FACILE SYNTHESIS OF HIERARCHICAL N-RICH NANOPOROUS CARBON

•

0

-

•

Nanthawut Chokaksornsan

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University

2015

Thesis Title:	Facile Synthesis of Hierarchical N-Rich Nanoporous Carbon
By:	Nanthawut Chokaksornsan
Program:	Polymer Science
Thesis Advisors:	Asst. Prof. Thanyalak Chaisuwan
	Assoc. Prof. Sujitra Wongkasemjit
	Asst. Prof. Bussarin Ksapabutr

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

.

Theryald Chaisa

(Asst. Prof/Thanyalak Chaisuwan) 🧔

Sigih W

(Assoc. Prof. Sujitra Wongkasemjit)

B. Km

(Asst. Prof. Bussarin Ksapabutr)

.

a.J. /

(Assoc. Prof. Manop Panapoy) (Asst. Prof. Manit Nithitanakul)

σ

ABSTRACT

5672009063: Polymer Science Program

Nanthawut Chokaksornsan: Facile Synthesis of Hierarchical N-Rich
Nanoporous Carbon
Thesis advisor: Asst. Prof. Thanyalak Chaisuwan, Assoc. Prof.
Sujitra Wongkesemjit and Asst. Prof. Bussarin Ksapabutr 58 pp.
Keywords: Polybenzoxazine/ Nanoporous carbon

Nanoporous carbon has been prepared by pyrolysis of polybenzoxazine precursor in an inert atmosphere. The morphology of carbon particle was designed by varying the ratio of CTAB and silica template. CO_2 activation at 800°C could improve the physical and chemical adsorption of this material. The pyrolysis temperature was varied to obtain nitrogen-rich nanoporous carbon. In addition, the elemental compositions on the surface of nanoporous carbon were analyzed by x-ray photoelectron spectroscopy. The autosorp AS1-MP was used to determine the surface area and particle size of the resulting nanoporous carbon. It was found that using 40% wt. of silica as a template, the nanoporous carbon exhibited the highest surface area. However, increasing % wt. of silica over this point would result in the agglomeration, confirmed by SEM micrographs. Moreover, the porous carbon contained both microporous and mesoporous structures. In this research, the effect of varying pyrolysis temperature to obtain nitrogen-rich nanoporous carbon which was exhibited good CO_2 adsorption performance with high nitrogen content and high surface areas.

บทกัดย่อ

นั้นทวุฒิ โชคอักษรศานต์ : การสังเคราะห์นาโนคาร์บอนที่มีในโตรเจนในโครงสร้าง แบบลำดับขั้น (Facile Synthesis of Hierarchical N-Rich Nanoporous Carbon) อ. ที่ ปรึกษา : ผู้ช่วยศาสตราจารย์ ดร. ธัญญลักษณ์ ฉายสุวรรณ์, รองศาสตราจารย์ ดร. สุจิตรา วงศ์เกษม จิตต์ และผู้ช่วยศาสตราจารย์ ดร. บุศรินทร์ เมษะปะบุตร 58 หน้า

นาโนคาร์บอนถูกสังเคราะห์ด้วยวิธีการเผาพอลิเบนซ์อกซาซีนภายใต้บรรยากาสแก็ส เงื่อย ซึ่งลักษณะสัณฐานวิทยาของอนุภาคการ์บอนถูกควบคุมโดยการปรับเปลี่ยนสัดส่วนของซึ แท็บและซิลิก้าเทมเพลต การกระตุ้นด้วยการ์บอนใดออกไซต์ที่อุณหภูมิ 800 องสาเซลเซียส สามารถปรับปรุงการดูดซับทางกายภาพและทางเคมีของวัสดุนี้ โดยอุณหภูมิที่ใช้ในการเผาจะถูก ปรับเปลี่ยนเพื่อให้ได้นาโนการ์บอนที่มีในโตรเจนอยู่ในโครงสร้าง นอกจากนี้การกระตุ้นด้วย แก๊สการ์บอนไดออกไซต์ที่อุณหภูมิ 800 องสาเซลเซียส สามารถเพิ่มคุณสมบัติการดูดซับทาง กายภาพและทางเคมีของวัสดุนี้ องค์ประกอบธาตุต่างๆ บนพื้นผิวของนาโนการ์บอนจะถูก วิเคราะห์ด้วยสเปกโตรสโคปีของอนุภาคอิเล็กตรอนที่ถูกปลดปล่อยด้วยรังสีเอกซ์ (XPS) ส่วน เครื่องมือ AS1-MP ถูกใช้ทดสอบพื้นที่ผิวและขนาดอนุภาคของนาโนการ์บอน จากผลการวิจัย พบว่า การเติมซิลิก้าเทมเพลตลงไป 40% โดยน้ำหนัก จะทำให้มีพื้นที่ผิวมากที่สุด นอกจากนี้หาก เดิมซิลิก้าเกินกว่าจุดนี้จะทำให้ซิลิก้าเกิดการเกาะกลุ่มกัน ซึ่งแสดงให้เห็นด้วยภาพ SEM นอกจากนี้การ์บอนที่มีรูพรุนที่ประกอบด้วยทั้งโครงสร้างระดับไมโครและเมโซเป็นตัวดูดซับ ใน งานวิจัยนี้ การปรับเปลี่ยนอุณหภูมิการเผามีผลทำให้ได้ไนโตรเจนในโครงสร้างของนาโน การ์บอนซึ่งได้แสดงถึงประสิทธิภาพการดูดซับการ์บอนไดออกไซต์ด้วยองค์ประกอบที่มี

ο

ACKNOWLEDGEMENTS

This thesis work is funded by the Petroleum and Petrochemical College and The Center of Excellence on Petrochemicals and Materials Technology, Thailand.

This research work was partially supported by the Ratchadapisek Sompoch⁺ Endowment Fund (2013), Chulalongkorn University (CU-56-900-FC) and Thailand Research Fund (IRG5780012).

The author would like to express his sincere gratitude to all advisors, Assistant Professor Dr. Thanyalak Chaisuwan, Associate Professor Dr. Sujitra Wongkasemjit and Assistant Professor Dr. Bussarin Ksapabutr for continuous support, motivation, good suggestion, intensive recommendation and for the help, patience, their guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my M.S. study.

He would like to thank his thesis committee, Associate Professor Dr. Manop Panapoy and Assitant Professor Dr. Manit Nithitanakul, for the wonderful comment, worth advices, help and his kindness.

His special thanks are extended to Ms. Nicharat Manmuanpom and all group members both his seniors and friends for their helps, good suggestions, friendship and having good memories together.

Finally, the special thanks should be given to his family for their support and encouragement throughout his study and also for their love.

σ

v

TABLE OF CONTENTS

.

			PAGE
	Title	Page	i
	Acce	ptance Page	ii
	Abst	ract (in English)	iii
	Abst	ract (in Thai)	iv
	Ackr	nowledgements	v
	Table of Contents		vi
	List	of Tables	viii
	List	of Figures	ix
	List	of Scheme	xi
СН	IAPTE	R	
	I	INTRODUCTION	1
	II	LITERATURE REVIEW	3
	III	EXPERIMENTAL	20
		3.1 Materials	20
		3.2 Equipment	20
		3.3 Methodology	23
		3.3.1 Synthesis of Benzoxazine precursor	23
		3.3.2 Curing of Benzoxazine Xerogel	23
		3.3.3 Pyrolysis Process	24
		3.3.4 Silica Pemoval	25
	IV	NOVEL CO2 STORAGE BY USING HIERARCHICAL	
		N-RICH NANOPOROUS CARBON AS AN ADSORBENT	27
		4.1 Abstract	27

4.2 Introduction 28

1.4

ø

CHAPTER

o

-

4.3 Experimental 30			30	
4.3.1 Materials		30		
	4.3.2	Measure	ements	30
4.3.3 Methodology		31		
		4.3.3.1	Synthesis of Benzoxazine Precursor	31
		4.3.3.2	Curing of Benzoxazine Xerogel	32
		4.3.3.3	Pyrolysis Process	32
		4.3.3.4	Silica Removal	32
		4.3.3.5	CO ₂ Adsorption process	33
4.4	Resu	lts and D	iscussions	34
	4.4.1	Characte	erization of Benzoxazine Precursors and	
		Polyben	zoxazines	34
	4.4.2	Thermal	Properties of Benzoxazine Precursors and	
		Polyben	zoxazines	35
		4.4.2.1	Thermal Properties of Benzoxazine Precursors	35
		4.4.2.2	Thermal Properties of Polybenzoxazines	36
		4,4.2.3	Etching Process of Nanoporous Carbon	37
	4.4.3	Morpho	logy of Nanoporous Carbon	38
		4.4.3.1	Morphology of Silica-Impregnated Carbon	38
		4.4.3.2	Morphology of Activated Nanoporous Carbon	40
	4.4.4	Surface	Area Characteristics of Nanoporous Carbon	41
•	4.4.5	The Ord	er Structure of Nitrogen-Rich Nanoporous	
		Carbons	3	43
	4.4.6	The Cor	nposition of Nitrogen-Rich Nanoporous	
		Carbons	3	44
	4.4.7	The Car	bon-Dioxine Adsorption of Nitrogen-Rich	
		Nanopo	rous Carbon	46

V CONCLUSIONS AND RECOMMENDATIONS 51

-

vii

CHAPTER		PAGE	
	REFERENCES		48
	· •		
	CURRICULUM VITAE		56

10

o

~

viii

LIST OF TABLES

• TABLE

4

PAGE

2.1	Definitions about porous solids	4
2.2	Physical and chemical characteristic of samples	6
2.3	Porous parameters of as-prepared carbons	7
2.4	Textural parameters of mesoporous materials	9
2.5	Characteristic properties of polybenzoxazines	17
3.1	Pyrolysis temperatures and heating time of each sample	25
4.1	The char yields (wt%) of polybenzoxazines	37
4.2	Surface area, total pore volume, and average pore diameter	
	of nanoporous carbon pyrolyzed at 600°C derived from	
	polybenzoxazine by using silica as a hard template	42
4.3	Surface area, total pore volume, and average pore diameter	
	of nanoporous carbon pyrolyzed at 800°C derived from	
	polybenzoxazine by using silica as a hard template	43
4.4	Distribution of N species obtained from the deconvolution of	
	the N1s peak of different samples	45
4.5	The value of carbon-dioxide adsorption	46

ix

LIST OF FIGURES

.

FIGU	FIGURE	
2.1		
		8
2.2	A schematic illustration of typical synthesis procedures to	
	produce N-doped mesoporous carbon: (A) calcination to	
	remove the templating agent, (B) infiltration of a liquid N-	
	containing carbon precursor, (C) carbonization, (D)	
	infiltration of a gaseous N-containing carbon precursor, (E)	
	direct carbonization of the templating agent, and (F) removal	
	of the silica hard template.	10
2.3	Preparation of porous carbon by using soft-templating method	10
2.4	The formation of ordered lyotropic liquid crystal of	
	P123/ACM.	11
2.5	SEM images of carbonized samples: (a) Carbon nanospheres	
	(P2-ACM1.2-800), (b) Hollow carbon nanofibers (P4-	
	ACM2-800)	12
2.6	Dual soft templating method	13
3.1	CO ₂ adsorption process flowcharts	23
4.1	FTIR spectra of TEPA-based benzoxazine precursor (a) and	
	the poly-Benzoxazine (b)	34
4.2	DSC thermograms of the benzoxazine precursor after drying	
	at 80 °C (pre-cured) (a) and after heat treatment at 220 °C	
	(fully-cured) (b)	35
4.3	TGA thermograms of polybenzoxazines with silica template	36
4.4	TGA thermograms of carbon xerogel after etching process	37

σ

х

LIST OF FIGURES

FIGURE		PAGE
4.5	Morphology of nanoporous carbon - based polybenzoxazine: nanoporous carbon without silica template (a), nanoporous	4 . 4
	carbon with silica template loading 10% (b), 20% (c), 30%	
	(d), 40% (e), and 50% (f)	39
4.6	Morphology of activated nanoporous carbon without silica	
	template (10k) (a), activated nanoporous carbon with silica	
	template (10k) (b), activated nanoporous carbon without	
	silica template (50k) (c), activated nanoporous carbon with	
	silica template (50k) (d), activated nanoporous carbon	
	without silica template (100k) (e), and activated nanoporous	
	carbon with silica template (100k) (f)	41
4.7	XRD pattern of nitrogen enriched carbons which carbonized	
	at 600°C (a) and 800°C (b)	43
4.8	The nature of nitrogen species on the surface of porous	
	carbon; Secondary amine (a), Pyridine (b), Pyrrole (c), and	
	Pyridine-N-oxide (d)	44
4.9	XRS pattern of NC-30-600 (nitrogen-rich nanoporous carbon	
	with silica template loading 30% which carbonized at 600°C)	
	(a), NC-30-800, (b) NC-40-600 (c) and NC-30-800 (d)	45

σ

o

LIST OF SCHEME

SCHEME		PAGE
2.1	Various structures of benzoxazine molecules. (a) 3-methyl-	
	2H, 4H-benzo[e]1,3-oxazine; (b) 1-methyl-2H,4H-	
	benzo[d]1,3-oxazine; (c) 4-methyl-2H,3H-benzo[e]1,4-	
	oxazine; and (d) 2H-benzo[e]1,3-oxazine	14
2.2	Synthesis of monofunctional benzoxazine	14
2.3	Synthesis of bisphenol A- and methylamine-based	
	benzoxazine	15
2.4	Synthesis of methylenedianiline (DDM)-based benzoxazine	
	monomer (P-ddm)	15
2.5	Chemical structures of multifunctional benzoxazine monomers	16
2.6	Representative structures of the three anionic polymeric	
	surfactants	17
2.7	Synthesis of benzoxazine monomers 4HBA-oca, 4HBA-dea	
	and 4HBAdoa. The chain length of the hydrophobic segment i	
	(n+1)	18
2.8	Preparation of poly BA-teta precursor (Katanyoata et al.,	
	2010)	19
3.1	Preparation of polybenzoxazine precursor	24
3.2	Schematic of a step of curing	. 25
4.1	Preparation of polybenzoxazine precursor	32

σ

- 7

xii

.