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APPENDICES
Appendix A Adsorbent Physical Characterization
The technical specification of the adsorbents that was certified by Carbokam

Co., Ltd. is summarized in Table A1.

Table A1 Physical characteristic properties of investigated adsorhents

Adsorbent Specification

Physical Characterization Coconut Shell Palm Shell
Activated Carbon Activated Carbon
(CSAC) (PSAC)
Apparent Density (g/cm3) >0.48 >0.48
Moisture Content (% / ) < 8.0 < 8.0
Ash Content 4 [/ ) <3.5 <5.0
pH 9-11 9-11
lodine Number (mg/g) > 1,100 > 1,100
Hardness Number (%) >98.0 >98.0

The zeta potential of all samples as a function of pH (pHpzc) is summarized in
Table A2.



Table A2 zeta potential measurements of activated carbon

CSAC -
CSAC -
CSAC -
CSAC -

Adsorbents oHpzc Adsorbents
Untreated 45 CSAC - Treated by H2S04
Treated by KOH 7.6 CSAC - Treated by HNO3
Treated by NaOH 1.5 CSAC - Treated by H3PO4
Treated by NH4OH 7.3 PSAC - Untreated

using an Autosorb-IMP (Quantachrome Instrument) in Table A3.

pHpzc

3.3
2.5
2.7
5.2

87

Nitrogen adsorption-desorption isotherms of the adsorbents were conducted
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Table A3 BET surface area, micropore volume, and average pore diameter of
investigated adsorbents

Physical Characterization

Adsorbent _ BET  Micropore  Total Average
pore pore

Surface volume  volume  diameter
area (m2g)  (cm3g)  (cm3g) (A)

CSAC - Untreated 1,062 0.57 0.59 22.45
CSAC - Treated by KOH 900 0.48 0.50 22.29
CSAC - Treated by NaOH 1,019 0.55 0.57 22.20
CSAC - Treated by NH4OH 1,022 0.55 0.57 22.15
CSAC - Treated by H2504 996 . 053 0.55 22.26
CSAC - Treated by HNO3 988 0.53 0.55 22.30
CSAC - Treated by HaPQq« 922 0.49 0.51 22.28
PSAC - Untreated 1,058 0.56 0.59 22.28

Fourier transform infrared spectroscopy (FTIR) was used to qualitatively
evaluate the chemical structure of carbon materials in Table A4.



Table A4 IR assignments o functional groups on carbon surfaces

Adsorption peaks (cm-1)

Surface In reference  This work I {

Jrotp CSAC CSAC/NaOH CSAC/INH40H csac/h2so4 csac/hnos CSAC/H3PO4
-OH 3435 3430 3400 3408 3409 3394 3436
oh? 2920 2925 2922 2925 2918 2921 2923
C=C 1629 1633 1628 1630 1629 1615 1631
C=0 1558 - 1558 1572 : 1566

COOH 1382-1392 - 1385 - 1390 1384
coc 1157 - 1 - - 1134

COH 1118 1115 1120 1133 1118 - 1130
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Appendix B Adsorption and Desorption Curves in Different Scale

The breakthrough curves of methane and carbon dioxide were plotted in

terms of concentration ratio versus time, as shown in Figures 4.3 and 4.4 are shown
in Figure B1 and B2.
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Figure Bl Breakthrough curves of methane from the adsorption on the CSAC with
the initial concentration of methane at 75, 80, and 85 vol% at room temperature.
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Figure B2 Breakthrough curves of carbon dioxide from the adsorption on the CSAC
with the initial concentration of carbon dioxide at 5, 10, 15, and 20 vol% at room

temperature.

Some of the adsorption and desorption curves from the breakthrough
experiments are rewritten in a different scale. The breakthrough curves in Figure 4.8

are shown here in Figure B3.
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Figure B3 Breakthrough curves of methane and carbon dioxide from the competitive

adsorption on the CSAC with the initial concentration of methane at 10 vol% and

carbon dioxide at 10, 20, and 30 vol% at room temperature.

Competitive adsorption at 10 vol% and carbon dioxide composition was

varied from 10 to 30 vol% profiles in Figures 4.5 to 4.7 are shown in Figures B4 to

Bs.
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Figure B4 Breakthrough curves of methane and carbon dioxide from the competitive
adsorption on the CSAC with the initial concentration of methane at 10 vol% and
carbon dioxide at 10 vol% at room temperature.
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Figure B5 Breakthrough curves of methane and carbon dioxide from the competitive

adsorption on the CSAC with the initial concentration of methane at 10 vol% and
carbon dioxide at 20 vol% at room temperature.
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Figure B6 Breakthrough curves of methane and carbon dioxide from the com petitive

adsorption on the CSAC with the initial concentration of methane at 10 vol% and
carbon dioxide at 30 vol% at room temperature.

The breakthrough curves and the desorption cycles in Figures 4.9 to 4.22 are
shown in Figures B7 to B21.
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Figure B7 Breakthrough curves of methane and carbon dioxide from the 3-cycle
adsorption process on untreated CSAC with the initial concentration of methane at
10 vol% and carbon dioxide at 10 vol% atroom temperature.
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Figure B8 Three desorption cycles of methane and carbon dioxide from the CSAC
with the initial concentration of methane at 10 vol% and carbon dioxide at 10 vol%
at room temperature.
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Figure B9 Breakthrough curves of methane and carbon dioxide from the 3-cycle
adsorption process on the CSAC treated by sodium hydroxide with the initial
concentration of methane at 10 vol% and carbon dioxide at 10 vol% at room

temperature.
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Figure BIO Three desorption cycles of methane and carbon dioxide from the CSAC
treated by sodium hydroxide with the initial concentration of methane at 10 vol% and

carbon dioxide at 10 vol% at room temperature,
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Figure BII Breakthrough curves of methane and carbon dioxide from the 3-cycle
adsorption process on the CSAC treated by ammonium hydroxide with the initial

concentration of methane at 10 vol% and carbon dioxide at 10 vol% at room
temperature.
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Figure B12 Three desorption cycles of methane and carbon dioxide from the CSAC
treated by ammonium hydroxide with the initial concentration of methane at 10 vol%
and carbon dioxide at 10 vol% at room temperature,
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Figure B13 Breakthrough curves of methane and carbon dioxide from the 3-cycle
adsorption process on the CSAC treated by potassium hydroxide with the initial
concentration of methane at 10 vol% and carbon dioxide at 10 vol% at room
temperature.
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Figure B14 Three desorption cycles of methane and carbon dioxide from the CSAC
treated by potassium hydroxide with the initial concentration of methane at 10 vol%
and carbon dioxide at 10 vol% atroom temperature.
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Figure B15 Breakthrough curves of methane and carbon dioxide from the 3-cycle
adsorption process on the CSAC treated by sulfuric acid with the initial
concentration of methane at 10 vol% and carbon dioxide at 10 vol% at room

temperature.
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Figure B16 Three desorption cycles of methane and carbon dioxide from the CSAC
treated by sulfuric acid with the initial concentration of methane at 10 vol% and
carbon dioxide at 10 vol% at room temperature.
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Figure BL7 Breakthrough curves of methane and carbon dioxide from the 3-cycle
adsorption process on the CSAC treated by nitric acid with the initial concentration
of methane at 10 vol% and carbon dioxide at 10 vol% at room temperature.
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Figure B18 Three desorption cycles of methane and carbon dioxide from the CSAC

treated by nitric acid with the initial concentration of methane at 10 vol% and carbon
dioxide at 10 vol% at room temperature.
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Figure B19 Breakthrough curves of methane and carbon dioxide from the 3-cycle

adsorption process on the CSAC treated by phosphoric acid with the initial
concentration of methane at 10 vol%

and carbon dioxide at 10 vol% at room
temperature.

T
(0] 5 10 15 20 25

30 35 40 45 50 55 60

Time (min)

Figure B20 Three desorption cycles of methane and carbon dioxide from the CSAC

treated by phosphoric acid with the initial concentration of methane at 10 vol% and
carbon dioxide at 10 vol% at room temperature.
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Figure B2l Breakthrough curves of methane and carbon dioxide from the
competitive adsorption on the untreated CSAC, CSAC treated by sulfuric acid,
CSAC treated by phosphoric acid, CSAC treated by nitric acid, CSAC treated by
potassium hydroxide, CSAC treated by ammonium hydroxide and CSAC treated by
sodium hydroxide with the initial concentration of methane at 10 vol% and carbon
dioxide at 10 vol% at room temperature.

The breakthrough curves of CSAC treated MES on varies concentration in
Figures 4.31 to 4.34 are shown in Figures B22 to B25.
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Figure B22 Breakthrough curves of methane and carbon dioxide from the
competitive adsorption on the CSAC treated by MES at 15 mg/l with the initial
concentration of methane at 10 vol% and carbon dioxide at 10 vol% at room

temperature.
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Figure B23 Breakthrough curves of methane and carbon dioxide from the
competitive adsorption on the CSAC treated by MES at 50 mg/l with the initial
concentration of methane at 10 vol% and carbon dioxide at 10 vol% at room

temperature.
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Figure B24 Breakthrough curves of methane and carbon dioxide from the
competitive adsorption on the CSAC treated by MES at 152.8 mg/l with the initial
concentration of methane at 10 vol% and carbon dioxide at 10 vol% at room

tem perature.
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Q° 3 : CSAC treated by MES 152.8 mg/I-CO5
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Figure B25 Breakthrough curves of methane and carbon dioxide from the
competitive adsorption on the untreated CSAC, CSAC treated by MES at 15mg/l, 50
mg/L, and 152.8 mg/Ll with the initial concentration of methane at 10 vol% and carbon
dioxide at 10 vol% atroom temperature.
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Table BL Summary of breakthrough time adsorption capacity and selectivity of

investigate CSAC

Adsorbent

CSAC

csac/h.so.
CSAC/H;PO.
CSAC/HNO:
CSAC/KOH
CSAC/NH.OH
CSAC/NaOH
CSAC/MES at 15 mg/]
CSAC/MES at 50 mg]
CSACIMES at 1528 my!l

Breakthrough
time (min)

CR}

3.46
176
-2.26
491
5.24
4.60
392
318

2.21

C0.

17.00

14.64 -

16,53
20.19
21.80
1951
1941
18.97
1280
17.00

Total chs c02
adsorption  adsorption  adsorption
(mmollg)  (mmolig) - (mmollg)
341 0.58 2.84
2.74 0.29 2.44
313 0.38 2.76
3.74 0.37 337
4.46 0.82 3.64
413 0.87 3.25
401 0.77 3.24
382 0.6 3.16
2.67 0.53 2.13
3.20 0.37 2.84

Adsorption
selectivity

0.14

0.23
0.27
0.24

0.25
0.13
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