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ABSTRACT

5672030063  Polymer Science Program
Watchara Sangwan: Electrically Responsive Materials based on
Polycarbazole/Sodium Alginate Bio-Hydrogel Blends for Actuator.
Thesis Advisor: Prof. Anuvat Sirivat 174 pp.

Keywords:  Sodium alginate hydrogel/ Biocompatible actuator/
Electromechanical properties/ Polycarbazole

Actuator Is a mechanical device for displacing a system component under
some kind of energy. For the actuating applications, it should provide a large
deformation uncer activated energy. Generally, electric field is often used to induce
material deformation and certain electroactive polymers can offer large mechanical
responses under electric field. The aims of this work are to study the effects of
concentration and type of surfactant on the synthesized Polycarbazole (PCB), and to
use it as conductive filler in sodium alginate hydrogels (SA). The electromechanical
properties of materials uncer the influence of the electric field strength were
Investigated. The electromechanical properties of pristine SA were studied under
effects of crosslinking type and SA molecular weight. The electromechanical
properties of PCB/SA composites “were studied under the effect of PCB
concentration. The particle snape of PCB synthesized by cetyltrimethylammonium
bromide was of the connected hollow microsphere which showed the highest
electrical conductivity (262 X 10'3 slcm). The electromechanical properties of
pristing SA crosslinked by an ionic crosslinking agent were higher than those of the
covalent crosslinking. Moreover, the electromechanical responses of SA increased
with increasing molecular weight. Finally, the electromechanical response of the
PCB/SA composite was the highest at 0.10 %viv PCB.
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field strength of 0.30 %v/v PCB/HSA hydrogel blend

Deflection angle (0) and dielectrophoresis force (Fd) versus electric
field strength of 0.50 %v/v PCB/HSA hydrogel blend
Dielectrophoresis force (Fd) versus electric field strength of pristine
HSA and PCB/HSA hydrogel blends.

Deflection angle (0) versus electric field strength of pristine HSA
and PCB/HSA hydrogel blends.

Bending of pristine HSA hydrogel at electric field strength 0 and
500 v/mm.
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FIGURE

F9

F10

F1I

FI2

FI3

Bending of pristine 0.02%v/v PCB/HSA hydrogel blend at electric
field strength 0 and 500 v/mm.

Bending of pristine 0.05%v/v PCB/HSA hydrogel blend at electric
field strength 0 and 500 V/mm.

Bending of pristine 0.10%v/v PCB/HSA hydrogel blend at electric
field strength 0 and 500 v/mm.

Bending of pristine 0.30%v/v PCB/HSA hydrogel composite at
electric field strength 0 and 500 v/imm.

Bending of pristine 0.50%v/v PCB/HSA hydrogel blend at electric
field strength 0 and 500 v/mm.
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