CHAPTER V CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The samples impregnated with branched PEI showed a dramatic decrease in CO₂ adsorption performance due to the blockage of pores. An appropriate concentration of nitric acid and duration for oxidative treatment can increase CO₂ adsorption capacity of the activated carbon due to the introduction of hydroxyl, carbonyl and carboxyl functionalities through the oxidation process. These oxygen functional groups can create strong interaction with CO₂. However, oxidative treatment in nitric acid resulted in a slight decrease in the pore volume and surface area of the samples.

The impregnation with branched PEI after oxidative treatment might be a possible modification path way since the samples impregnated with PEI after oxidative treatment show a slight improvement of CO₂ adsorption capacity. However, the limitation of pore size and pore volume of the starting AC obstructed the dispersion of PEI into the pores, thus the physisorption of CO₂ was denied.

The desorption performance of the impregnated samples with branched PEI could not reach 100% regeneration when measured at low temperature (40 and 75 °C) due to the strong interaction of chemisorption between CO₂ and amine groups. For the series of samples by oxidative treatment, the tendency of desorption profile of AC and oxidized samples is similar, moreover, all samples were 100% regenerable.

5.2 Recommendations

Based on the results in this study, the following recommendation is suggested:

- 1. Due to the pore blocking problem occurring in this study, the starting AC should contain higher specific pore volume and proper pore size distribution, i.e. a combination of meso- and microporous, to achieve an impregnation of amine compounds at high concentration.
- 2. The wt% of PEI loaded onto the microporpus material is too high (10, 20, 30 wt%).
- 3. Other nitrogen treatment techniques should be employed to study the difference in surface chemistry of each technique and find the appropriate techniques.
- 4. Other oxidizing reagents should be tested to find the appropriate reagent that can enhance the interaction between oxidized AC and amine compound, consequently, enhance the CO₂ adsorption performance.
- 5. Because the XPS analysis presents some limitations to identify specific surface functionalities. Thus, TPD-MS should be employed to compensate with complementary information.
- 6. The acid-base character of the adsorbents should be probed by measuring the point of zero charge (pH_{PZC}) to ascertain the variation in surface chemistry of adsorbents.