SELECTIVE HYDROGENATION OF 1-HEXYNE USING Pd-Mn ON ALUMINA CATALYSTS

Napat Kijtithanont

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole 2014

I28370648

Selective Hydrogenation of 1-Hexyne Using Pd-Mn on
Alumina Catalysts
Napat Kijtithanont
Petroleum Technology
Asst. Prof. Boonyarach Kitiyanan

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

..... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

B. Kitigann

(Asst. Prof. Boonyarach Kitiyanan)

Bullt

(Assoc. Prof. Thirasak Rirksomboon)

Jim P.

(Dr. Jiraporn Pongsirisatorn)

ABSTRACT

 5573015063: Petroleum Technology Program
Napat Kijtithanont: Selective Hydrogenation of 1-Hexyne Using Pd-Mn on Alumina Catalysts
Thesis Advisors: Asst. Prof. Boonyarach Kitiyanan, 66 pp.
Keywords: Selective hydrogenation/ 1-Hexyne/ Pd-Mn

Mixed C4 hydrocarbon is one of the product streams from the naphtha cracking processes. This stream contains vinylacetylene, butadiene, isobutylene, butyne, butene, butane, etc. The selective catalytic hydrogenation process is an alternative for mixed C4 hydrocarbons upgrading. In this research, 1-hexyne was chosen as a model compound for unsaturated mixed C4 hydrocarbons. The activity and selectivity of hydrogenation were investigated by using low loaded Pd (0.3 wt %) and Mn doped Pd on alumina catalysts. The atomic ratios of Pd/Mn were varied at 0.5, 0.75, 1.0, 1.5, 2.0, and 5.0. The experimental conditions were 40 °C and H₂ partial pressure of 1.5 bar. Temperature program reduction (TPR), hydrogen chemisorption and surface area analysis were applied for catalyst characterization. It is interesting to find that the activity was significantly improved when Mn was doped on the Pd/Al₂O₃ catalysts (Pd/Mn \leq 1). The selectivity of the Pd-Mn/Al₂O₃ catalysts also increased from the Pd/Al₂O₃ catalyst when Mn is added.

บทคัดย่อ

ณภัทร กิจติถานนท์ : ปฏิกิริยาไฮโครจิเนชั่นแบบเลือกเกิดของหนึ่งเฮกไซน์โคยใช้ โลหะผสมแพลเลเดียม-แมงกานีสที่อยู่บนอะลูมินาเป็นตัวเร่งปฏิกิริยา (Selective Hydrogenation of I-Hexyne Using Pd-Mn on Alumina Catalysts) อ. ที่ปรึกษา : ผศ. คร. บุนยรัชต์ กิติยานันท์ 66 หน้า

สารประกอบอินทรีย์จำพวกมิกซ์ซีสี่เป็นผลิตภัณฑ์หนึ่งที่ได้จากกระบวนการแตกสลาย แนฟทาในอุตสาหกรรมปิโตรเคมี ซึ่งประกอบด้วย ไวนิวอะเซทิวลีน, บิวทาไดอีน, ไอโซบิวทีลีน, บิวทีน, บิวเทน และอื่น ๆ กระบวนการไฮโดรจิเนชั่นแบบเลือกเกิดเป็นทางเลือกหนึ่งสำหรับการ เพิ่มมูลก่าของสารประกอบอินทรีย์จำพวกมิกซ์ซีสี่ เพื่อความสะควกในการศึกษาปฏิกิริยาไฮโดร จิเนชั่นแบบเลือกเกิด งานวิจัยนี้ได้เลือกหนึ่งเฮกไซน์เป็นสารประกอบต้นแบบแทนที่ไวนิว อะเซทิวลีนและหนึ่งบิวทายน์ ในงานวิจัยจะมุ่งศึกษาถึงความว่องไวและความเลือกเฉพาะกับ ผลิตภัณฑ์ที่ต้องการในปฏิกิริยาไฮโดรจิเนชั่นของหนึ่งเฮกไซน์ โดยใช้ตัวเร่งปฏิกิริยาที่เป็นโลหะ แพลเลเดียม (0.3 % โดยน้ำหนัก) และโลหะผสมแพลเลเดียม-แมงกานีสที่อยู่บนอะลูมินา ภายใต้ สภาวะความดันไฮโครเจน 1.5 บาร์ และอุณหภูมิ 40 องศาเซลเซียส โดยอัตราส่วนโดยมวลของ แพลเลเดียมต่อแมงกานีสที่ศึกษาจะประกอบไปด้วย 0.5, 0.75, 1.0, 1.5, 2.0 และ 5.0 วิเคราะห์ ลักษณะของตัวเร่งปฏิกิริยาโลยไข้ทีพีอาร์, ไฮโครเจน เกมีซอพชั่น ซึ่งจากผลการทดลองแสดงให้ เห็นว่าดัวเร่งปฏิกิริยาโลหะผสมแพลเลเดียม-แมงกานีสที่อัตราส่วนโดยโมลของแพลเลเดียมต่อ แมงกานีสน้อยกว่า 1.0 มีก่าความว่องไวที่คีกว่าโลหะแพลเลเดียม โดยที่อัตราส่วนโดยมวลของ แพลเลเดียมต่อแมงกานีสกับ 1.0 มีกวามว่องไวซีจีบริสูงสุด และความเลือกเฉพาะของเฮกซีนเพิ่มขึ้นจาก ของโลหะแพลลาเดียม

ACKNOWLEDGEMENTS

The work cannot be successful without the participation of the following individual and organizations.

I gratefully acknowledge Asst. Prof. Boonyarach Kitiyanan, my thesis advisors, for suggestions, discussions, and problem solving throughout the course of my work.

I would like to thank Assoc. Prof. Thirasak Rirksomboon and Dr. Jiraporn Pongsirisatorn for their kind of advice and for being on the thesis committee.

I would like to thank Mr. Paisan Inson, Mr. Katawut Suriyaphaparkorn, Mr. Thani Jermwongratanachai, Mr. Sikarin Tamiyakul and Ms. Varinee Sirijantarat for help, recommendation and suggestion.

This thesis work is funded by the Petroleum and Petrochemical College, and by the Center of Excellecnce on Petrochemical and Materials Technology, Thailand.

It is my pleasure to acknowledge Bangkok Synthetic Co., Ltd., for partial funding. I also would like to thank the Petroleum and Petrochemical College for the invaluable knowledge in the field of Petroleum and Petrochemical Technology. Special thanks go to all of the Petroleum and Petrochemical College's staff who helped me with invaluable and tireless assistance. I am indebted to them all.

Finally, I take this opportunity to thank PPC Ph.D. students and all PPC friends for their friendly assistance, cheerfulness, creative suggestion, and encouragement. I had the most enjoyable time working with all of them. Also, I am greatly indebted to my parents and family for their support, love and understanding.

v

TABLE OF CONTENTS

				PAGE
	Title P	age		i
	Abstra	ct (in English)		iii
	Abstra	ct (in Thai)		iv
	Ackno	wledgements	÷	v
	Table of	of Contents		vi
	List of	Tables		ix
	List of	Figures		xi
	-			
CHA	PTER			PAGE
	I	INTRODUCTION		1
	II	BACKGROUND AND LITERATURE SURVEY		2
		2.1 Mixed C4 Hydrocarbons		2
		2.2 Hydrogenation		4
		2.2.1 Hydrogenation of C4-C6 Hydrocarbons		4
		2.3 Catalysts for Hydrogenation		12
		2.3.1 Catalysts for Hydrogenation of Acetylenic		
		Compound, Butadiene and Hexyne		12
		2.3.2 Mn-Promoted Catalysts for Hydrogenation		24
		2.4 Catalyst Deactivation		28
		2.4.1 Coking		28
		2.4.2 Poisoning		29
		2.4.3 Leaching		29
		2.4.4 Sintering		30
	III	EXPERIMENTAL		31
		3.1 Equipment and Materials		31
		3.1.1 Equipment		31

.

.

PAGE

		3.1.2	Chemic	cals	31
			3.1.2.1	Feedstock and Chemicals	31
			3.1.2.2	Gas	31
3	.2	Expe	riment P	rocedures	31
		3.2.1	Catalys	t Preparation	31
			3.2.1.1	Pd/Al ₂ O ₃ Catalyst	31
		-	3.2.1.2	Bimetallic Pd-Mn/Al ₂ O ₃ Catalysts	32
		3.2.2	Catalys	t Characterization	32
			3.2.2.1	Temperature Programmed Reduction	32
			3.2.2.2	Hydrogen Chemisorption	32
			3.2.2.3	X-ray Photoelectron Spectroscopy	32
		3.2.3	Reactio	n Testing	33
3	.3	React	ion Perf	ormance Evaluation	33
		3.3.1	The Co	nversion of 1-Hexyne	34
		3.3.2	The Sel	ectivity of 1-Hexene and <i>n</i> -Hexane	34
		3.3.3	The Yie	eld of 1-Hexene	34
IV R	ES	ULT	S AND I	DISCUSSION	35
-4	.1	Catal	ytic Cha	racterization	35
		4.1.1	Temper	ature Program Reduction (TPR)	35
			4.1.1.1	Pd Supported on Alumina	
				Catalysts	35
			4.1.1.2	Pd-Mn Supported on Alumina Catalysts	35
		4.1.2	Hydrog	en Chemisorption	38
			4.1.2.1	Pd Supported on Alumina	
				Catalyst	38
			4.1.2.2	Pd-Mn Supported on Alumina Catalysts	38
		4.1.3	X-ray P	hotoelectron Spectroscopy (XPS)	40
4	.2	Catal	ytic Acti	vity Measurement	40

7

-

CHAPTER			PAGE
V	CONCLUSI	ONS AND RECOMMENDATIONS	51
	REFERENC	ES	52
	APPENDIC		57
	Appendix A	The catalytic activity of 1-hexyne, 1-hexene	
		selectivity and <i>n</i> -hexane selectivity of 0.3 %wt H	Pd
		and Pd-Mn supported on alumina catalysts	57
	Appendix B	The Mole Fraction of 1-Hexyne, 1-Hexene and	
•		<i>n</i> -Hexane for 1-Hexyne Hydrogenation of	
		0.3 wt% Pd and Pd-Mn Supported on Alumina	
		Catalysts	63
	Appendix C	Hydrogen Chemisorption of 0.3 %wt Pd and	
		Pd-Mn supported on alumina catalysts	65

-

CURRICULUM VITAE

.

- eo - 1

66

-

÷

LIST OF TABLES

•

TABI	LE	PAGE
2.1	Typical composition of mixed C4 stream from fluid catalytic	
	cracking unit (FCC)	2
4.1	Binding energy (eV) of core-level of the catalysts	40
Al	The peak area and mole of components for calibration curve	56
A2	The slope of calibration curve	57 -
A3	The peak area, mole of components, catalytic activity, 1-hexene	
	selectivity, <i>n</i> -hexane selectivity and 1-hexene yield for the	
	hydrogenation of 1-hexyne at 40 $^{\circ}$ C and 1.5 bar over 0.3 wt%	
	Pd/Al ₂ O ₃	59
- A4	The peak area, mole of components, catalytic activity, 1-hexene	
	selectivity, <i>n</i> -hexane selectivity and 1-hexene yield for the	
	hydrogenation of 1-hexyne at 40 $^{\circ}$ C and 1.5 bar over 0.3 wt%	
	Pd/Al_2O_3 at $Pd/Mn = 0.5$	59
A5	The peak area, mole of components, catalytic activity, 1-hexene	
	selectivity, <i>n</i> -hexane selectivity and 1-hexene yield for the	
	hydrogenation of 1-hexyne at 40 $^{\circ}$ C and 1.5 bar over 0.3 wt%	
	Pd/Al_2O_3 at $Pd/Mn = 0.75$	- 60
- A6	The peak area, mole of components, catalytic activity, 1-hexene	
-	selectivity, <i>n</i> -hexane selectivity and 1-hexene yield for the	
	hydrogenation of 1-hexyne at 40 $^{\circ}\mathrm{C}$ and 1.5 bar over 0.3 wt%	
	Pd/Al_2O_3 at $Pd/Mn = 1.0$	60
A7	The peak area, mole of components, catalytic activity, 1-hexene	
	selectivity, <i>n</i> -hexane selectivity and 1-hexene yield for the	
	hydrogenation of 1-hexyne at 40 $^{\circ}$ C and 1.5 bar over 0.3 wt%	
	Pd/Al_2O_3 at $Pd/Mn = 1.5$	61

-

ix

2

х

A8	The peak area, mole of components, catalytic activity, 1-hexene	
	selectivity, <i>n</i> -hexane selectivity and 1-hexene yield for the	
	hydrogenation of 1-hexyne at 40 \degree C and 1.5 bar over 0.3 wt%	
	Pd/Al_2O_3 at $Pd/Mn = 2.0$	61
A9	The peak area, mole of components, catalytic activity, 1-hexene	
	selectivity, <i>n</i> -hexane selectivity and 1-hexene yield for the	
	hydrogenation of 1-hexyne at 40 $^{\circ}$ C and 1.5 bar over 0.3 wt%	
	Pd/Al_2O_3 at $Pd/Mn = 5.0$	62
B1	The mole fraction for the hydrogenation of 1-hexyne at 40 $^\circ\mathrm{C}$	
	and 1.5 bar over 0.3 %wt Pd/Al ₂ O ₃ 62	63
B2	The mole fraction for the hydrogenation of 1-hexyne at 40 $^{\circ}C$ and	
	1.5 bar over 0.3 % wt Pd/Al ₂ O ₃ at Pd/Mn = 0.5, 0.75 and 1.0	63
B3	The mole fraction for the hydrogenation of 1-hexyne at 40 $^\circ$ C and	
	1.5 bar over 0.3 %wt Pd/Al ₂ O ₃ at Pd/Mn = 1.5, 2.0 and 5.0	64
Cl	H_2 chemisorption results of 0.3 wt% Pd/Al ₂ O ₃ catalysts at	
	various Mn loadings	65

LIST OF FIGURES

FIGURE

.

.

-

PAGE

2.1	The diagram of the typical C4 separation and purification plant.	3
2.2	Hydrogenation reaction of unsaturated hydrocarbon.	4
2.3	The possible reaction of vinyl acetylene hydrogenation.	4
2.4	Plot of reaction mixture composition versus reaction time for 1.9%	
	Pd/Al ₂ O ₃ catalyst in gas-phase hydrogenation of vinyl acetylene.	5
2.5	Overall reaction network of hydrogenation reaction of 1,3-butadiene.	6
2.6	Comparison between predicted composition and experimental	
	results of hydrogenated products as a function time.	6
2.7	The consumption of 1-butene: comparison between	
	the rotating-basket reactor and recirculation system with	
	an external fixed-bed reactor.	7
2.8	The reaction network of hydrogenation of 1,3-butadiene and	
	isobutene.	8
2.9	Variation of hydrocarbon bulk concentrations with reaction time.	8
2.10	The possible reaction of hydrogenation of C4-hydrocarbon.	9
2.11	Hydrogenation reaction network of 1-hexyne.	10
2.12	Hydrogenation reaction network of 3-hexyne.	11
2.13	Scheme of the 3-hexyne reversible hydrogenation reactions.	11
2.14	The catalytic performances in the gas-phase hydrogenation	
	of 1,3-butadiene.	13
2.15	Performance of sol-gel and solvothermal made Pd/α -Al ₂ O ₃ ,	
	Pd/commercial α -Al ₂ O ₃ and Pd/Ni-modified α -Al ₂ O ₃ catalyst	
	in selective acetylene hydrogenation.	14
2.16	The conversion of 1-pentyne over Pd/ZnO reduced at different	
	temperature and corresponding selectivity to pentene, pentane and	
	oligomers.	15

xi

1.

-

2

.

PAGE

2.17	Temperature and selectivities to ethylene during 500 h catalytic		
	test of Pd-Ag supported on alumina catalysts for the selective		
	hydrogenation of acetylene.	16	
2.18	Conversion of acetylene, ethane selectivity and amount of deposit		
	in C/Pd _S measured after the third pulse.	17	
2.19	Catalytic performances in the selective hydrogenation of		
	1,3-butadiene.	18	
2.20	Selectivities for <i>n</i> -butene and butane formed during butadiene		
	hydrogenation at 288 K and the conversion levels were changed		
	by varying the space velocity between 0.1-1.0.	19	
2.21	Results of acetylene hydrogenation obtained using catalysts		
	containing either Ag or Cu, which was added by impregnation		-
	or surface redox (SR) reaction.	20	
2.22	cis-3-Hexene selectivity as a function of conversion for 3-hexyne		
	hydrogenation over 1% Pd/SBA-15 catalyst at 298 K, $P_{H2} = 40$ psig		
	and S/Pd = 11,000.	21	
2.23	Experimental points and kinetic curves modeled for the reference		
	catalyst.	21	
2.24	Experimental points and kinetic curves modeled for the N-modified		
	Pd catalyst.	22	-
2.25	3-Hexyne total conversion as a function of time for Pd/A,	-	-
	Lindlar, PdNi/A and WPd/A catalysts, measured at 1.5 bar and		
	different temperatures.	23	
2.26	Reaction profiles for the hydrogenation of 1-hexyne at 298 K over		
	Lindlar catalysts and 5 % Pd/CaCO ₃ .	24	
2.27	Reaction profiles for the hydrogenation of 1-hexyne at 298 K over		
	Lindlar catalysts and 5 % Pd/CaCO ₃ .	24	
2.28	Hept-1-yne reaction test (303 K, 150 kPa) results as a function		
	of reaction time over WAI catalysts and PdAI catalysts.	25	

-

xii

-

2.29	Cumulative hydrogen uptake profiles of catalytic hydrogenation	
	of p -CNB over PtM/TiO ₂ catalysts.	26
2.30	Reaction rate and selectivity of Pd-Mn-catalysts in hydrogenation	
	of dehydrolinalool at 150 °C.	27
2.31	Benzene conversion and cyclohexene selectivity on the Ru-Mn-Zn	
	catalysts with different Mn/Zn molar ratios.	27
2.32	Benzene conversion and cyclohexene selectivity on the Ru-Zn,	
	Ru-Mn, and Ru-Mn-Zn-0.3 catalysts.	28
2.33	Schematic representation of different process observed under	
	various irregular operating conditions during the selective catalytic	
	hydrogenation of acetylene to ethylene in the vinyl chloride process.	30
3.1	The set-up diagram of selective hydrogenation 1-hexyne experiment.	33
3.2	The reaction scheme of 1-hexyne hydrogenation.	34
4.1	TPR profile of 0.3 wt% Pd/Al ₂ O ₃ catalyst.	36
4.2	TPR profiles of Mn/Al_2O_3 and 0.3 wt% Pd/Al_2O_3 catalysts at various	
	Mn loadings.	37
4.3	H_2 chemisorption results of 0.3 wt% Pd/Al ₂ O ₃ catalysts at various	
	Mn loadings.	39
4.4	XPS results for the 0.3 wt% Pd/Al_2O_3 catalysts at various Mn	
	loadings. 41	
4.5	Catalytic activity as a function of reaction time for the hydrogenation	
	of 1-hexyne at 40 $^{\circ}C$ and 1.5 bar over 0.3 % Pd/Al ₂ O ₃ at various Mn	
	loadings.	42
4.6	Catalytic activity for the hydrogenation of 1-hexyne at 40 °C, 1.5 bar,	
	and 1-2 h reaction time over 0.3 % Pd/Al_2O_3 at various Mn loadings.	43
4.7	1-Hexene selectivity as a function of reaction time for the	
	hydrogenation of 1-hexyne at 40 $^{\circ}$ C and 1.5 bar over 0.3 $^{\circ}$ Pd/Al ₂ O ₃	
	at various Mn loadings.	44
		¥

.

xiii

FIGURE

1-Hexene selectivity for the hydrogenation of 1-hexyne at 40 °C, 4.8 1.5 bar, and 1-3 h reaction time over 0.3 % Pd/Al₂O₃ at various 45 Mn loadings. *n*-Hexane selectivity for the hydrogenation of 1-hexyne at 40 °C, 4.9 1.5 bar and 1-3 h reaction time over 0.3 % Pd/Al₂O₃ at various 45 Mn loadings. 4.10 1-Hexene selectivity as a function of conversion for the hydrogenation of 1-hexyne at 40 °C and 1.5 bar over 0.3 wt% Pd/Al₂O₃ at various Mn loadings. 46 4.11 1-Hexene yield for the hydrogenation of 1-hexyne at 40 °C, 1.5 bar and 1-2 h reaction time over 0.3 wt% Pd/Al₂O₃ at various Mn loadings. 47 4.12 Mole fraction profiles for the hydrogenation of 1-hexyne at 40 °C and 1.5 bar over Pd-Mn/Al₂O₃ (Pd/Mn = 1). 48 4.13 Concentration profiles of 1-hexene for the hydrogenation of 1-hexyne at 40 °C and 1.5 bar over 0.3 wt% Pd/Al₂O₃ at various Mn loadings. 49 4.14 Concentration profiles of *n*-hexane for the hydrogenation of 1-hexyne at 40 °C and 1.5 bar over 0.3 wt% Pd/Al₂O₃ at various Mn loadings. 49 A1 The calibration curve of 1-hexyne. 57 A2 The calibration curve of 1-hexene. 58

A3 The calibration curve of *n*-hexane.

PAGE

58

-