distribution
and (b) The example of a 3 × 3 gaussian kernel

Figure 2.11(a) depicts a graphical representation of the gaussian distribution with

K = 1 and 𝜎 = 1, and Figure 2.11(b) depicts the example of a 3 × 3 gaussian kernel.

The following section describes the details of color image processing, which is one

essential aspect of computer vision, including more information and types of color models.

2.1.4 Color Image Processing

Color is one of the essential indicators of image processing. Color is often used to

classify objects and to define the class of each pixel in an image. Many researchers use

color indicators to achieve their goals. For example, color is used for x-ray imaging or

classifying cancer cells and normal cells in medicine. In satellite imagery, color is used to

distinguish the class of space taken by satellites, and in engineering, color is used to find

fault in circuit boards.
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2.1.4.1 Color Models

The color model or the color system describes colors people see in nature by sepa-

rating them into various elements which can be replaced by numbers that are measured

and processed. Normally, the color model can be explained by using the coordinate sys-

tem in which each color is represented by a single point in the coordinate area. Moreover,

this color model is also defined as a standard referred to a particular color, which can

be usually seen from the monitor, photos, and prints. This model uses the properties of

primary color to generate other different colors. However, there are many mixing criteria

of colors. In this research, we use three color models, including, the RGB color model,

the HSV color model, and the Grayscale model.

The RGB Color Model

The RGB color model is made up of three primary colors: red, green, and blue. The

desired color generation is identified by three-color values mixed in different ratios. Color

depends on the intensity of that color. If there is high color intensity when combined, it

will produce white, but the low color intensity will make black, so this RGB color model

is called positive color mixing. The RGB color model is suitable for display on lighting

devices such as monitors, digital cameras, or web images. The RGB color model is shown

in Figure 2.12.
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Figure 2.12: The RGB color model on a three-dimensional axis [7]

The HSV Color Model

The HSV color model is a pyramid, hexagon, or color cone, converted from an

RGB color model that undergoes a non-linear transformation. Therefore, in the HSV

color model, hue, saturation, and brightness are used to specify color values, for example,

changing a light red to a light green with the same saturation level. All three values must

be changed for the RGB color model to produce a light green color, but only the color

values are changed in the HSV color model. It shows that the HSV color model is a color

model that makes it easier to select colors and differentiate colors.

The HSV color model can be described as an inverted hexagonal pyramid.

The upper surface is a regular hexagon, showing a change in the shade in the Hue

(H) direction from 0° to 360°, i.e., the entire spectrum of visible light. The six corners of

the hexagon represent the six colors: red, yellow, green, cyan, blue, and magenta.

Saturation (S) is denoted by the direction S from the center to the hexagonal region,

and the value varies from 0 to 1. The closer to the hexagonal area, the higher the color

saturation. The hexagonal part’s color is most saturated, 𝑆 = 1; The color saturation in

the hexagon center is 0, i.e., 𝑆 = 0.
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The height of the hexagonal pyramid (also known as the core), is denoted by the

𝑉 value. It demonstrates the gradient of colors from black (𝑉 = 0) to white (𝑉 = 1) as

bottom to top directions, see Figure 2.13.

Figure 2.13: The HSV color model on a three-dimensional axis [8]

The Grayscale Model

A grayscale image is an image that represents only one shade of gray. The value of

each point in the picture is grayscale intensity. They are often stored in 8-bit sizes and

offer a range of grayscale from white to black from 0-255. Grayscale images are commonly

used in various image processing processes because the grayscale shade is essential and

can distinguish its feature. An example of grayscale coloring is shown in Figure 2.14.
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Figure 2.14: The example of a grayscale [9]

There are several approaches to convert an RGB color image into a grayscale image.

However, in this research, we use the following equation to convert them.

𝑔𝑟𝑎𝑦(𝑥, 𝑦) = 0.299 ⋅ 𝑟(𝑥, 𝑦) + 0.587 ⋅ 𝑔(𝑥, 𝑦) + 0.114 ⋅ 𝑏(𝑥, 𝑦), (2.1)

where 𝑟(𝑥, 𝑦), 𝑔(𝑥, 𝑦), and 𝑏(𝑥, 𝑦) is the intensity of red, green, and blue, the model of

RGB color images at any pixel (𝑥, 𝑦), respectively.

The following section is an essential part of the idea to improve our work efficiency.

This section describes the color mapping process, including details and workflows.

2.1.4.2 Color Mapping

The color mapping method is intended to change the color of an image or video

from one space to another. These approaches have received a lot of attention in recent

years, both in the academic literature that provides popularity to study and apply color

mapping to various fields. Image processing work applied color mapping with current

images or videos such as image data used in medical analysis, weather image data, or

landscape image data will transform the image’s color into another color space to gain

more insights into the images. Color mapping plays a vital role in visualization to increase

the effectiveness and efficiency of data and provide more significant insights. However,

poor color-mapping selection may provide decreasing insights into the image and also

drop the algorithm’s performance. Therefore, colormap selection must be suitable for the

data or type of the considering image. One of the most popular colormaps uses the Jet
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Colormap, which is described as follows.

The color scales in Jet Colormap [33] was designed to be:

1. Many different color tones can be used to render images, as humans can perceive

hues more than grayscale, which increases the amount of detail that can be perceived in

the image. For example, Pichao Wang and al. published a paper in 2016 that applied

jet colormap to simulated a sequence of skeletons to simulate human movement [34], and

Lin Li and al. published a paper in 2020 that applied jet colormap to x-ray images of

the lungs to detect COVID-19 and pneumonia of patients [35]. Jet colormap shades are

shown in Figure 2.15.

Figure 2.15: The Jet color scales [10]

2. Obviously, when we use Jet colormap, it is noticed that when the colors of

different objects are similar, Jet colormap distinguishes the colors of these two objects

clearly, according to the paper of Ellert van der Velden [11], published in 2020.

The statistics and performance of the Jet colormap are depicted in Figure 2.16.

The various plots show changes in perceived saturation and lightness in the Jet colormap,

including perceptual derivatives and lightness derivatives.
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Figure 2.16: The evaluation of Jet colormap [11]

Morphological image processing is another thing that improves our data efficiency

and increases its detail. The following section describes the details of each type of mor-

phological image processing quite clearly defined as follows.

2.1.5 Morphological Image Processing

Morphological operations, such as erosion and dilation, are non-linear image pro-

cessing operations that process images based on shapes. A helpful technique for adjusting

each pixel and improving the shape of objects in an image is morphological operation.

The structuring element is a small template used to process all possible locations in the

image by comparing them to the corresponding neighbor pixels.

Furthermore, in morphological operations, the principle of set reflection and trans-

lation is commonly used. �̂� denotes the reflection of structuring element 𝐵, which is

defined as

�̂� = {𝑤 ∣ 𝑤 = −𝑏, 𝑏 for ∈ 𝐵}, (2.2)

where �̂� is a sequence of points in 𝐵 with their coordinates reversed.
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The translation of structuring element 𝐵 by point 𝑧 denoted by (𝐵)𝑧 defined as

𝐵𝑧 = {𝑐 ∣ 𝑐 = 𝑏 + 𝑧, 𝑏 for ∈ 𝐵}, (2.3)

where 𝐵𝑧 the set of points in 𝐵 whose coordinates have been shifted by point 𝑧.

2.1.5.1 Erosion and Dilation

Image processing techniques such as erosion and dilation have a widespread pres-

ence to improve the image. These techniques are used to reduce background noise and

reassemble some of the artifacts that have been separated.

Erosion

Erosion is the corrosion objects in an image, making them smaller by determining

their structural element. Then, the input image data is operated by the structural element,

which will move to every position to compare with the image data. If they match, the

image data is configured to reduce the object’s size and eliminate the noise in the image.

It is a binary input image and is a structural element from the Erosion of A and B

denoted as 𝐴 ⊖ 𝐵 defined by

𝐴 ⊖ 𝐵 = {𝑧 |𝐵𝑧 ⊆ 𝐴} , (2.4)

where 𝐵𝑧 is the translation of the structural elements 𝐵 according to point 𝑧.

Figure 2.17 shows examples of Erosion using various structural elements. On the

other hand, Figure 2.18 shows the effect of using Erosion to remove image components

with a 7 × 7 square structural element.
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Figure 2.17: The example of erosion using different structural elements

Figure 2.18: The result of using erosion with a structural element of size 7 × 7

Dilation

Dilation aims to expand the image’s objects. Structural element determination is
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similar to erosion. It is taken to indiscriminately equate all image data with image data,

scrolling to every position. If they match, the image data is determined by joining two

objects close together, joining broken objects, sealing gaps, and removing image noise.

The image gives A is the binary input image and B is the structural element, then

dilation A and B denoted as 𝐴 ⊕ 𝐵 defined by

𝐴 ⊕ 𝐵 = {𝑧 ∣�̂�𝑧 ∩ 𝐴 ≠ 𝜙} , (2.5)

where �̂�𝑧 is the reflection translation of the structural element B according to the z point.

Figure 2.19 shows an example of dilation with different structures, while Figure

2.20 shows the results of using dilation to connect the images component with a 7 × 7
square structural element.

Figure 2.19: The example of dilation using different structural elements
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Figure 2.20: The result of using dilation with a structural element of size 7 × 7

2.1.5.2 Opening and Closing

Opening

The opening implements the erosion process followed by the dilation process, gen-

erally used to smooth out the object’s shape and remove the thin protrusions. It is also

used to remove the noise and edge of the object.

The opening of a binary image 𝐴 by the structural element 𝐵 denoted as 𝐴 ∘ 𝐵
defined by

𝐴 ∘ 𝐵 = (𝐴 ⊖ 𝐵) ⊕ 𝐵. (2.6)

Therefore, opening 𝐴 by 𝐵 is the erosion of 𝐴 by 𝐵 followed by dilation by 𝐵.

Figure 2.21 shows the results of using a morphological opening operation on a 17×17
rectangular structural element. We can observe that morphological openings can be used

to eliminate the noise around the object.
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Figure 2.21: The results of using the morphological opening operation with a square
structural element of size 17 × 17

Closing

Closing is the implementation of the dilation process, followed by the erosion pro-

cess, which is used to smooth out the object’s contour, eliminate the object’s gaps by

contouring the small missing objects, and connect separate objects.

Closing of binary image A by structural element B denoted as 𝐴 • 𝐵 defined by

𝐴 • 𝐵 = (𝐴 ⊕ 𝐵) ⊖ 𝐵. (2.7)

Therefore, closing of 𝐴 where 𝐵 is an dilation of 𝐴 with 𝐵 followed by Erosion 𝐵.

Figure 2.22 shows the results of using a morphological closing operation on a 17×17
rectangular structural element. We can observe that morphological closing can be used

to fill holes within the object of interest.
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Figure 2.22: The results of using the morphological closing operation with a square
structural element of size 17 × 17

A computer vision work that we do in this work, most of the data we use is im-

age data. The processes indispensable for computer vision work are binary images and

processing to convert color images to binary images. This process helps us analyze and

improve image data. In the next section, we will explain the detail of the binary image

and processing to convert color images to binary images.

2.1.6 Binary image

A binary image is a monochrome image with an intensity of 0 (black) and 1 (white)

at each pixel only. This binary image is a fundamental principle of image processing and

is often used for image segmentation, edge detection or thresholding, etc.

2.1.6.1 Thresholding

Thresholding is a technique for splitting an image into two halves, separating the

foreground from the background. Choosing a threshold 𝑇 to divide each pixel into one or

two levels for any point (𝑥, 𝑦) in the image is the primary method of separating objects
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and background. 𝑔(𝑥, 𝑦) represents a thresholding image, which is defined as

𝑔(𝑥, 𝑦) =
⎧{
⎨{⎩

1 if 𝑓(𝑥, 𝑦) > 𝑇
0 if 𝑓(𝑥, 𝑦) ≤ 𝑇

,

where 𝑓(𝑥, 𝑦) is the image intensity at (𝑥, 𝑦) coordinate, and 𝑇 is the appropriate constant

for the entire image.

Otsu’s method

Otsu’s method, which uses grayscale variance to determine the threshold value, was

first introduced in 1979. According to Otsu’s method, the object and the background are

two distinct groups of data in an image that can be separated. Both data sets can be

classified with just one threshold if the object and background are entirely separated, and

the variance between the group is low. However, for any data, the grayscale values within

the same group have low variance. For example, we want to distinguish the car (object)

from the road (background) by assuming that their grayscale values of two groups are

different. As a result, the grayscale of the group of the car should be spread over the

same range, resulting in a low variance grayscale of the car group, which will be the same

in the group of roads. That means that if we combine the road pixels with the car pixels

will make the variance higher. As a result, if we can correctly separate the data groups

so the variance of the two groups will be the lowest.

The Intra-Class Variance as the weighted sum of the variances of two groups can

be calculated as follows

𝜎2
𝑤(𝑡) = 𝜔0(𝑡)𝜎2

0(𝑡) + 𝜔1(𝑡)𝜎2
1(𝑡),

where the probabilities of two classes separated by threshold 𝑡 are 𝜔0 and 𝜔1, and the

variances of these two classes are 𝜎2
0 and 𝜎2

1.
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The class probabilities 𝜔0(𝑡) and 𝜔1(𝑡) are calculated using the histogram of 𝐿 bins

𝜔0(𝑡) =
𝑡−1
∑
𝑖=0

𝑝(𝑖),

𝜔1(𝑡) =
𝐿−1
∑
𝑖=𝑡

𝑝(𝑖).

Minimizing intra-class variance is equivalent to maximize inter-class variance for

two classes:

𝜎2
𝑏(𝑡) = 𝜎2 − 𝜎2

𝑤(𝑡)

= 𝜔0(𝜇0 − 𝜇𝑇 )2 + 𝜔1(𝜇1 − 𝜇𝑇 )2

= 𝜔0(𝑡)𝜔1(𝑡) [𝜇0(𝑡) − 𝜇1(𝑡)]2

which can be expressed in terms of class probabilities 𝜔 and class mean 𝜇, where

𝜇0(𝑡), 𝜇1(𝑡), and 𝜇𝑇 are the class means:

𝜇0(𝑡) = ∑𝑇 −1
𝑖=0 𝑖𝑝(𝑖)
𝜔0(𝑡) ,

𝜇1(𝑡) = ∑𝐿−1
𝑖=𝑡 𝑖𝑝(𝑖)
𝜔1(𝑡) ,

𝜇𝑇 =
𝐿−1
∑
𝑖=0

𝑖𝑝(𝑖).

The following relationships are simple to verify:

𝜔0𝜇0 + 𝜔1𝜇1 = 𝜇𝑇 ,

𝜔0 + 𝜔1 = 1.

It is possible to compute the class probabilities and means iteratively. This concept results
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in a useful algorithm.

Artificial Intelligence (AI) is a program built and developed to be intelligent, think,

analyze, plan, and make decisions from the processing of large databases and modify the

processing and application according to different situations. The types and details related

to AI are described in the following sections.

2.2 Machine Learning

Machine learning is the study of computer algorithms that improve automatically

by learning from a large amount of data that computers observe previous data patterns

and make decisions to predict outcomes or answer questions that are likely to occur, which

can be set without the data analyst. Machine learning is a different approach to artificial

intelligence (AI). For AI, developers create step-by-step rules for computers in order to

work following a set of instructions. On the other hand, machine learning allows comput-

ers to learn from information and improve problem-solving efficiency intelligently. For

example, an intelligent autonomous vehicle technology-driven driver, Siri voice recogni-

tion technology is that users can use voice commands to request or ask for help promptly,

etc. Machine learning is categorized into five main categories as follow

2.2.1 Supervised learning

Supervised learning is the machine learning from labeled sample data in order to

construct the algorithms or models for predicting the results and understand the relation

between input and output data. This learning model can be applied to new input data,

and supervised learning can assess the accuracy or error of the results.

2.2.2 Unsupervised learning

Unsupervised learning is the machine learning that uses for unlabeled sample data

in order to search results of the input data, simulate the basic model underlying infras-

tructure in the input data. Unsupervised learning contrasts with supervised learning

because the computer does not know the value or type of the data and tries to identify a
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group of data.

In the case of supervised learning, labeled data is collected and used for grouping

or classifying. However, the case of unsupervised learning is to group or classify the

unlabeled data into meaningful groups without any known results of that data. The

results of the supervised learning were in classification and regression models, and the

outcome of the unsupervised learning was a clustering, as shown in Figure 2.23.

Figure 2.23: Examples of real-life problems of outcomes from supervised learning and
unsupervised learning (a) Patient classification of disease (b) House price prediction by
a regression model (c) Clustering of shopping behaviour customer

2.2.3 Semi-supervised learning

Semi-supervised learning is blended learning between supervised learning and un-

supervised learning using two types of data: labeled and unlabeled. The number of

unlabeled data is greater than the number of labeled data. Then, these data are used via

the machine learning to create algorithms or models for predicting results.

2.2.4 Reinforcement learning

Reinforcement learning is a type of targeted learning in which a machine learns

from its surroundings in various ways, such as input data or sensors, etc. In reinforcement

learning, there is no answer but the reinforcement agent decides what to do to perform

the given task. In the absence of a training data, it is bound to learn from its experience.

For example, in games, players know when they will win or lose, but they have no idea
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how to play. Each step of this reinforcement learning is learned through experience and

the environment. From the steps mentioned, the players can anticipate the game’s stages.

2.2.5 Transfer learning

Transfer learning is a technique that reduces training time for deep learning models

by incorporating parts of a trained model with similar tasks as part of the new model.

In other words, the transfer learning is commonly used in deep understanding, as the

pre-trained model is used as a starting point for computer vision and computing natural

language processing (NLP). The pre-trained model can help reduce computations and save

time in developing neural networks, because it can be initiated from the model learned

through the transfer learning process to solve similar problems of previous work as shown

in Figure 2.24.

Figure 2.24: Applying learning knowledge previously to new models

2.3 Deep Learning

Deep learning is a branch of machine learning where each step is subdivided into

individual layers within the deep learning model. Each layer is created from the result of

the previous layer. Then, all layers are combined into a neural network. This is similar to
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how the solution is distributed by neurons in the human brain. Thus, the deep learning

algorithm is similar to the work of neural structures, where each neuron is connected to

the other and included the transmission of information between nerve cells.

Figure 2.25: An example of the layer structure of a deep learning model

The deep learning model works in consecutive layers as shown in Figure 2.25. Gen-

erally, the deep learning model has at least three layers, each of which receives data from

the previous layer and forwards it to the next layer. Additionally, the performance of

the deep learning model tends still to benefit from large amounts of data, while the per-

formance increase of machine learning is hardly ever changing. The difference between

machine learning and deep learning lies in the feature extraction of data, as shown in

Figure 2.26. In machine learning, the human being is extracting the features of the data

and the features passed into the model for results. However, in deep learning, the model

extracts features of data by itself. There are theories involved which form the basis of

deep learning as follows
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Figure 2.26: Comparison of data feature extraction differences between machine learn-
ing and deep learning

2.3.1 Linear regression

Linear regression is a linear relationship between two or more variables: the pre-

dictor variable 𝑥 and the response variable 𝑦. For example in one-dimensional data, if

we have more enough data, we can use the linear regression to find the relation of these

data, i.e., let 𝑥 and 𝑦 be correlated multiple times to find the correlation equation, where

the simple linear regression equation is expressed in equation (2.8).

𝑦 = 𝑎𝑥 + 𝑏, (2.8)

where 𝑥 is the predictor variable, 𝑦 is the response variable, 𝑎 is the slope, and 𝑏 is the

Y-intercept.

For example, we predict home prices based on house size using the simple linear

regression as shown in Figure 2.27.
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Figure 2.27: An example shows the application of linear regression to estimate the
best house price.

We use a simple linear regression to find the line between points marked on a graph

with low errors, and when the line has low errors, it is possible to predict house prices by

the size of the house.

2.3.2 Logistic regression

Logistic regression is a statistical method for analyzing data sets in which at least

one independent variable determines the outcome. There are only two possible outcomes:

true or false. For example, we have the data in terms of midterm and final scores of

students. If we would like to know whether these students will pass and fail, the logistic

regression can be applied to find the straight line that separates these two types of data

(pass and fail) from each other as shown in Figure 2.28.
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Figure 2.28: An example shows logistic regression determining students who pass and
fail from midterm and final scores

2.3.3 Activation function

The activation function is a function that decides and defines a single standardized

output for each node of a neuron and helps make the output more efficient, minimizing the

possibility of the output variable. For example, the heaviside step function is an example

of the most straightforward trigger function, which the function returns 0 when the linear

sum is less than 0 and will return the value of 1 when the linear sum is a positive number

or equal to zero, which is calculated from Equation (2.9). Figure 2.29 shows an example

of the heaviside step function.

𝑓(𝑥) =
⎧{
⎨{⎩

0 if 𝑥 < 0
1 if 𝑥 ≥ 0

. (2.9)
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Figure 2.29: An example of the heaviside step function [12]

2.3.4 Weight

Weight is a value associated with each connection between neurons, indicating the

importance of the input data. When an input data enters the neuron, it is multiplied by

the weight value assigned to the data. Usually, the initial weight value is set randomly, and

when the neurons begin to learn, the weight value is adjusted to obtain the result closest

to the desired answer. For example, the university has criteria for testing students using

test scores and grades, so this neuron has two associated weights and can be adjusted for

each weight value. If the obtained weight values produce the accurate result that is very

close to the desired result, the weight values will not be adjusted. But if the efficiency is

low, the weight value is adjusted through a specific calculation. The examples of weights

are shown in Figure 2.30.
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Figure 2.30: Examples of the weights in deep learning

2.3.5 Bias

Bias is a value used to shift the activation function by adding a constant to the

input data. Moreover, the bias prevents the neurons from sending inputs with no value

(equal to 0) to the output layer. The bias value is always adjusted while the data is

trained as well as the weight value.

2.3.6 Backpropagation

Backpropagation is the process of adjusting the weights of a network in order to

train that network to be suitable for the data. It is a basic component of a network. This

is accomplished by feeding data into the network, comparing the output to the ground

truth, and calculating an error rate using a specialized loss function. This error rate is

then cascaded backward through the network to modify the weights so that the prediction

is closer to the ground truth the next time the same or similar input is passed through

the network.

2.4 Artificial Neural Network

An artificial neural network (ANN) is a mathematical model that simulates the

function of biological nerve cells called neurons in the human brain. The dendrite, cell
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body, and axon are three main components of a neuron, as shown in Figure 2.31. Receiving

a signal through the dendrite, transforming a signal through the cell body, and sending

the transformed signal via the axon is how a neuron sends a signal to other neurons.

Figure 2.31: The biological neuron [13]

The input layer, the hidden layer, and the output layer are three main layers in

ANN. Each layer of ANN is made up of multiple artificial neurons or nodes, which are

simple processing units. Artificial neurons attempt to mimic the structure and behavior

of biological neurons by performing a dot product between input values and weights, then

adding a bias and using the activation function to transform these values into results, as

shown in Figure 2.32.
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Figure 2.32: The visualization of an artificial neuron in the hidden layer

The operation of the artificial neural network can be seen in Figure 2.32. The

artificial neuron receives the input value, weighted the input value, and used the transfer

function to combine the weighted input value and the activation function to transform

the weighted input value and send it to the next artificial neuron. We use the activation

function to avoid 0, which the activation function uses thresholds to transform the sum

of the weighted input value, and bias is also added to the sum of it.

The output of an artificial neuron in a hidden layer is defined by equation (2.10)

given the number of input is 𝑁 , The input values are 𝑋 = (𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑁), The weight

values are 𝑊 = (𝑤1, 𝑤2, 𝑤3, ..., 𝑤𝑁), The bias is 𝑏, and The activation function is 𝜑

𝑦 = 𝜑 (
𝑁

∑
𝑖=1

𝑤𝑖𝑥𝑖 + 𝑏) . (2.10)

In general, the output layers of artificial neurons do not use an activation function

because the final output layer is frequently used to represent class scores and predict the

class of input data.

The main types of artificial neural networks are divided into two types as follows



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

41

1) Feedforward is the simplest type of a neural network. The connections between

the layers are non-loopable. The input is directed to the output in one direction through

the weight values of each neural.

2) Feedback is a loopback connection. The results obtained from the network are re-

circulated to improve the efficiency of the results. This feedback network can be complex,

but it is more efficient than the forward feed type, which is commonly used in various

applications.

Figure 2.33: Type of artificial neural network (a) Feedforward (b) Feedback

2.5 Convolutional Neural Networks

There are specific types of artificial neural networks that are widely used is the

convolutional neural network. The convolutional neural network is similar to artificial

neural networks. However, the structure is specifically designed for matrices as input.

The layers of conventional neural networks contain neurons arranged in three dimensions:

width, height, and depth, which are suitable for spatial data. Usually, the convolutional

neural network is applied with object recognition, object detection, object classification,

and so on.
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The convolutional neural network is used to process input image data through the

convolutional layer. Images from an RGB model separated into three primary colors are

red, green, and blue. In this separation of this type of the color model, depth is added

to the image data, causing the image data from the RGB model to be 3D image data.

The image data is then processed with a filter to extract the feature of image data by

the convolutional layer, and this step enables the network to detect edges and low-level

features in previous layers and detect complex features of deeper layers.

Figure 2.34: Examples of convolutional neural network structures [14]

Basically, the convolutional neural network structure is divided into two parts,

including, feature learning and classification as shown in Figure 2.34. Feature learning

is the part of adjusting the data by learning the features of input data through many

layers which mainly consist of convolution layer, activation layer (ReLU), and pooling

layer, respectively. The part of classification consists of fully connected layers which is

the layer that converts the results of the convolution and generates the final output of

the convolutional neural network. However, the details of those mentioned layers will be

explained in the next section.

2.5.1 Input layer

An input layer is often used for image data, where every image is a matrix of pixel

values, with the range of pixel values that can be encoded at each pixel depending on the



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

43

bit size of that image. Therefore, the possible range of pixel values can be represented

from values 0 − 255. The color image in the RGB model is separated into three channels

of color, where each channel has added a depth of data. As a result, it becomes the 3D

input data, consisting of width × height × depth of each color channel in the image. For

example, for a 255×255 (width × height) RGB image, the input layer has three matrices

associated with the image, each matrix representing each color channel and consists of a

3D structure called the input volume, which is 255 × 255 × 3

Filters or kernels are represented by weight vectors that are used to join with input

data. We can add many filters to increase the number of feature maps extracted from the

image. Each of the feature maps that we extract will try to learn different properties of

the image, such as edge or color pixel, etc.

2.5.2 Convolution layer

The convolution layer consists of a learnable filter, where filters are made up of

matrix width, length, and depth. While the filter slides through the image matrix, they

have sought the convoluted values by multiplying the filter matrix with the image matrix

at each corresponding point (𝑥, 𝑦). The basic concept of convolution comes from the

fourier transform. For kernel of 𝑊 size 𝑚 × 𝑛, assume that 𝑚 = 2𝑎 + 1 and 𝑛 = 2𝑏 + 1,

where 𝑎 and 𝑏 are non-negative integers. Given 𝑓(𝑥, 𝑦) is the value of the array at point

(𝑥, 𝑦), the convolution of 𝑊 and 𝑓 denoted as ℎ(𝑥, 𝑦), is defined by the following equation:

ℎ(𝑥, 𝑦) =
𝑎

∑
𝑠=−𝑎

𝑏
∑
𝑡=−𝑏

𝑊(𝑠, 𝑡)𝑓(𝑠 + 𝑥, 𝑡 + 𝑦). (2.11)

An example of finding the convolution ℎ(𝑥, 𝑦) is depicted in Figure 2.35.
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Figure 2.35: The example of a convolutional operation with kernel of size 3 × 3

Let us introduce the stride value, it means the pixel number that the filter is slid

as that number. The kernel slide with a stride value from top left to top right until the

entire width. Then, with the same stride value, it slide down and slide from left to right,

and continues the procedure until the whole image matrix. The movement of the kernel

is displayed in Figure 2.36.
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Figure 2.36: The movement of the kernel

2.5.3 Activation layer

The activation layer is a function that transforms input data and determines its

output value by a threshold, and sent it to the next node. This process is called the

activation function. A popular activation function in a convolutional neural network is

the Rectified Linear Unit (ReLU) which reduce the complication of input data, resulting

in a faster and more efficient network learning by changing the negative value from the

input to 0. The ReLU is shown in Figure 2.37 and it can be expressed by equation (2.12).

𝑅(𝑧) = max(0, 𝑧), (2.12)

where 𝑅(1) = max(0, 1) = 1, and 𝑅(−1) = max(0, −1) = 0.
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Figure 2.37: The rectified linear activation function

Additionally, the softmax function is a logistical regression function used for a

multi-layer classification. The softmax function is used in the last layer of a network

which takes in real values of different classes and returns a probability distribution and

it can be written as follows (2.13).

𝑓𝑗(𝑧) = 𝑒𝑧𝑗

∑𝐾
𝑖=1 𝑒𝑧𝑖

. (2.13)

2.5.4 Pooling layer

Pooling layers is used to reduce the size of feature map, while its depth remains

the same. Most of the popular pooling methods consists of two types: max pooling and

average pooling. Pooling layers are performed on each layer of feature map by using

the mathematical operations of each pooling type, as demonstrated example of the max

and average poolings in Figure 2.38. In addition, the pooling layers help to simplify the

feature map and reduce the number of feature that the network learns.
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Figure 2.38: The result using average pooling and max pooling with size 2×2

2.5.5 Fully connected layer

The fully connected layer is the last layer to perform by using the feature map that

is previous performed in the part of feature learning. It is employed to predict types of

the data. This layer is connected to the all neurons in previous layers. Also, the result in

this layer is shown in the form of 𝐾-dimensional vector, where 𝐾 is the number of classes

that the network needs to predict the result. The vectors mentioned herein contain each

category of images that will be categorized as a class.

The convolutional neural network layers are implemented, with each class learning

the features to look for from the input. The advantage of using this type of network

is variable sharing and association, where variable sharing can reduce the number of

weight variables to one layer without affecting the accuracy of the results to be expected.

Furthermore, convolution also breaks down the input feature into more minor features.

This makes each result value dependent on a small amount of input data, resulting in

quick adjustments.

2.6 Object Detection

Object detection is a computer vision technique for detecting objects in images

and videos to produce meaningful results, and object detection algorithms typically use

machine learning or deep learning. We can recognize and locate objects of interest in
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images or videos in a matter of seconds when we look at them. Hence, the goal of object

detection is to use a computer to replicate this intelligence. An example of detecting an

object is shown in Figure 2.39.

Figure 2.39: The visualization of an example image with ground truth bounding boxes
[15]

The following sections describe the details and components of the You Only Look

Once(YOLO) model that we choose for this work. We explain in detail the three different

versions of the YOLO model with the following details.

2.7 You Only Look Once Algorithm

You Only Look Once (YOLO) is a deep neural network method presented in 2016

by Joseph Redmon. YOLO is used for object detection in images or videos. It offers

a real-time object detection network that can detect objects. The efficiency of object

detection in Pascal VOC 2015 was recorded using the Pascal VOC 2007 dataset with an

𝑚𝐴𝑃 of 63.4, as shown in Figure 2.40.
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Figure 2.40: Comparison of object detection methods on the Pascal VOC 2007 dataset
as of 2015 [16]

Figure 2.40 shows that YOLO could detect objects better than other detectors in

real-time object detection because YOLO has reducing learnable parameters and network

complexity, YOLO has faster performance than others methods. i.e., Faster R-CNN and

Fast R-CNN. Details of Yolo will be explained in the next section.

2.7.1 Overview of the YOLO Pipeline

The primary YOLO pipeline discussed here, YOLO extracts feature maps from

images using standard convolutional neural networks. The specific network used for this

purpose is user-dependent and can be changed according to its requirements. Ideally, the

feature extractor must have few learnable parameters without compromising accuracy

metrics.
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Figure 2.41: The visualization of You Only Look once (YOLO) network structure [17]

From the network in Figure 2.41, the feature map dimensions are dependent upon

the size of the input and the close clustering of objects in an image. Output with di-

mensions of 7 × 7 × 𝑑 where the feature map number is 𝑑, as shown in the equation

(2.14).

𝑑 = 𝐵 × 5 + 𝑐, (2.14)

where 𝐵 is the maximum number of objects the network can guess in each 7 × 7 grid cell,

and 𝑐 is the number of classes.

2.7.2 Non-Max Suppression

When an object area is spread over more than one grid cell, the network may

not determine the object’s exact center point. For this reason, multiple grid cells may

contribute to predict the position of the object, resulting in more than one prediction of

the same object. An example is shown in Figure 2.42.
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Figure 2.42: The result of using Non-Max Suppression [18]

This is especially prevalent when the threshold confidence levels are set to a lower

value, as shown in Fig 2.43.

Figure 2.43: An example of the confidence score threshold [19]

Events with more than one prediction of the same object can be resolved by sup-

pressing duplicate outputs or low confidence results. This is achieved through a process

known as non-max suppression. Non-max suppression is done greedily in YOLO. First,

the bounding box with the highest level of confidence is chosen. With this bounding box
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selected, all bounding boxes with a high IOU are discarded. Next, the bounding box with

the highest confidence is selected from the remaining bounding boxes, and the process

continues. This is the last step of the YOLO detection process. Figure 3.5 shows the final

result of YOLO on an example image.

This is the final step of the YOLO detection process. The final result from YOLO

in the preview is shown in Figure 2.44.

Figure 2.44: An example of the final output of the YOLO network [20]

2.7.3 Deficiencies of YOLO

Although YOLO is a state-of-the-art object detection network with significantly

reduced processing times compared to other networks, YOLO has obvious drawbacks

compared to other popular networks because YOLO gave mean average precision values.

YOLO also made an error when objects were grouped close together, resulting in detection

errors due to limitations on the number of objects it can detect. In the grids, each cell

and another obvious problem is that when small objects or objects in the image are very

different in size, YOLO may have erroneously detected an object, as shown in Figure 2.45.
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Figure 2.45: Example of detecting a faulty person (object) of the Yolo network [21]

Because YOLO uses convolutions to subsample an image, small objects can often

go undetected. For small objects, YOLO is not a good detector. YOLO finds it difficult

to generalize when objects of the same class are of different sizes, as shown in Figure 3.6.

2.8 YOLOv2 and YOLO9000

YOLOv2 and YOLO9000 are improvements from YOLO, with several YOLO dif-

ferences, which will be explained in detail in the next section. YOLOv2 and YOLO9000

are based on YOLO prototype networks, all of which work together to build a faster and

more reliable network, introduced in CVPR 2016 by Joseph Redmon and Ali Farhadi,

demonstrating that more than 9000 object types can be detected, with the performance

of object detection on the work Pascal VOC 2015 using Pascal VOC 2007 + 2012 dataset.

YOLOv2 obtained 𝑚𝐴𝑃 of 76.8 at 67 FPS and 𝑚𝐴𝑃 of 78.6 at 40 fps, observed in the

Table 2.46. This improved performance also shows that YOLOv2 has good performance

to object detection. It also provides good results for object class classification, providing

more detailed output on WordTree [36] representation of ImageNet [37]. This can be very

useful for a wide variety of object detection or classification tasks.
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Figure 2.46: Comparison of object detection methods on the Pascal VOC 2007 + 2012
dataset as of 2015 [16]

2.8.1 Changes from YOLO

YOLOv2 has several enhancements and changes over YOLO, which YOLOv2 in-

creases performance for the detect object in images and videos. The following improve-

ments are available.

2.8.1.1 Anchor Boxes

Improved from YOLO with the addition of anchor boxes, which a set of user-defined

anchor boxes is taken at each grid cell, the current grid cell is responsible for predicting the

change in height and width anchor boxes instead of the absolute width and the absolute

height. This was more efficient than other modern object detection networks such as

R-CNN and faster R-CNN. It also made it easier for the network to learn the size of the
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box.

In the YOLOv2 network in Figure 2.46, 3 anchor boxes are selected for each grid

cell. If the sample image contains 7 × 7 cells, there will be 7 × 7 × 3 anchor boxes for

that feature map, with each anchor boxes able to predict one object. The equations for

predicting the width and the height of an object can be denoted in Equation (2.15).

𝑏𝑤 = 𝑝𝑤𝑒𝑡𝑤 ,

𝑏ℎ = 𝑝ℎ𝑒𝑡ℎ ,
(2.15)

where 𝑏𝑤 is the width and 𝑏ℎ is the height.

𝑡𝑤 and 𝑡ℎ are the predicted width and height values of the network.

From Equation (2.15), it can be noted that the exponential function is used because

of its favorable properties during backpropagation, and using exponential functions also

prevents negative predictions because width and height cannot be negative for objects.

2.8.1.2 Anchor Box Dimensions

Even if the anchor box is user-defined, there may be enough improper anchor box

sizes for the dataset. Therefore, we have figured out a way to determine the anchor box’s

size. We can choose the appropriate size using K-Means clustering and group the anchor

boxes to suit the data set by selecting the anchor boxes with 9 different boxes.

2.8.1.3 Constrained 𝑥, 𝑦 Predictions

The corresponding grid cell in YOLO predicts the center of an object. The grid cell

in the object’s center is in charge of predicting the exact (𝑥, 𝑦) location of the object box

with itself. The coordinates in region proposal networks are calculated as follows:

𝑥 = (𝑡𝑥 × 𝑤𝑎) − 𝑥𝑎,

𝑦 = (𝑡𝑦 × ℎ𝑎) − 𝑦𝑎,
(2.16)
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where 𝑥, 𝑦 is the center position of the object;

𝑤𝑎 and ℎ𝑎 is the width and height of the anchor box;

𝑡𝑥 and 𝑡𝑦 are the predictions;

𝑥𝑎 and 𝑦𝑎 are for the center of the region.

Using equation (2.16), The coordinates predicted by any grid cell could end up in

any part of the image. YOLO v2 introduces constraints on this by allowing each grid cell

to predict coordinates anywhere within itself only. The center of an object predicted by

a particular grid cell cannot be outside of itself. The equation is shown in (2.17).

𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥,

𝑏𝑦 = 𝜎(𝑡𝑦) + 𝑐𝑦,
(2.17)

where 𝑏𝑥 and 𝑏𝑦 are the center 𝑥 and 𝑦 of the object.

The sigmoid function is applied to 𝑡𝑥 and 𝑡𝑦, a network predicted where 𝑐𝑥 and 𝑐𝑦

are the grid cell’s positions. With this equation, the object’s center cannot extend beyond

the boundary of the grid cell.

Figure 2.47: Object box predictions from one anchor box belonging to one particular
grid cell [22]
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2.8.1.4 High Resolution Classifier

YOLO is designed for an image size 244 × 244. With its small image size, the small

objects in the image are difficult to detect, especially when we resize from image larger

than size 244 × 244 becomes image size 244 × 244 makes the small objects contained

in the original image considerably smaller. For this reason, YOLO has difficulty detect

small objects in images and videos, so YOLOv2 is trained and tested on a 416 × 416
image which is a larger image. Moreover, the backbone architecture allows the network

to accept a higher resolution of the image, although this increases training and prediction

time.

2.8.1.5 Multi Scale Training

While YOLO does not allow training or testing with multiple scales images, in

YOLOv2, the input image can be any dimension as long as the grid number of the

generated cell is odd. This allows training to be performed with multiple scales and

can also increase the stability and accuracy of the network. Therefore, networks using

Multi-Scale Training have better prediction and higher test scores independent of object

scale.

2.8.1.6 Darknet-19

Most object detection networks use VGG [38] as their backbone. Although this

state-of-the-art network offers good feature extraction, millions of parameters need to be

learned, which significantly slows down the network, where YOLOv2 uses Darknet-19, a

faster backbone than a regular VGG with 19 convolution layers and 5 fully connected

layers. Most of the convolutions in Darknet-19 often uses with 3 × 3 matrix, and the

number of feature maps doubled after going through all of the pooling steps.

For the training phase, the network was first trained as an object classification

network, in which Darknet-19 was combined with fully connected layers at the end to be

trained on ImageNet1000. Once this is done, the last fully connected layers are removed
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and replaced with YOLO prediction maps. This new network will be trained for detection,

which process uses the size of the ImageNet training data to train more generalized filters

for convolution in the first few layers.

Figure 2.48: The visualization of You Only Look once v2 (YOLOv2) network structure
[22]

2.8.1.7 Hierarchical Classification

YOLOv2 is trained to extract ImageNet labels from WordNet. WordNet is a lan-

guage database associated with words, which helps the network relate images and objects.

For example, the norfolk terrier is categorized as a hunting dog, a dog category.

The extracted features need to be processed to generate meaningful predictions

corresponding to the object’s location and class. The next step of the YOLO pipeline is

focused on creating such predictions.
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The contributions of each of the changes to mAP scores in YOLOv2 as shown in

Figure 2.49.

Figure 2.49: Contributions of each of the changes to mAP scores in YOLOv2 [22]

2.9 YOLOv3

2.9.1 Backbone

The backbone is the feature extractor of the image. The image is transmitted

through the convolution layer, pooling layer, batch normalization, and activation layer

to distinguish the specific feature of the data, and this backbone rejects other unrelated

features. There are many variations between backbone, which the backbone is typically

a deep neural network. However, the depth and the number of this network’s parameters

must be reasonable because excessive depth and the number of network parameters will

complicate the operation, increasing the time to process. For example, network training

and testing are significantly slower, with Darknet53 being a feature extractor that reduces

network complexity without compromising accuracy. The backbone network consists of

multiple convolution operations since the image is subsampled over the convolutions,

causing small objects to lose their resolution and detail. Outputs are taken at three

different convolution stages. The YOLOv3 network uses these three scales of outcomes

for prediction.
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Figure 2.50: YOLOv3 backbone outputs

2.9.2 Prediction feature maps

YOLO predicts the output tensors in three different scales as shown in Figure 2.50.

The scales of output tensors correspond to the numbers of grid cells in input images of

each scale. The depth of output tensors is 𝐵 ×(4+1+𝑐), where the feature map predicts

𝑥 and 𝑦. Includes values of change in the height and width of anchor boxes and c values,

where 𝑐 is the number of classes and 𝐵 is the number of anchor boxes on the same scale,

which helps to localize objects of different sizes. YOLOv2 and YOLOv3 make use of

anchor boxes for better prediction with tighter bounding boxes.

The backbone network divided each feature map into a cell of each 𝑠 × 𝑠. Each

anchor boxes solves five values are the values of 𝑥 and 𝑦 where (𝑥, 𝑦) are the midpoints

of the bounding box, the change of the anchor boxes width (w) and height (h), and

objectness or the confidence of an object within that cell if an object has more than one

grid cell, only the middle grid cell is responsible for detecting it.
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This prediction pattern is repeated for each of three scales, so if there are 3 anchor

boxes on each scale, the backbone network will predict 3 × (4 + 1 + 𝑐) feature maps for

every one of the scales.

However, as described above, each cell can predict only three objects for each scale

or one object at any one anchor box aspect ratio for each scale. Many objects form a

group, or objects are tiny, making it impossible to detect objects efficiently.

2.9.3 Losses

Since YOLO has 𝐵 ×(5+𝑐) prediction in each 𝑠×𝑠 cell, it has to have losses for all

different types of predictions, with the loss function measuring the error of the position

and size of the predicted bounding box. The loss function is responsible for predicting

the position of the object in 𝑖th cell which has the center (𝑥, 𝑦) with width 𝑤 and height

ℎ that is defined by

𝜆coord

𝑠2

∑
𝑖=1

𝐵
∑
𝑗=1

𝟙obj
𝑖𝑗 ((𝑥𝑖 − ̂𝑥𝑖)

2 + (𝑦𝑖 − ̂𝑦𝑖)
2)

+ 𝜆coord

𝑠2

∑
𝑖=1

𝐵
∑
𝑗=1

𝟙obj
𝑖𝑗 ((√ℎ𝑖 − √ℎ̂𝑖)

2
+ (√𝑤𝑖 − √�̂�𝑖)

2) ,

where the index 𝑖 refers to the 𝑖th cell ordering by upper left cell until to lower right cell

for 𝑖 = 1, 2, 3, … , 𝑠2, the index 𝑗 refers to the 𝑗th prediction box for 𝑗 = 1, 2, 3, … , 𝐵,

𝜆coord is a weight of the loss calculated by boundary box coordinates, and 𝟙obj
𝑖𝑗 = 1 if the

𝑗th boundary box in cell i is responsible for detecting an object, otherwise 0.

The factor 𝜆coord assigns an unequal weight to the losses of objects based on their

bounding box sizes. The loss factor for smaller objects is higher, while the loss factor for

larger objects is lower.

Confidence loss is used to predict whether the network can detect an object’s exis-

tence, which is a measure of objectiveness. If an object is detected in a particular 𝑠 × 𝑠
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cell, the confidence loss for that cell is shown in the following equation

𝑠2

∑
𝑖=1

𝐵
∑
𝑗=1

𝟙obj
𝑖𝑗 (𝐶𝑖 − ̂𝐶𝑖)

2
,

where ̂𝐶𝑖 is the confidence score of the box 𝑗 in cell 𝑖 and 𝟙obj
𝑖𝑗 = 1 if the 𝑗th boundary

box in cell i is responsible for detecting an object, otherwise 0.

If the object is not detected, the confidence loss for that cell is shown in the following

equation

𝜆noobj

𝑠2

∑
𝑖=1

𝐵
∑
𝑗=1

𝟙noobj
𝑖𝑗 (𝐶𝑖 − ̂𝐶𝑖)

2
,

where 𝟙noobj
𝑖𝑗 is the complement of 𝟙obj

𝑖𝑗 , ̂𝐶𝑖 is the confidence score of the box 𝑗 in cell 𝑖,
and 𝜆noobj is a weight of the loss when detecting background.

Finally, in each cell, we need to define the probability of each class 𝑐 where the class

loss is similar to a cross-entropy loss for a classification network

𝑠2

∑
𝑖=1

𝟙obj
𝑖𝑗 ∑

𝑐∈classes
(𝑝𝑖(𝑐) − ̂𝑝𝑖(𝑐))2 ,

where 𝟙obj
𝑖𝑗 = 1 if an object appears in cell 𝑖, otherwise 0 and ̂𝑝𝑖(𝑐) denotes the conditional

class probability for class 𝑐 in cell 𝑖.
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All YOLO losses can be described as follows

𝜆coord

𝑠2

∑
𝑖=1

𝐵
∑
𝑗=1

𝟙obj
𝑖𝑗 ((𝑥𝑖 − ̂𝑥𝑖)

2 + (𝑦𝑖 − ̂𝑦𝑖)
2)

+ 𝜆coord

𝑠2

∑
𝑖=1

𝐵
∑
𝑗=1

𝟙obj
𝑖𝑗 ((√ℎ𝑖 − √ℎ̂𝑖) 2 + (√𝑤𝑖 − √�̂�𝑖) 2)

+
𝑠2

∑
𝑖=1

𝐵
∑
𝑗=1

𝟙obj
𝑖𝑗 (𝐶𝑖 − ̂𝐶𝑖)

2

+ 𝜆noobj

𝑠2

∑
𝑖=1

𝐵
∑
𝑗=1

𝟙noobj
𝑖𝑗 (𝐶𝑖 − ̂𝐶𝑖)

2

+
𝑠2

∑
𝑖=1

𝟙obj
𝑖𝑗 ∑

𝑐∈classes
(𝑝𝑖(𝑐) − ̂𝑝𝑖(𝑐))2 .

2.9.4 Backbone Architecture

Although training a network from scratch takes a long time, there is a way to use a

previously trained network for other purposes. For example, the backbone of YOLOv3 is

Darknet-53, and Joseph Redmon et al. used a variant of Darknet-53 trained on ImageNet

with over 20,000 categories. Transfer learning is a type of training in which a network

that has already been trained is used for a different purpose. This is accomplished by

removing a few detection and classification layers near the network’s end and then training

new detection layers with the new data. For example, a network’s feature extraction layers

have learned to detect essential features from images, convolutional layers and weights

associated with this feature extraction have already completed a large portion of the

training.

Darknet-53 is a high-performance backbone that can be used as a structure for

various applications, eliminating the need for new models to be trained from scratch. In

the context of this thesis, the term training or learning refers to the process of applying

transfer learning to the problem at hand, which is the object detection in a custom dataset

with buildings in an airport.

Darknet-53 is a convolutional network with 53 layers and residual connections. It is
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primarily used for image classification. The last three layers of Darknet-53 consist of the

average pooling layer, fully connected layer, and softmax layer. We only use Darknet-53

to extract image features in this object detection task. Thus, we ignore the last three

layers of Darknet-53. For the detection task, there are two networks of darknet-53 are

stacked together, accumulating to a total of 106 layers of fully convolutional architecture.

Since the increasing number of layers, this network reduces in speed compared to the

second version, which only has 30 layers. In the convolutional layers, kernels of shape

1x1 are applied on feature maps of three different sizes at three different scales in the

network. The algorithm makes predictions at three scales, given by downsampling the

image’s dimensions by a stride of 32, 16, 8, respectively. Downsampling, the reduction

in spatial resolution while keeping the same image representation, is done to reduce the

size of the image. Every scale uses three anchor bounding boxes per layer. There are

three sizes of anchor bounding boxes. There are three large boxes for the first scale, three

medium boxes for the second scale, and three small boxes for the last scale. Because there

are many sizes of anchor bounding boxes so each layer good for detecting large, medium,

or small objects.

The You Only Look once v3 (YOLOv3) network structure is shown in Figure 2.51.
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Figure 2.51: The visualization of the You Only Look once v3 (YOLOv3) network
structure [23]

2.9.5 Residual Block

Residual block is a new type of block used by Darknet-53. It is hard to train deep

neural networks. As the depth of the network increases, the accuracy of the network can

become saturated, resulting in higher training errors. The residual block was created to

fix this issue. The addition of a skip connection distinguishes the residual block from the

standard convolution block in terms of architecture. The input is carried to the deeper

layers via the skip connection.
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Figure 2.52: The examples of Residual block application

Let 𝑥 be an input data and 𝑓 be the desired mapping that is learning through the

input data 𝑥. On the left in Figure 2.52, the dotted box learns the mapping 𝑓(𝑥) directly.

The residual block is depicted on the right side in Figure 2.52. The dotted box portion

learns 𝑓(𝑥) − 𝑥, a slightly different mapping. The input is added by 𝑓(𝑥) − 𝑥 to get the

actual mapping 𝑓(𝑥). A residual connection or shortcut connection is a solid line that

connects the input 𝑥 to the mapping. Because the addition of 𝑥 acts as a residual, the

residual block was invented.

2.10 Performance Evaluation

The measurement of model performance in this work consists of several measure-

ments using Intersection over Union, Confusion Matrix, Precision, Recall, and F1 Score.

2.10.1 Intersection over Union

The IoU is a popular value for measuring object detection accuracy. Pascal VOC

competitions, a well-known object detection competition, used the IoU value to evaluate

the competition score. The IoU value was calculated from the area of overlap ratio

between the prediction area and the ground truth area divided by the area of the union
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of the predicted area and the truth area, as shown in the equation (2.18).

IoU = Area of Overlap
Area of Union . (2.18)

In this thesis, we use the IoU value in assessing the accuracy of airport building

detection. If the IoU value is more than 0.5, the airport buildings are detected. An

example of measuring IoU values can be shown in Figure 2.53.

Figure 2.53: The examples of the Intersection over Union (IoU)

2.10.2 Confusion Matrix

A confusion matrix is a table that shows how well a classification model (or a

classifier) performs on a set of test data for which the actual values are known.
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Actually class

Actually positive

(Building)

Actually negative

(Not building)

Predicted class

Predicted positive

(Building)
True Positive (TP) False Positive (FP)

Predicted negative

(Not building)
False Negative (FN) True Negative (TN)

The confusion matrix of two types of data classification, as in this thesis, consists of

two kinds: airport building and not airport building. The values in the table are assigned the

following values:

1) True Positive (TP) is an area that the system predicts is an airport building, and that area

is an actual airport building.

2) False Positive (FP) is an area that the system predicts is an airport building, but that area

is not an airport building.

3) True Negative (TN) is the area that the system predicts is not an airport building, and that

area is not an airport building.

4) False Negative (FN) is the area that the system predicts is not an airport building, but that

area is an airport building.

2.10.3 Precision Recall and F1 Score

Classification performance measurement can calculate Precision, Recall, and F1 Score as

follows

Precision is the value of all airport buildings correctly predicted by the system as a per-

centage, calculated from the predicted ratio of the correct airport buildings (TP) to the number

predicted to be all airport buildings (TP + FP).

A recall is the value of all airport buildings correctly predicted by the system as a percent-

age, calculated from the ratio that predicted the correct airport buildings (TP) and the total

airport building (TP + FN).

F1 score is the weighted average of precision and recall. It can be calculated from twice

the precision times the recall value divided by a precision plus recall.
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The performance measurement is defined as follows:

Precision (𝑃) = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑃 .

Recall (𝑅) = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁 .

Average Precision = ∫
1

0
𝑃(𝑅) 𝑑𝑅.

F1-Score = 2 ⋅ 𝑃 × 𝑅
𝑃 + 𝑅.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

PROPOSED METHOD

In this thesis, we provide the data sets that have been used to test our proposed method.

These data sets are composed of remote sensing images of more than 322 Asian airports. In each

airport, we captured the levels of high ground above the airport at 0.6, 0.8, and 1 kilometers,

of which we have collected 465 images with 4800 × 2682 pixels.

Since the acquired data images cannot directly be applied with the YOLOv3 model, we

need to slice the obtained image blocks into the specified size and label them before using them

with the YOLOv3 model. Roughly, the collected images are first cut into 4,743 images with

416 × 416 pixels for each image, which consists of a labeled building. As mentioned in the

introduction, for each image block, the Visual Object Tagging Tool is used to label the buildings

into the PASCAL VOC format. To make the descriptions above more tangible, the sample and

types of labeled buildings are illustrated in Figures 3.1.
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(a) Labeled samples of the buildings

(b) The passenger terminal for international
flights

(c) The passenger terminal for domestic
flights

Figure 3.1: Krabi International Airport, Krabi, Thailand [24]

Then, when we finished preparing the RGB image dataset for preliminary model practice,

then next, the conversion of the RGB image dataset from 3D to 4D. We are introducing a

method that combines a Jet saliency map with You only look once v3 (YOLOv3) network. We

create a one-dimensional image called Jet saliency map, which can reduce the complexity of the

background and combine it with a 3D RGB input image to be a 416 × 416 four-dimensional

input image before feeding it through the YOLOv3 network. The architecture of our approach

is shown in Figure 3.2.
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Figure 3.2: The visualization of our proposed method architecture [24]

3.1 Jet Saliency Map

In this section, we describe our improved process for constructing the Jet saliency map as

demonstrated via the flowchart in Figure 3.10. The details for each block are as following.

1. We first transform the inputted 3D RGB images, see Figures 3.3, to Jet color images in

3D format by changing the color space as Jet color map. Thus, we have a new Jet color

image, as seen in Figures 3.4.

Figure 3.3: Example of input images [1]
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Figure 3.4: Example of jet color images

2. We then blur the obtained Jet color images using the Gaussian blur with 5 × 5 filters to

denoise from the images, e.g., trees, vehicles, and small objects that are unrelated to our

main object of interest. The Gaussian blur is a type of image-blurring filter that uses a

Gaussian function

𝐺(𝑥) = 1√
2𝜋𝜎2 𝑒− 𝑥2

2𝜎2 ,

where, 𝜎2 is the variance, for computing the transformation at each pixel in the images.

Figure 3.5: Example of jet color images after blurring with Gaussian blur

3. However, we found that the previous step provides the Jet color images, which can divide

our objects of interest into two shading types, in gray scale. Therefore, in this step, we

transform the blurred images obtained through the previous step into two groups of gray-

scale images. The first group is the gray-scale image that has the foreground intensity

higher than the background intensity. Conversely, the second group is the gray-scale image

with the value of the foreground intensity less than that of the background intensity, as

seen in Figure 3.6. The formula for transforming an RGB image into a gray-scale image

is defined by

𝑌 = 0.3𝑅 + 0.59𝐺 + 0.11𝐵,

where, 𝑌 represents the intensity at a pixel and 𝑅, 𝐺, 𝐵 represent the red, green, blue

values at a pixel, respectively.
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Figure 3.6: Example of grayscale images from jet color images after blurring with
Gaussian blur

4. Next, we continue to transform an image of the first group into a binary image as using

the binary threshold. Furthermore, in a series of computational experiments, we found

that the suitable value of the threshold is 180. For the second group, we used the inverse

binary threshold by transforming a gray-scale image into the inverse binary image as in

Figure 3.7. For this, the suitable threshold value that we found is 150.

Note that, the two selected thresholds are obtained by observing the results of the obtained

images manually. As a result, these selected thresholds are appropriate when the resulting

images provide the necessary detail and coverage that we want.

Figure 3.7: Example of binary images from grayscale

5. We then employed the morphological transformations, which consists of two operators.

The first operator is the closing operator, which is used to close small holes inside the

foreground objects. The second operator is the opening operator, which is used to remove

the remaining noises in the image.

6. We use the command “CHAIN APPROX SIMPLE” in python, a type of contour approx-

imation method, to find the contour of all objects in the image and fill the inside of the

images to get a more detailed visual of the objects. The results image obtained from

actions in steps 5 and 6 are shown in Figure 3.8.
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Figure 3.8: Example of binary images after going through steps 5 and 6

7. Finally, we will construct the saliency map using the bitwise AND operators to combine

our binary image obtained in the preceding step with the original gray-scale image. Then,

we achieve the 1D saliency map.

Figure 3.9: Example of the saliency map image

Note that, the fusion of the image obtained from the saliency map with the original RGB

image, gives us the input image in 4D.

3.2 Applying Jet Saliency Map with YOLOv3

To combine the Jet saliency map with the YOLOv3 network, we combine the RGB input

image with the Jet saliency map as a 4D input array and then feed it into the YOLOv3 network

to detect the airport buildings. The YOLOv3 network parameters we used in this work are the

same as in the YOLO paper. In this evaluation of the efficiency of the method we proposed, the

results are described in Chapter IV.
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Figure 3.10: Flowchart of saliency map creation process [24]



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

RESULTS AND DISCUSSIONS

At the beginning of the experiment, we tried using the original YOLO architecture with

the parameters from the original paper. The images we used to test the model are 190 images

containing 809 target buildings for detection. Example images used to test the model are shown

in Figures 4.1, 4.2, and 4.3.

Figure 4.1: Example images from our dataset (1375 x 770 pixels) [1]
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Figure 4.2: Example images from our dataset (1375 x 770 pixels) [1]

Figure 4.3: Example images from our dataset (1375 x 770 pixels) [1]

The results are unsatisfactory as predicted bounding boxes do not fit in the airport build-

ings. Many airport buildings are not detected because their shape is very diverse. In addition,

it can not detect airport buildings that are small and found additional problems that if other

objects obscure the buildings interested, they will not be able to detect. Also, a building having
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a color similar to the background color is another problem that makes it impossible to detect.

Images of the result using the original YOLO architecture are shown in Figures 4.4, and 4.5

Figure 4.4: Example images of the result using the original YOLO (1375 x 770 pixels)

Figure 4.5: Example images of the result using the original YOLO (1375 x 770 pixels)

After that, we will solve the problem mentioned-above. First, the predicted bounding
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boxes do not fit in airport buildings. Next, there are many buildings in the airport which cannot

be detected, because of the complicated shapes and small buildings.

Therefore, we use the YOLOv3 architecture instead of the original YOLO architecture to

solve this problem that the model cannot detect the small objects in the image. Because the

YOLOv3 has been improved accuracy and efficiency of the backbone structure and the predicted

bounding boxes. Then, it provides better results than original architecture as illustrated in

Figures 4.7, 4.6, and 4.8.

Note that:

• Red boxes represent predicted bounding boxes

• Black boxes represent ground truth bounding boxes

Figure 4.6: Example images of the result using the original YOLOv3 (1378 x 958
pixels)
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Figure 4.7: Example images of the result using the original YOLOv3 (1375 x 515
pixels) [24]

Figure 4.8: Example images of the result using the original YOLOv3 (601 x 277 pixels)

From the example images of the result using the original YOLOv3, it can be noted that the

detection performance has improved when we switch to the YOLOv3 architecture, which allows

the model to detect buildings in airports with greater accuracy. However, it has failure detection

which means that the model cannot fully detect the building due to the possibility of obstructing

the building or a variety of shapes. It also detects non-building that is of interest to us because its

color or shape is similar to its background. So we come up with a solution to this problem that we

try to get rid of the background or non-building stuff using the Jet saliency map (see in Chapter

III) to solve the problem and increase the efficiency of the YOLOv3 architecture. We test our

improved model using 190 images, which contain 809 target objects for detection. These images
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used for testing have been manually labeled to reflect the actual ground truth. In addition, the

efficiency of our proposed algorithm has also been determined via several measurements using

the value of IoU = 0.5. Experimental results are demonstrated in Table 4.1, which compares the

original model of YOLOv3 and our improved model based on YOLOv3 with Jet saliency map.

Table 4.1: Detection results on the testing set

Measurements Original model (%) Our improved model (%)

Precision 74.5209 85.3254

Recall 81.7058 89.1223

Average Precision 75.6322 85.4174

F1-Score 77.9481 87.1826

From Table 4.1, we can see that our improved model using the Jet saliency map provides

higher accuracy than the original method of up to about 10 percent for all measurements. Hence,

the proposed model is more efficient and has a significantly improved level of accuracy.

The measurement values from Table 4.1 can be derived from the calculation, which can

be displayed from plotting graphs as shown in Figures 4.9 and 4.10.
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Figure 4.9: Graphs show the results of the measurement values obtained from YOLOv3

Figure 4.10: Graphs show the results of the measurement values obtained from
YOLOv3 with Jet saliency map
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The resulting images from our improved model based on YOLOv3 with Jet saliency map

are shown in the example images of the result from using the original YOLOv3 with the Jet

saliency map as follows

Figure 4.11: Example images of the result using the original YOLOv3 with the Jet
saliency map (1377 x 793 pixels)

Figure 4.12: Example images of the result using the original YOLOv3 with the Jet
saliency map (1378 x 613 pixels)
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Figure 4.13: Example images of the result using the original YOLOv3 with the Jet
saliency map (1377 x 623 pixels)

Figure 4.14: Example images of the result using the original YOLOv3 with the Jet
saliency map (1378 x 643 pixels)
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Figure 4.15: Example images of the result using the original YOLOv3 with the Jet
saliency map (1377 x 709 pixels)

Figure 4.16: Example images of the result using the original YOLOv3 with the Jet
saliency map (601 x 356 pixels)
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Figure 4.17: Example images of the result using the original YOLOv3 with the Jet
saliency map (1375 x 515 pixels) [24]

Figure 4.18: Example images of the result using the original YOLOv3 with the Jet
saliency map (1378 x 1239 pixels)
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Figure 4.19: Example images of the result using the original YOLOv3 with the Jet
saliency map (1375 x 584 pixels)

Figure 4.20: Example images of the result using the original YOLOv3 with the Jet
saliency map (1378 x 958 pixels)
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Figure 4.21: Example images of the result using the original YOLOv3 with the Jet
saliency map (1377 x 651 pixels)

Figure 4.22: Example images of the result using the original YOLOv3 with the Jet
saliency map (1377 x 932 pixels)
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Figure 4.23: Example images of the result using the original YOLOv3 with the Jet
saliency map (1384 x 1271 pixels)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

91

Figure 4.24: Example images of the result using the original YOLOv3 with the Jet
saliency map (1378 x 643 pixels)

Figure 4.25: Example images of the result using the original YOLOv3 with the Jet
saliency map (1378 x 747 pixels)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

CONCLUSIONS

In this thesis, we have proposed a model for the detection of buildings at airports. The

major idea behind this work starts with combining the 1D saliency map image with the 3D

RGB image to acquire a novel image in 4D. The YOLOv3 model has also been improved to

manipulate the complexity, noise, and small objects in the image. We have also been able to

separate the foreground from the background in the images to easily detect the buildings of

interest. From experiments, we found that the saliency map process can be applied to improve

the model efficiently. It produces highly accurate results that can be seen in chapter IV. However,

our proposed model has some limitations, i.e., it can be inaccurate in terms of detection when

the buildings have a shape similar to other objects, or when the background color or objects is

similar to the color of the target buildings as shown in Figure 5.1. Additionally, our model also

consumes more time than the original model. Therefore, in our future work, we expect to handle

these issues, as well as extend the model to detect objects in other scopes.

5.1 Future Work

In this work, the proposed method aims to detect airport buildings from remote sensing

images as much as possible. However, our proposed method has some limitations when the

other objects look like similar to the airport buildings which are caused to incorrect detection.

Therefore, in future works, we will find some ways to decrease this proposed method’s false

positive. We attempt to improve the Jet saliency map for reducing noise better, the detector

is then a more accurate and efficient detector. Besides, we will do more experiments about a

dataset with a depth channel of the object in the image.
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(a) Detecting objects rather than target buildings

(b) Incomplete detection of the target buildings

Figure 5.1: Example of failure detection [24]
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