
การศึกษาตัว เร่งปฏิกิริยาจากการ เครียมและการสัง เคราะห์ เมธานอล

นางสาวสุธาวดี จันทร์แช่มซ้อย

วิทยานิพนธ์นี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต ภาควิชาวิศวกรรม เคมี

บัณฑิดวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

M.A. 2528

ISBN 974-564-137-5

A STUDY OF PREPARATION CATALYST AND METHANOL SYNTHESIS

Miss Sutawadee Chanchamchoy

A Thesis Sumitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering

Department of Chemical Engineering

Graduate School

Chulalongkorn University

1985

Miss Sutavadee Chanchamchoy Вy Chemical Engineering Department Thesis Advisor Associate Professor Wiwut Tanthapanichakoon Thesis Co-advisor Assistant Professor Suwattana Phuangphuaksook Accepted by the Graduate School, Chulalongkorn University in Partial Fulfilment of the Requirements for the Master's Degree. S. Burnag.....Dean of Graduate School (Associate Professor Supradit Bunnag) Thesis Committee Chairit Letyrozes (Assistant Professor Chairit Satayaprasert) Aarithorn Beon-long Member (Assistant Professor Sasithorn Boon-Long) Piyas - Prantle Member (Assistant Professor Piyasan Praserthdam) Amalfanc Phinangahmakerok Member (Assistant Professor Suwattana Phuangphuaksook) Mint Tanthapanichakoon. Member (Associate Professor Wiwut Tanthapanichakoon)

Thesis Title

A Study of Preparation Catalyst and Methanol Synthesis

Copyright of Graduate School, Chulalongkorn University

หัวข้อวิทยานิพนธ์ การศึกษาตัว เร่งปฏิกิริยาจากการ เตรียมและ การสัง เคราะห์ เมธานอล

ชื่อนิลิต นางล่าวลู่ชาวดี สันทร์แข่มข้อย

ภาควิชา วิควกรรมเคมี

อาจารย์ที่ปรึกษา รองคำลัตราจารย์ ดร.วิวัฒน์ ตัณฑะพานิชิกุล

อาจารย์ที่ปรึกษาร่วม ผู้ช่วยศาสตราจารย์ สุวัณนา พวงเฟิกศึก

ปีการศึกษา `2527

บทคัดย่อ

งานวิจัยนี้เตรียมเมรานอลจากคาร์บอนมอนนอกไซ่ด์และไฮโดรเจนโดยใช้ตัวเร่ง
ปฏิกิริยาแบบล่ามองค์ประกอบ ในเตาปฏิกรณ์แบบท่อไหลผ่านความดันสู่ง ตัวเร่งปฏิกิริยา
ประกอบด้วย Cu/ZnO/Cr₂O₃ โดยมีอัตราล่วนของ Cu : Zn : Cr = 31 : 38 : 10
จากการทดลองพบว่า โดยทั่วไปซีเล็กทีวิตีของเมรานอลจะเพิ่มขึ้นอย่างเห็นยัดตามความดัน
ในช่วง 20-40 กก./ตร.ซ่ม. เกจ้) และเพิ่มขึ้นตามอุณหภูมิจาก 200°ช่ จนถึงประมาณ
250°ซ่ ที่อุณหภูมิสู่งกว่านี้ซีเล็กติวิตีของเมรานอลจะลดลง อนึ่งซีเล็กทีวิตีของเมรานอลจะลดลง
เล็กน้อยเมื่อความเร็วเชิงส์เปล่สู่งขึ้น ส่วนผลสัพธ์เชิงส์เปล่และเวลาของเมรานอลโดยทั่วไป
จะเพิ่มขึ้นตามอุณหภูมิ,ความดันและความเร็ว เชิงส์เปล่แต่เริ่มลดลงที่ความเร็วเชิงส์เปล่มากกว่า
8000 ย่ม ¹ ส่รูปแล้วส์ภาวะที่ให้ผลสัพธ์เชิงส์เปล่และเวลาของเมรานอลสู่งคือ ที่อุณหภูมิสู่ง
(ประมาณ 300°ช่) ความดันสู่งและความเร็วเชิงส์เบล่ประมาณ 8000 ย่ม ¹

ผลการทดลองที่ได้มายังนำไปเปรียบเทียบกับผลการทดลองของตัวเร่งปฏิกิริยาแบบ ลำมองค์ประกอบที่คล้ายคลึงกันแต่มีอัตราล่วนของ Cu : Zn : Cr ต่างกัน (2 : 2 : 1) และกับผลการทดลองของตัวเร่งปฏิกิริยาแข็งอุตสำหกรรมแบบส่ององค์ประกอบ ที่ประกอบด้วย ออกไช่ด์ สังกะสึและโครเมียมในอัตราล่วน Zn : Cr = 1.8-2.2 : 1 สิ่งที่พบก็คือผลเชิง คุณภาพของอุณหภูมี ความต้น และความเร็วเชิงส์เปล่ต่างเหมือนกันสำหรับตัวเร่งปฏิกิริยาทั้งส่าม แต่ตัวเร่งส่องตัวหลังให้เมรานอลน้อยกว่าภายใต้ลัภาวะที่คล้ายกัน ตัวเร่งปฏิกิริยาเชิงอุตสำหกรรม นั้นแล่ดงซีเล็คทีวิตีของไอโดรคาร์บอนสู่งส่วนตัวเร่งปฏิกิริยาแบบสามองค์ประกอบอีกตัวหนึ่งนั้นให้ คาร์บอนโดออกไซ่ด์ในปริมาณมาก ดังนั้นจึงเห็นได้ชัดเจนว่าประเภทและอัตราล่วนประกอบของ ตัวเร่งปฏิกิริยามีอิทธิพลอย่างมากต่อการสังเคราะห์เมรานอล

Thesis Title A Study of Preparation Catalyst and Methanol

Synthesis

Name Miss Sutavadee Chanchamchoy

Department Chemical Engineering

Thesis Advisor Associate Professor Dr. Wivut Tanthapanichakoon

Thesis Co-advisor Assistant Professor Suwattana Phuangphuaksook

Academic Year 1984

ABSTRACT

Methanol was synthesized from CO and $\rm H_2$ with a ternary catalyst in a high-pressure through flow tubular reactor. The catalyst was composed of $\rm Cu/ZnO/Cr_2O_3$ with the ratios of $\rm Cu: Zn: Cr=31:38$ 10. It was found that generally methanol selectivity of this catalyst increased remarkably with pressure(in the range of 20-40 atg) and with temperature from 200°C until the temperature reached about 250°C, after which methanol selectivity would decrease. On the other hand, methanol selectivity decreased slightly against space velocity. With respect to space time yield of methanol, it generally increased with temperature, pressure and space velocity. However, it began to decrease when space velocity exceeded 8000 hr⁻¹. In short, the conditions for high space time yield of methanol were high temperature (around 300°C), high pressure and space velocity around 8000 hr⁻¹

The present experimental results were also compared to those of a similar ternary catalyst but with a different Cu:Zn:Cr ratios of 2:2:1 (W. Tanthapanichakoon, 1984) and to those of an industrial binary catalyst composed of zinc and chromium oxides with a ratio

Zn:Cr = 1.8 - 2.2:1 (S. Limtrakul, 1985). It was found that the qualitative effects of temperature, pressure and space velocity were the same for all three catalysts. However, the latter two catalysts yielded less methanol under comparable conditions. The industrial catalyst exhibited high hydrocarbon selectivity while the other ternary catalyst yielded at lot of ${\rm CO}_2$. It was obvious that catalyst type and composition wielded great effect on methanol synthesis.

ACKNOWLEDGMENT

The author wishes to express her sincere appreciation to Associate Professor Wiwut Tanthapanichakoon for his valuable advice and unceasing help toward the completion of the thesis and also to Assistant Professor Suwattana Phuangphuaksook.

The author would like to thank to Miss Sunun Limtrakul,
Mr. Boonlert Techajunta and Mr. Polchom Chanurai for their great
contribution to the completion of this thesis.

The research was financially supported by the Asahi Glass
Foundation for Industial Technology in Tokyo and the grant from
the graduate school, Chulalongkorn University, whose assistances are
greatly appreciated.

And most of all the author greatly appreciates her father and mother for their esteemed willpower.

page

CONTENT

THAI ABSTRACTiv ENGLISH ABSTRACT.....v ACKNOWLEDGEMENT.....vii LIST OF TABLES..... LIST OF FIGURESxii CHAPTER INTRODUCTION.....1 Ι 2.1 Literature Survey on Methanol Synthesis......3 2.2 Basic Knowledge of Methanol......16 III PREPARATION OF METHANOL SYNTHESIS CATALYST......71 · IV CONSTRUCTION AND LEAK-TESTING OF REACTOR SET......82 V EXPERIMENTS ON METHANOL SYNTHESIS......89 VI 6.1 Experimental Procedu re of Methanol Synthesis......89 6.2 Analysis of Experiment Data.....93 DISCUSSION AND COMPARISON OF EX PERIMENTAL VII RESULTS105 7.1 Discussion of Experimental for Catalyst No.1...105 7.2 Comparison of Experimental Results Between

page

C1	u	Α	ים	T'	C	D
ι.,	п	A	М	١.	r.	ĸ

VII	7.3	Comparison of Experimental Results Among
		Catalyst No.1, No.2 and No.3156
CONCLUS	SIONS	179
REFEREN	ICES	
NOMENCL	ATURE.	190
APPENDI	CES	192
A	CALI	BRATION CURVES192
В	ANAL	YSIS RESULTS OF EXPERIMENTAL DATA
	OF C	CATALYST No.1200
717 T A		213

LIST OF TABLES

Table	2.1	Reactions and Standard Free Energies Relevant to Methanol	23
		Synthesis	
Table	2.2	Standard Free Energies of Formation and Combustion of	24
		Species Important in Methanol Manufacture	
Table	2.3	Cu/Zn/Al Oxide Catalysts Used in Synthesis of Methanol	34
Table	2.4	Cu/Zn/Cr Oxide Catalysts Used in Synthesis of Methanol	34
Table	2.5	CO Chemisorption on Transition Metals	35
Table	2.6	Weakening of the C-O bond by Back-Donating Metal \longrightarrow CO	36
		$(2\pi^*)$	
Table	2.7	Properties of Methanol	41
Table	2.8	Calculated Equilibrium Constant for the Reaction	44
÷.		$CO + 2H_2 \rightleftharpoons CH_3OH$	
Table	2.9	Effect of Pressure on the Reaction CO + $2H_2 \rightleftharpoons$ CH ₃ OH	46
11		at 300° C (K - 2.32 x 10^{-4})	
Table	2.10	Methanol Conversion at Equilibrium at Different H_2/CO	47
		Ratios at 300 atm and 300°C	
Table	2.11	Typical Side Reaction in Methanol Synthesis from Carbon	54
		monoxide and Hydrogen	
Table	6.1	Example of Analysis Experimental Data .	99
Table	7.1	Summary of Experimental Conditions for Catalyst No.1,	106
		Cu:Zn:Cr = 31:38:10	
Table	7.2	Comparison of Total CO Conversion Between Catalyst No.1	138
		and No.2	
Table	7.3	Comparison of Methanol Selectivity Between Catalyst No.1	139
		and No. 2	

Table 7.4	Comparison of Space Time Yield of Methanol Between	140	
	Catalyst No.1 and No. 2		
Table 7.5	Comparison of ${\rm CO}_2$ Selectivity Between Catalyst No.1	141	
	and No.2		
Table 7.6	Comparison of Hydrocarbon Selectivity Between Cata-	142	
	lyst No.1 and No.2		
Table 7.7	Comparison of DME Selectivity and Space Time Yield	143	
	of DME of Catalyst No. 1 and No. 2		

LIST OF FIGURES

Figures	2.1	Historic Production of Methanol	19
Figures	2.2	Flow Sheet for Methanol Synthesis from Carbon Mono-	25
		xide and Hydrogen	
Figures	2.3	Flow Sheet for Methanol Synthesis from Carbon Dioxide	27
		and Hydrogen	
Figures	2.4	Standard Enthalpy and Gibbs Free-energy Changes for	31
		Intermediates in Methanol Synthesis	
Figures	2.5	Equilibrium Constant of Reaction CO + $2H_2 \Longrightarrow CH_3OH$	45
~igures	2.6	Values of K_3 for the Reaction $CO + 2H_2 \longrightarrow CH_3OH$	46
Figures	4.1	The Obtained Catalyst at each step from this	72
		Preparation	
Figures	4.2	Schematic Diagram of the Catalyst Reduction System	75
Figures	4.3	Axial Temperature Distribution within the glass tube	76
		of the Catalyst Reduction Furnace	
Figures	4.4	The Inside of Catalyst Reduction Furnace	77
Figures	4.5	The Reduction Temperature of Methanol Synthesis	79
		Catalyst	
Figures	4.6	The Catalyst Reduction System	80
Figures	4.7	Prepared Catalyst on the Boat in the Reduction Furnace	81
Figures	4.8	The Obtained Reduced Catalyst	81
Figures	5.1	Schematic Diagram of the Constructed High Pressure	84
		Through-Flow Tubular Methanol Synthesis Reactor	
Figures	5.2	Set of Methanol Synthesis Reactor	85
Figures	5.3	The Inside of the Reactor Furnace	87
Figures	5.4	Axial Temperature Distribution within the Reactor	88
		Tube of the Reactor Furnace	

		xiii	
Figures 6.1	Shimadzu TCD Gas Chromatography (Model 8 AIT)	90	
Figures 6.2	Schematic Drawing of a Gas Chromatographic	90	
	System		
Figures 6.3	A Typical Calibration Curves of ${\rm CO}_2$	95	
Figrues 6.4	Actual Gas Chromatographical Data Obtained from	96	
	MS-5A		
Figures 6.5	Actual Gas Cheomatographical Data Obtained from PT	97	
Figures 7.1-7.	26 Experimental Results of Catalyst No.1	110-135	= 3
Figures 7.27-7	.37 Experimental Results of Catalyst No.2	145-155	
Figures 7.38-7	.55 Experimental Results of Catalyst No.3	161-178	