CHAPTER IV RESULTS AND DISCUSSION

4.1 Catalytic Activity

4.1.1 Pd and Ni Supported on Alumina

The activity of Pd and Ni monometallic with various Ni loading supported on alumina catalysts were investigated for the hydrogenation of 1-hexyne at 1.5 bar and 40 °C. Fig. 4.1 shows the catalytic activity of 1-hexyne hydrogenation by 0.3%Pd/Al₂O₃, 0.3%Ni/Al₂O₃, 1%Ni/Al₂O₃, 1.5%Ni/Al₂O₃, 2%Ni/Al₂O₃, 3%Ni/Al₂O₃ alumina and no catalyst. It is found that 1%Ni/Al₂O₃ provides higher activity than other prepared catalysts. If Ni loading is higher than 1%, the activity drops significantly probably due to the decrease of active site. For the same level of metal loading, 0.3%Pd/Al₂O₃ exhibits higher activity than 0.3%Ni/Al₂O₃, while alumina and no catalyst show relatively low activity.

0

Fig. 4.2 illustrates 1-hexene selectivity as a function of reaction time for Pd and Ni on alumina catalysts. Low load 0.3wt% of Pd and Ni exhibits the increase of 1-hexene selectivity with reaction time. However 0.3%Pd/Al₂O₃ exhibits 1-hexene selectivity drops after 1.5 hour, while 0.3%Ni/Al₂O₃ shows the decrease of 1-hexene selectivity after 2 hours. Interestingly, 1-hexene selectivity is significant decreased when 1%, 1.5%, 2% and 3%Ni/Al₂O₃ is used. possibly due to high activity toward 1-hexene hydrogenation to *n*-hexane. It can be observed that 0.3%Ni exhibits the highest 1-hexene selectivity.

Figure 4.2 1-Hexene selectivity (%) as a function of time for Pd/Al_2O_3 and Ni/Al_2O_3 monometallic catalysts.

The yield of 1-hexene as a function of reaction time is shown in Fig. 4.3. The results illustrate that 0.3%Ni/Al₂O₃ exhibits the highest 1-hexene yield. As observed, 0.3%Pd/Al₂O₃ shows similar 1-hexene yield as 0.3%Ni/Al₂O₃ at 2 hours. However, 0.3%Pd/Al₂O₃ exhibits the depletion of 1-hexene yield after 2 hours possibly the subsequent hydrogenation of 1-hexene to *n*-hexane. Obviously, 1-hexene yield decreases dramatically when 1%Ni/Al₂O₃, 1.5%Ni/Al₂O₃. 2%Ni/Al₂O₃, and 3%Ni/Al₂O₃ is used. The high activity of Ni/Al₂O₃ at Ni loading 1%Ni, 1.5%Ni, 2%Ni, and 3%Ni to further hydrogenate 1-hexene to *n*-hexane causes the reduction of 1-hexene yield.

Figure 4.3 1-Hexene yield (%) as a function of time for Pd/Al_2O_3 and Ni/Al_2O_3 monometallic catalysts.

The relation of 1-hexene selectivity and 1-hexyne conversion for Pd and Ni on alumina catalysts is shown in Fig. 4.4. As expected, 1-hexene selectivity decreases significantly with increasing 1-hexyne conversion due to subsequent hydrogenation of 1-hexene to *n*-hexane. The 0.3wt% of Ni/Al₂O₃ catalyst exhibits the highest 1-hexene selectivity, while 0.3%Pd/Al₂O₃ shows lower 1-hexene selectivity than 0.3%Ni/Al₂O₃. The 1-hexene selectivity of the catalysts is decreasing in the order: 0.3%Ni/Al₂O₃ > 0.3%Pd/Al₂O₃ >2%Ni/Al₂O₃ >1.5%Ni/Al₂O₃ at completed conversion. Furthermore, the changes of 1-hexyne, 1-hexene and *n*-hexane concentration with reaction time when using 0.3%Ni/Al₂O₃ are shown in Fig. 4.5. It can be observed that, 1-hexyne decreases with the reaction time, while the 1-hexene is significantly increased with reaction time. and *n*-hexane is relatively constant indicating that the subsequent hydrogenation of 1-hexene is not important due to retard reaction. However, after the conversion of 1-hexyne is completed, 1-hexene is then hydrogenated to *n*-hexane.

Figure 4.4 1-Hexene selectivity (%) as a function of conversion (%) for Pd/Al_2O_3 and Ni/Al_2O_3 monometallic catalysts.

Figure 4.5 Concentration of reactant and products as a function of reaction time for 0.3%Ni/Ai₂·O₃ monometallic catalysts.

4.1.2 Ni-Mn Bimetallic Supported on Alumina Catalyst

The activity of 1-hexyne hydrogenation by Mn-Ni/Al₂O₃ with various Ni/Mn molar ratios is showed in Fig. 4.6 and Fig. 4.7. The results illustrate that the activity of 1-hexyne hydrogenation increases linearly with the reaction time. It is found that Ni/Al₂O₃, NiMn2.0/Al₂O₃, NiMn1.5/Al₂O₃, and NiMn0.5/Al₂O₃ show high activity, while NiMn1.0/Al₂O₃ exhibits the lowest activity among Ni-Mn bimetallic catalysts. For Mn/Al₂O₃ shows relatively low activity.

Figure 4.6 1-Hexyne total conversions (%) as a function of time for 0.3%Ni/Al₂O₃ at various Ni/Mn ratios.

Figure 4.7 1-Hexyne total conversions (%) at 1.5 h., 2.0 h., and 2.5 h. for 0.3%Ni/Al₂O₃ at various Ni/Mn ratios.

Fig. 4.8 and Fig. 4.9 illustrate 1-hexene selectivity as a function of reaction time for Ni-Mn on alumina catalysts. The catalysts exhibit the increase of 1-hexene selectivity with reaction time. However, the catalysts show the decrease of 1-hexene selectivity after 2.0 hours due to the activity toward 1-hexene hydrogenation to *n*-hexane. NiMn1.0/Al₂O₃ exhibits the highest 1-hexene selectivity, while Ni/Al₂O₃ and NiMn2.0/Al₂O₃ show relatively low 1-hexene selectivity. The

0

1-hexene selectivity exhibits in the order: NiMn1.0 > NiMn0.5 > NiMn1.5 > NiMn2.0 \approx Ni.

Figure 4.8 1-Hexene selectivity (%) as a function of time for 0.3%Ni/Al₂O₃ at various Ni/Mn ratios.

The yield of 1-hexene as a function of reaction time is shown in Fig. 4.10 and Fig. 4.11. The catalysts show the increase of 1-hexene yield with the

o

reaction time. The results illustrate that both NiMn1.5/Al₂O₃ and NiMn0.5/Al₂O₃ exhibit higher 1-hexene yield than Ni/Al₂O₃, while NiMn1.0/Al₂O₃ provides relatively low 1-hexene yield due to low activity. The NiMn0.5/Al₂O₃ provides the highest 1-hexene yield 91% at completed conversion.

Figure 4.10 1-Hexyne yield (%) as a function of time for 0.3%Ni/Al₂O₃ at various Ni/Mn ratios.

o

Figure 4.11 1-Hexene yield (%) at 1.5h, 2.0h, and 2.5h. for 0.3%Ni/Al₂O₃ at various Ni/Mn ratios.

The relation of 1-hexene selectivity and 1-hexyne conversion for Ni-Mn at various molar ratios on alumina catalysts is shown in Fig. 4.12. As observed, 1-hexene selectivity decreases significantly at nearly completed conversion due to subsequent hydrogenation of 1-hexene to *n*-hexane. The NiMn1.0/Al₂O₃ exhibits the highest 1-hexene selectivity, while Ni/Al₂O₃ and NiMn2.0/Al₂O₃ show relatively low. These results show that the 1-hexene selectivity of the catalysts is decreasing in the order: NiMn1.0 > NiMn0.5 > NiMn1.5 > NiMn2.0 > Ni at completed conversion.

Figure 4.12 1-Hexene selectivity (%) as a function of conversion (%) for 0.3%Ni/Al₂O₂ at various Ni/Mn ratios.

4 1.3 Pd-Ni Bimetallic Supported on Alumina Catalyst

The activity of 1-hexyne hydrogenation by Ni-Pd/Al₂O₃ with various Pd/Ni molar ratios is showed in Fig. 4.13 and Fig. 4.14. The results illustrate that the activity of 1-hexyne hydrogenation increases with the reaction time. As observed at 1.5 and 2.0 hours, PdNi1.5/Al₂O₃ shows higher activity than Pd/Al₂O₃ catalysts, while PdNi2.0/Al₂O₃ exhibits the lowest in the activity among Pd-Ni bimetallic catalysts. However, all the Pd-Ni bimetallic catalysts access to 100% conversion within 2.5 hours. For Ni/Al₂O₃ exhibits relatively low activity.

Figure 4.13 1-Hexyne total conversions (%) as a function of time for 0.3%Pd/Al₂O₃ at various Pd/Ni ratios.

Figure 4.14 1-Hexyne total conversions (%) at 1.5h, 2.0h, and 2.5h for 0.3%Pd/Al₂O₃ at various Pd/Ni ratios.

Fig. 4.15 and Fig. 4.16 illustrate 1-hexene selectivity as a function of reaction time for Pd-Ni on alumina catalysts. The catalysts exhibit the increase of 1-hexene selectivity with reaction time. After 1.5 hours, the catalysts show the decrease of 1-hexene selectivity with reaction time probably the activity toward 1-hexene hydrogenation to *n*-hexane. PdNi2.0/Al₂O₃ exhibits the highest 1-hexene

selectivity, while Pd/Al_2O_3 shows relatively low 1-hexene selectivity. The 1-hexene selectivity is exhibited in the order: $PdNi2.0 > PdNi1.5 > PdNi0.5 > PdNi1.0 \approx Pd$.

Figure 4.15 1-Hexene selectivity (%) as a function of time for 0.3%Pd/Al₂O₃ at various Pd/Ni ratios.

Figure 4.16 1-Hexene selectivity (%) at 1.5 h., 2.0 h., and 2.5 h. for 0.3%Pd/Al₂O₃ at various Pd/Ni ratios.

The yield of 1-hexene as a function of reaction time is shown in Fig. 4.17. The catalysts show the increase of 1-hexene yield with reaction time,

PdNi2.0/Al₂O₃ and PdNi1.5/Al₂O₃ exhibit higher 1-hexene yield than Pd/Al₂O₃, while PdNi1.0/Al₂O₃ shows low 1-hexene yield due to low 1-hexene selectivity. After 2.0 hours, the catalysts exhibit the decrease of 1-hexene yield with reaction time due to the activity of 1-hexene to *n*-hexane. Except PdNi2.0/Al₂O₃, this is indicated that the subsequent hydrogenation of 1-hexene probably not important due to relatively low activity.

Figure 4.17 1-Hexyne yield (%) as a function of time for 0.3%Pd/Al₂O₃ at various Pd/Ni ratios.

Figure 4.18 1-Hexyne yield (%) at 1.5 h., 2.0 h., and 2.5 h. for 0.3%Pd/Al₂O₃ at various Pd/Ni ratios.

σ

The relation of 1-hexene selectivity and 1-hexyne conversion for Pd-Ni on alumina catalysts is shown in Fig. 4.19. As expected, 1-hexene selectivity decreases significantly at nearly completed conversion due to the hydrogenation of 1hexene to *n*-hexane. The 0.3%PdNi2.0 exhibits the highest 1-hexene selectivity, which is decreased slightly at completed conversion. These results show that the 1hexene selectivity of the catalysts is decreasing in the order: 0.3%PdNi2.0 > 0.3%PdNi1.5 > 0.3%PdNi0.5 > 0.3%PdNi1.0 ≈ 0.3 %Pd.

Figure 4.191-Hexene selectivity (%) as a function of conversion (%) for0.3%Pd/Al2O3 at various Pd/Ni ratios

σ

4.2 Catalytic Characterization

4.2.1 Catalyst Characterization by BET and H₂-chemisorption

4.2.1.1 Pd and Ni Supported on Alumina Catalysts

The surface area, pore volume, and pore size of Pd and Ni monometallic catalysts are shown in Table 4.1. The catalysts surface area is decreased with increasing metal loading. This implies that the metal particles possibly block the pores of alumina causing the reduction of surface area and pore volume. The average pore diameter of the catalysts are around 12-18 nm, while supported alumina has average pore diameter of 20 nm. For the H₂-chemisorption, the results in term of mole of chemisorbed hydrogen per total metal mole are shown in Table 4.1. At the same level of metal loading, 0.3% Pd exhibits higher H₂ adsorption than 0.3%Ni. Furthermore, it can be observed that the H₂ adsorption increases with increasing Ni loading (1% Ni > 0.3% Ni). This implies that at low loaded metal, the agglomeration of metal probably not important. At higher Ni loading (higher than 1%), the H₂ chemisorption is reduced indicating lowering Ni dispersion on alumina surface, as a result, the rate of hydrogenation is decrased as indicated in Figure 4.1.

Table 4.1	The catalysts	surface area	pore volume	e, average	pore diame	ter, and
hydrogen o	chemisorption	of Pd/Al ₂ O ₃	and Ni/Al ₂ O	3 catalysts	5	

	Analytical mode					
Catalysts	Surface area (m ² /g)	Pore volume (cm ³ /g)	Average Pore diameter (nrr.)	H ₂ adsorbed (H/metal)		
Al_2O_3	99	0.55	20	N/A		
0.3%Pd/A	73	0.36	18	0.40		
0.3%Ni/A	76	0.38	14	0.24		
1%Ni/A	38	0.35	16	0.34		
1.5%Ni/A	37	0.31	14	0.28		
2%Ni/A	32	0.33	15	0.21		
3%Ni/A	26	0.32	12	0.20		

0

4.2.1.2 Ni-Mn Supported on Alumina Catalysts

The surface area, pore volume, and pore diameter of Ni-Mn bimetallic catalysts at various Ni/Mn molar ratios are shown in Table 4.2. The catalysts surface area is decreased with increasing Mn loading. The average pore diameter of the Ni-Mn catalysts are around 7.1-8.1 nm, while Ni/Al₂O₃ has average pore diameter of 14 nm. For the H₂-chemisorption, the results in term of molar ratio of chemisorbed hydrogen per total mole of Ni (H₂/Ni) are shown in Table 4.2. It can be observed that increase amount of Mn exhibits the H₂/Ni ratio decreased significantly. Interestingly, Ni/Mn ratio 0.5 exhibits higher H₂ adsorption than Ni/Mn ratio 1.0, this implies that loading of Mn at Ni/Mn ratio 0.5 shows the dispersion of catalyst higher than ratio 1.0 resulting higher activity.

Table 4.2 The catalysts surface area, pore volume, average pore diameter, and hydrogen chemisorption of Ni-Mn catalysts

	Analytical mode				
Catalysts	Surface area (m ² /g)	Pore volume (cm ³ /g)	Average Pore diameter (nm)	H ₂ adsorbed (H ₂ /Ni)	
Al_2O_3	99	0.55	20	N/A	
0.3%Mn/Al ₂ O ₃	67	0.31	9.6	N/A	
0.93%Ni/Al2O3	76	0.38	14	0.24	
0.3%NiMn2.0/Al2O3	68	0.22	8.1	0.22	
0.3%NiMn1.5/Al ₂ O ₃	65	0.26	8.0	0.20	
6.3%NiMn1.0/Al ₂ O ₃	63	0.30	7.5	0.13	
0.3%NiMn0.5/Al ₂ O ₃	61	0.28	7.1	0.18	

4.2.1.3 Pd-Ni Supported on Alumina Catalysts

The surface area, pore volume, and pore diameter of Pd-Ni bimetallic catalysts at various Pd/Ni molar ratios are shown in Table 4.3. The catalysts surface area is decreased with increasing Ni loading. The average pore diameter of Pd-Ni catalysts are around 11-16 nm, while Pd/Al₂O₃ has average pore diameter of 18 nm. For the H₂-chemisorption, the results in term of mole of chemisorbed hydrogen per total mole of Pd are shown in Table 4.3. It can be observed that adding of Ni on Pd-based catalyst shows the reduction of H₂ adsorption

probably part of Pd on the surface cluster is covered by Ni. Pd/Ni at ratio 1.5 shows higher H₂ adsorption than other prepared Ni-Pd/Al₂O₃ catalysts, this is implied that loading of Ni at Pd/Ni ratio 1.5 provides higher dispersion of catalyst than other Pd-Ni catalysts resulting high activity.

Table 4.3 The catalysts surface area, pore volume, average pore diameter, and hydrogen chemisorption of Pd-Ni catalysts

	Analytical mode				
Catalysts	Surface area (m ² /g)	Pore volume (cm ³ /g)	Average Pore diameter (nm)	H ₂ adsorbed (H ₂ /Pd)	
Al_2O_3	99	0.55	20	N/A	
0.3%Ni/Al ₂ O ₃	76	0.38	14	0.24	
0.3%Pd/Al ₂ O ₃	78	0.40	18	0.40	
0.3%PdNi2.0/Al ₂ O ₃	68	0.24	14	0.20	
0.3%PdNi1.5/Al ₂ O ₃	73	0.38	16	0.38	
0.3%PdNi1.0/Al ₂ O ₃	68	0.31	11	0.27	
0.3%PdNi0.5/Al ₂ O ₃	75	0.35	12	0.24	

4.2.2 <u>Temperature Program Reduction (TPR)</u>

4.2.2.1 Ni Supported on Alumina Catalysts

TPR profiles for 0.3%Ni/Al₂O₃, 1%Ni/Al₂O₃, 1.5%Ni/Al₂O₃, and 2%Ni/Al₂O₃ supported on alumina catalysts are illustrated in Fig. 4.20. The TPR peak of 0.3%Ni/Al₂O₃ observed at 740 °C attributed to NiO species which indicates strong interaction with support. As amount of Ni loading increases, the reduction temperature of NiO species shifts to lower temperature possibly because the less interaction of NiO and alumina surface due to metal agglomeration. At high nickel loading, the alumina is saturated with Ni and bulk NiO is formed on the alumina surface (Li *et al.*, 1995). As expected, the H₂ adsorption and catalyst activity decrease when 1.5%Ni/Al₂O₃, 2%Ni/Al₂O₃, and 3%Ni/Al₂O₃ are used.

Figure 4.20 Temperature programmed reduction (TPR) profile of Ni supported on alumina catalysts.

4.2.2.2 Ni-Mn Supported on Alumina Catalysts

Fig. 4.21 exhibits the TPR profile for Ni-Mn with various Ni/Mn molar ratios supported on alumina catalysts. The increase amount of Mn on Ni/Al₂O₃ can be observed the increase of H₂ consumption peak of manganese oxide species at 360 °C and 500 °C. Kim *et al.* (2010) suggested that the reduction of the first reduction peak is caused by the reduction of MnO_2 (Mn^{+4}) to Mn_2O_3 (Mn^{+3}) and the other reduction peak is attributed to the reductions of Mn_2O_3 (Mn^{+3}) to MnO (Mn^{+2}) via Mn_3O_4 . Interestingly, Ni/Mn ratio 1.0 shows the reduction of MnO shifts to lower temperature probably, which suggests that Mn particles agglomerate instead isolate on the support indicating weak interaction with support. This result agrees with the lowest hydrogenation activity when NiMn1.0/Al₂O₃ is used. The TPR peak at 820 °C is more obvious when the amount of Mn is increased on Ni-based catalyst. Malaibari *et al.* (2015) reported that the increase in the reduction temperature of impregnated catalyst (Ni/Al₂O₃) was attributed to the interaction of NiO-Al₂O₃-MoO_x.

Figure 4.21 Temperature programmed reduction (TPR) profile of Ni-Mn supported on alumina catalysts.

4.2.2.3 Pd-Ni Supported on Alumina Catalysts

TPR profile for Pd-Ni supported on alumina catalysts are shown in Figure 4.22. The results illustrate that the Pd monometallic and Pd-Ni bimetallic catalysts can be observed a single negative peak at 90 °C attributed to desorption of hydrogen from the decomposition of β -Pd hydride (Navarro *et al.*, 2000). According to Ferrer *et al.* (2005), the formation of PdH_x phases is favored by the existence of large palladium particles. TPR profile of Pd/Al₂O₃ shows the H₂consumption peak at around 80 °C which is the reduction of PdO crystallites to metallic Pd. Adding amount of Ni to Pd-based catalyst causes the reduction peak of PdO in TPR to shifts 40 °C higher. The shift of PdO TPR peak to higher temperature suggests the harder for reduction of PdO to metallic Pd. It is well known that the strong interaction between palladium oxide and promoted metal probably significant

O

increases the reduction temperature of Pd precursors (Pellegrini *et. al.*, 2009). The reduction of PdO and the desorbed hydrogen of β -Pd hydride are also agreed with the work done by Wang *et al.* (2002). Considering the reduction peak of nickel oxide at around 730 °C, Pd/Ni at ratio 1.5 exhibits the reduction peak of nickel oxide shifts to higher temperature attributed to portion of excess nickel are isolated on support causing high metal dispersion and exhibits strong interaction with support.

Figure 4.22 Temperature programmed reduction (TPR) profile of Pd-Ni supported on alumina catalysts.

Ø