ENHANCEMENT OF ANHYDROUS PROTON CONDUCTIVE SULFONATED POLY (ETHER ETHER KETONE) (SPEEK) BASED ON IMIDAZOLE MOLECULAR MOBILITY AND SPEEK THERMOCHROMIC PHENOMENON

Chatchai Jarumaneeroj

A Dissertation Submitted in Partial Fulfilment of the Requirements

For the Degree of Doctor of Philosophy

The Petroleum and Petrochemical College, Chulalongkorn University

in Academic Partnership with

The University of Michigan, The University of Oklahoma,

and Case Western Reserve University

2014

Thesis Title:

Enhancement of Anhydrous Proton Conductive Sulfonated

Poly (Ether Ether Ketone) (SPEEK) Membrane Based on

Imidazole Molecular Mobility and SPEEK Thermochromic

Phenomenon

By:

Chatchai Jarumaneeroj

Program:

Polymer Science

Thesis Advisor:

Prof. Suwabun Chirachanchai

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

..College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

(Asst. Prof. Pomthong Malakul)

(Prof. Suwabun Chirachanchai)

(Prof. Kohji Tashiro)

(Assoc. Prof. Hathaikarn Manuspiya)

Hathailiam M.

(Asst. Prof. Thanyalak Chaisuwan)

(Asst. Prof. Piyarat Nimmanpipuk)

Rapee Gosalawit-Like

(Asst. Prof. Rapee Gosalawit-Utke)

ABSTRACT

5182004063: Polymer Science Program

Chatchai Jarumaneeroj: Enhancement of Anhydrous Proton

Conductive Sulfonated Poly (Ether Ether Ketone) (SPEEK)

Membrane Based on Imidazole Molecular Mobility and SPEEK

Thermochromic Phenomenon.

Thesis Advisor: Prof. Suwabun Chirachanchai, 131 pages.

Keywords: Proton conductivity / Hydrogen bond network / Polymer electrolyte

membrane / Packing structure / Proton transfer / Molecular mobility/

Imidazole / Thermochromic property

The present work focuses on a systematic study of imidazole derivatives by varying the methylene units in urocanic acid system from mono to heptyl groups as an efficiency proton transfer channel. Methylene units introducing in urocanic acid system can provide various kinds of packing structures, and the chain mobility with developed melting temperature lower than 100 °C. With this thermal property, alkyl urocanates can form in molten state which are highly molecular mobility under high temperature. Proton conductivity of pure compounds exhibits the significant increase closed to melting temperature as high as 10⁻⁴ S cm⁻¹ which performs as good proton conductive species. Sulfonated poly(ether ether ketone), SPEEK, blended with alkyl urocanates are prepared as model membranes. Proton conductivity of blended membranes performs synchronized effect between water and imidazole molecules as high as 10⁻⁴ S cm⁻¹ under high temperature compared to neat SPEEK membrane (10⁻⁷ S cm⁻¹). It is worth noticing that SPEEK can perform another phenomenon as an reversible thermochormic property. This phenomenon can occur by shifting interaction of hydrogen bond network to π - π stacking of polymer backbone under high temperature. Based on structure of heterocycles, a balance of hydrogen bond network and molecular mobility provide enhancement of proton conductivity and induction of π - π stacking in SPEEK polymer at high temperature generates reversible thermochromic property through sulfonic acid groups and aromatic rings.

บทคัดย่อ

ฉัตรชัย จารุมณีโรจน์: การพัฒนาพอลิเมอร์เหนี่ยวนำโปรตอน sulfonated poly (ether ether ketone) (SPEEK) แบบไม่ใช้น้ำโดยอาศัยการเคลื่อนใหวของโมเลกุลอิมิคาโซล และ ปรากฏการณ์ตอบสนองการเปลี่ยนสีเมื่อถูกความร้อน (Enhancement of Anhydrous Proton Conductive Sulfonated Poly (Ether Ether Ketone) (SPEEK) Membrane Based on Imidazole Molecular Mobility and SPEEK Thermochromic Phenomenon) อ. ที่ปรึกษา: ศาสตราจารย์ คร. สุวบุญ จิรชาญชัย, 131 หน้า

งานวิจัยนี้มุ่งเน้นการศึกษาโมเลกุลอิมิคาโซลที่เป็นระบบ โคยการเพิ่มหมู่เมทิลีนลงบน กรคยูโรคานิค ตั้งแต่หนึ่งหมู่ถึงเจ็คหมู่ เพื่อใช้เป็นช่องทางในการถ่ายโอนโปรตอนที่มี ประสิทธิภาพ หมู่เมทิลีนที่เติมแต่งลงบนกรคยูโรคานิคสามารถปรับแต่งการจัดเรียงตัวของ โมเลกุลที่หลากหลาย และการเคลื่อนใหวของโมเลกุล พร้อมทั้งลคอุณหภูมิการหลอมเหลวให้ต่ำ กว่า 100 องศาเซลเซียส ด้วยลักษณะการหลอมเหลวแบบนี้ อนุพันธุ์ของอัลคิลยูโรคาเนทสามารถ แสคงการเคลื่อนใหวของโมเลกุลที่คีที่อุณหภูมิสูงได้ โดยค่าการนำโปรตอนของสารอนุพันธุ์ เพิ่มขึ้นอย่างเค่นชัคเมื่อเข้าใกล้จุคหลอมเหลวของสารอนุพันธุ์อยู่ที่ประมาณ 10 ⁴ S cm ่ ซึ่งแสคง ให้เห็นว่าสารอนุพันธุ์สามารถเป็นช่องทางการถ่ายโอนโปรตอนที่มีประสิทธิภาพได้ ซัลโฟ เนต-พอลิ อีเทอร์ อีเทอร์ คีโตน (SPEEK) ผสมกับอนุพันธุ์ของแอลคิลยูโรคาเนทถูกเตรียมขึ้นเพื่อ ใช้เป็นพอลิเมอร์คันแบบ ค่าการนำโปรตอนของพอลิเมอร์ผสม แสดงให้เห็นถึงปัจจัยส่งเสริม ร่วมกันระหว่างโมเลกุลน้ำ และอิมิคาโซล ที่มีค่าการนำโปรตอนสูงถึง 10 ⁻⁴ S cm ⁻¹ ที่อุณหภูมิสูง เมื่อเปรียบเทียบกับ SPEEK ที่ไม่ได้ผสมสารอนุพันธุ์ (10 7 S cm 1) เป็นที่น่าสังเกตว่า SPEEK สามารถแสคงอีกคุณสมบัติหนึ่งได้ คือ การเปลี่ยนสีเมื่อถูกความร้อน (Thermochromic property) ปรากฏการณ์นี้สามารถเกิดขึ้นได้จากการควบคุมการเปลี่ยนอันตรกิริยาระหว่างโครงสร้างร่างแห ไฮโครเจนบอนค์ไปสู่อันตรกิริยาชนิค π อิเล็กตรอนของหมู่กรคซัลโฟนิก และวงแอโรแมติกบน สายโซ่หลักของพอลิเมอร์ที่อุณหภูมิสูง คังนั้น ค้วยการศึกษาในระคับโครงสร้าง ความสมคุล ระหว่างพันธะไฮโครเจน การเคลื่อนไหวของโมเลกุล และอันตรกิริยาชนิค π อิเล็กตรอน นำไปสู่ การพัฒนาของค่าการนำโปรตอน และการเกิดปรากฏการณ์ตอบสนองการเปลี่ยนสีเมื่อถูกความ ร้อนได้

ACKNOWLEDGEMENTS

The author would like to sincere thank his advisor, Professor Suwabun Chirachanchai, for giving him continuous support, guidance, patience, inspiration and encouragement especially for providing him with an excellent research atmosphere. Thanks for being his role model.

He would like to extend his thanks to Professor Kohji Tashiro (Department of Future Industry-oriented Basic Science and Materials, Toyota Technological Institute, Japan) not only for giving him the chance to experience doing the research in his laboratory but also for giving him strong support, worth advices, and concerns during his stays in Japan. He also wishes to thank to all Tashiro laboratory's members for their many helps and good taking care during his stay in Japan.

He wishes to thank his thesis committee, Asst. Prof. Pomthong Malakul, Asst. Prof. Hathaikarn Manuspiya, Asst. Prof. Thanyalak Chaisuwan, Asst. Prof. Piyarat Nimmanpipug, and Asst. Prof. Rapee Gosalawit-Utke for their suggestions and great guidance. A deep gratitude is expressed to all professors at PPC who have given her valuable knowledge.

He would like to acknowledge the scholarships from The Thailand Research Fund, Royal Golden Jubilee (Grant no. PHD/006/2551) for the Ph. D. program and the short-term research in Japan.

He acknowledges the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (EN276B) and The Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University (RES560530272-EN) for research fund.

This thesis work is funded by The Petroleum and Petrochemical College, and The Center of Excellence for Petroleum, Petrochemicals, and Advanced Materials, Thailand.

His thanks are also to all Suwabun's group members for their helps, good suggestions, encouragement, friendship and all the good memories.

Last, but not least, he thanks his family for giving his life, encouragement, and unconditional support to pursue his interests and especially for their love and understanding.

TABLE OF CONTENTS

		PAGE
Title	e Page	i
Abs	tract (in English)	iii
Abs	tract (in Thai)	iv
Ack	nowledgements -	v
Tabl	e of Contents	vi
List	of Table	x
List	of Figures	xi
List	of Schemes	xv
СНАРТЕ	R	4
I	INTRODUCTION	1
11	LITERATURE REVIEW	3
1.5	2.1 Fuel Cell	3
	2.2 Polymer Electrolyte Membrane Fuel Cell (PEMFC)	5
	2.2.1 Hydrous-based Membrane System	6
	2.2.2 Anhydrous-based Membrane System	10_
	2.3 Fundamental Study of Model Compounds Based on	
	Heterocycles Related to Proton Conductivity	18
	2.4 Thermochromic Polymer	19
	2.5 Points of Study	23
III	MOLECULAR MOBILITY OF IMIDAZOLE	
	IN MOLTEN STATE AS A KEY FACTOR TO	
	ENHANCE PROTON CONDUCTIVITY	24
	3.1 Abstract	24
	3.2 Introduction	25

CHAPTER		PAGE
	3.3 Experimental	29
	3.4 Results and Discussion	31
	3.5 Conclusions	45
	3.6 Acknowledgements	46
	3.7 References	46
¥\$7	ALLWA LIBOGANATEGA CERROTON ER ANGERR	
IV	ALKYL UROCANATES AS PROTON TRANSFER	
	SPECIES IN MOLTEN STATE: AN ACCESS TO PROTON CONDUCTIVITY IN THE LONG BANGE	
	TO PROTON CONDUCTIVITY IN THE LONG RANGE	
	OF OPERATING TEMPERATURE	48
	4.1 Abstract	48
	4.2 Introduction	49
	4.3 Experimental	52
	4.4 Results and Discusstion	54
	4.5 Conclusions	65
	4.6 Acknowledgements	66
	4.7 References	66
V	SHIFTING FROM HYDROGEN BOND NETWORK	
	TO П-П STACKING: A KEY MECHANISM FOR	
	REVERSIBLE THERMOCHROMIC SULFONATED	
	POLY (ETHER ETHER KETONE)	70
	5.1 Abstract	70
	5.2 Introduction	71
	5.3 Experimental	72
	5.4 Results and Discussion	73
	5.5 Conclusions	78
	5.6 Acknowledgements	79
	5.7 Deferences	70

CHAPTER			PAGE
VI	CONCLUSIO	ONS	81
	REFERENC	ES	82
	APPENDICI	ES	91
	Appendix A	Structural Characterization of Alkyl Urocanates	91
	Appendix B	Proton Conductivity of C1U, C2U, C3U,	
		C5U, and C7U by VTF Equation	94
-	Appendix C	Glass Transition Temperature of Alkyl urocanate	s 97
	Appendix D	Determination of Ion Exchange Capacity (IEC)	
		and Degree of Sulfonation (DS)	98
	Appendix E	Characterization of SPEEK-CxU by FTIR	100
	Appendix F	Degradation Temperatures of SPEEK-CxU	106
	Appendix G	Proton Conductivity of SPEEK-CxU by	
19		VTF Equation	110
	Appendix H	Isosbestic Point of SPEEK-CxU	112
	Appendix I	Full Width Haft Maximum of Symmetric Sulfoni	С
		Acid Peak of SPEEK-CxU	
		as a Function of Temperatures	115
	Appendix J	Temperature Dependence FTIR of Inter-	
		and Intra- Hydrogen Bond Networks	117
	Appendix K	Comparison of Proton Conductivity	
		between SPEEK-C4U and SPEEK-C6U	121
	Appendix L	Solubility of SPEEK	122
	Appendix M	Calculation of Energy Band Gap (Eg)	
		and Aromatic Carbon in Cluster (N)	123
	Appendix N	Thermochromic Property of PEEK Thin Film	126
	Appendix O	Temperature Dependence FTIR of	
		PEEK Thin Film	127
	Annendiy P	SPEEK Thin Film in Dry System	128

CHAPTER	PAGE
CURRICULUM VITAE	130

LIST OF TABLES

TABLE		PAGE	
	CHAPTER II		
2.1	Characteristics of different types of fuel cell	4	
	CHAPTER III		
3.1	Single crystal parameter of C0-C7	37	

LIST OF FIGURES

Figure		PAGE
	CHAPTER II	
2.1	Schematic draw of a single fuel cell components and	
	operations based on hydrogen/oxygen fuel cell	1
2.2	Structure of commercial PFSA polymers,	
	Nafion [®] : $m=1$; $n=2$; $x=5-13.5$; $y=1$,	
	Flemion [®] : $m=0,1$; $n=1-5$; $x=5-13.5$; $y=1$,	
	Aciplex®: $m=0$; $n=2-5$; $x=1.5-14$; $y=1$,	
	Dow®: m=0; n=2; x=3.6–10, y=1	6
2.3	Aromatic polymer	9
2.4	Imidazole-based compounds for PEMFC:	
	type I-mixing imidazole derivatives with other species	11
2.5	Imidazole-based compounds for PEMFC:	
	type II-incorporating into polymer matrices	13
2.6	Imidazole-based compounds for PEMFC:	
	type III-ionic liquids	14
2.7	Imidazole-based compounds for PEMFC:	
	type III-side chain structures	16
2.8	Imidazole-based compounds for PEMFC:	
	type IV-main chain structures	17
2.9	Series of benzimidazole model compounds	
	with varied numbers of benzimidazole units	18
2.10	Structure of multi-benzimidazole functionalized	
	branched polyethyleneimine (MPEI)	19
2.11	Ligand exchange thermochromic system mechanism	20
2.12	Leuco dye compounds	20
2.13	Thermochromic responsive polymer based on aromatic	
	and conjugated polymer	21

Figure		PAGE			
CHAPTER III					
3.1	T_m (•), and T_d (0) of alkyl urocanates	32			
3.2	Unit cells and packing structure of C0-C7 including possible	52			
	hydrogen bond network	33			
3.3	Hydrogen bond distances of imidazole ring				
	(○: NHO bond distance, •: NHN bond distance)				
	interpreted from single crystal analyses	35			
3.4	T_1 -relaxation time belonging to the methylene protons				
	(-O-CH ₂ -) of the alkyl chain.	36			
3.5	Proton conductivity of C1U (-•-), C2U (-○-), C3U (-▼-),				
	C4U (-△-), C5U (-□-), C6U (-■-), and C7U (-◆-)				
	as a function of temperature	38			
3.6	Plausible proton transfer mechanism (a) Grotthuss mechanism				
	$(and (b) vehicle mechanism (>T_m)$	40			
3.7	Proton conductivity of C4U (a) evaluated by Arrhenius equation				
	and (b) evaluated by VTF equation, and C6U				
	(c) evaluated by Arrhenius equation and				
	(d) evaluated by VTF equation with a dot line referring to T_{m}	41			
3.8	E _a of C1U - C7U for (a) solid form, and (b) molten form	42			
3.9	Plots of (a) proton conductivity at 130 °C,				
	(b) $1/E_a$ (melt), and (c) $1/T_m$.	43			
3.10	Proton conductivity of neat SPEEK (•)				
	and SPEEK containing C4U (2 % (wt/v)) (0)				
	under variation of temperatures	45			
	CHADTED IV				
<i>A</i> 1	CHAPTER IV Degradation temperatures of (a) SPEEV				
4.1	Degradation temperatures of (a) SPEEK, (b) SPEEK-C4U and (c) SPEEK-C6U	56			
	(U) SI BEN-C4U and (C) SI EEN-CUU	20			

Figure		PAGE
4.2	Proton conductivity of SPEEK blended with C1U (-•-),	
	C2U (-○-), C3U (-▼-), C4U (-△-), C5U (-□-),	
	C6U (-■-), and C7U (-♦-)	57
4.3	Proton conductivity of (a) SPEEK, (b) SPEEK-C4U,	5 /
	and (c) SPEEK-C6U by VTF equation	58
4.4	Activation energy of SPEEK-CxU	60
4.5	Temperature dependence FTIR spectra of SPEEK-C4U;	
	(a) in range of wavenumber $1000 \text{ cm}^{-1} - 1400 \text{ cm}^{-1}$,	
	and (b) in range of wavenumber 1200 cm ⁻¹ .– 1240 cm ⁻¹	61
4.6	FWHM of sulfonic acid group as a function of temperatures of	
	(a) SPEEK-C4U, and (b) SPEEK-C6U	62
4.7	Proton conductivity of (a) SPEEK, (b) SPEEK-C4U	
	as a function of temperatures based on VTF equation,	
	and schematic proton transfer mechanism of (c) SPEEK,	
	and (d) SPEEK-CxU with synchronized effect of water	
	and imidazole molecules related to different temperatures	64
4.8	Schematic of SPEEK-CxU at different operating temperatures	66
	CHAPTER V	
5.1	Chemical structure of (a) SPEEK, and (b) PEEK,	
	(c) SPEEK thin film at room temperature,	
	(d) at high temperature (above 190°C),	
	(e) after leaving at room temperature, and	
	(f) after putting into water or hot water (80 °C)	72
5.2	(a) Temperature dependence UV-Vis spectra of SPEEK	
	thin film at various temperatures, (b) optical energy band gap,	
	and (c) number of aromatic carbon in cluster	
	as a function of temperatures	75

Figure PAGE

(a) Temperature dependence FTIR spectra of SPEEK thin film,(b) symmetric peak position of O=S=O, and (c) FWHM of O=S=O as a function of temperatures, and (d) thermochromic recovery time under variation of humidity

77

LIST OF SCHEMES

SCHE	ME		PAGE
	CHAPTER III		
3.1	Alkyl urocanates		.30
		-	
	CHAPTER IV		
4.1	Sulfonated poly (ether ether ketone), SPEEK,		
	and alkyl urocanates, CxU		51
4.2	Preparation of SPEEK		53
	CHAPTER V		
5.1	Possible reversible thermochromic SPEEK thin film		
	at molecular level		78