ELECTRICALLY RESPONSIVE MATERIALS BASED ON POLYCARBAZOLE/SODIUM ALGINATE BIO-HYDROGEL BLENDS FOR ACTUATOR

Watchara Sangwan

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2015

I 28369294

Thesis Title:	Electrically Responsive Materials based of	on Polycarbazole/
	Sodium Alginate Bio-Hydrogel Blends fo	r Actuator
By:	Watchara Sangwan	
Program:	Polymer Science	
Thesis Advisor:	Prof. Anuvat Sirivat	19 ¹⁰

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

..... College Dean

0

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

Anivationwal

(Prof. Anuvat Sirivat)

Ratana Rujirgvanit

(Assoc.Prof. Ratana Rujiravanit)

.....

(Asst. Prof. Wanchai Lerdwijitjarud)

ABSTRACT

5672030063 Polymer Science Program
Watchara Sangwan: Electrically Responsive Materials based on
Polycarbazole/Sodium Alginate Bio-Hydrogel Blends for Actuator.
Thesis Advisor: Prof. Anuvat Sirivat 174 pp.
Keywords: Sodium alginate hydrogel/ Biocompatible actuator/
Electromechanical properties/ Polycarbazole

Actuator is a mechanical device for displacing a system component under some kind of energy. For the actuating applications, it should provide a large deformation under activated energy. Generally, electric field is often used to induce material deformation and certain electroactive polymers can offer large mechanical responses under electric field. The aims of this work are to study the effects of concentration and type of surfactant on the synthesized Polycarbazole (PCB), and to use it as conductive filler in sodium alginate hydrogels (SA). The electromechanical properties of materials under the influence of the electric field strength were investigated. The electromechanical properties of pristine SA were studied under effects of crosslinking type and SA molecular weight. The electromechanical properties of PCB/SA composites were studied under the effect of PCB concentration. The particle shape of PCB synthesized by cetyltrimethylammonium bromide was of the connected hollow microsphere which showed the highest electrical conductivity (2.62 x 10^{-3} S/cm). The electromechanical properties of pristine SA crosslinked by an ionic crosslinking agent were higher than those of the covalent crosslinking. Moreover, the electromechanical responses of SA increased with increasing molecular weight. Finally, the electromechanical response of the PCB/SA composite was the highest at 0.10 %v/v PCB.

Ø

บทคัดย่อ

วัชระ สังวาลย์ : การศึกษาสมบัติเชิงกลทางไฟฟ้าของพอลิเมอร์ผสมระหว่างพอลิคาร์ บาโซลและโซเคียมแอลจิเนตเพื่อใช้ในงานแอกชูเอเตอร์ (Electrical Responsive Material based Polycarbazole/Sodium Alginate Bio-Hydrogel Composites as an Actuator) อ. ที่ปรึกษา : ศ.คร. อนุวัฒน์ ศิริวัฒน์ 174 หน้า

้แอกชูเอเตอร์เป็นอุปกรณ์ที่มีความสามารถในการเคลื่อนไหวหรือเปลี่ยนแปลงรูปร่าง ภายใต้การให้พลังงาน โดยทั่วไปสนามไฟฟ้าจะถูกใช้ในการเหนี่ยวนำให้เกิดการเคลื่อนไหวหรือ การเปลี่ยนแปลงรูปร่างของแอกซูเอเตอร์ พอลิเมอร์ที่มีคุณสมบัติในการตอบสนองทางไฟฟ้าเป็น หนึ่งในตัวเลือกสำหรับการนำมาประยุกต์ใช้งานเป็นแอกชูเอเตอร์ ซึ่งวัตถุประสงค์ของงานวิจัยนี้ ้ คือ การเตรียมแอกชูเอเตอร์จากพอลิเมอร์ผสมระหว่างพอลิการ์บาโซลและ โซเคียมแอลจิเนต ไฮโครเจล ในขั้นตอนแรก เป็นการศึกษาผลของชนิดและความเข้มข้นของสารลดแรงตึงผิวที่มีต่อ รูปร่าง ขนาด และค่าการนำไฟฟ้าของพอลิคาร์บาโซล ซึ่งจะถูกนำไปใช้เป็นสารตัวเติมในการ เตรียมพอลิเมอร์ผสมต่อไป ในขั้นที่สอง เป็นการศึกษาผลของน้ำหนักโมเลกุลของโซเคียมแอลจิ-เนต และชนิดของการเชื่อมขวาง (การเชื่อมขวางเชิงกายภาพและการเชื่อมขวางเชิงเคมี) ต่อสมบัติ การตอบสนองเชิงกลทางไฟฟ้าของโซเดียมแอลจิเนตไฮโครเจล ส่วนที่สาม เป็นการศึกษาผลของ ความเข้มข้นของพอลิคาร์บาโซลที่เติมลงไปในเนื้อพื้นโซเดียมแอลจิเนตไฮโครเจล ต่อสมบัติ เชิงกลทางฝู่ฟฟ้าของพอลิเมอร์ผสม ซึ่งจากผลการศึกษาพบว่า พอลิอาร์บาโซลที่สังเอราะห์โดย การเติมซิทิลไตรเมทิลแอมโมเนียมโบรไมค์เป็นสารลคแรงตึงผิว ทำให้พอลิคาร์บาโซลที่ สังเคราะห์ได้มีค่าการนำไฟฟ้ามากที่สุด ซึ่งเท่ากับ 2.62 × 10⁻³ ซีเมนต์ต่อเซนติเมตร และรูปร่าง ของพอลิคาร์บาโซลที่ได้คือ รูปทรงกลมกลวงที่มีการเชื่อมติดกัน และผลของการศึกษาสมบัติ ้เชิงกลทางไฟฟ้าของโซเดียมแอลจิเนตพบว่า โซเดียมแอลจิแอลจิเนตที่เชื่องขวางเชิงกายภาพให้ค่า การตอบสนองเชิงกลทางไฟฟ้าที่มากกว่าการการเชื่อมขวางเชิงเคมี นอกจากนี้ การตอบสนอง เชิงกลทางไฟฟ้ามีค่าเพิ่มขึ้นเมื่อน้ำหนักโมเลกุลของพอลิคาร์บาโซลเพิ่มขึ้น และในกรณีของพอลิ-เมอร์ผสมระหว่างพอถิคาร์บาโซลและโซเคียมแอลจิเนตพบว่า การตอบสนองเชิงกลทางไฟฟ้ามีค่า ้เพิ่มขึ้นเมื่อความเข้มข้นของพอถิคาร์บาโซลเพิ่มขึ้น และเพิ่มขึ้นสูงสุคที่ความเข้มข้นของพอลิคาร์-บาโซลเท่ากับ 0.10 เปอร์เซ็นต์โคยปริมาตรของพอลิคาร์บาโซล

ACKNOWLEDGEMENTS

Appreciation is expressed to those who have made contributions to this dissertation. The author would like to express sincere sincere gratitude to my advisor Prof. Anuvat Sirivat for his assistances. He has provided very useful guidance throughout this research.

I would like to thank The Petroleum and Petrochemical College, Chulalongkorn University where I have gained the invaluable knowledge in the polymer science and also greatly appreciate all professors, lecturers, and academic staffs who have tendered support during all these years spent M.S. Study.

Special thank goes to Conductive and Electroactive Polymers Research Unit of Chulalongkorn University, Thailand Research Fund (TRF-RTA), and Royal Thai Government.

Assoc. Prof. Ratana Rujiravanit and Asst. Prof. Wanchai Lerdwijitjarud are further acknowledged for being on my thesis committee, making valuable comments and suggestions and her friends in Conductive and Electroactive Polymers Research Unit of Chulalongkorn University for their various suggestions and discussion on this work and the oral presentation.

I wish to express my deep gratitude to my family for their unconditioned love, understanding and very support during my stay in the college.

The author is grateful for the scholarship and funding of this thesis work provided by The Petroleum and Petrochemical College.

TABLE OF CONTENTS

·	PAGE
Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	x
List of Figures	xiii

CHAPTER

I	INTRODUCTION	1
II	THEORETICAL BACKGROUND AND	
	LITERATURE REVIEWS	3.
	2.1 Artificial Muscle as an Actuator	3
	2.2 Electroactive Polymers (EAPs)	6
	2.3 Conductive Polymers	10
	2.4 Polycarbazole (PCB)	12
	2.5 Alginate Hydrogel	21
	2.5.1 Generation Properties of Alginate	21
	2.5.2 Hydrogel Formation	22
	2.5.3 Biomedical Applications	26
	2.6 Electroactive Conductive Polymer/Bio-Gel Blends	30
III	EXPERIMENTAL	32
	3.1 Materials and Instrument	32
	3.1.1 Chemicals	32

CHAPTER

IV

PAGE

57

Ø

3.1.2 Instrument	32	
3.2 Experimental	32	
3.2.1 Polymerization of Polycarbazole	32	
3.2.2 Preparation of Sodium Alginate Hydrogel	33	
3.2.3 Preparation of PCB/HSA Hydrogel Blends	34	
3.3 Characterizations and Testing	34	
EFFECTS OF SURFACTANT CONCENTRATIONS		
AND TYPES ON SYNTHESIZED POLYCARBAZOLE		
BY INTERFACIAL POLYMERIZATION		
4.1 Abstract	38	
4.2 Introduction	38	
4.3 Experimental	39	
4.3.1 Materials	39	
4.3.2 Polymerization of Polycarbazole	39	
4.3.3 Characterizations	40	
4.4 Results and Discussion	42	
4.4.1 Fourier Transform Infrared Spectroscopy	42	
4.4.2 Thermal Gravimetric Analyzer	42	
4.4.3 Morphological Structures	43	
4.4.4 Electrical Conductivity	44	
4.5 Conclusions	46	

4.6	Acknowledgements	47
4.7	References	47

V ELECTRICALLY RESPONSIVE MATERIALS BASED ON POLYCARBAZOLE/ALGINATE BIO-HYDROGEL BLENDS FOR ACTUATOR

5.1 Abstract	57
5.2 Introduction	57

CHAPTER

PAGE

5.	3 Experim	ental	59
	5.3.1	Materials	59
	5.3.2	Characterizations and Testing	59
	5.3.3	Preparation of SA Hydrogel	62
	5.3.4	Preparation of PCB/SA Hydrogel Composites	63
5.	4 Results a	and Discussion	63
	5.4.1	Crosslinking Density of SA Hydrogel	63
	5.4.2	Fourier Transform Infrared Spectroscopy	64
	5.4.3	X-ray Diffractometer	65
	5.4.4	Scanning Electron Microscope	66
	5.4.5	Atomic Force Microscope	66
	5.4.6	Time Dependence of the Electromechanical	
		Response	67
	5.4.7	Electromechanical Properties	67
	5.4.8	Deflection Responses	69
5.	5 Conclusi	ons	70
5.	6 Acknow	ledgements	71
5.	7 Reference	ces o	71
VI CON	CLUSIONS	5	88
REFERENC	ES		90
	20		0.5
APPENDICI	2 d - 1		95
Appendix A	Synthesize	ed Polycarbazole by Interfacial Polymerization	0.5
A manage of the D	Character		95
Appendix B	Characteri	zation of Sodium Alginate Hydrogels (SA)	109
Appendix C	Electrome	chanical Properties Measurements of Sodium	
	Alginate (SA) Hydrogels	118

σ

-

CHAPTER

- 0

Appendix D	Characterization of Polycarbazole/Sodium Alginate	
	Hydrogel Composites (PCB/HSA)	146
Appendix E	Electromechanical Properties Measurements of	
	Polycarbazole/Sodium Alginate (PCB/HSA) Hydrogel	
	Composites	151
Appendix F	Deflection Responses of Pristine High Molecular Weight	
	Sodium Alginate (HAS) Hydrogel and Polycarbazole/	
	High Molecular Weight Sodium Alginate (PCB/HSA)	168

•

-

CURRICULUM VITAE

LIST OF TABLES

T	ABL	E -	PAGE
2.1		Comparison of the storage modulus sensitivity of dielectric	
		elastomer and its composites under 2 kV/mm at 300 K	9
	2.2	The physical properties of conductive polymers	12
	4.1	The synthesizing conditions of PCB by interfacial polymerization	
		with various types and concentrations of surfactant.	51
	4.2	Particle size and electrical conductivity of PCB with various	
		surfactant types	56
	4.3	Comparison of particle sized and electrical conductivity of doped	
		PCB	57
	5.1	Crosslinking density (mol/cm ³) of SA hydrogels of various CaCl ₂	
		and CA concentrations	74
	5.2	Degradation temperatures and percent weight lossed from TGA	
		thermograms of pristine SA hydrogels and blends	77
	5.3	Comparison of storage modulus sensitivities of SA hydrogels and	
		electroactive materials	82
	5.4	Comparison of electromechanical properties of the SA hydrogels at	
	ø	frequency of 100 rad/s, electric field strength of 800 V/mm,at 300K	84
	5.5	Deflection angles, deflection distances, and dielectrophoresis forces	
		of PCB/HSA composites with at electric field strength of 500	
		V/mm	87
	Al	The synthesizing conditions of PCB by interfacial polymerization	
		with various types and concentrations of surfactant at	
		polymerization time of 24 h	95
	A2	Particle size and electrical conductivity of PCB with various	
		surfactant types	105
	A3	Density of PCB after doped with HClO ₄	108
	B1	Weight loss (%) and crosslinking density (mol/cm3) of SA	
		hydrogels of various CaCl2 concentrations	110

-

B2	Weight loss (%) and crosslinking density (mol/cm ³) of SA hydrogel	
	of various CA concentrations	110
В3	FTIR assignments of SA hydrogels	113
Cl	The storage modulus of sodium alginate hydrogels with fixed	
	0.015% v/v CaCl ₂ under applied electric field strength (fixed	
	frequency = 100 and %strain = 0.1)	118
C2	The storage modulus sensitivity of sodium alginate hydrogels with	
	0.015% v/v CaCl ₂ under applied electric field strength (fixed	
	frequency =100 and %strain =0.1)	119
C3	The storage modulus of sodium alginate hydrogels with fixed	
	0.050%v/v CA under applied electric field strength. (fixed	
	frequency =100 rad/s and % strain = 0.1)	128
C4	The storage modulus sensitivity of sodium alginate hydrogels with	
	fixed 0.50%v/v CA under applied electric field strength. (fixed	
	frequency =100 rad/s and %strain = 0.1)	129
C5	Deflection angle (θ) and dielectrophoresis force (F_d) versus electric	
	field strength of pristine HSA hydrogel with crosslinked by ionic	
	crosslinking (CaCl ₂)	141
C6	Deflection angle (θ) and dielectrophoresis force (F _d) versus electric	
	field strength of pristine sodium alginate hydrogel with crosslinked	
	by covalent crosslinking (CA)	142
D1	The summary of degradation temperature and percent weight loss	
	in TGA thermograms of pristine HSA hydrogel and HSA hydrogel	
	blends with various PCB concentrations.	147
D2	The summary of XRD diffraction of pristine HSA hydrogel and	
	HSA hydrogel blends with various PCB concentrations.	148
El	The storage modulus of sodium PCB/HSA hydrogel blends of	
	various PCB concentrations under applied electric field strength.	152

1.1

E2	The storage modulus sensitivity of PCB/HSA hydrogel blends of	
	various PCB concentrations under applied electric field strength	154
F1	Deflection angles, deflection distances, and dielectrophoresis forces	

Deflection angles, deflection distances, and dielectrophoresis forces
 of PCB/HSA blends with crosslinked by ionic crosslinking (CaCl₂)
 at electric field strength of 500 V/mm

*

LIST OF FIGURE

FIGURE

2.1	Schematic representative of three states during the	
	electromechanical cycle of a rocking-chair-type, bimorph actuator.	3
2.2	Electroactive polymer actuation	4
2.3	Schematic illustrations of: (a) bending response measurement of	
	Phy gel suspended vertically in silicone-oil bath and sandwiched	
	between copper electrodes. A DC electric field was applied	
	horizontally at 30 ± 0.5 °C causing a deflection distance; (b)	
	actuation mechanisms were from two dominating factors; ionic	
	polarization of BMIM+ cation and electronic polarization of	
	cellulosic hydroxyl group.	5
2.4	Mechanism of polyacetylene when becomes doped	11
2.5	Chemical structure of Poly(3,6-carbazole) and its starting materials.	13
2.6	Chemical structure of poly(2,7-carbazole) and its starting materials.	13
2.7	The mechanism of polycarbazole formation.	15
2.8	The structure of carbazole (C) and its oxidation products: C+ is	
	cation radical, D and D2+ are dimer and dimer dication,	
	respectively, and P+ is the half-oxidized polymer.	16
2.9	Scheme of the oxidation and demerization of carbazole as well as	
	the redox transformations of the dimer/polymer.	17
2.10	Synthesis of poly(1,4,5,8,9-pentamethyl-3,6-carbazolylene (2) by	
	oxidative polymerization with FeCl3 of pentamethylcarbazole (1).	18
2.11	Proposed mechanistic scheme for the electropolymerization of	
	carbazole.	19
2.12	The blocks are composed of consecutive G residues, consecutive	
	residues, and alternating M and G residues.	22
2.13	Alginate hydrogels prepared by ionic crosslinking.	24
2.14	Alginate hydrogels prepared by covalent crosslinking.	25

Ø

PAGE

PAGE

4.1	Proposed mechanistic scheme for the polymerization of PCB.	52
4.2	The FTIR spectra of PCB with interfacial polymerization	
	synthesized by various surfactant types: (a) PCB_monomer; (b)	
	PCB; (c) PCB_TW20 (1:0.0068); (d) PCB_CTAB (1:0.0068); and	
	(d) PCB_SDS (1:0.0068).	53
4.3	TGA thermograms of PCB with interfacial polymerization	
	synthesized by various surfactant types.	53
4.4	SEM photographs of PCB synthesized by interfacial polymerization	
	with different surfactant types: (a) PCB; (b) PCB_TW20 (1:0.0068);	
	(c) PCB_CTAB (1:0.0068); and (d) PCB_SDS (1:0.0068) at 24 h.	54
4.5	SEM photographs of PCB synthesized by interfacial polymerization	
	at various monomer: CTAB mole ratios: (a) PCB:CTAB (1:0),	
	(without CTAB); (b) PCB:CTAB (1: 0.0034), (less than CMC; (c)	
	PCB:CTAB (1:0.0068), (at CMC); and (d) PCB:CTAB (1:0.0126),	
	(more than 2 x CMC) at 24 h.	55
4.6	The particle size and electrical conductivity of PCB with interfacial	
÷	polymerization of various CTAB concentrations.	56
5.1	Chemical Structures of: (a) SA; (b) PCB.	75
5.2	FTIR spectra of SA hydrogels: (a) pristine 1%v/v HSA; (b) 1%v/v	
	HSA + 0.015%vlv CaCl ₂ ; and (c) 1%v/v HSA + 0.50%vlv CA.	75
5.3	XRD diffraction peaks of [A] HSA hydrogesl: (a) pristine HSA; (b)	
	1 %v/v HSA + 0.015 %v/v CaCl ₂ ; and (c) 1 %v/v HSA+ 0.50 %v/v	
	CA and [B] PCB/HSA hydrogel blends by ionic crosslinking	
	method: (a) pristine HSA; (e) 0.01 %v/v PCB/HSA; (f) 0.05 %v/v	
	PCB/HSA; and (g) 0.10 %v/v PCB/HSA.	76
5.4	SEM photographs of PCB/HSA hydrogel blends of various PCB	
	concentrations: (a) pristine HSA; (b) 0.01%v/v PCB; (c) 0.05%v/v	
	PCB; (d) 0.10%v/v; (e) 0.30%v/v PCB; and (f) 0.50%v/v PCB.	78

Ø

1.0

Ø

40

5.5	EFM images (2.5×2.5µm ²): (a) HSA without crosslinking; (b)	
	$1 \% v/v HSA + 0.015 \% v/v CaCl_2$; (c) $1 \% v/v HSA + 0.50 \% v/v$	
	CA; and (d) 0.01%v/v PCB/HSA + 0.015 %v/v CaCl ₂ hydrogel	
	blend.	79
5.6	Temporal response of $1\% v/v$ HSA hydrogels and $0.1\% v/v$	
	PCB/HSA hydrogel blends at frequency of 100 rad/s, electric field	
	strength of 800 V/mm, and at 300 K.	80
5.7	The storage modulus (G') and storage modulus sensitivity ($\Delta G'/G'_o$)	
	versus electric field strength of 1%v/v HSA at strain of 0.1 %,	
	frequency of 100 rad/s, and at 300 K.	81
5.8	The storage modulus sensitivity ($\Delta G'/G'_o$) versus electric field	
	strength of pristine HSA and PCB/HSA hydrogel blend at strain of	
	0.1 %, frequency of 100 rad/s, and at 300 K.	83
5.9	Bending of pristine HSA hydrogel and $0.10\% v/v$ PCB/HSA	
	hydrogel blend at electric field strength 0 and 500 v/mm.	85
5.10	Dielectrophoresis force (Fd) versus electric field strength of pristine	
	HSA and PCB/HSA hydrogel blend.	86
Al	Proposed mechanistic scheme for the polymerization of PCB.	96
A2	The FTIR spectra of PCB with interfacial polymerization	
	synthesized by various surfactant types: (a) PCB_monomer; (b)	
	PCB; (c) PCB_TW20 (1 : 0.0068); (d) PCB_CTAB (1 : 0.0068);	
	and (d) PCB_SDS (1 : 0.0068).	97
A3	TGA thermograms of PCB with interfacial polymerization	
	synthesized by various surfactant types.	98
A4	SEM photographs of PCB synthesized by interfacial polymerization	
	with different surfactant types: (a) PCB; (b) PCB_TW20 (1:0.0068);	
	(c) PCB_CTAB (1:0.0068); and (d) PCB_SDS (1:0.0068) at 24 h).	100

PAGE

.

0

-

A5	SEM photographs of PCB synthesized by interfacial polymerization	
	at various monomer: CTAB mole ratios: (a) PCB:CTAB (1:0),	
	(without CTAB); (b) PGB:CTAB (1: 0.0034), (less than CMC; (c)	
	PCB:CTAB (1:0.0068), (at CMC); and (d) PCB:CTAB (1:0.0126),	
	(more than 2 x CMC) at 24 h.	101
A6	The particle size and electrical conductivity of PCB with interfacial	
	polymerization synthesized by various CTAB concentrations.	103
A7	The electrical conductivity of PCB after doped with various mole	
	ratios of PCB:HClO ₄ .	104
A8	The critical micelle concentration (CMC) of CTAB in	
	dichloromethane at 25 °C.	106
A9	The critical micelle concentration (CMC) of TW20 in	
	dichloromethane at 25 °C.	106
A10	The critical micelle concentration (CMC) of SDS in	
	dichloromethane at 25 °C.	107
B1	FTIR spectra of SA hydrogels: (A) ionic crosslinking method; (B)	
	covalent crosslinking (B); (a) pristine 1%v/v HSA; (b) 1%v/v HSA	
	+ 0.015%vlv CaCl ₂ ; and (c) $1\%v/v$ HAS + 0.50%vlv CaCl ₂ .	- 111
B2	TGA thermogram of SA hydrogels: (A) ionic crosslinking method,	
	(B) covalent crosslinking.	114
B3	XRD measurement of SA hydrogels: (A) ionic crosslinking method,	
	(B) covalent crosslinking method.	115
B4	AFM micrographs: (a) HSA without crosslinking; (b) HSA by ionic	
	crosslinking; and (c) HSA by covalent crosslinking.	117
Cl	Strain sweep test: (a) storage modulus and (b) loss modulus of	
	1%v/v HSA hydrogel with 0.015%v/v CaCl ₂ at frequency 1 rad/s	
	100 rad/s, electric field strength 0 V/mm and 800 V/mm, sample	
	thickness 1.65 mm, 300 K.	120

PAGE

P	Å	ł	(5	E
I	4	2	ſ	J	Ľ

C2	Strain sweep test: (a) storage modulus and (b) loss modulus of	
	1%v/v MSA hydrogel with 0.015%v/v CaCl ₂ at frequency 1 rad/s	
	and 100 rad/s, electric field strength 0 V/mm and 800 V/mm,	
	sample thickness 1.69 mm, 300 K.	121
C3	Strain sweep test: (a) storage modulus and (b) loss modulus of	
	1%v/v LSA hydrogel with 0.015%v/v CaCl ₂ at frequency 1 rad/s	
	and 100 rad/s, electric field 0 V/mm and 800 V/mm, sample	
	thickness 1.63 mm, 300 K.	122
C4	Temporal response test of 1%v/v HSA hydrogel with 0.015%v/v	
	CaCl ₂ at frequency 100 rad/s, electric field strength 800 V/mm,	
	sample thickness 1.65 mm, 300 K.	123
C5	Frequency sweep test: (a) storage modulus and (b) loss modulus of	
	1% v/v HSA hydrogel with $0.015% v/v$ CaCl ₂ at strain 0.1%, sample	
	thickness 1.65 mm, temperature 300 K.	124
C6	Frequency sweep test: (a) storage modulus and (b) loss modulus of	
	1%v/v MSA hydrogel with 0.015%v/v CaCl ₂ at strain 0.1%, sample	
	thickness 1.69 mm, temperature 300 K.	125
C7	Frequency sweep test: (a) storage modulus and (b) loss modulus of	
	1%v/v LSA hydrogel with 0.015%v/v CaCl ₂ at strain 0.1%, sample	
	thickness 1.63 mm, temperature300K.	126
C8	The storage modulus response ($\Delta G'$) versus electric field strength of	
	alginate hydrogels crosslinked with 0.015% v/v CaCl ₂ at strain	
	0.1%, frequency 100 rad/s, temperature 300 K.	127
C9	The storage modulus sensitivity ($\Delta G'/G'_0$) versus electric field	
	strength of alginate hydrogels crosslinked with 0.015 %v/v CaCl ₂	
	strain 0.1%, frequency 100 rad/s, temperature 300 K.	127

xviii

FIGURE

•

PA	GE
----	----

C10	Strain sweep tests: (a) storage modulus and (b) loss modulus of	
	1%v/v HSA hydrogel with $0.50%v/v$ CA at frequency 1 rad/s and	
	100 rad/s, electric field strength 0 V/mm and 800 V/mm, sample	
	thickness 1.65 mm, 300 K.	130
C11	Strain sweep tests: (a) storage modulus and (b) loss modulus of	
	1%v/v MSA hydrogel with $0.50%v/v$ CA at frequency 1 rad/s and	
	100 rad/s, electric field strength 0 V/mm and 800 V/mm, sample	
	thickness 1.69 mm, 300 K.	131
C12	Strain sweep tests: (a) storage modulus and (b) loss modulus of	
	1% v/v LSA hydrogel with 0.50 %v/v CA at frequency 1 rad/s and	
	100 rad/s, electric field 0 V/mm and 800 V/mm, sample thickness	
	1.63 mm, 300 K.	132
C13	Temporal response test of $1\% v/v$ HSA hydrogel with $0.50\% v/v$	
	CaCl2 at frequency 100 rad/s, electric field strength 800 V/mm,	
	sample thickness 1.65 mm, 300 K.	133
C14	Frequency sweep test of 1%v/v HSA hydrogel with 0.50%v/v CA at	
	strain 0.1%, sample thickness 1.65 mm, temperature 300 K.	134
C15	Frequency sweep tests: (a) storage modulus and (b) loss modulus of	
	1%v/v MSA hydrogel with 0.50%v/v CA at strain 0.1%, sample	
	thickness 1.69 mm, temperature 300 K.	135
C16	Frequency sweep tests: (a) storage modulus and (b) loss modulus of	
	1%v/v LSA hydrogel with 0.50 %v/v CA at strain 0.1%, sample	
	thickness 1.63 mm, temperature 300 K.	136
C17	The storage modulus (G') versus electric field strength of alginate	
	hydrogels crosslinked with 0.50%v/v CA at strain 0.1 %, frequency	
	100 rad/s, temperature 300 K.	137

PAGE

o

12

C18	The storage modulus response (ΔG ') versus electric field strength of	
	alginate hydrogels crosslinked with 0.50% v/v CA at strain 0.1 %,	137
	frequency 100 rad/s, temperature 300 K.	:**
C19	The storage modulus sensitivity ($\Delta G'/G'_0$) versus electric field	
	strength of alginate hydrogels crosslinked with 0.50%v/v CA at	
	strain 0.1 %, frequency 100 rad/s, temperature 300 K.	138
C20	The storage modulus (G') versus electric field strength of $1\% v/v$	
	HSA at strain 0.1 %, frequency 100 rad/s, temperature 300 K.	139
C21	The storage modulus response ($\Delta G'$) versus electric field strength of	
	1%v/v HSA at strain 0.1%, 100 rad/s, temperature 300 K.	139
C22	The storage modulus sensitivity ($\Delta G'/G'_0$) versus electric field	
	strength of 1%v/v HSA at strain 0.1 %, frequency 100 rad/s,	
	temperature 300 K.	140
C23	Deflection angle (θ) and dielectrophoresis force (F _d) versus electric	
	field strength of pristine sodium alginate hydrogel with crosslinked	
	by ionic crosslinking (CaCl ₂)	143
C24	Deflection angle (θ) and dielectrophoresis force (F_d) versus electric	
	field strength of pristine sodium alginate hydrogel with crosslinked	
	by covalent crosslinking (CA).	143
C25	Deflection angle (θ) versus electric field strength of pristine sodium	
	alginate hydrogel.	144
C26	Dielectrophoresis force (F_d) versus electric field strength of of	
	pristine sodium alginate hydrogel.	144
C27	Bending of pristine HSA hydrogel at electric field strength 0 and	
	500 v/mm.	145
C28	Bending of pristine HSA hydrogel at electric field strength 0 and	
	500 v/mm.	145

σ

.

.

D1	TGA thermogram of PCB/HSA hydrogel blends with various PCB	
	concentrations.	146
D2	XRD diffraction peaks of PCB/HSA hydrogel blends with various	
	PCB concentrations: (a) pristine HAS; (b) 0.01 %v/v PCB; (c)	
	0.05 %v/v PCB; and (d) 0.10 %v/v PCB.	148
D3	SEM photographs of PCB/HAS hydrogel blends with various PCB	
	concentrations: (a) 0.01%v/v PCB, (b) 0.05%v/v PCB, 0.10%v/v,	
	0.30%v/v PCB, and 0.50%v/v PCB.	149
D4	AFM micrographs: (a) HSA by ionic crosslinking; and (b) $0.01\% v/v$	
	PCB/HSA hydrogel blend by ionic crosslinking.	150
El	Strain sweep test: (a) storage modulus; (b) loss modulus of	
	0.01%v/v PCB/HSA hydrogel blend with ionic crosslinking of	
	0.015%v/v CaCl2 at frequency of 1 rad/s and 100 rad/s, electric	
	field strength of 0 V/mm and 800 V/mm, sample thickness of 1.65	
	mm, 300 K.	155
E2	Strain sweep test: (a) storage modulus; (b) loss modulus of	
	0.05%v/v PCB/HSA hydrogel blend with ionic crosslinking of	
	0.015%v/v CaCl2 at frequency of 1 rad/s and 100 rad/s, electric	
	field strength of 0 V/mm and 800 V/mm, sample thickness of 1.68	
	mm, 300 K.	156
E3	Strain sweep test: (a) storage modulus; (b) loss modulus of	
	0.10%v/v PCB/HSA hydrogel blend with ionic crosslinking of	
	0.015%v/v CaCl2 at frequency of 1 rad/s and 100 rad/s, electric	
	field strength of 0 V/mm and 800 V/mm, sample thickness of 1.73	
	mm, 300 K.	157

σ

σ

-

E4	Strain sweep test: (a) storage modulus; (b) loss modulus of 0.30%v/v	
	PCB/HSA hydrogel blend with ionic crosslinking of 0.015%v/v	·
	at frequency of 1 rad/s and 100 rad/s, electric field strength of	
	0 V/mm and 800 V/mm, sample thickness of 1.68 mm, 300 K.	158
E5	Strain sweep test: (a) storage modulus; (b) loss modulus of	
	0.50%v/v PCB/HSA hydrogel blend with ionic crosslinking of	
	0.015%v/v CaCl2 at frequency of 1 rad/s and 100 rad/s, electric	
	field strength of 0 V/mm and 800 V/mm, sample thickness of 1.68	
	mm, 300 K.	159
E6	Temporal response test of 0.1%v/v PCB/HSA hydrogel blend with	
	ionic crosslinking of 0.015%v/v CaCl2 at frequency 100 rad/s,	
	electric field strength 800 V/mm, sample thickness 1.65 mm, 300 K.	160
E7	Frequency sweep test: (a) storage modulus; (b) loss modulus of	
	0.01%v/v PCB/HSA hydrogel blend with ionic crosslinking of	
	0.015%v/v CaCl2 at strain 0.1%, sample thickness 1.75 mm,	
	temperature 300 K.	161
E8	Frequency sweep test: (a) storage modulus; (b) loss modulus of	
	0.05%v/v PCB/HSA hydrogel blend with ionic crosslinking of	
	0.015%v/v CaCl2 at strain 0.1%, sample thickness 1.73 mm,	
	temperature 300 K.	162
E9	Frequency sweep test: (a) storage modulus; (b) loss modulus of	
	0.10%v/v PCB/HSA hydrogel blend with ionic crosslinking of	
	0.015%v/v CaCl2 at strain 0.1%, sample thickness 1.65 mm,	
	temperature 300 K.	163
E10	Frequency sweep test: (a) storage modulus; (b) loss modulus of	
	0.30%v/v PCB/HSA hydrogel blend with ionic crosslinking of	
	0.015%v/v CaCl2 at strain 0.1%, sample thickness 1.65 mm,	
	temperature 300 K.	164

PAGE

E11	Frequency sweep test: (a) storage modulus; (b) loss modulus of	
	0.50%v/v PCB/HSA hydrogel blend with ionic crosslinking of	
	0.015%v/v CaCl2 at strain 0.1%, sample thickness 1.71 mm,	165
	temperature 300 K.	
E12	The storage modulus (G') versus electric field strength of PCB/HAS	
	hydrogel blend of various PCB concentration at strain 0.1%,	
	frequency 100 rad/s, temperature 300 K.	166
E13	The storage modulus response (ΔG) versus electric field strength of	
	PCB/HSA hydrogel blend of various PCB concentration at strain	
	0.1%, frequency 100 rad/s, temperature 300 K.	166
E14	The storage modulus sensitivity ($\Delta G'/G'_0$) versus electric field	
	strength of PCB/HSA hydrogel blend of various PCB concentration	
	at strain 0.1%, frequency 100 rad/s, temperature 300 K.	167
F1	Deflection angle (θ) and dielectrophoresis force (F _d) versus electric	
	field strength of 0.01 %v/v PCB/HSA hydrogel blend.	169
F2	Deflection angle (θ) and dielectrophoresis force (F_d) versus electric	
	field strength of 0.05 %v/v PCB/HAS hydrogel blends.	169
F3	Deflection angle (θ) and dielectrophoresis force (F_d) versus electric	
	field strength of 0.10 %v/v PCB/HSA hydrogel blends.	170
F4	Deflection angle (θ) and dielectrophoresis force (F_d) versus electric	
	field strength of 0.30 %v/v PCB/HSA hydrogel blend	170
F5	Deflection angle (θ) and dielectrophoresis force (F _d) versus electric	
	field strength of 0.50 %v/v PCB/HSA hydrogel blend	171
F6	Dielectrophoresis force (F_d) versus electric field strength of pristine	
	HSA and PCB/HSA hydrogel blends.	171
F7	Deflection angle (θ) versus electric field strength of pristine HSA	
	and PCB/HSA hydrogel blends.	172
F8	Bending of pristine HSA hydrogel at electric field strength 0 and	
	500 V/mm.	172

•

PAGE

F9	Bending of pristine 0.01%v/v PCB/HSA hydrogel blend at electric	
	field strength 0 and 500 V/mm.	173
F10	Bending of pristine 0.05%v/v PCB/HSA hydrogel blend at electric	
	field strength 0 and 500 V/mm.	173
F11	Bending of pristine 0.10%v/v PCB/HSA hydrogel blend at electric	
	field strength 0 and 500 v/mm.	174
F12	Bending of pristine 0.30%v/v PCB/HSA hydrogel composite at	
	electric field strength 0 and 500 v/mm.	174
F13	Bending of pristine 0.50%v/v PCB/HSA hydrogel blend at electric	
	field strength 0 and 500 v/mm.	175