REFERENCES

- Akia, M., Alavi, S, M., and Yan Z. (2010) Promoted platinum dehydrogenation catalyst on a nano- sized gamma alumina support. Petroleum & Coal, 52(4), 280-289.
- Bai, P., Feng, R., Liu, S., Zhang, P., Yan, Z., Tan, Z., Zhang, Z., and Gao, X. (2014) A comparative study of different fluorine-containing compounds in the preparation of novel alumina binders with rich Brönsted acid sites. <u>Applile Petrochemical</u> Research: 13203-014-0088-4.
- Boskovic, G., Micic, R., Pavlovic, P., and Putanov, P. (2001) *n*-Hexane isomerization over Pt–Na(H)Y catalysts obtained by different preparation methods. <u>Catalysis Today</u>, 65, 123-128.
- Calemma, V., Peratello, S., and Perego, C. (2000) Hydroisomerization and hydrocracking of long chain n-alkanes on Pt/amorphous SiO₂-Al₂O₃ catalyst. <u>Applied</u> Catalysis A: General, 190, 207-218.
- Cheng, J., Li, T., Huang, R., Zhou, J., and Cen, K. (2014) Optimizing catalysis conditions to decrease aromatic hydrocarbons and increase alkanes for improving jet biofuel quality. <u>Bioresour Technology</u>, 158: 378-382.
- Chisti, Y. (2007) Biodiesel from microalgae. Biotechnology Advances, 25, 294-306
- Connor, R. and Adkins, s. (1932) hydrogenolysis of oxygenated organic compounds.

 <u>Journal of the American Chemical Society</u>, 54(12), 4678–4690.
- De Lucas, A., Sánchez, P., Fúnez, A., Ramos, M.J. and Valverde, J.L. (2006) Influence of clay binder on the liquid phase hydroisomerization of n-octane over palladium-containing zeolite catalysts. <u>Journal of Molecular Catalysis A: Chemical</u> 259, 259-266.
- Deng, X., Fang, Z., Liu, Y.-h., and Yu, C.-L. (2010) Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst. <u>Energy</u> 36(2): 777-784.
- Duan, Y., Zhou, Y., Sheng, X., Zhang, Y., Zhou, S., and Zhang, Z. (2012) Influence of alumina binder content on catalytic properties of PtSnNa/AISBA-15 catalysts.

 Microporous and Mesoporous Materials 161: 33-39.

- Fangrui, M. and Milford, A. (1999) Biodiesel production: a review. <u>Bioresource</u>

 <u>Technology</u>, 70, 1-15.
- Freiding, J., Patcas, F.-C. and Kraushaar-Czarnetzki, B. (2007) Extrusion of zeolites:

 Properties of catalysts with a novel aluminium phosphate sintermatrix. <u>Applied</u>

 Catalysis A: General 328(2): 210-218.
- Gong, S., Chen, N., Nakayama, S., and Qian, E.W. (2013) Isomerization of n-alkanes derived from jatropha oil over bifunctional catalysts. <u>Journal of Molecular</u> Catalysis A: Chemical, 370, 14-21.
- Hanafi, S.A.. Gobara, H.M., Elmelawy, M.S., Abo-El-Enein, S.A. and Alkahlawy, A.A. (2014) Catalytic performance of dealuminated H–Y zeolite supported bimetallic nanocatalysts in hydroizomerization of n-hexane and n-heptane. <u>Egyptian Journal of Petroleum</u>. 23, 119-133.
- Hoekman, S. K., Broc A., Robbin, C., Cenicero, E. and Nataraja, M. (2012) Review of biodiesel composition, properties, and specifications. <u>Renewable and Sustainable Energy Reviews</u> 16(1): 143-169.
- Htay, M.M., and Oo, M.M. (2008) Preparation of zeolite Y catalyst for petroleum cracking. World Academy of Science, Engineering and Technology.. 48.
- Iliopoulou, F., Heracleous, E., Delimitis, A. and Lappas, A.A. (2014) Producing high quality biofuels: Pt-based hydroisomerization catalysts evaluated using BtL-naphtha surrogates. <u>Applied Catalysis B: Environmental</u> 145: 177-186.
- Jovanovic, D., Cupic, Z., Stankovic, M., Rozic, L., and Markovic, B. (2000). The influence of the isomerization reactions on the soybean oil hydrogenation process. <u>Journal of Molecular Catalysis A: Chemical</u>, 159, 353-357.
- Knothe, G., Dunn, Robert, O., and Bagby, M.O. (1997) Biodiesel: The use of vegetable oils and their derivatives as alternative diesel fuels. <u>Fuels and Chemicals from</u> Biomass 10, 172–208
- Knothe, G. (2010) Biodiesel and renewable diesel: A comparison. <u>Progress in Energy</u> and Combustion Science, 36, 364-373.

- Kuznetsov, P. (2003) Study of n-octane hydrocracking and hydroisomerization over Pt/HY zeolites using the reactors of different configurations. <u>Journal of Catalysis</u> 218(1); 12-23.
- Lee, H.W., Jeon, J.-K., Jeong, K.-E., Kim, C.-U., Jeong, S.-Y., Han, J. and Park, Y.-K. (2013) Hydroisomerization of n-dodecane over Pt/Y zeolites with different acid characteristics. <u>Chemical Engineering Journal</u>, 232, 111-117.
- Lee, Y., Kim, Y., Viswanadham, N., Jun, K., and Bae, J. (2009) Novel aluminophosphate (AIPO) bound ZSM-5 extrudates with improved catalytic properties for methanol to propylene (MTP) reaction. <u>Applied Catalysis A:</u>
 <u>General.</u> 374, 18–25.
- Liu, H., Meng, X., Zhao, D., Li, Y., (2007) The effect of sulfur compound on the hydrogenation of tetralin over a Pd–Pt/HDAY catalyst. <u>Chemical Engineering</u>

 Journal, 140, 424–431.
- Magee, J.S., and Mitchell, M.M., (1993) Fluid Catalytic Cracking: Science and Technology. Amsterdam: Elsevier.
- Nogi, K., Naito, M., Yokoyama, T.; (2012) Nanoparticle technology handbook. 204.
- Ostgard, D. J., Kustov, L., Poeppelmeier, K. R., Sachtler, W. M. H. J. (1992) Recent advances in the science and technology of zeolites and related. South Africa.
- Park, K.-C. and Ihm, S.-K. (2000) Comparison of Pt/zeolite catalysts for *n*-hexadecane hydroisomerization Applied Catalysis A: General 203, 201–209
- Phuong T, Do., Martina Chiappero., Lance L, Lobban., Daniel E, Resasco. (2009)

 Catalytic deoxygenation of methyl-octanoate nand methyl-stearate on Pt/Al2O3.

 Catalyst Letter, 130, 9–18
- Raeev, S.D. and Gruia, A.J. (1996) Hydrocracking Science and Technology. :CRC Press
- Raseev, S.D. (2003) <u>Thermal and Catalytic Processes in Petroleum Refining</u>. Newyork; Marcel Dekker.
- Regali, F., Boutonnet, M., and Järås, S. (2013) Hydrocracking of n-hexadecane on noble metal/silica-alumina catalysts. <u>Catalysis Today</u>, 214, 12-18.

- Sánchez, P., Dorado, F., Fúnez, A., Jiménez, V., Ramos, M.J. and Valverde, J. L. (2007) Effect of the binder content on the catalytic performance of beta-based catalysts.

 <u>Journal of Molecular Catalysis A: Chemical</u> 273(1-2): 109-113.
- Santos, R.-C.-R., Valentini, A., Lima, C.-L., Filho, J.-M. and Oliveira, A.-C. (2011) Modifications of an HY zeolite for n-octane hydroconversion. <u>Applied Catalysis A: General</u> 403 (1-2): 65-74.
- Saxena, S.-K., Viswanadham, N. and Al-Muhtaseb, A.a.H. (2013). Enhanced production of high octane gasoline blending stock from methanol with improved catalyst life on nano-crystalline ZSM-5 catalyst. <u>Journal of Industrial and Engineering</u>

 Chemistry.
- Sheng, X., Zhou, Y., Kong, J., Zhang, Y., Zhang, Z., and Zhou, S. (2014) Influence of pseudo-boehmite binder modified dealuminated mordenite on Friedel–Crafts alkylation. J Porous Material. 22, 179–185.
- Tian, Z., Liang, D. and Lin, L. (2009) Research and development of hydroisomerization and hydrocracking catalysts in dalian institute of chemical physics. <u>Chinese Journal of Catalysis</u>, 30(8): 705-710.
- Tiwari, Kumar, Kumar, AA. and Raheman, H. (2007) Biodiesel production from jatropha oil (Jatrophacurcas) with high free fatty acids: An optimized process. <u>Biomass</u> and <u>Bioenergy</u>: 569-575.
- Trueba, M. and Trasatti, S, P. (2005) γ-Alumina as a Support for Catalysts: A Review of Fundamental Aspects. <u>Europe Inorganic Chemistry</u>, 3393–3403
- Van der Borght, K. (2010) Experimental study and kinetic modeling of the synergy in hydro-isomerisation under industrial conditions. Ph.D. Dissertation, Faculteit Ingenieurswetenschappen, Gent University, Belgium.
- Van Garderen, N., Clemens A, F. J., Aneziris, T.C. G., (2012) Graule improved alumina support based pseudo-boehmite shaped by micro-extrusion process for oxygen carrier support application. <u>Ceramics International</u>, 38, 5481–5492.

- Weitkamp, J. and Hunger, M. (2007) Acid and base catalysis on zeolites. Ph.D. Dissertation, Institute of Chemical Technology, University of Stuttgart, Stuttgart, Germany.
- Xiang, Z., Guo, Q., Qin, B., Zhang, Z., Ling. F., Sun, W., and Li, R. (2010)

 Structural features of binary microporous zeolite composite Y-Beta and its hydrocracking performance. <u>Catalysis Today</u>, 149, 212-217.

0

APPENDICES

Appendix A The Quantitative Calculations of Gas Product

Volume of gas product passed through a vent test to measure hourly that each hour has the different a little bit in a measured gas product quantity (volume). As the gas phase, 1 mol% of methane equals to 1 vol% of methane that was a standard for giving a reference area of methane compared to an area of product i with the different a number of mol in product i (a number of methane mol = 1 mol atom and ethane = 2 mol atom for example). The chosen measured gas product in an hour should also result in a constant conversion as observed in a chromatogram. The volume of product i (ml) then was calculated to weight of product i at STP for simply further converting to conversion, selectivity, and yield of products.

Volume of product i (ml)

0

$$= \frac{(\text{areas of product i}) \times (\text{total volume of gas product}) \times (1 \text{ mol } \% \text{ of methane})}{(\text{number of mol in product i}) \times (\text{reference area of methane})}$$

Weight of product
$$i(g) = \frac{\text{(volume of product } i) \times (\text{molecular weight } i)}{(22.4) \times (1000)}$$
 A2

The calculations of conversion, products selectivity, and yield of product are defined as shown in Equations 3, 4, and 5 respectively.

Conversion (%) =
$$\frac{\text{(weight of total products(g))} \times (100)}{\text{weight of (total products(g) + remaining feed(g))}}$$
 A3

Selectivity of product i (%) =
$$\frac{\text{(weight of products i(g))} \times (100)}{\text{weight of total products(g)}}$$
 A4

Yield of product i (%) =
$$(conversion) \times (selectivity of product i)$$
 A5

Appendix B Overall Mass Balance of Hydrocracking over Different Extruded Catalyst (Reaction Condition: 310 °C, 500 psig, and H₂/Feed Molar Ratio of 30

Table B1 Overall mass balance of hydrocracking over different extruded catalyst (Reaction condition: $310 \, ^{\circ}\text{C}$, $500 \, \text{psig}$, and $H_2/\text{feed molar ratio of } 30$)

Catalyst	Extrudates (HY:Pseudo Boehmite) wt%						
Cataryst	100:0	80:20	60:40	40:60	20:80		
Gas Product (g/h)	0.05	0.50	0.50	1.75	0.29		
Light Product (<c5) (g="" h)<="" td=""><td>0.02</td><td>0.19</td><td>0.27</td><td>0.84</td><td>0.15</td></c5)>	0.02	0.19	0.27	0.84	0.15		
Liquid Product (g/h)	3.06	2.10	4.34	4.37	2.87		
Gasoline Product (C5-C8) (g/h)	0.87	2.15	2.23	2.86	1.07		
Jet Product (C9-C14) (g/h)	0.98	0.26	1.10	1.52	0.82		
Diesel Product (C15-C18) (g/h)	1.26	0.00	1.24	0.90	0.46		
Remaining Feed (RF) (g/hr)	1.26	0.00	0.80	0.02	1.35		
Liquid Product + RF (g/h) (Vial)	3.07	2.10	5.14	4.39	3.57		
Gas + Liquid Product (g/h)	1.87	2.60	3.60	5.22	2.51		
Total Product + RF (g/h)	3.12	2.60	5.64	6.14	3.86		
Remaining H2 (g/h)	0.27	0.49	0.45	0.61	0.35		
Used H2 (g/h)	0.05	0.02	0.00	0.03	0.01		

Appendix C Physical Properties of Pseudo Boehmite Extrudates with Varing of vol% Glacial Acetic Acid

Catalysts	Batch Reference	Height (mm)	Diameter (mm)	Area (mm²)	Maximum Load (N)	Maximum Load (N)/cm	Average Maximum Load (N)/cm	SD
	1%	7.5	1.9	2.84	78.02	104.03		
	Glacial	6.9	1.9	2.84	82.40	119.42	107.03	11.20
	acetic	7.3	1.9	2.84	71.27	97.63		
	2%	7.0	1.9	2.84	78.80	112.69		
	Glacial	6.2	1.9	2.84	79.73	128.62	122.27	8.43
	acetic	7.0	1.9	2.84	87.85	125.50		
Pseudo	3%	5.1	1.9	2.84	70.88	138.98		
Boehmite	Glacial	5.2	1.9	2.84	74.81	143.48	144.97	8.45
	acetic	4.7	1.9	2.84	70.94	150.94		
	4%	7.0	1.5	1.77	68.92	98.46		
	Glacial	7.0	1.5	1.77	52.91	75.59	83.91	12.63
	acetic	7.0	1.5	1.77	54.39	77.70		
	5%	6.4	1.5	1.77	39.60	61.88		
	Glacial	6.4	1.5	1.77	34.65	54.14	60.44	5.72
	acetic	6.4	1.5	1.77	41.80	65.32		

Appendix D Physical Properties of HY:Pseudo Boehmite Extrudates with 3 vol% of Glacial Acetic Acid

Catalysts	Batch Reference	Height (mm)	Diameter (mm)	Area (mm²)	Maximum Load (N)	Maximum Load (N)/cm	Average Maximum Load (N)/cm	SD
HY: Pseudo Boehmite		6.2	1.9	2.84	34.49	55.63		
	80:20	5.0	1.9	2.84	27,18	54.37	50.41	7.98
		6.9	1.9	2.84	28.44	41.22		
		5.8	1.7	2.26	48.15	83.02		
	60:40	5.5	1.7	2.26	44.35	80.64	81,68	1.21
		6	1.7	2.26	48.83	81,38		
		4.8	1.7	2.26	45.59	94.97		
	40:60	7.8	1.7	2.26	65.61	84.12	92.30	7.22
		7_6	1.7	2.26	74 13	97.80		
		7.0	1,7	2.26	90.68	129.53		
	20:80	7.8	1.7	2.26	95.89	122.93	126.77	3.42
		7.2	1.7	2.26	115.31	127.84		

CURRICULUM VITAE

Name:

Ms. Kamonchanok Jariyasin

Date of Birth:

December 12, 1990

Nationality:

Thai

University Education:

2009 – 2012 Bachelor Degree of Engineering in Petrochemical and Polymeric Material, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakornpathom, Thailand

Work Experience:

2011

Position:

Internship Student

Company name:

Thaioil Public Company

Presentations:

- Jariyasin, K.; Jongpatiwut, S.; Wasanapiarnpong T.; Butnark, S.; and Tachakritikul C. (2015, May 20-22) Hydrocracking and hydroisomerization of long chain hydrocarbons over extrudate Pt/HY catalysts. Poster presented at <u>Energy Science Technology (EST) International Conference</u>, Karlsruhe Convention Centre, Karlsruhe, Germany.
- Jariyasin, K.; Jongpatiwut, S.; Wasanapiarnpong T.; Butnark, S.; and
 Tachakritikul C. (2015, April 21) Catalytic cracking/isomerization of
 hydrogenated biodiesel: catalyst formulation. Poster presented at <u>The 6th</u>
 Research Symposium on Petrochemical and Materials Technology and The 21th
 PPC Symposium on Petroleum, Petrochemicals, and Polymers, Chulalongkorn
 University, Bangkok, Thailand.