REFERENCES

- Pouretedal, H.R., and Kadkhodaie, A. (2010) Synthetic CeO₂ Nanoparticle Catalysis of Methylene Blue Photodegradation: Kinetics and Mechanism. <u>Chinese journal of catalysis</u>, 31(11) 1328-1334.
- Essex, R.R., Rossero, J.I., Jursich, G.M., and Takoudis, C.G. (2013) Atomic Layer Deposition of Cerium Oxide for Potential Use in Solid Oxide Fuel Cells. Journal of Undergraduate Research. 6, 37-41.
- Peiretti, L.F., Tiscornia, I.S., and Miro, E.E. (2013). Study of the synthesis of CeO₂ nanoparticles for their use in CO preferential oxidation (COPrOx).
 <u>Chemical Engineering Journal</u>, 223, 507-515.
- De Faria, L.A., and Transatti, S. (1994) The point of Zero Charge of CeO₂. <u>Journal</u> of Colloid and Interface Science, 167, 352-357.
- Chelliah, M., Rayappan, J.B.B., and Krishnan, U.M. (2012) Synthesis and Characterization of Cerium Oxide Nanoparticles by Hydroxide Mediated Approach. Journal of Applied Sciences, 12(16) 1734-1737.
- Bouchaud, B., Balmain, J., Bonnet, G., and Pedraza, F. (2011) pH-distribution of cerium species in aqueous systems. Journal of Rare Earths, 30(6) 559-562.
- Wu, N.C., Shi, E.W., Zheng, Y.Q., and Li, W.J. (2002) Effect of pH of Medium on Hydrothermal Synthesis of Nanocrystalline Cerium(IV) Oxide Powders. Journal of the American Ceramic Society, 85(10) 2462-2468.
- Sehgal, A., Lalatonne, Y., Berret, J.F., and Morvan, M. (2005) Precipitation-Redispersion of Cerium Oxide Nanoparticles with Poly(Acrylic Acid) : Towards Stable Dispersions. <u>Langmuir</u>, 21(20) 9359-9364.
- Masui, T., Hirai, H., Imanaka, N., Adachi, G., Sakata, T., and Mori, H. (2002) Synthesis of cerium oxide nanoparticles by hydrothermal crystallization with citric acid. Journal of Materials Science Letters, 21, 489-491.
- Nainani, R., Thakur, P., and Chaskar, M. (2012) Synthesis of Silver Doped TiO₂ nanoparticles for the Improved Photocatalytic Degradation of Methyl Orange. <u>Journal of Materials Science and Engineering B</u>, 2(1) 52-58.

- Whang, T.J., Huang, H.Y., Hsieh, M.T., and Chen, J.J., (2009) Laser-Induced Silver Nanoparticles on Titanium Oxide for Photocatalytic Degradation of Methylene Blue. <u>International Journal of Molecular Sciences</u>, 10, 4707-4718.
- Suwarnkar, M.B., Dhabbe, R.S., Kadam, A.N., and Garadkar, K.M. (2013) Enhanced photocatalytic activity of Ag doped TiO₂ nanoparticles synthesized by a microwave assisted method. <u>Ceramics International</u>, 40, 5489-5496.
- Faisal, M., Khan, S.B., Rahman, M.M., Jarnal, A., Akhtar, K., and Abdullah, M.M. (2011) Role of ZnO-CeO₂ Nanostructures as a Photo-catalyst and Chemisensor. <u>Material Science Technology</u>, 27(7), 594-600.
- Zhai, Y., Zhang, S., and Pang, H. (2006) Preparation, characterization and photocatalytic acivity of CeO₂ nanocrystalline using ammonium bicarbonate as precipitant. <u>Materials Letters</u>, 61, 1863-1866.
- Ameen, S., Akhtar, M.S., Seo, H.K., and Shin, H.S. (2014) Solution-processed CeO₂/TiO₂ nanocomposite as potent visible light photocatalyst for the degradation of bromophenol dye. <u>Chemical Engineering Journal</u>, 247, 193-198.
- Decher, G. (1997) Fuzzy nanoassemblies: Toward layered polymeric multicomposites. <u>Science</u>, 277, 1232-1237.
- DetSri, E., and Dubas, S.T. (2013) Layer-by-layer deposition of cationic and anionic car bon nanotube into thin films with improved electrical properties. <u>Colloids and Surfaces A-Physicochem. Eng. Aspects</u>, 444, 89-94.
- Kumlangdudsana, P., Tuantranont, A., Dubas, S.T., and Dubas, L. (2012)
 Fabrication of microelectrodes using flow layer-by-layer self assembly of gold nanoparticles. Superlattices and Microstructures, 52, 1043-105.1
- Dubas, S.T., Kumlangdudsana, P., and Potiyaraj, P. (2006) Layer-by-layer deposition of antimicrobial silver nanoparticle on textile fibers. <u>Colloids</u> <u>and Surfaces A-Physicochem. Eng. Aspects</u>, 289, 105-109.

Ø

- Kumlangdudsana, P., Tuantranont, A., and Dubas, S.T. (2011) Polyelectrolyte multilayers coating for organic solvent resistant microfluidic chips. <u>Material Letters</u>, 65, 3629-3632.
- Limsavarn, L., Sritaveesinsub, V., and Dubas, S.T. (2006) Polyelectrolyte assisted silver nanoparticles synthesis and thin film formation. <u>Materials Letters</u>, 61, 3048-3051.
- Dubas, S.T., Wacharanad, S., and Potiyaraj, P. (2011) Tunning of antimicrobial activity of surgical sutures coated with silver. <u>Colloids and Surfaces A:</u> <u>Physicochem. Eng. Aspects</u>, 380, 25-28.
- Sehgal, A., Lalatonne, Y., Berret, J.F., and Morvan, M. (2005) Precipitation-Redispersion of Cerium Oxide Nanoparticles with Poly(Acrylic Acid) : Towards Stable Dispersions. <u>Langmuir</u>, 21(20) 9359-9364.
- Li, B., Gu, T., Ming, T., Wang, J., Wang, P., Wang, J., and Yu, J.C. (2014) (Gold Core)@(Ceria Shell) Nanostructures for Plasmon-Enhanced Catalytic Reactions under Visible Light. <u>American Chemical Society</u>.
- Wong, C.P. (2003) Fundamental Understanding and Performance Enhancement of Conductive Adhesive for Microelectronic Packaging Application. <u>United</u> <u>States Environmental Protection Agency.</u>

σ

0

APPENDICES

Appendix A Absorbance of pure methyl violet (MV) under UV irradiation for 5 hours. The concentration of MV is 5 ppm.

 Table A1 The result from measurement the absorbance of pure MV under UV irradiation for 5 hours

Time (hrs)	0	1	2	3	4	5
Absorbance	0.608623	0.555232	0.536014	0.497331	0.475675	0.46782

Figure A1 Show the absorbance of MV under UV irradiation for 5 hours

APPENDIX B Find the best condition to synthesize Cerium oxide (CeO₂) followed by the photo-catalytic activity with MV under UV irradiation for 5 hours. The concentration of MV is 5 ppm.

There are various conditions to synthesize which are synthesize by stirring or sonication, quick added or drop wise of Na_2CO_3 and Heat at 60 C or Room temperature. These ways to synthesize CeO_2 will be shown in this appendix.

*P.S. H = heat at 60 C, R = room temperature, Q = quick mixing, Slo = slow mixing, sonic. = sonication, S = stirring, 8 = pH 8.0

Table B1 The absorbance of MV in the presence of CeO_2 which synthesized by quick added and drop wise of Na_2CO_3 at wavelength 582.557 cm⁻¹

Condition	0	1	2	3	4	5
R,8,S,Slo	0.608623	0.509927	0.492066	0.447499	0.382762	0.361438
R,8,S,Q	0.608623	0.493401	0.19055	0.163753	0.028516	0.003107

Table B2 The absorbance of MV in the presence of CeO_2 which synthesized by sonicated and stirred condition at wavelength 582.557 cm⁻¹

5							
	Condition	0 1		2 3		4	5
	R,8,sonic,Q	0.608623	0.560393	0.398563	0.211754	0.142595	0.026056
	R,8,S,Q	0.608623	0.493401	0.19055	0.163753	0.028516	0.003107

Table B3 The absorbance of MV in the presence of CeO_2 which synthesized at 60 C and room temperature at wavelength 582.557 cm⁻¹

	Condition	ndition 0 1		2	3	4	5
	H,8,S,Q	0.608623	0.361998	0.267529	0.230512	0.161364	0.068694
ſ	R,8,S,Q	0.608623	0.493401	0.19055	0.163753	0.028516	0.003107

Figure B1 Show the absorbance of CeO_2 synthesized by the best condition which is synthesize at room temperature, pH 8.0 and quick added Na_2CO_3 under stirred condition

.

Appendix C Compare the photo-catalytic activity between Ce(OH)CO₃, CeO₂ and also, compare to pure MV under UV irradiation for 5 hours

This part of experiment was used to confirm that CeO_2 is the photo-catalyst not $Ce(OH)CO_3$ or degradation of MV by itself.

Table C1 Show the absorbance of MV in the presence of $Ce(OH)CO_3$, CeO_2 and also pure MV under UV irradiation for 5 hours at wavelength 582.557 cm⁻¹

Substance	0	1	2	3	4	5
Ce(OH)CO ₃	0.608623	0.555232	0.495869	0.481388	0.404118	0.397563
CeO₂	0.608623	0.493401	0.19055	0.163753	0.028516	0.003107
Pure MV	0.608623	0.555232	0.536014	0.497331	0.475675	0.46782

.

Appendix D Study on the charges at the surface of Ce(OH)CO₃ and CeO₂ at any pH

The charges at the surface of $Ce(OH)CO_3$ and CeO_2 was studied by using layer-by-layer technique. The glass slide will be prepared to be negative charge (6 layers) and positive charges (5 layers) by layer-by-layer technique. The primer will be dipped in the $Ce(OH)CO_3$ and CeO_2 which dispersed in the distilled water at pH 3-10.

Table D1 Show the absorbance of primer dipped into the Ce(OH)CO3 at pH 3-10

рН	5	6	7	8	9	10
6 layers	0.056139	0.052126	0.060263	0.068056	0.075076	0.101478
5 layers	0.01815	0.031706	0.041672	0.044476	0.043935	0.036738

Table D2Show the absorbance	of	primer	dipped	into	the	CeO_2	at	pН	3-1	0
-----------------------------	----	--------	--------	------	-----	---------	----	----	-----	---

	Number of primers							
рп	5 layers 6 layers 5		SD 5 layers	SD 6 layers				
3	0.110233	0.312076	0.040588	0.01968				
4.	0.147659	0.51617	0.051851	0.026242				
5	0.304587	0.499408	0.126099	0.07452				
6	0.293243	0.09459	0.0475	0.033157				
7	0.128347	0.005467	0.034793	0.001278				
8	0.139439	0.001165	0.011033	0.000578				
9	0.120916	0.009429	0.004102	0.001111				
10	0.128656	0.004858	0.000911	0.001045				

σ

Appendix E Show the effect of Ag nanoparticles on CeO₂

The CeO₂ nanoparticles were synthesized at the surface of Ag nanoparticles. Ag nanoparticles were synthesized by chemical reduction of AgNO₃ using COPSS and NaBH₄ as capping agent and reduced agent, respectively. The photo-catalytic activity of CeO₂ with Ag nanoparticles will be shown in appendix E.

Table E1 Show the absorbance of MV in the presence of CeO_2 with Ag nanoparticles which synthesized by various concentrations of COPSS

Time		Concentratior	n of COPSS		Pure CeO ₂	
(minutes)	0.001 mM	0.005 mM	0.01 mM	0.05 mM	Pule CeO ₂	
0	1.154795	1.154795	1.154795	1.154795	1.154795	
3	0.724211	0.693124	0.753318	0.705132	1.109679	
5	0.699163	0.655183	0.741259	0.674934	1.084518	
10	0.669382	0.650617	0.597784	0.624341	1.014098	
20	0.668863	0.621737	0.516211	0.600853	0.875797	
30	0.66825	0.587677	0.489824	0.559313	0.838016	
60	0.631036	0.569543	0.458964	0.546586	0.832655	
120	0.595987	0.5557	0.442541	0.489042	0.82099	

•

σ

Table E2 Show the absorbance of MV after exposure to UV compare to theabsorbance of MV before exposure to UV in the presence of CeO_2 with Agnanoparticles synthesized by various concentrations of COPSS

Time	(Concentration	of COPSS		Pure
(minutes)	0.001 mM	0.005 mM	0.01 mM	0.05 mM	CeO ₂
0	1	1	1	1	1
3	0.627134	0.600214	0.65234	0.610612	0.960932
5	0.605443	0.567359	0.641897	0.584463	0.939144
10	0.579654	0.563405	0.517654	0.540651	0.878163
20	0.579205	0.538396	0.447015	0.520312	0.7584
30	0.578674	0.508902	0.424166	0.484339	0.725684
60	0.546448	0.493198	0.397442	0.473318	0.721042
120	0.516097	0.481211	0.383221	0.423488	0.71094
	Time (minutes) 0 3 5 10 20 30 60 120	Time (minutes)0.001 mM010130.62713450.605443100.579654200.579205300.578674600.5464481200.516097	Time (minutes)Concentration00.001 mM0.005 mM01130.6271340.60021450.6054430.567359100.5796540.563405200.5792050.538396300.5786740.508902600.5464480.4931981200.5160970.481211	Time (minutes)Concentration of COPSS0.001 mM0.005 mM0.01 mM011130.6271340.6002140.6523450.6054430.5673590.641897100.5796540.5634050.517654200.5792050.5383960.447015300.5786740.5089020.424166600.5464480.4931980.3974421200.5160970.4812110.383221	Time (minutes)Concentration of COPSS0.001 mM0.005 mM0.01 mM0.05 mM0111130.6271340.6002140.652340.61061250.6054430.5673590.6418970.584463100.5796540.5634050.5176540.540651200.5792050.5383960.4470150.520312300.5786740.5089020.4241660.484339600.5464480.4931980.3974420.4733181200.5160970.4812110.3832210.423488

Table E3 Show the absorbance of MV in the presence of CeO_2 with Ag nanoparticles which synthesized by various concentrations of AgNO₃

Time	CeO ₂ w	ith various co	oncentration of	of AgNO ₃	Tio	6-0
(minutes)	5 mM	10 mM	mM 1 mM 2 mM			CeO2
0	1.154795	1.154795	1.154795	1.154795	1.154795	1.154795
3	0.510163	0.622417	0.428171	0.524106	1.154561	1.109679
5	0.50939	0.576153	0.420825	0.501172	1.086929	1.084518
10	0.49048	0.562532	0.420447	0.464017	1.07269	1.014098
20	0.481897	0.545641	0.412081	0.452937	1.050339	0.875797
30	0.466113	0.507455	0.409408	0.452911	0.675412	0.838016
60	0.454636	0.490018	0.373557	0.433234	0.454029	0.832655
120	0.408141	0.484912	0.367135	0.410589	0.43888	0.82099

-

Table E4 Show the absorbance of MV after exposure to UV compare to the absorbance of MV before exposure to UV in the presence of CeO_2 with Ag nanoparticles synthesized by various concentrations of AgNO₃

Time	CeO2 with	n various co	ncentration	of AgNO ₃	Pure
(minutes)	5 mM	10 mM	1 mM	2 mM	CeO ₂
0	1	1	1	1	1
3	0.441778	0.538985	0.370777	0.453852	0.960932
5	0.441109	0.498922	0.364415	0.433992	0.939144
10	0.424734	0.487127	0.364088	0.401817	0.878163
20	0.417301	0.472501	0.356843	0.392223	0.7584
30	0.403632	0.439433	0.354528	0.392201	0.725684
60	0.393694	0.424334	0.323483	0.375161	0.721042
120	0.353431	0.419912	0.317922	0.355551	0.71094

Figure E1 Show the degradation of MV in the presence of pure Ag nanoparticles

Figure E2 Show the degradation of MV in the presence of AgNO₃

.

-

Appendix F Show the effect of polyelectrolytes on the synthesis of CeO₂

The polyelectrolytes which are PAA, PDADMAC, PSS and COPSS can improve the photo-catalytic activity of CeO_2 due to they can control the size of CeO_2 . The best condition and type of polyelectrolytes will be chosen followed by the photo-catalytic activity. The concentration of MV in this part is 10 ppm.

Table F1 Show the absorbance of MV in the presence of CeO_2 synthesize with PAA at any concentration

Time	Concentration								
(hours)	5 mM	10 mM	20 mM	30 mM	50 mM				
0	0.611512	0.611512	0.611512	0.611512	0.611512				
1	0.164595	0.151518	0.113112	0.156708	0.192873				
2	0.125107	0.108419	0.105815	0.110471	0.168506				
3	0.103101	0.105347	0.105883	0.108442	0.124876				
4	0.091222	0.080199	0.069109	0.07722	0.101974				
5	0.081137	0.079763	0.025215	0.054767	0.090455				

Table F2 Show the absorbance of MV after exposure to UV compare to the absorbance of MV before exposure to UV in the presence of CeO_2 synthesize with PAA at any concentration

Time	Concentration								
(hours)	5 mM	10 mM	20 mM	30 mM	50 mM				
0	1	1	1	1	1				
1	0.26916	0.247776	0.184971	0.256263	0.315404				
2	0.204587	0.177296	0.173038	0.180652	0.275556				
3	0.1686	0.172272	0.17315	0.177334	0.204208				
4	0.149174	0.131149	0.113013	0.126277	0.166757				
5	0.132683	0.130436	0.041235	0.089559	0.14792				

Figure F1 Show the degradation of MV in the presence of CeO_2 synthesized with PAA at any concentration and also showed the picture of best condition at 20 mM PAA

Table F3 Show the absorbance of MV in the presence of CeO_2 synthesize with PDADMAC at any concentration

Time	Concentration								
(hours)	5 mM	10 mM	20 mM	30 mM	50 mM				
0	0.611512	0.611512	0.611512	0.611512	0.611512				
1	0.155655	0.141036	0.144063	0.12306	0.157668				
2	0.150666	0.122201	0.131143	0.108096	0.155225				
3	0.146921	0.120589	0.112277	0.101259	0.144047				
4	0.143568	0.119901	0.100094	0.104383	0.139748				
5	0.110469	0.104129	0.099407	0.101881	0.137399				

σ

Table F4 Show the absorbance of MV after exposure to UV compare to the absorbance of MV before exposure to UV in the presence of CeO2 synthesize with PDADMAC at any concentration

Time (hours)		Concentration								
	5 mM	10 mM	20 mM	30 mM	50 mM					
0	1	1	1	1	1					
1	0.254542	0.230636	0.235584	0.201239	0.257833					
2	0.246383	0.199835	0.214458	0.176769	0.253838					
3	0.240258	0.197199	0.183606	0.165588	0.235559					
4	0.234775	0.196073	0.163684	0.170697	0.228529					
5	0.180649	0.170281	0.162559	0.166604	0.224687					

Figure F2 Show the degradation of MV in the presence of CeO_2 synthesized with PDADMAC at any concentration and also showed the picture of best condition at 20 mM PDADMAC

Ø

	Time (hours)	Concentration							
		5 mM	10 mM	20 mM	30 mM	50 mM			
	0	0.611512	0.611512	0.611512	0.611512	0.611512			
	1	0.147197	0.116606	0.118694	0.150685	0.185996			
	2	0.112474	0.124634	0.103249	0.123467	0.139242			
	3	0.126564	0.110517	0.09149	0.113483	0.124585			
	4	0.114291	0.098832	0.086583	0.103779	0.130842			
	5	0.110214	0.083684	0.057837	0.103492	0.12865			

Table F5 Show the absorbance of MV in the presence of CeO_2 synthesize with COPSS at any concentration

Table	F6	Show	the	absorbance	of	MV	after	exposure	to	UV	compare	to	the
absorb	ance	e of M	V be	fore exposur	e to	b UV	in the	presence	of	CeO ₂	synthesiz	ze v	vith
COPS	Sata	any coi	ncent	tration									

Time	Concentration								
(hours)	5 mM	10 mM 20 mM		30 mM	50 mM				
0	1	1	1	1	1				
1	0.24071	0.190685	0.194099	0.246414	0.304158				
2	0.183928	0.203814	0.168843	0.201905	0.227701				
3	0.206969	0.180727	0.149613	0.185578	0.203733				
4	0.186898	0.16162	0.141589	0.169709	0.213964				
5	0.180231	0.136848	0.09458	0.169239	0.210381				

÷

•

-

Figure F3 Show the degradation of MV in the presence of CeO_2 synthesized with COPSS at any concentration and also showed the picture of best condition at 20 mM COPSS

Table F7 Compare the photo-catalytic activity of CeO ₂ synthesized by various types
of 20 mM polyelectrolyte and also Ag nanoparticles

Time	Types of polymer and metal									
(minutes)	PDAD	PAA	COPSS	Pure CeO ₂	PSS	Ce/Ag				
0	1.154795	1.154795	1.154795	1.154795	1.154795	1.154795				
3	1.010767	0.632478	0.774946	1.109679	0.842131	0.705132				
5	0.918841	0.624028	0.70923	1.084518	0.805193	0.674934				
10	0.874847	0.592389	0.709209	1.014098	0.763955	0.624341				
20	0.87238	0.507306	0.689141	0.875797	0.731541	0.500853				
30	0.862437	0.505201	0.62144	0.838016	0.717983	0.459313				
60	0.85612	0.501391	0.589969	0.832655	0.631212	0.446586				
120	0.805823	0.498545	0.552477	0.82099	0.628081	0.389042				

Table F8 Show the absorbance of MV after exposure to UV compare to the absorbance of MV before exposure to UV in the presence of CeO_2 synthesize with various types of polyelectrolytes and also Ag nanoparticles

Time		Types of polymer and metal									
(minutes)	PDAD	PAA	COPSS	Pure CeO ₂	PSS	Ce/Ag					
0	1	1	1	1	1	1					
3	0.875278	0.547697	0.671068	0.960932	0.729247	0.610612					
5	0.795675	0.54038	0.614161	0.939144	0.697261	0.584463					
10	0.757578	0.512982	0.614143	0.878163	0.66155	0.540651					
20	0.755441	0.439304	0.596765	0.7584	0.633481	0.433716					
30	0.746831	0.437481	0.538139	0.725684	0.621741	0.397744					
60	0.741361	0.434182	0.510887	0.721042	0.546601	0.386723					
120	0.697807	0.431717	0.47842	0.71094	0.54389	0.336893					

Table F9 Show the absorbance at various concentration of MV in the presence of CeO₂ synthesized by using 20 mM PAA as capping agent

Time	Concentration of MV						
(minutes)	0.05g/L 0.025g/L		0.01 g/L				
0	4	1.88666	1.154795				
3	1.378196	0.66249	0.632478				
5	0.92707	0.641136	0.624028				
10	0.922331	0.631963	0.592389				
20	0.905141	0.61867	0.507306				
30	0.846616	0.602896	0.505201				
60	0.830014	0.602647	0.501391				
120	0.697494	0.59184	0.498545				

.

Table F10 Show the absorbance at various concentrations of MV after exposure to UV compare to the absorbance of MV before exposure to UV in the presence of CeO₂ synthesized by 20 mM PAA

Concentration of MV						
0.05g/L 0.025g/L		0.01 g/L				
1	1	1				
0.344549	0.351145	0.547697				
0.231767	0.339826	0.54038				
0.230583	0.334964	0.512982				
0.226285	0.327918	0.439304				
0.211654	0.319558	0.437481				
0.207503	0.319425	0.434182				
0.174374	0.313697	0.431717				
	Cond 0.05g/L 1 0.344549 0.231767 0.230583 0.226285 0.211654 0.207503 0.174374	Conventration o 0.05g/L 0.025g/L 1 1 0.344549 0.351145 0.231767 0.339826 0.230583 0.334964 0.226285 0.327918 0.211654 0.319558 0.207503 0.319425 0.174374 0.313697				

Appendix G Show the XRD graph of the photo-catalyst to confirm that the catalyst is CeO_2 or CeO_2 with Ag nanoparticles

Figure G1 Show the XRD graph of Ce(OH)CO₃ before calcination

Figure G2 Show the XRD graph of CeO₂, CeO₂ with Ag nanoparticles and CeO₂ synthesized by using 20 mM PAA

σ

Figure G3 Show the XRD graph of CeO₂ with Ag nanoparticles with ratio between CeO₂:Ag nanoparticles is 1:1

.

Figure G4 Show the standard XRD graph of Ag nanoparticles (Wong, C.P., 2003)

σ

Appendix H Show the SEM image of photo-catalyst

Figure H1 Show the SEM image of pure CeO_2 synthesized without polyelectrolytes at 8,000X and 80,000X

Figure H2 Show the SEM image of pure CeO_2 synthesized with PAA at 8,000X and 80,000X

Figure H3 Show the SEM image of pure CeO_2 synthesized with PDADMAC at 8,000X and 80,000X

Figure H4 Show the SEM image of pure CeO_2 synthesized with COPSS at 8,000X and 80,000X

Figure H5 Show the SEM image of pure CeO_2 synthesized with PSS at 8,000X and 80,000X

Figure H6 Show the SEM image of Ce(OH)CO₃ synthesized without polyelectrolytes at 8,000X and 80,000X

Figure H7 Show the SEM image of CeO_2 synthesized at the surface of Ag nanoparticles (1 mM AgNO₃) at 8,000X and 80,000X

Figure H8 Show the SEM image of CeO_2 synthesized at the surface of Ag nanoparticles (5 mM AgNO₃) at 8,000X and 80,000X

Figure H9 Show the SEM image of CeO_2 synthesized at the surface of Ag nanoparticles (10 mM AgNO₃) at 8,000X and 80,000X

ø

CURRICULUM VITAE

Name:	MR.	JADSADA	CHAVA	LITKU
name:	MR.	JADSADA	CHAVA	LIIKU

Date of Birth: February 21, 1991

Nationality: Thai

University Education:

2012-Present: Master of Science (M.S.), Polymer Science (International Program), Petroleum and Petrochemical College (PPC), Chulalongkorn University, Bangkok, Thailand

2008-2012: Bachelor of Engineering (B.Engr.), Petrochemical and Polymeric materials, Silpakorn University, Nakornprathom, Thailand

Work Experience:

- Summer 2012: Job training in polymer science in research and development section at the Multibax Public Company Limited, Chonburi, Thailand (Extrusion and Blow film)
- 2010-2011: Senior tutor in Physical for first year student, Petrochemical and Polymeric materials, Silpakorn University
- 2007-2008: A member of Olympic camp in Physic, Suratthani School, Surathani as representative from north south of Thailand

Proceeding :

 Chavalitkul, J., and Dubas, S.T. (2015, April 21st) Synthesis of Cerium oxide with Ag nanoparticles for photo-catalytic application. <u>Proceeding of</u> <u>the 21st PPC symposium on Petroleum, Petrochemicals and Polymers</u>, Bangkok, Thailand

Presentation :

.

Chavalitkul, J., and Dubas, S.T. (2015, April 21st) Synthesis of Cerium oxide with Ag nanoparticles for photo-catalytic application. Paper presented at <u>the 21st PPC symposium on Petroleum, Petrochemicals and Polymers</u>. Bangkok, Thailand