DEVELOPMENT OF POROUS SUPPORTING FABRIC-EMBEDDED BACTERIAL CELLULOSE COMPOSITES FOR WOUND DRESSING APPLICATIONS

Nichapat Boonyeun

A Thesis Submitted in Partial Fulfilment of the Requirements
for the Degree of Master of Science
The Petroleum and Petrochemical College, Chulalongkorn University
in Academic Partnership with
The University of Michigan, The University of Oklahoma, and
Case Western Reserve University

2014

Thesis Title:

Development of Porous Supporting Fabric-embedded

Bacterial Cellulose Composites for Wound Dressing

Applications

By:

Nichapat Boonyeun

Program:

Polymer Science

Thesis Advisor:

Assoc. Prof. Ratana Rujiravanit

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science

...... College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Ratoma Rujivovanit

(Assoc. Prof. Ratana Rujiravanit)

(Asst. Prof Manit Vithitanakul)

(Dr. Tuspon Thanpitcha)

ABSTRACT

5572013063: Polymer Science Program

Nichapat Boonyeun: Development of Porous Supporting Fabricembedded Bacterial Cellulose Composites for Wound Dressing

Applications.

Thesis Advisor: Assoc. Prof. Ratana Rujiravanit 100 pp.

Keywords: Bacterial cellulose/ Fabrics/ Wound dressing

A bacterial cellulose (BC) pellicle is a polysaccharide produced by Acetobacter xylinum. BC pellicles have many advantages such as hydrophilicity, ultrafine 3D network structure, high purity, high water absorption capacity, in addition to the never dried state of a hydrogel. Accordingly, BC pellicles are a good candidate for being used as a wound dressing material because it can provide a moist wound environment, promote the wound healing process, and has excellent molding to all facial body contours. However, in a large scale production of BC pellicles, damage from tearing of BC pellicle may occur during cultivation, sterilization, and packing into packaging. In order to reinforce BC pellicles, BC composites consisting of fabric embedded in the BC pellicles were fabricated. Cotton, lenin, filter cloth. muslin, shefong (polyester) and nylon mesh were used to investigate the effect of the types of fabrics on mechanical properties, morphology, water absorption capacity, and water vapor transmission rate of the composites. In addition, the surface of the fabrics was modified by dielectric barrier discharge (DBD) plasma treatment before cultivation in culture medium containing Acetobacter xylinum. By applying DBD plasma treatment, hydrophilicity, and surface roughness of the fabrics could be enhanced. The effect of DBD plasma treatment on production yield, change in chemical structure of the plasma-treated fabrics, morphology, mechanical properties, water absorption, and water vapor transmission rate of the BC composites was examined.

บทคัดย่อ

ณิชาภัทร์ บุญยืน : การพัฒนาวัสคุคอมโพสิตที่เตรียมจากแบคทีเรียเซลลูโลสและวัสคุ สิ่งทอที่มีรูพรุนเพื่อใช้เป็นวัสคุปิดแผล (Development of Porous Supporting Fabric-embedded Bacterial Cellulose Composites for Wound Dressing Applications) อ. ที่ ปรึกษา : รศ.คร. รัตนา รุจิรานิช 100 หน้า

แบคทีเรียเซลลู โลสคือเส้นใยเซลลู โลสบริสุทธิ์ที่สังเคราะห์ขึ้นโดยกระบวนการเมตาxvlinum ซึ่งเป็นกระบวนการสังเคราะห์ทางชีวภาพ บอลิซึมของแบคทีเรีย Acetobacter แบกที่เรียเซลลูโลสมีข้อดีหลายประการคือ มีความมีขั้วสูง ความแข็งแรง โครงสร้างเส้นใยแบบ สามมิติ ไม่เป็นพิษสามารถเข้ากับเซลล์ได้ดี สามารถดูดซับน้ำได้มาก และมีความบริสุทธิ์สูง นอกจากนี้เส้นใยแบคทีเรียเซลลูโลสถูกผลิตออกมาในรูปของวัสคุไฮโครเจล ซึ่งเหมาะสมในการ ประยุกต์ใช้เป็นวัสคุปิดแผลเนื่องจากสมบัติใชโครเจลของแบคทีเรียเซลลูโลสจะสามารถรักษา สภาวะความชุ่มชื้นของบาดแผลได้ ซึ่งจะช่วยให้กระบวนการสมานแผลเป็นไปได้เร็วขึ้น ทั้งยัง สามารถคูดซับของเหลวจากแผลได้มาก ตลอดจนการถ่ายเทอากาสบริเวณบาดแผลได้ดี และลอก ออกจากบาดแผล ได้ง่ายโดยที่ไม่เกิดความเจ็บปวดและ ไม่ทำลายเนื้อเยื่อที่สร้างขึ้นใหม่ โดยเฉพาะ อย่างยิ่งลดโอกาสในการเกิดแผลเป็น ในงานวิจัยนี้มีเป้าหมายที่จะพัฒนาวัสดุปิดแผลจาก แบคทีเรียเซลลูโลสคอมโพสิต ซึ่งเป็นวัสดุคอมโพสิตที่เตรียมจากแบคทีเรียเซลลูโลสและวัสดุสิ่ง ทอที่มีรูพรุน (Porous supporting fabric) ได้แก่ ผ้ากอดตอน ผ้ามัสถิน ผ้าถินิน ตาข่ายในลอน ย้าพอลิเอสเทอร์ (ชีฟอง) และย้าขาวบาง ที่ถูกปรับสภาพพื้นผิวของเส้นใยด้วยเทคนิค Dielectric barrier discharge plasma (DBD plasma) ซึ่งเทคนิค DBD plasma จะช่วยเพิ่มความบรุงระ พื้นที่ผิว และความมีขั้วให้กับพื้นผิวเส้นใยของวัสคุสิ่งทอที่มีรูพรุน เพื่อเพิ่มคุณสมบัติในการ เกาะติดของเซลล์แบคทีเรีย (Cell attachment) ซึ่งเป็นผลดีในการสังเคราะห์แบคทีเรียเซลลูโลส เคลือบบนวัสคุสิ่งทอที่มีรูพรุนเพื่อผลิตเป็นแผ่นแบคทีเรียเซลลูโลสคอมโพสิตที่มีความแข็งแรง ทนต่อการฉีกขาดได้ดีกว่าแผ่นแบคทีเรียเซลลูโลสบริสุทธิ์ วัสดุคอมโพสิตที่ได้จะถูกนำไปพิสูจน์ เอกลักษณ์ ได้แก่ โครงสร้างทางเคมี ลักษณะสัณฐานวิทยา ความสามารถในการคูดซับน้ำ ความสามารถในการซึมผ่านของไอน้ำ คุณสมบัติเชิงกล และการรักษาบาดแผลในสัตว์ทคลอง

ACKNOWLEDMENTS

I would like to express my sincere gratitude to my thesis advisor Assoc. Prof. Ratana Rujiravanit for her sincere assistances. She gave very useful guidance, support and the great encouragement throughout this research. I would also like to extend my appreciation to the thesis examination committee, Asst. Prof. Manit Nithitanakul and Dr. Tuspon Thanpitcha for the useful suggestion and information.

I am grateful for the scholarship and funding of the thesis work provided by The Petroleum and Petrochemical College, and by The Center of Excellence on Petrochemical and Materials Technology, Thailand.

I would like to thank The Petroleum and Petrochemical College, Chulalongkorn University where I gained many-good experiences. I greatly appreciate all professors, lectures for the valuable knowledge and also thank to all staffs and college members for serving the convenient during stay in this college.

Finally, I would like to thank the extreme appreciation to my family for their love, understanding, support, and encouragement. Without all of them, thesis work would not have been possible successful.

TABLE OF CONTENTS

			PAGE
	Title	Page	i
	Abst	ract (in English)	iii
	Abst	ract (in Thai)	iv
	Ack	nowledments	V
	Tabl	e of Contents	vi
	List	of Tables -	X
	List	of Figures	xii
СН	APTE	R	
	I	INTRODUCTION	1
	П	LITERATURE REVIEW	3
		2.1 Wound Healing Process	3
		2.1.1 Homeostasis	3
		2.1.2 Inflammatory	3
		2.1.3 Proliferation	3
		2.1.4 Remodeling	4
		2.2 Bacterial Cellulose	4
		2.2.1 Cellulose	4
		2.2.2 Principal Pathways to Cellulose	5
		2.2.3 Bacterial Cellulose Synthesis using	
		Acetobacter xylinum	6
		2.2.4 Structure of Bacterial Cellulose	9
		2.2.5 Bacterial Cellulose in Wound Dressing Applications	12
		2.3 Plasma Technology	15
		2.3.1 Basic Principle	15
		2.3.2 Classification of Plasma	16
		2.3.3 Dielectric Barrier Discharge (DBD) Plasma	17
		2.3.4 DBD Structure	19

CHAPTER		P	PAGE
		2.3.5 Plasma-Substrate Interaction	21
		2.3.6 Literature Review on DBD Plasma	
		Surface Treatment	22
Ш	EX	PERIMENTAL _	24
	3.1	Materials	24
	3.2	Methodology	24
		3.2.1 Production of Bacterial Cellulose and	
		Bacterial Cellulose Composites	24
		3.2.2 Dielectric Barrier Discharge (DBD) Plasma Treatment	25
	3.3	Charaterization	25
		3.3.1 Fourier Transform Infrared Spectroscopy (FTIR)_	25
		3.3.2 Scanning Electron Microscope (SEM)	26
		3.3.3 Mechanical Properties	26
		3.3.4 Water Absorption capacity	26
		3.3.5 Water Vapor Transmission Rate (WVTR)	26
•		3.3.6 Wicking Test	27
		3.3.7 The In Vivo Experiment	27
		3.3.8 The In Vitro Experiment: MTT Cytotoxicity Test	28
IV	RE	SULTS AND DISCUSSION	30
	4.1	Production of Bacterial Cellulose and Bacterial	
		Cellulose Composites	30
	4.2	Effect of Cultivation Time on Thickness and Dry Weight	
		of Bacterial Cellulose Pellicle	32
	4.3	Fourier Transform Infrared Spectroscopy (FTIR)	34
	4.4	Morphology of Bacterial Cellulose	39
	4.5	Dielectric Barrier Discharge (DBD) Plasma	
		Treatment Fabrics	44
	4.6	Hydrophilicity of Fabrics	50

CHAPTER		PAGE	
	4.7 Production Yields of BC Composites	55	
	4.8 Mechanical Properties	56	
	4.9 Water Absorption Capacity (WAC)	59	
	4.10* Water Vapor Transmission Rate (WVTR)	60	
	4.11 The In Vivo Experiment	_ 63	
	4.12 The In Vitro Experiment:	67	
V	CONCLUSION	70	
	REFERENCES	71	
	APPENDICES	78	
	Appendix A The Thickness of Pure Bacterial Cellulose		
	(pure BC) 1-8 days	78	
	Appendix B The Dry Weight of Pure Bacterial Cellulose		
	(pure BC) 1-8 days	79	
	Appendix C Mechanical Properties of Pure Bacterial		
	Cellulose and Bacterial Cellulose Composites	80	
	Appendix D Mechanical Properties of Fabrics	84	
	Appendix E The Production Yields of Pure Bacterial		
	Cellulose and Bacterial Cellulose Composite	88	
	Appendix F The Water Absorption Capacity of Pure		
	Bacterial Cellulose and Bacterial Cellulose		
	Composite	90	
	Appendix G The Water Vapor Transmission Rate		
	of Pure Bacterial Cellulose,		
	Bacterial Cellulose Composites and Fabrics	92	
	Appendix H The Wicking Test	95	
	Appendix I The In Vivo Experiment	97	
	Appendix J. The In Vitro Experiment	99	

CHAPTER	PAGE
CURRICULUM VITAE	100

LIST OF TABLES

TABLE	PAGE
2.1 Bacterial cellulose producers	6
2.2 Comparison between bacterial cellulose (BC)	- 7
and plant cellulose (PC)	10
2.3 Properties of bacterial cellulose and how they relate	to 14
the properties of an ideal wound dressing material	
C1 The tensile strength of pure bacterial cellulose	
and bacterial cellulose composites containing non DBD	plasma
treated fabrics in wet state	80
C2 The tensile strength of pure bacterial cellulose	
and bacterial cellulose composites containing non DBD	plasma
treated fabrics in dry state	81
C3 The tensile strength of pure bacterial cellulose	
and bacterial cellulose composites containing DBD plas	ma
treated fabrics in wet state	82
C4 The tensile strength of pure bacterial cellulose	
and bacterial cellulose composites containing DBD plas	ma
treated fabrics in dry state	83
D1 The tensile strength of non DBD plasma treated fabrics	in wet state 84
D2 The tensile strength of DBD plasma treated fabrics 2 mi	n in wet state 85
D3 The tensile strength of non DBD plasma treated fabrics	in dry state 86
D4 The tensile strength of DBD plasma treated fabrics 2 mi	n in dry state 87
E1 The dry weight of pure bacterial cellulose and bacterial of	cellulose
composites containing non DBD plasma treated fabrics	88
E2 The dry weight of pure bacterial cellulose and bacterial of	cellulose
composites containing DBD plasma treated fabrics 2 mi	n 89
F1 The water absorption capacity of pure bacterial cellulose	
and bacterial cellulose composites containing non DBD	plasma
treated fabrics	90

TABLE	
F2 The water absorption capacity of pure bacterial cellulose	
and bacterial cellulose composites containing DBD plasma treated fabrics 2 min	91
G1 The water vapor transmission rate of pure bacterial cellulose	
and bacterial cellulose composites containing non DBD plasma	
treated fabrics	92
G2 The water vapor transmission rate of pure bacterial cellulose	
and bacterial cellulose composites containing DBD plasma	
treated fabric s 2 min	- 93
G3 The water vapor transmission rate of porous supporting fabrics	94
H1 The water absorption time of non DBD plasma treated fabrics	95
H2 The water absorption time of DBD plasma treated fabrics 2 min	96
II The percent of wound contraction of pure BC, BC/Cotton,	
BC/nylon and 3M tegraderm film 1624w at 5,7,14 and 21 days	97
12 The body weight of rats, food consumption and water consumption	IT
at 5.7,14 and 21 days	98
J1 The percent survival of human dermal skin fibroblast cells	
cultured with the samples (compared with the control)	99

LIST OF FIGURES

FIGURE	
2.1 The structural of cellulose.	4
2.2 Pathways to the cellulose.	5
2.3 SEM image of plant and bacterial cellulose.	7
2.4 Pathways of carbon metabolism in Acetobacter xylinum	7
2.5 Formation of bacterial cellulose.	8
2.6 TEM image of bacterial cellulose ribbon produced	
by a bacterial cells.	8
2.7 SEM image of a bacterial cellulose network	4
including the bacterial cells.	9
2.8 Schematic model of BC microfibrils drawn in comparison	
with the 'fringed micelles'; of PC fibrils.	9
2.9 Outline of intra and intermolecular hydrogen bonds	
among cellulose chain.	10
2.10 BC pellicle formed in static culture and in agitated culture.	11
2.11 Constituents of plasma.	16
2.12 Typical DBD electrode arrangements.	19
2.13 Surface morphology of polyester fabric	23
3.1 Identification of the wound created surgically for	
the respective treatment groups.	28
4.1 Cultivation of Acetobacter xylinum strain TISTR 975:	
forming of the gelatinous bacterial cellulose pellicles.	30
4.2 Purification of bacterial cellulose.	31
4.3 SEM images show the surface morphology of bacterial cellulose	. 32
4.4 Bacterial cellulose pellicle produced by Acetobacter xylinum	
TISTR 975 under different cultivation time 1-8 days.	33
4.5 Comparison of thickness of bacterial cellulose pellicle	
under different cultivation time (1-8 days).	33

FIGURE	
4.6 Comparison of dry weight of bacterial cellulose pellicle	
under different cultivation time (1-8 days).	34
4.7 FTIR spectra of pure BC.	35
4.8 FTIR spectra of lenin fabric.	35
4.9 FTIR spectra of cotton fabric.	36
4.10 FTIR spectra of filter cloth fabric.	36
4.11 FTIR spectra of muslin fabric.	37
4.12 FTIR spectra of polyester fabric.	37
4.13 FTIR spectra of nylon mesh fabric.	38
4.14 SEM images of bacterial cellulose.	39
4.15 Surface morphology of lenin, cotton, filter cloth, muslin,	
polyester and nylon mesh fabric.	40
4.16 Surface morphology of BC/Lenin, BC/Cotton, BC/Filter cloth.	
BC/Muslin, BC/Polyester and BC/Nylon composites.	41
4.17 Cross sectional morphology BC/Lenin, BC/Cotton,	
BC/Filter cloth. BC/Muslin, BC/Polyester and BC/Nylon composites	s. 42
4.18 The interaction between BC fibrils and fabrics.	44
4.19 The effect of DBD plasma treatment time on	
the surface roughness of lenin fabric.	45
4.20 The effect of DBD plasma treatment time on	
the surface roughness of cotton fabric.	46
4.21 The effect of DBD plasma treatment time on	
the surface roughness of filter cloth fabric.	46
4.22 The effect of DBD plasma treatment time on	
the surface roughness of muslin fabric.	47
4.23 The effect of DBD plasma treatment time on	
the surface roughness of polyester fabric.	47
4.24 The effect of DBD plasma treatment time on	
the surface roughness of nylon mesh fabric.	48

FIGURE	PAGE
4.25 Surface morphology of BC composites containing	
DBD plasma treated fabrics 2 min.	49
4.26 Cross section morphology of BC composites containing	
DBD plasma treated fabrics 2 min.	50
4.27 Comparison FTIR spectra of lenin fabric between	2
non DBD plasma and DBD plasma treated fabric 2 min.	52
4.28 Comparison FTIR spectra of cotton fabric between	
non DBD plasma and DBD plasma treated fabric 2 min.	52
4.29 Comparison FTIR spectra of filter cloth fabric between	
non DBD plasma and DBD plasma treated fabric 2 min.	53
4.30 Comparison FTIR spectra of muslin fabric between	
non DBD plasma and DBD plasma treated fabric 2 min.	53
4.31 Comparison FTIR spectra of polyester fabric between	
non DBD plasma and DBD plasma treated fabric 2 min.	54
4.32 Comparison FTIR spectra of nylon mesh fabric between	
non DBD plasma and DBD plasma treated fabric 2 min.	54
4.33 Comparison of wicking abilities between non DBD plasma	
and DBD plasma treated fabrics2 min.	55
4.34 The comparison of production yields of pure BC	
and BC composites containing non DBD plasma	
and DBD plasma treated fabrics 2 min.	56
4.35 The comparison of tensile strength of pure BC	
and BC composites containing non DBD plasma	
and DBD plasma treated fabrics 2 min both wet and dry state.	58
4.36 The comparison of tensile strength of non DBD plasma	
and DBD plasma treated fabrics 2 min both wet and dry state.	58
4.37 The comparison of water absorption capacity of pure BC	
and BC composites containing non DBD plasma	
and DBD plasma treated fabrics 2 min.	60

FIGURE	PAGE
4.38 The comparison of water vapor transmission rate	
of pure BC and BC composites containing non I	OBD
plasma treated and DBD plasma treated fabrics	2 min. 62
4.39 The comparison of water vapor transmission rate	e of fabrics. 62
4.40 Identification of the wound created surgically fo	г
the respective treatment groups.	63
4.41 Image of wound in rats at 0,5,7,14 and 21 days.	64
4.42 The Comparison of the percent wound contraction	on during
the wound healing, 5, 7, 14 and 21 days.	65
4.43 The body weight of rats during the wound healing	og. 66
4.44 The food consumption of rats during the wound	healing. 66
4.45 The water consumption of rats during the wound	healing. 67
4.46 The percent survival of human dermal skin fibro	blast cell lines. 68
4.47 Cell attachment of human dermal skin fibroblast	on pure BC.
- BC/Cotton, BC/Polyester and BC/Nylon.	69