CHAPTER V CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

Iron-SBA-15, titanium-SBA-15, and bimetallic 0.01Fe-0.01Ti-SBA-15 were successfully synthesized via the sol gel process at room temperature using silatrane, ferric chloride, and titanium isopropoxide as silica, iron, and titanium sources, respectively, non-ionic surfactant Pluronic 123 as a structure-directing agent in highly acidic condition. SAXS and FE-SEM results showed that all samples still maintained 2D hexagonal mesoporous structure. N₂ adsorption-desorption results showed type (IV) isotherm with H1 hysteresis loop, exhibiting uniform pore as well as high surface area ($631-763 \text{ m}^2/\text{g}$), large pore volume (0.621-0.971 cc/g), and pore size (3.93-5.21.nm). The results from DR-UV confirmed the metal incorporation with no extraframework. The highest phenol conversion at 37.96% with 100%selectivity of benzoquinone was obtained when using 1:1 molar ratio of phenol/H₂O₂ and 30 mg of 0.01Fe-0.01Ti-SBA-15 at 30 °C for 20 min. Metal leaching is not observed. However, the catalyst can not be regenerated due to the less hydrothermal stability.

5.2 Recommendations

According to the results of this work, it is recommended to use these catalysts in other applications or other catalytic reactions so as to obtain a better appropriate reaction. Moreover, other types of metals should be incorporated into SBA-15 framework and studied other applications that are suitable for its properties.