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CHAPTER 1

INTRODUCTION

Common stock trading has historically appeared since the sixteenth century [1].
Unlike fixed-income securities such as Treasury bonds, corporate bonds, certificates of
deposit (CDs) and preferred stocks, the returns of common stocks fluctuate based on the
performance of their issuing companies and also on many macroeconomic factors. Investors
are chiefly risk-averse. They maximize returns while minimizing associated risks. One of
the best ways to deal with this problem is bundling these risky assets together in the hope
that the upturn in some stock returns will offset the downturn in the others. This leads to

the advent of portfolio.

There are numerous risk measurements of the deviation of realized returns from
expected returns. In 1952, Markowitz [2] employed variance or equivalently standard
deviation (L2norm). However, the required calculation of the covariance matrix may
be inexact. With additional portfolio constraints, the L?-risk model may also take up
significantly high computational time. In 1991, Konno and Yamazaki [3] used mean absolute
deviation (L'-norm) and identified the optimal portfolio with a linear program solver which

is faster than a nonlinear program solver.

Nonetheless, another problem arises when the exactness of estimation of expected
future asset returns is of interest. Various distributions of stock returns have long been
investigated [4, 5, 6, 7, 8, 9, 10]. Many estimators of expected returns such as the
arithmetic average of historical returns and the CAPM model [11] are also widely used.
Hence, these parameters should be represented by ranges of values, not single numerical
values. Extensive research studies on the mean absolute deviation (MAD) portfolio model
as well as its long-lasting appearance in a wide variety of commercial and non-commercial
software packages such as Financial Toolbox  in MATLAB® software and the packages
portfolio.optimization and PortfolioOptim in the R statistical software are also attributed to
our investigation into the classical MAD portfolio selection problem with interval-valued

returns.

At first glance, the interval model can be solved by the method of parametric linear
programming when each interval of expected return is parametrized. The exact parametric

solution of a linear program is found via the first-order Karush-Kuhn-Tucker (KKT)



conditions with symbolic manipulation [12]. Its breakthrough advantage is to illustrate the
direct impact of the expected returns of assets on the optimal portfolio. As more financial
assets are included in a portfolio, the symbolic expression becomes more sophisticated and
impede interpretation. To alleviate this routine, the parametric solution can instead be
approximated by transforming the multiparametric linear programming (mp-LP) problem
with left-hand-side (LHS) uncertainty to the mp-LP problem with right-hand-side (RHS)
uncertainty with the help of McCormick-type relaxations of bilinear terms [13]. Although
its optimal solution function is simplified and becomes more user-friendly, certain of
precedented feasibilities may be violated as a consequence of relaxation procedures. Both
techniques also have a number of shortcomings. They require a partition of the parametric
space into several regions, known as critical regions (CRs). This time-consuming process
significantly contributes to depleted memory and system resources of a computer in a
high-dimensional portfolio problem. In addition, they do not provide numerical bounds
which are realistic and useful for the design and implementation of a policy and also for a

decision on investment.

In this work, the interval linear programming is therefore employed as a primary
tool for addressing the optimization problem. The model is reformulated for subsequent
investigation. The possible ranges of returns and risks across optimal portfolios are provided.
An enclosure of optimal portfolio compositions is also suggested. When the return bounds
are sufficiently tight, the enclosure can significantly be improved by basis stability at
our suggestion. All results are illustrated through an example of the S&P 500 stocks
satisfying the NCC compared to the optimal portfolios obtained by the bilevel optimization.
Our proposed method gives a more accurate and precise enclosure of optimal portfolios,

supported by both empirical evidence and theoretical framework.

The rest is organized as follows. Chapter 2 lays out the theoretical backgrounds on the
interval linear programming. Chapter 3 suggests the methods for computing the lower and
upper bounds on expected stock returns. The reader may skip this chapter without losing
any understanding of proposed algorithms in subsequent chapters. Chapter 4 formulates
the MAD portfolio model. Chapter 5 discusses the bilevel portfolio optimization and its
limitation. Chapter 6 addresses the portfolio optimization problem with the interval-valued
returns. Chapter 7 illustrates numerical results on the S&P 500 stocks. Chapter 8 concludes

the work.



CHAPTER 11

INTERVAL LINEAR PROGRAMMING

Traditionally, the linear programming involves the problem with deterministic
coefficients. Due to the disagreement of measurements for the expected asset returns,
intervals are employed as representatives. The theory of interval linear programming is
extensively used in Chapter 6 for deriving the optimal portfolios. This chapter paves its

theoretical frameworks [14].

The standard linear programming with a decision variable x € R" is usually given

by
minimize 'z
subject to Az = b, (2.1)
x>0

where the deterministic parameters A € R™*" b € R™ and ¢ € R" are called
the technological matrix, the right-hand-side vector and the objective coefficient vector,
respectively. In addition, the theory of linear programming is applicable when the matrix
A presumably has a full row rank. These parameters are normally obtained from the given
data. However, with inexact data, they can take on a wide range of values. When their
lower and upper bounds are known, they can be viewed as closed intervals. The notations

from [14] will be used throughout thus thesis.
An interval matrix (or vector) Y is defined by

Y=[Y.Y]={Y|Y <Y<Y}

each element of which are compared componentwise. The matrices Y and Y are its lower

and upper bound respectively. Its center and radius matrices are given by
Ye= (Y +Y)

Y2 =YV -Y)

N —= N

correspondingly. The symbols e and e; denote the vector, each element of which equals 1,

and a unit vector whose the i component is 1 respectively. For each x € R", its sign vector



sgn(x) is defined by

1 if ¢; >0,
(sgn(z)); =
-1 ifz; <0O.

2.1 Feasibility

The system Az = b in the standard linear program (2.1) is said to be feasible if
it possesses at least one nonnegative solution, called a feasible solution. When A and b
are uncertain, the interval system Az = b is said to be weakly (strongly) feasible if the
deterministic system Az = b is feasible for some (all) A € A and b € b. Each solution is
called a weakly (strongly) feasible solution. When the equality is replaced by the inequality,
the term feasible can be defined in the same manner. The trichotomy theorem and the
Farkas lemma provided below bring about a criterion for assessing the strong feasibility of

the system of interval equations.

Theorem 2.1 (Strong Duality Theorem or Trichotomy Theorem [15]). Exactly one of the

following statements holds:

1. Both primal and dual problems are feasible and both possess the same optimal

value.
2. Both primal and dual problems are infeasible.

3. Exactly one of the problems is infeasible and the other problem has an unbounded

objective value.

Theorem 2.2 (Farkas Lemma). The system Az = b is feasible if and only if for any p we
have ATp > 0 implies b"p > 0.

Proof. Let Ax = b be feasible with ATp > 0. With its nonnegative solution xg, it follows
that
b'p = (Azo)"p = 25 (ATp) > 0.

Conversely, suppose the system Ax = b is infeasible. Consider the primal problem
maximize 0’z

subject to Az = b,

x>0



with its dual problem
minimize b"y
subject to ATy > 0.

By the supposition, the primal problem is infeasible. According to the trichotomy theorem,
the dual problem has an unbounded objective value. Note that 0 is its feasible solution and
its objective value becomes zero. On grounds of the unboundedness, there must be p such

that ATp >0 and b"p < 0. O

Remark 2.3. The Farkas lemma can be restated as follows: the system Ax = b is feasible

if and only if for any p we have pTA > 0 implies p'b > 0.

Theorem 2.4. A system Az = b is strongly feasible if and only if for each y € {£1}"™ the
System

(A° — diag(y)A®)z = b° + diag(y)b®

has a nonnegative solution.

Proof. 1t suffices to verify the converse statement. Let A € A and b € b. For any p with
pTA > 0, there exists y € {£1}" such that —p'diag(y) = |p|". By the supposition,
(A€ — diag(y)A2)z, = b+ diag(y)b>

for some nonnegative solution z,. Then

pTb = pT[(A° — diag(y) A®)z, — diag(y)b"]

)
Tz, — p(A = A%, + |plT (AP, + b2
)Ty — ‘p’TAAxy + |p‘T(AA37y + bA)

)
By the Farkas lemma, the system Ax = b is feasible. O

Theorem 2.5. The weakly feasible solution set to the system Ax = b is given by the set
{x| Az <b, Ax > b, x > 0}.



Proof. Assume z > 0 is a weakly feasible solution to the system Az = b. That is, Az = b
for some A € A and b € b. Then

Conversely, suppose = > 0 satisfies the properties Az < b and Az > b. Then

(A =A™ = Az < b= b+ b2
(A + APz = Az > b= b — b2,
It follows that
|ACe — b°| < A%z + b5,

The inequality implies
Ar —b° = diag(y) (A% + b>)

for some y whose each entry is not greater than 1 in magnitude. Simplifying the equation
yields
(A° = diag(y)A®)z = b° + diag(y)b>.

Since |y| < e, we have A° — diag(y)A® € A and b° + diag(y)b™ € b. O

Theorem 2.6. The weakly feasible solution set to the system Ax < b is given by the set
{z | Az < b, x > 0}.
Proof. Assume z > 0 is a weakly feasible solution to the system Az < b. Then
Ax <b
for some A € A and b € b. It follows that
Ax < Az <b<b.

Conversely, suppose x > 0 satisfies the property Az < b. Since A € A and b € b, it can be
concluded that x > 0 satisfies Ax = b. OJ

2.2 Solvability

Solvability is identical to feasibility except the condition of nonnegativity. This section

only covers the criterion of weak solvability of inequality constraint. Technically, the system



Az < bissaid to be solvable if it possesses at least one solution. When A and b are uncertain,
the interval system Az < b is said to be weakly (strongly) solvable if the deterministic system

Az < b is solvable for some (all) A € A and b € b.

Theorem 2.7. The weakly solvable solution set to the system Ax < b is given by the set
{z | (A° — APdiag(z))x < b, diag(z)x >0, z € {£1}"}.

Proof. By the assumption of solvability, x is unrestricted. Consider each orthant of the
space R". Let z = sgn(x) and w = diag(z)z. Then

w = diag(z)x > 0.
With z = diag(z)w, the system Az < b becomes (A diag(z))w < b. According to Theorem

2.6, this interval system of inequalities is feasible only when
(A diag(z))w < b.
By the investigation of the identity
(A° — ABdiag(2))x = (A° — A% diag(z))(diag(z)w)
= (A°diag(z) — A®)w
~ (A diag(2))w,

the explicit description of the weakly solvable solution set is derived. ]

2.3 Range of Optimal Values

Consider an interval linear programming problem
minimize ¢'x
subject to Az = b, (2.2)

x > 0.
Usually, the primary concern is to compute the set of all weakly optimal solutions, each
of which is optimal to at least one deterministic linear program (2.1) with the parameters
A€ A bebandc e c Arising from the uncertainties, there is a wide range of these
optimal values. Its minimum and maximum are not necessarily existent [16]. For example,

consider the interval linear program
minimize —x
subject to [0,1]z =1,

x > 0.



A weakly feasible solution is z = 1/t where t € (0,1]. The corresponding optimal value

—1/t is not bounded below and therefore has no minimum value.

Assume the minimum and maximum exist. Both can be obtained by the minimin
and maximin problems. Alternatively, the following theorems provide how to calculate the

extreme values without the aid of nonlinear programming.

Theorem 2.8. If the minimum of optimal objective values of the interval linear
program (2.2) exists, then it is identical to the optimal value of the following linear

program:

minimize c¢'z

subject to Az < b,
(2.3)

Proof. This theorem holds because the weakly feasible solution set to the interval linear
program (2.2) and the constraint set given in the linear program (2.3) are identical as a

result of Theorem 2.5. UJ

Theorem 2.9. If the maximum of optimal objective values of the interval linear program
(2.2) exists, then it is identical to

max f,
ze{x1}m™

where f, is the optimal value to the following linear program:
maximize (b + diag(z)b>)Ty

subject to  (A® — diag(z)A%)Ty < (2.4)

ol

diag(z)y > 0.

Proof. By the supposition, the optimal objective values of the primal problem (2.2) and the
corresponding dual problem are equal. The dual problem is given by

maximize b'y

(2.5)

subject to ATy < c.
Since y is unrestricted, each orthant of R™ is considered. Let z = sgn(y) and w = diag(z)y.
Then

w = diag(z)y > 0.



With y = diag(z)w, the interval linear program (2.5) becomes
maximize (diag(z)b)Tw
subject to (diag(z)A)"w < ¢, (2.6)

w > 0.

The maximum of the optimal value is

(diag(2)b)Tw = (diag(2)b® + b>)Tw
= (b° + diag(2)b™)T (diag(z)w)

= (b° + diag(2)b™)Ty.

By Theorem 2.6, the constraint can be interpreted as the weakly feasible solution set to the

System

(A° — diag(2)A®)Ty = (A — diag(z)A®)" (diag(z)w)
— (diag(z)A° — A™)Tw
= (diag(2)A) w

<@

The maximum of the optimal value of the original interval linear program (2.2) is simply
obtained by maximizing the optimal value of the program (2.6) over all possible orthants

of the space R™. O

2.4 Basis Stability

If the interval linear program (2.2) is weakly feasible, then it can have many weakly
optimal solutions. Their numerical values may not be of interest. However, the perception
of which basic variables are optimal may instead be of value. When the program has the
same optimal basis despite the perturbations of the coefficients in A, b and ¢, it emphasizes
the importance of all characteristics declared by basic variables. This phenomenon is called

basis stability.

Denote by B and N respectively the sets of basic and nonbasic variables, also called
basis and nonbasis for clarity and brevity. To distinguish between basic and nonbasic

components of the coefficients A, b and ¢, the use of subscripts B and N is suggested.

Definiton 2.10 (B-stable [17]). For a given basis B, the interval linear program is called

B-stable if B serves as an optimal basis for each scenario of interval values. The program is
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called nondegenerate B-stable if each scenario has a nondegenerate optimal basic solution

with the basis B.

The subsequent theorems [17, 18] illustrate the verification of B-stability. Their proofs

are omitted here for convenience.

Theorem 2.11. For the interval linear program (2.2), a basis B is optimal if and only if

the following conditions hold:

1. For every A € A we have Ap is a nonsingular matrix;
2. For every A € A and b € b we have Aglb > 0;

3. For every A € A and ¢ € ¢ we have ¢}, — cR Az Ay > 07,

Theorem 2.12. The interval linear program (2.2) is nondegenerate B-stable with the

optimal basis B if and only if for each y € {£1}" and z € Zp where
Zp={2€R" ||zi]=1fori€ B, z, =1fori ¢ B},
the deterministic linear program

minimize (¢ + diag(z)e®) Tz
subject to  (A° — diag(y) A% diag(z))x = b¢ + diag(y)b™,

x>0

has a nondegenerate basic optimal solution with basic variables x; where i € B.



CHAPTER III

BOUND ON EXPECTED STOCK RETURNS

This thesis represents expected asset returns by intervals. In Chapter 7, only stocks
which empirically satisfy the negative correlation condition (NCC) serve as the examples
of financial assets because their lower bounds on expected returns are computable [19].
They fluctuate in nature, increasing with CAPM beta [11] and decreasing with momentum
[20]. The upper bounds can be gauged by the reinvestment returns during previous holding
periods. A brief theoretical overview of the lower bounds on expected stock returns [19, 21]

is included here.
3.1 Stochastic Discount Factor

The main purpose of this section is to provide an existence proof of stochastic discount
factor as defined subsequently in the setting of continuous events as an extension of discrete
events [22]. In a complete financial market, an asset is characterized by a random variable
of payoff X : (Q, F,P) — R belonging to an L?-space. Assume a real-valued price function
p is a continuous, or equivalently bounded, linear operator on the Hilbert space of payoffs.
This property is called law of one price. By the Riesz—Fréchet representation theorem, there

exists a unique payoff M such that
p(X) =< M, X >=E[MX]

for any payoff X. The stochastic process M is called a stochastic discount factor (SDF)

because it discounts all payoffs of assets to their prices.

Under the assumption of no arbitrage, p(X) is always positive whenever X is a
nonnegative-valued payoff and X = 0 not almost surely. Since this thesis involves empirical
data with T historical observations, the subscripts 7" and T + 1 of current time and future
time are introduced. Denote by Ep[-] an expectation function conditioned on all available
information by time 7. For any individual asset ¢, a stochastic discount factor Mp,q
discounts a stochastic rate of return

XiT+1

Rigyg = —uIHL
T o (Xii1)

from time T to T + 1 as if it were equivalent to investing in a risk-free asset with a
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deterministic rate of return Ry fixed at time T'. Mathematically,

ET[MT+1Ri,T+1] =1 (31)
under a real-world distribution or
]' *
TET[Ri,T+1] =1 (32)
T

under a risk-neutral distribution denoted by the superscript *. The equations (3.1) and

(3.2) are used to interchange these two notations as follows:

E7[Riri1] = Ryr Br[Mr i1 Ri141]- (3.3)

3.2 Estimation of Lower Bound on Return

Definiton 3.1 (Negative Correlation Condition). An asset ¢ satisfies the negative

correlation condition (NCC) if

Covr(Mry1Riry1, Riry1) < 0.

Under the assumption of NCC, the lower bound on expected return can be obtained

by employing the following theorems.

Theorem 3.2. An asset ¢ for which the NCC holds possesses its lower bound on expected

return via the inequality

Vark|R;
Er[Rir+1] > Ry + %
T

where Var(-) is a risk-neutral variance.

Proof. Consider

E*T[R?,TH] — (E%[Rir41])?
Ryr

RyrEp[Mr1 R g ] — Ry Er[R;141]
— i T+

RH.S. —LH.S. = Rsr + — Er[Ri7+1]

=Ryr+

Ry
= Ryr + (Er[Mr1 Ry ] — Ryr) — Er[Ririi]
= Er[Mry1 R po] — Er[Myia Rip i) Bp[Ri 1]
= Covp(Mry1Ri 141, Rir41)

<0.



13

The second equality is followed by the equations (3.2) and (3.3). The inequality is obtained
by the definition of NCC. 0

Theorem 3.3. Let S; 7 and F; 7 denote the price of asset ¢ at time T" and its forward price
at time T for delivery at time T 4 1 respectively. Then the risk-neutral conditional variance

Vary[R; 74+1] can be found by the identity

* : 9 Fir [e'e)
VarglRirn] _ 2 / VPR(K) dE + / v (K) dEC
Ryr Sir | Jo ’ Fir

across European call and put options on asset ¢ with different strike prices K but the same
maturity 7 + 1. Both are priced at v27'(K) and VZ-C,aTH(K ) under the assumption of no

arbitrage.

Proof. Consider

i /V/N1 1
Var[R; = N R[S ] = —— (BX[S; 2
Rf’T arT[ 11T+1] SZT _RfyT T[ Z,T-‘rl] R ’ ( T[ Z7T+1])
1 1 2
= 2/—1&* Sirp1 — K)t) dK — =1L
| T ’
-1l / VNI dE — T
Si2,T o Ryr
L o
By the put-call parity formula [23, 24, 25],
o Fi,T o
/ Vi (K) dK = / Vi (K) dK + / Vi (K) dK
0 0 Fir
Fi,T o0
1
= / [uﬁ?(K)JerT(FLT—K)} dK + / Vi (K) dK.
0 ’ Fir
Simplifying the integral completes the proof. O

The lower bound on expected return of asset i for which the NCC holds is given by
Theorems 3.2 and 3.3 as follows:

2
Er[Rir1) = Ryr + —5—

2
Si,T Fir

Fin (o]
/ VP (K) dK + / Vi (K) dK] : (3.4)
0

The second term of this lower bound is approximated via the following numerical scheme.

Assume there are Ny, put options with strike prices not greater than F; 7 and Ncan call
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options with strike prices not less than Fj . All options are labeled in ascending order of

their corresponding strike prices, i.e.
K™ <. <K' < Fr <K <. <Kg.

The numerical estimate of the bracket on the right-hand side of the equation (3.4) is given
by
Npus—1 Nean—1

E PUt put pu‘ﬂ § : call call call call put put call
V Kz+1 K,L + v; K KZ ) + (Kl K )mln{l/ 7V1 }
=1

=1
Although the lower bound is theoretically approximated by the European options, in practice

the American options are used for individual stocks in the U.S. financial market.
3.2.1 Assessment of Negative Correlation Condition
3.2.1.1 Theoretical Framework

This section covers how to determine whether or not the negative correlation condition
(NCC) holds for a particular stock. In this work, an investor believes in the MAD model to
construct an optimal portfolio by minimizing risk when no short sales are allowed (w; > 0).
Assume multiple agents who manipulate the stock market maximize their satisfactions such
as return via the utility function u with the properties that ' > 0 and «” < 0 when short

sales are allowed (w; € R). That is, they wants to maximize the term

(Zotn)| e (S]] 2 (20

where A > 0 is a Lagrange multiplier. The first-order condition yields

Er

Er [/ (Rmr41)Rirs1] = A

for all stock i in the market portfolio

mT+1 E 'LUz i, T+1-

Then
W (Rpm1+1)

Er |: b\ Rz’,T+1:| =1.

Hence the stochastic discount factor Mpy1 can be expressed as

W (R, 141)

Mryq = 3
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Definiton 3.4 (Coefficient of Relative Risk Aversion [26, 27]). Let u be a utility function.

A coefficient of relative risk aversion at wealth w is defined by

A higher value of v implies more risk aversion. This is useful for empirical testing of

the negative correlation condition on a particular stock as illustrated subsequently.

Theorem 3.5. Up to the first-order Taylor approximation, the negative correlation

condition (NCC) holds for asset ¢ with the property that Covy (R, 741, Riry1) > 0 if

Varp[R; 741]

Er[Rp,r11]) > '
V(Er[Rin,141]) Covr(Rm,1+1, RiT41)

Proof. The NCC holds when
LHS. = COVT(UI(Rqu_l)Ri,T_i_l, Ri,T-H) S 0-A=0.

The marginal utility v’ as a multivariate function of individual stock returns is approximated

by the Taylor expansion around expected stock returns:

u’(Rm7T+1) = u’ Z ijj,T—H
J

=~ u’ Z wy ET [Rj,T—i-l]
J

+ > u" | > wiBr[Riria] | wi(Rjri1 — Er[Rjri))
Jj J

= U (Ep[Rm,r+1]) + & (Er[Rpm,7+1)) (R, 141 — Ev[Rp,741])-

Then
L.H.S. ~ o (Ep[Rm 1+1]) Varr[R; 7]
+ Er[Rm 10" (Er (R 141]) Covr (R 141, Rir11)
= v (Br[Rpn,r1])[Varr[Riz41]
— Y(Er[Rm141]) Covr(Rmr1, RiTi1)]-
Since v’ > 0 and Covy(Ry, 741, Rir41)] > 0, the desired inequality is obtained. O

Remark 3.6. By Theorem 3.5, the NCC holds when the relative risk aversion is high

compared with the ratio of the asset return’s variance to its covariance with the market



return. For convenience of NCC testing, this ratio is denoted by

_ Varr[R; 74+1]
Covr(Rm, 41, Rirs1)

0T
The result from Theorem 3.5 can be restated as

Y Er[Rm,141]) = i1

3.2.1.2 Empirical Assessment

16

The subscript T" of the term d; 7 can be omitted because the present time 7' is fixed.

The NCC holds when v > §;. For a positive value of §;, the return of an asset is positively

correlated to that of the market. Hence, an asset is highly likely to satisfy the NCC when

the ratio 9; is relatively low, but still positive. The estimate &; between 1 and 10 is claimed

to guarantee the property of NCC [19].

To ensure this testing, a parametric statistical procedure is taken into consideration.

With the Pearson correlation coefficient p = Corr(MrR; 741, Ri 7+1), the null hypothesis

Hy : p < 0 against the alternative hypothesis H; : p > 0 should not be rejected by a

standard t-test. In this work, the constant relative risk aversion (CRRA) model [26, 27] is

applied as a particular choice of the stochastic discount factor M.

The CRRA utility function is given by

wl™
ify>0and~y # 1,
In~y ify=1

where v is the degree of relative risk aversion. The stochastic discount factor becomes

MCRRA _ U,(Rm,TJrl) _ R;’:/T+1
T A A

where v > 0 and v # 1. The Pearson correlation coefficient can be written as

R,
p = Corr (nl)\ Ry, Rz‘,T+1> = Corr(R,'p Riri1, Riri1)-

On the purpose of NCC assessment, the values of v should discretely vary from 2 to 10.

3.2.1.3 Algorithms

Algorithms 3.1 and 3.2 recapitulate the criteria used for assessing the NCC of a

particular stock and the procedures for computing a lower bound on its expected future

return respectively.
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Algorithm 3.1: Assess the negative correlation condition (NCC)

Input: The historical market returns {R,,:}{_; and the historical returns {r;};_,
of stock i
Output: Whether or not the NCC holds for the given stock ¢
1: Compute p; < l ZT: R
=

1 T
2: Compute fiy, < = > Ry
Tz

T T
3: Compute 6; < > (Rit — Mz’)Q/ o (Rt — pian) (Rt — pi)
t=1

i=1
4: if ¢; € [1,10] then

5 for v < 2 to 10 do

6 Let p = Corr(R, ', Riri1, Ri41)
T Test whether p < 0 against p > 0 at a significance level of 0.05
8 if the null hypothesis is rejected then
9 return “The NCC does not hold”
10: end if
11: if v =10 then
12: return “The NCC holds”
13: end if
14:  end for
15: else
16:  return “The NCC does not hold”
17: end if

In Algorithm 3.1, the expected return is estimated from the sample mean of historical
returns to calculate the Pearson correlation coefficient. Despite the inaccuracy of estimating,
this algorithm is still reliable because it primarily serves as the guideline to compute the

lower bound (not the exact value) of the expected return of an individual asset.



18

Algorithm 3.2: Lower bound on the expected stock return

Input: The closing stock price St at time T, the risk-free rate of return Ry r
at time T 4 1 and the sets P and C of put and call options on the given stock
with the same maturity 7'+ 1

Output: The lower bound on the expected stock return at time 7"+ 1
(if computable)

1: Execute Algorithm 3.1 to assess the NCC for the given stock
2: if the NCC holds then
Consider the following criteria [19] for a reliable estimate:
The volume is less than 20 contracts in total
Koin > 0.857
Kopar < 1.257
if at least one of the criteria above holds then
return “Uncomputable”
end if
10: if [PUC| < 20 then

11: return “Uncomputable”

12:  else

13: Sort all elements in P and C in ascending order of their strike prices

14: for alle e PUC do

15: Calculate the option price v < (closing bid price + closing ask price)/2
16: end for

17: Apply the numerical scheme for the formula (3.4) to obtain the bound
18: return the calculated result

19:  end if

20: else

21:  return “Uncomputable”

22: end if

In Algorithm 3.2, the condition [PUC| < 20 in line 10 is used to ensure that there are

sufficient number of options so that the numerical scheme in line 17 is not overly coarse.

3.3 Estimation of Upper Bound on Return

With the buy-and-hold strategy, the investor cannot reinvest the capital gains during

the holding period. The returns from reinvestment during the previous k periods (for a
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suitable choice of 1 < k < T') therefore serves as an appropriate upper bound on expected

returns. Note that this method requires no assumption of negative correlation condition

(NCO).
3.4 Stock Market Indexes

In the global financial system, there are various types of stock market indexes based on
different weightings and components that have been changed over time. The main purpose
is to indicate the performance of the overall economy as well as some particular sectors and
to serve as portfolio benchmarks [20]. For example, the Standard & Poor’s 500 (S&P 500)
index comprises 505 common stocks issued by 500 large-cap companies operating in the
United States. It is commonly used as a broad market indicator of U.S. equities. On the
other hand, the Dow Jones Industrial Average (DJIA) includes 30 companies in the United
States. Higher-priced stocks have larger impacts on the index’s movements. Nevertheless,
the analysis in this work is restricted to S&P 500 stocks based on the assumption that the
S&P 500 represents the entire stock market due to its broadness. In fact, it covers all 11
different U.S. sectors: communication services, consumer discretionary, consumer staples,
energy, financials, health care, industrials, information technology, materials, real estate

and utilities.
3.5 Examples

In this thesis, all historical data were gathered in October 2018 from Yahoo! Finance
via the R statistical software. For an individual stock i listed in the S&P 500 index, the
sequence of monthly log-returns ﬁf"t (where 1 < ¢t < 8 and 1 < k < 6) is observed over
the past four years from November 2014 to October 2018. Its historical return during the

6-month period ¢ becomes

Tit = exp

6
> it
k=1
The 6-month U.S. Treasury bill quoted on October 12, 2018 is used as the risk-free rate
Ry which equals 2.38%.

Among 505 constitutes, 12 companies have not been listed in the S&P 500 index
throughout the entire period and 2 additional companies have no option expiring in April
2019. It turns out that 243 out of 491 remaining stocks empirically follow the NCC
condition according to Algorithm 3.1. Finally, 61 stocks in total as provided in Table 3.1
pass the screens established in Algorithm 3.2. Interestingly, two U.S. sectors are excluded:

communication services and consumer staples. Their lower bounds for expected returns
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accumulated from November 2018 to April 2019 are therefore computable. To calculate
their upper bounds as stated in Section 3.3 , the reinvestments over the past three periods
are considered. In other words, the parameter k = 3 is selected. It can be simply calculated
by
6
Er[Rizi1] = Joax, {exp [; max(ﬁﬁt, O)] } .

All historical returns and estimates are reported in Tables 3.2 and 3.3 respectively.
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Table 3.3: Estimates of expected S&P 500 stock returns accrued in the next six months

from November 2018 to April 2019

Ticker = Lower bound on expected return Upper bound on expected return

AAPL 2.78% 12.34%
ADBE 3.87% 72.42%
ADSK 6.39% 42.83%
AET 3.59% 32.08%
ALGN 7.87% 27.13%
ALL 3.46% 37.13%
AMGN 3.38% 43.63%
AMT 4.06% 29.77%
AVGO 3.99% 32.80%
AXP 2.70% 183.92%
BLK 4.35% 28.81%
CCL.U 4.16% 43.80%
CI 4.17% 29.73%
CMCSA 4.38% 26.60%
COG 5.79% 24.64%
COL 4.85% 34.54%
CTSH 4.46% 25.29%
D 3.45% 20.01%
DFS 5.84% 16.70%
DIS 2.52% 18.28%
DRI 4.80% 24.71%
DUK 2.99% 34.17%
DVA 9.61% 9.94%
EBAY 3.74% 41.57%
ECL 3.72% 12.39%
EOG 4.62% 21.94%
ETN 3.72% 12.38%
FDX 2.87% 30.83%
FMC 5.14% 14.19%

IBM 2.67% 18.51%
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Table 3.3: Estimates of expected S&P 500 stock returns accrued in the next six months

from November 2018 to April 2019 (continued)

Ticker = Lower bound on expected return Upper bound on expected return

INTC 3.68% 35.48%
INTU 3.67% 31.06%
ISRG 6.55% 12.91%
IVZ 6.74% 34.41%
KMX 6.15% 13.74%
LLL 3.79% 19.84%
LRCX 717% 17.30%
MA 3.42% 21.20%
MAR 5.17% 50.39%
MCHP 5.90% 11.20%
MMM 3.16% 26.74%
MPC 4.46% 12.15%
MRO 9.89% 36.60%
MS 2.7%% 18.41%
MSFT 2.52% 35.59%
NUE 4.00% 15.96%
PHM 6.98% 44.69%
PX 5.66% 13.29%
ROK 5.52% 18.97%
STI 3.82% 30.92%
SWK 5.03% 17.42%
TROW 3.45% 10.36%
TRV 3.43% 61.75%
TXN 3.56% 14.33%
UPS 3.39% 31.11%
VRTX 8.97% 35.71%
WEC 2.75% 13.71%
WM 3.57% 25.01%
WY 4.13% 11.92%
ZION 6.17% 22.85%
ZTS 4.07% 31.31%




CHAPTER IV

PORTFOLIO SELECTION PROBLEM

Generally, a portfolio can include any types of financial assets. However, only stocks
are considered here because their lower bounds on expected returns are computable (see

Chapter 3 for more details)
4.1 General Portfolio Model

Suppose that, at time T', a risk-averse investor wants to invest proportion w; of capital
in asset ¢ (where i = 1,2,...,n) of a portfolio with the buy-and-hold strategy to maximize
the overall rate of return Ry attainable at the next time 7"+ 1. During this investment
period, the rate of return of each asset ¢ can be represented by a random variable R; 741.

The overall rate of return of the portfolio becomes
Rryy =wiRyry1 +waRo i1 + ..+ wp Ryt

When no short sales are allowed during the time between T' and T + 1, the proportion

invested in each asset ¢ cannot be negative: w; > 0.

Arising from the return unpredictability, the investor faces risk across the entire
portfolio. Intuitively, risk occurs when the realized return falls below the expected return.

It must depend on the loss function occurred at time 7'+ 1 given by

Liri1 = Er[Ri 741] = Rir1a,

where E7[R; 741] denotes the expected return of asset 4 at time 7'+ 1 based on all previous
trading information by time 7T'. Loss is a random variable to which risk assigns a real number
for comparative purposes [9]. The notation of risk or(L) € R is introduced and it will be

discussed in Section 4.2.

To derive the optimal portfolio, the risk threshold is also required. Nonetheless, this
parameter is relatively abstract, and it is of less importance compared with the overall
return. There is also no consensus about this parameter value because various types of risk

measures are available [28, 29].

Instead, the risk-averse investor decides to minimize risk with a given threshold

(or guaranteed) rate of return #. This is in accordance with the primary purpose of a
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portfolio: smoothing out the firm-specific volatilities of its included assets. This strategy
is technically called diversification. Yet, macroeconomic-level risks such as deflation and
political instability cannot be mitigated by a portfolio method. Return from an investment
must compensate with associated risk. This leads to the principle of risk-return tradeoff

[20].

Using the historical rate of return r;; for asset ¢ at time ¢ = 1,2,...,T to estimate
the expected values E7[R; 741], the optimal asset weight w} is achievable. To put it more
concretely, this problem can be formulated as follows:

minimize o7 (Er[Rry1] — Rri1)

subject to Er[Rr+1] > 6,

Rryi =wiRirp +woRoryr + ..o +wa Ry i1, (4.1)

wy +wo+ ... +w, =1,

w; >0, i=1,2,...,n.

4.2 Risk Measure

As mentioned above, the risk concerned in this work reflects the deviation of the
realized return from its expected value. Although it seems abstract, this concept contributes

to the formulation of many portfolio problems.

Definiton 4.1 (Subadditive Risk Measure [9]). Let M be the set of random variables

representing portfolio losses. A risk measure ¢ : M — R is called subadditive if
o(L+5) < o(L) + o(S)
for all L, S € M.

Subadditivity implies investing in well-diversified assets lessens portfolio risk. The

following proposition gives some important examples of subadditive risk measures.

Proposition 4.2. The following risk measures are subadditive:

1. The standard deviation (SD) risk measure o°P(L) = y/E[L?];

2. The mean absolute deviation (MAD) risk measure oMAP (L) = E[|L]|].



Proof. Let L and S be financial losses. Then

o°P(L +8) = VE[(L + 5)?]

= /E[L2] + 2E[LS] + E[S?]
< E[L?) + 2/E[L2] B[S + E[5?]

— VEIL?] + VES?)
= (1) + 6(8)

and
MAP(L + 8) = E[|L + S]]
<E[L] +15]]
= E[|L[] + E[|5]]

X QMAD(L) —|—QMAD(S).

By definition 4.1, both risk measures are subadditive.

4.3 MAD Portfolio Model
4.3.1 Development of Model with Real-Valued Returns

The MAD risk measure is approximated as follows [3]:

Q:IMAD(L) = Q:IMAD(ET[RT-i-l] — RT+1)
= E7[| Er[Rr41] — Rr41]]

= Er[|Rr+1 — Er[Rr+1]]]

n
E R r1w; — Ep
=1

n

Z(Ri,TJrl — E7[Rir41])w;

Z Ri,TJrlwi] “

o]

Define

ri = Ep[R;141]

At =Tit —Tq

wheret=1,2,...,nand t=1,2,...,T.

33
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The portfolio optimization problem (4.1) reads

n
E Qi tW;
i=1

n
subject to ani >0,
P (4.2)

n

T

. 1
minimize —E
T
t=1

w; >0, 1=1,2,....,n
which is equivalent to the linear program
1 X
minimize T Z dy
t=1
n
subject to d; + Zai,th’ >0, t=1,2,...,T,

=1

n
di= Y aiw; >0, t=12,...1T,

P
n (4.3)
Z riw; > 0,
i=1
n
i=1

w; >0, 1=1,2,...,n,
de >0, t=1,2,...,T.

It contains 27" + 2 basic variables which may be degenerate. Hence, an investor should

invest in at most 27" + 2 assets.

To improve this upper bound on the number of invested assets, add the surplus

variables 2u; and 2v; to the first two constraints [30]:
n
dt + Z QWi — 2'U,t = 0,
i=1

n
dy — E a;w; — 2vy =0,
i1

where ug, vy >0 fort =1,2,...,T. Then
dt :ut+vt,

n
E a;pw; — ug +vg = 0.

=1
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This leads to the minimization problem
1 X
minimize ;(ut + vy)

n
subject to —u; + vy + Z aiiw; =0, t=12,...,T,
i=1
n

>_riwi >0, (4.4)

=1
n
E Ww; = 1,
i=1

w; >0, i=1,2,...,n,

ut,thO, t:1,2,...,T.

The number of basic variables is reduced to 7'+ 2. This implied the investor should include

at most T+ 2 assets in his portfolio.
4.3.2 Model with Interval-Valued Returns

All parameters in the linear program (4.4) are certain without ambiguity except the

conditional expected return

ri = Ep[Rir41],

which is also appeared in the term a;;. In general, the return process is nonstationary.
Its distribution over time is also arguable [9]. As a result, the expected return should
not be predicted by the average rate of historical returns. In this thesis, the parameter is
represented by the interval

T 7 [Ez'v ?’i]'

There are several methods of obtaining the lower and upper bounds of the returns. This

work follows the guidelines suggested in Chapter 3.

It is very unlikely to calculate an optimal portfolio w; in accordance with every
possible outcome of expected return r; in the interval r; = [r;,7;]. In this work, the
optimal portfolios satisfying at least one scenario by computing the weakly optimal solution
set. A threshold rate of return # in the optimization problem (4.4) becomes an equality

constraint by adding a surplus variable s to the second constraint. This contributes to the



multiparametric linear programming (mp-LP) problem

T

1
minimize T ;(ut + vt)

n
subject to —u; + v + Z ajiw; =0, t=1,2,...

=1

n
Zriwi —s=20,
i=1
n
Zwi = 1,
i=1

w; >0, i=1,2...

’LLt,’UtZO, t:1,2,

s>0

where r; € r; = [r;,7;] also embedded in the term a;; =73 — 7;.

36

(4.5)

To eliminate the dependence of a;; and r; in the portfolio model (4.5), the second

constraint is added to the first counterpart. It leads to the following mp-LP problem

where r; € r; =

N

T
. 1
minimize Z(ut + vp)
t=1

n
subject to —ut+vt—|—2ﬁ,twi —s=0, t=1,2,...

i=1
n

g riw; — s =0,
i=1
n

(4.6)

[r;,7i], which can equivalently be transformed into the interval linear



program
T

1
minimize T ;(ut + )

n
subject to —ut+vt+Zﬁ,twi —s=6, t=1,2,...

=1

s>0

37

LT,

with the replacement of the expected return parameter r; by the interval r; = [r;,7;]. For
T

simplicity, the problem with the objective function > (u; + v;) is investigated instead.

=l
Denote
T
u=lu UT]
T
v=ln UT]
T
W= |w wn]
',"171 B rl,t P, TLT
R = 7"1/’1 PEEEEY rl,t RS T’i,T
_T’I’L,]. . e Tn,t e 'r'n7T_
T
r=1r Tn]
- T T
r = rrl rn] = |:|:£1’rr-1] [£n7rn]i| .

The optimization problem (4.7) in the matrix notation becomes
minimize c'x
subject to Ax =0,

x>0

(4.8)
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where

T

— T T T
z—[ule Vixr  S1x1 wlm](QTHJrn)Xl

T
€= [qu lxr Oix OIX"}(2T+1+n)><1
—Irxr Irxr =l Rl
A=A(r)=| 0., O0l.; —lix1 7.,
T T T
Oixr Oixr  O1xa1 Lixn (T+2)x(2T+1+n)
. T
b=0b(0) = [GMT Oix1 lixa (Tr2)x1’

In this thesis, the notations A and A(r) are used interchangeably depending upon
the emphasis on the parameter r, so do the notations b and b(6). Note that every matrix
belonging to the interval matrix A = A(r) has a full row rank. In this program, an investor
must initialize the threshold rate of return @ for the portfolio in order to determine whether
or not this goal can be fulfilled and, if any, to compute a weakly optimal asset weight

w4 (r) with its attainable rate of return 7* = 7(w*(r)).



CHAPTER V

BILEVEL PORTFOLIO OPTIMIZATION

The main purpose of this chapter is to provide the background knowledge on the
bilevel method to solve the MAD model (4.3) where the expected return 7; of individual
asset ¢ is represented by the interval [r;,7;]. This scheme is compared to our proposed
method in Chapter 6 and the result is illustrated in Chapter 7. Lui [31] constructs the pair
of two-level mathematical programs and restates the MAD model (4.3) without employing

the notation a;; as follows:
1 X
minimize Z dy
t=1

n
subject to dy+ Y Figw; — Y rw; =0, t=1,2,...,T,
=1 ]

n (5.1)
Zriwi >0,
i=1
n
Zwi = 1,
i=1

where

This is the inner-level program computing the optimal portfolio and its risk under
a given set of expected return r;. Since r; varies from r; to 7;, there are many optimal
portfolios. The outer-level program determines the value of each r; in the suitable range
and produces the corresponding optimal portfolio. It can be either minimization (low risk)

or maximization (high risk) problem.
5.1 Lowest-Risk Bilevel Portfolio

An optimal portfolio with the lowest risk is obtained by the program

1 Z
min min — g dy
Ti wi,dt T —
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with the same constraint specified in the program (5.1). Since both the inner-level program
and the outer-level program are minimization problems, they can be combined into a

one-level program:
1 X
minimize T ; d;

n n
subject to dt+Z?¢,twi—mei >0, t=12,...,T,

i=1 =1
n n
dy — 771'715101‘—}—27‘1"[01'20, t=1,2,....T,
=1 =1
n
> raw; >0,
=1

n
E w; = 1,
=1

This is a nonlinear program due to the product term r;w;. Substitute
N = ryw,; (52)
and multiply the last inequality by the term w; to obtain the linear program
1z
minimize T Z dy
t=1
n n
subject to d —l—Zﬁtwi - Zm >0, t=1,2,...,T,
i=1 i=1
n n
dt—ZFz,th‘i‘anZO, t:1727"'7T7
i=1 i=1

n

=1

n
Zwi = 1,
=1

—rw;+n; >0, i=1,2,...,n,
rw; —n; >0, 1=1,2,...,n,
w; >0, 1=1,2,....,n,

d¢ >0, t=1,2,...,T,

Wi
uCD
~.
1
\.H
\'[\3
s

i
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The optimal portfolio with the lowest risk
1 X
72
t=1
has the asset weight w; and it attains a rate of return

n
*
E ; -
i=1
This occurs when an individual asset ¢ has an exact rate of return

P ] (5.4)

wz

When the optimal weight w; becomes 0, the term 7] binds at 0. The computed return
7; is therefore not a number. This does not indicate a flaw in this bilevel model. The
optimality indeed happens for some unknown expected return r; between r; and 7;. It is

simply because division by zero in the equation (5.2) is undefined.
5.2 Highest-Risk Bilevel Portfolio

An optimal portfolio with the highest risk is obtained by the program

max mln% g d;

T W; 7df

with the same constraint specified in the program (5.1). Both the inner-level program
and the outer-level program have different operations. The dual problem of the inner-level
program (5.1) is therefore considered:

maximize Oyor+1 + Yorio

subject to Yt T yr+t <

MH
M’ﬂ

(Tig —1)ye — ¥ (Tig — ri)yr+t + rivor+1 + Yor42 <0, i <mn,

t=1 t=1

yp >0, k<2T+1.

Now both programs have the same maximization operation. They can be combined
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into a one-level program:

maximize Oyori+1 + Yorio

1
subject to Yt + Y4t < ak t<T,
T T
Z(ﬁ,t — i)y — Z(Fi,t — T YT+t + Tiyer1 + yer42 <0, i <,
=1 =1

ye >0, k<2T+1,

r, <1 <7, 1< n.

This is a nonlinear program due to the product term r;y; where k £ 27T+1. Substitute

§ik = Tilk,

where i =1,...,nand k =1,...,27 + 1, and multiply the last inequality by the term yy

to obtain the linear program

maximize Oyori1 + Yorio

1
subject to Yt +yryt < T t<T,
T
Z[ﬁ',t(yt —yrtt) — &t + &ire) + Eior+1 + Yors2 <0,
=1

rye — &k <0, E<2T 41,
~Tiyr + &k <0 E<2T 41,
ye >0, k<2T+1,

Eix >0, k<2T+1.

The optimal portfolio with the highest risk is attained when the expected return of an

individual asset becomes
ff‘
=~ € [r;, 7] (5.6)
Yi

for any k =1,2,...,2T7 4+ 1. The corresponding portfolio composition can be obtained by

the dual solution w; of the second constraint in the program (5.5) with the assistance of

linear program solvers such as CPLEX® optimizer.
5.3 Discussion

Although there is no sophisticated theoretical background behind the bilevel portfolio
models, their optimal portfolios are not universal. They merely account for the two extreme

risks.
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Furthermore, the validity of the bilevel portfolio model (5.5) accounting for the
highest risk is not guaranteed because each individual asset’s expected return obtained
by the condition (5.6) may be nonconstant across different values of index k& < 27 + 1
as illustrated in Chapter 7. This is a common phenomenon by its nature of relaxation
technique. Nonetheless, the bilevel portfolio model (5.3) accounting for the lowest risk is
always valid because the resultant portfolio becomes optimal under the realistic scenario as

specified in the condition (5.4).



CHAPTER VI

UNCERTAIN PORTFOLIO OPTIMIZATION

The derivation and statement of all proposed algorithms central to this work are
included in this chapter. The optimal investment strategy under the disagreement of

measurements for expected asset returns involve three primary steps:

1. validating a particular choice of threshold portfolio returns
2. describing overall optimal asset allocation

3. computing a range of optimal returns from the portfolio investment.

Moreover, two portfolios may contain a different set of financial assets. The evaluation of
their attractiveness may require the additional following step: calculating a range of optimal

risks. This is mainly to compare the degree of risks incurred by two different portfolios.
6.1 Range of Threshold Portfolio Returns

Intuitively, a threshold (or guaranteed) rate of return @ is valid only when a portfolio
under any circumstances can generate beyond the rate of return 6. However, an investor
must determine the possible values of these thresholds beforehand. In other words, the
parameter § enables the system Az = b(f) strongly feasible (see Section 2.1). The following

proposition is employed to establish a criterion for validating a choice of 6 € [6, ).

Proposition 6.1. For the interval linear program (4.8), the system of constraints A(r)x =
b is strongly feasible if and only if each of the systems A(r)z = b and A(F)z = b contains

a nonnegative solution.

Proof. According to Theorem 2.4, the system
(A — zp 1 ARz = (A° — diag(2)A®)z
= b° + diag(z)b"
= b+ diag(z)0

=b

must have a nonnegative solution for every z € {#1}7*2. The term 27, can take on the
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values 1 and —1 which correspond to the expressions A(r) and A(F) respectively on the left

hand side. O

As a result, the parameters 6 and 6 can be found by minimizing and maximizing
the objective function 6 respectively subject to each constraint separately specified in
Proposition 6.1. Intuitively, every threshold between these two extreme values is attainable.

The soundness of Proposition 6.1 is confirmed by the following proposition.

Proposition 6.2. Any portfolio with a guaranteed rate of return @ between @ and 0 is

always feasible.

Proof. Suppose the two portfolios attain the threshold rates of return § and 6. By
Proposition 6.1,
Az =p0) and A(r)z® =b(d)

for some nonnegative solutions z(*) and (?. Since  is between @ and 8, it follows that

0=t0+ (1—1t)0
for some 0 < ¢ < 1. Consider

A(r) (e + (1 = )2®) = tA(r)z) + (1 - 1) A(r)2®
= tb(0) + (1 — )b(0)
= b(tf + (1 —1)0)
= b(h).

Hence, the system A(r)z = b(0) has a nonnegative solution, and so does the system A(7)z =
b(#) in the similar manner. Proposition 6.1 implies there always exists a portfolio with the

guaranteed rate of return 6 € [0, 6)]. O

The algorithm for computing the range of threshold portfolio returns is suggested

below.
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Algorithm 6.1: Determine the range of threshold portfolio returns

Input: The portfolio selection model (4.8)
Output: The minimum threshold @ and the maximum threshold @
1: Compute 0, < min{f | A(r)z —b(#) =0,z >0, 0 > 0}
2: Compute 0y < min{f | A(F)x —b(#) =0, x >0, 6 > 0}
Set 8 « max{6,,0,}
Compute 01 < max{f | A(r)x — b(0)
Compute 02 < max{f | A7)z — b(6)
Set § < min{f1, 0>}
if § < 0 then

D >
AV V]
o (@)
——

I
o 2o
8 8
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o o

return 6 and 0

else
10:  return “No suitable choice for a threshold portfolio return”

11: end if

Algorithm 6.1 can be executed in either exponential or polynomial worst-case time
complexities with the dual-simplex method or Karmarkar’s algorithm [32, 33]. Although it
is clear that the minimum and maximum thresholds are given by

0=0 and 0= 121&);{&},

this algorithm is applicable to any linear programming model for portfolio selection
with additional constraints [34] on transaction costs, investment thresholds and decision

dependency, for instance.
6.2 Enclosure of Optimal Portfolios
6.2.1 Bounds on Optimal Compositions

For the interval MAD model (4.8), a (weakly) optimal weight w} of asset ¢ minimizes
a portfolio risk subject to the constraint Ax = b and it depends on a scenario of asset
return r; € r; = [r;,7;] lying inside the interval matrix A. Since there are many choices of
r;’s, optimal solutions should be represented in terms of an enclosure in which all weakly
optimal solutions (satisfying at least one scenario) locate. Any portfolio outside this region
is completely nonoptimal and therefore unattractive. The term enclosure is coined here to

emphasize that any portfolio inside this region is not necessarily, yet sufficiently, optimal.
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For any given scenario A € A, an optimal solution z € R?T T gatisfies
Ar=b,2>0, ATy<ec, 'z =0b"y

for some y € RT*2 as a result of the duality theory. A superset of optimal solutions [35] is
described by
Az =b,x>0 ATy <c c'x=0b"y.

According to Theorems 2.5 and 2.7, a weak solution x to the region above must meet all of

the following requirements:

(A° = 2p11A%)Ty = (A° = diag(=)A%)Ty < ¢

diag(z)y = 0

where z € {£1}7+2. This representation can be decomposed into a union of two regions
between

Ar <b, —Az < —b,x>0,ATy <c, Tz =b"y, e; .,y >0

and

Az <b, —Ax < =b, x> O,ZTy <ec, cz=0b"y, —e}ﬂy > 0.

Note that both regions may not simultaneously be feasible. Each enclosure is formed by

the interval hull as stated in Algorithm 6.2.
6.2.2 Range of Optimal Returns

With the inexact data of the expected return of an individual asset, the optimal
portfolios can have a wide range of returns. They should attain at least the given threshold
rate 6 as set in the portfolio selection problems (4.4) and (4.7). The highest achievable
portfolio return is still questionable. A bound for the surplus variable s directly provides

the true extent of the portfolio returns 7. More formally,
T=riwi+...+rpw, =60+ s.

Similarly at optimality, 7* = 8 + s*. Algorithm 6.2 also provides how to compute the range
of optimal returns by examining each interval hull of the variable s in the weak solution set
for optimal portfolios as given in Subsection 6.2.1. An optimal portfolio usually generates

an investment return beyond the threshold 8 as elaborated in Chapter 7.
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6.2.3 Algorithm for Computing Optimal Weights and Returns

An enclosure of optimal asset weights and their returns can be found by the following

algorithm.

Algorithm 6.2: Describe optimal portfolios and determine their returns

Input: The portfolio selection model (4.8) with the threshold portfolio return

Output: Enclosure £ of optimal portfolios and the range R of their returns

1:
2:

10:
11:

12:
13:
14:

15:

16:
17:
18:
19:
20:
21:
22:

Set &1,E2,R1, R + 0
Let P be the linear program min{0Tz + 07y | A(r)z < b, A(F)xz > b, 2 > 0,
(A(r)Ty <¢, cTe =bTy, e 1y >0}
if the program P is feasible then
for i + 0 ton do
Compute le) « minfejp. ;@ | A(r)z < b, A(F)z > b, x>0,
(A(r)Ty < ¢, cTe =0Ty, ef 1y > 0}
Compute @El) « max{ejp, ;& | A(r)r <b, A(F)z >b, x>0,
(A(r)'y <c¢, cle=b"y, e,y > 0}
end for
Set & « [wiV W] x ... x W, W]
Set Ry + 0 + [w(()l),wgl)]
end if
Let P be the linear program min{0Tz + 07y | A(r)z < b, A(F)z > b, > 0,
(A()'y <¢, T =b"y, —ep 1y >0}
if the program P is feasible then
for i < 0 ton do
Compute wl@) — min{egTHH:r | A(r)x <b, A(F)x > b, x > 0,
(A()Ty <¢, cTe =b"y, el y >0}
Compute @§2) — max{eJ, x| A(r)z <b, A(T)z >b, x>0,
(A(F)Ty < . T = BTy, —cl, 1y > 0}
end for
Set & « [w'?, W] x ... x [w?, WP
et R < 04 [, 72
end if
Compute £ < Interval hull of & U &
Compute R < Interval hull of Ry U Ry
return £ and R
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At least one of linear programs P and P must be feasible as stated in lines 3 and

in MATLAB® software

12. Most linear program solvers such as Optimization Toolbox'"

and CPLEX® optimizer can directly test the feasibility with ease. Another suggestion is to

add artificial variables to all constraints.
6.2.4 Suggested Optimal Asset Allocation

Proposition 6.3. Let B and N denote the nondegenerate optimal basis and nonbasis
respectively when the MAD portfolio optimization problem (4.8) is solved with a restriction
of the interval return r at its center r¢. If every problem derived from (4.8) with the
constraint A(r) = b when rp arbitrarily locates at their end points and ry lies in the set
{rxn,7n} still has the same optimal basis B with nondegeneracy. Then w} = 0 in almost

every scenario.
Proof. The sufficient and necessary condition for basis stability is stated in Theorem 2.12.
It suffices to consider the system
(A€ — diag(z) A% diag(p))z = b° + diag(z)b™ = b
where z € {£1}7+2 and p € {£1}7 1" with py = 17 or py = —17. Note that

O7x(2741) O7xn
A — diag(2)A%diag(p) = A~ | 0 or41) 2141 (Prrs1si - 78) 1,0

O1x (27+1) O1xn

The coefficients of those assets lying in the nonbasis N must have the same sign. O

This proposition can be restated in the form of algorithm as follows.
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Algorithm 6.3: Stability of optimal assets (B-stable)

Input: The portfolio selection model (4.8) with the threshold portfolio return 6
Output: Whether or not optimal assets are preserved
1: Compute z < argmin{c'z | A(r®)z =b, x > 0}
2: Construct B = {i | z; > 0}
Construct N = {i | z; = 0}
if |B| # T + 2 then

return “Inconclusive”
end if
Set O ={r|rie{r;,Fi}, v~ € {rn,Tn}}
for all r € O do

Compute z < argmin{c'z | A(r)z =b, z > 0}
10:  Set I+ {i|z; >0}
11:  if I # B then

12: return “Inconclusive”
13: end if
14: end for

15: return “Optimal assets are stable”

6.2.5 Range of Optimal Risks

For any valid level of threshold portfolio return #, an investor may want to evaluate
the risk of an optimal portfolio in order to ensure that it is not beyond a stipulated risk
tolerance and to compare different portfolio investments. Due to the uncertainty of the
expected asset return 7, all possible risks are embedded in a closed interval as a result of

the following proposition.

Proposition 6.4. Both minimum and maximum of optimal portfolio risks attained by the

MAD model (4.8) exist.

Proof. Obviously, the lowest optimal portfolio risk equals the minimum value of ¢z over the
weakly feasible solution set to the constraint Az = b in the MAD model (4.8). Whenever
each asset 7 has an expected return of r; € [r;, 7;], the primal problem (4.8) always possesses

an optimal value due to the assumption of strong feasibility imposed on a threshold portfolio
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return as stated in Subsection 6.1. The strong duality theorem 2.1 implies its dual program
which is a maximum problem always have an optimal value. With a dual variable y, the
maximum value of b7y over the weakly feasible solution set to the dual constraint becomes

the highest optimal portfolio risk. O

According to Theorems 2.8 and 2.9, the lowest risk ¢ and the highest risk ¢ are
obtained by the formula

-min{c'x | Az <b, Ax > b, x >0}

NI~~~

0

0=~ -max{p, | z € {+1}7?}

where
0. = max{bTy | (A° — 271 A®)Ty < ¢, diag(z)y > 0}.

Yet, zr4q takes on a value of either —1 or 1. The other components of z are unrestricted.
The constraint diag(z)y > 0 can be reduced to zr1yr4+1 > 0. Hence, the range of portfolio

risks can be calculated by the following procedure.

Algorithm 6.4: Determine the range of optimal portfolio risks

Input: The portfolio selection model (4.8) with 7" observations and the threshold
portfolio return 6
Output: The lowest risk g and the highest risk o
1: Compute g < (1/T) -min{c'z | A(r)x < b, A(F)x > b, z > 0}
2: Calculate g; < (1/T) - max{b™y | (A(r))"y < ¢, e,y > 0}
Calculate gy < (1/T) - max{d"y | (A(7))"y < ¢, —ep, 1y > 0}

Compare ¢ = max{g;, 0>}

5: return ¢ and g

Algorithm 6.4 is simple and useful for comparison only within the same class of risk

measures. The MAD measure is consistently employed throughout this work.
6.3 Summary of Algorithms

In conclusion, a risk-averse investor wants to obtain the optimal portfolio {w}}?
consisting of n assets, each of which has expected return represented by an interval. Arising
from the uncertainty, the single-valued optimal portfolio may be nonexistent. To overcome
this difficulty, the enclosure in which the optimal weights must lie is suggested in Algorithms

6.2 and 6.3. With the historical returns of each asset, the uncertain future rates and the
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minimum overall rate of return expected from the portfolio, the summary of algorithms is

provided below.

Algorithm 6.5: MAD portfolio selection model

Input: Interval of future asset returns {[r;,7;]}"_;, historical returns {7;;};_; and
threshold portfolio return 6
Output: Enclosures of optimal portfolios £ and returns R

1: Obtain the interval matrix A and the vectors b, ¢ based on the program (4.8)

[\

: Compute the minimum @ and the maximum 6 by Algorithm 6.1

3: if 0 € [0, 0] then

4:  Apply Algorithm 6.3 to determine whether the program (4.8) is B-stable
5. if the program (4.8) is B-stable then

6 Add the constraints z; = 0 for ¢ in the nonbasis N

7. end if

8 Apply Algorithm 6.2 to obtain the enclosures £ and R of optimal portfolios

and their returns

return £ and R

©

10: else
11:  return “Infeasible portfolio”

12: end if




CHAPTER VII

EXAMPLES AND NUMERICAL RESULTS

The results developed in previous chapters are illustrated through specific examples
and numerical results here. The bilevel portfolio model (5.5) with the highest risk and the
rest of the linear optimization problems are solved by the dual simplex method implemented
in CPLEX® and MATLAB® softwares respectively. The results demonstrate the effect of
diversification on portfolio risk. An optimal risk tends to decrease as more stocks are
included in a portfolio when compared under the same value of the adjustment parameter
= 0. The relaxation behavior of the bilevel model (5.5) as discussed in Section 5.3 is
also consistently emphasized. In reporting tables, the symbols N/A and * stand for not

applicable and any numerical value in a given return interval, respectively.
7.1 Adjusted Bounds on Expected Stock Returns

To demonstrate the usefulness of Algorithm 6.3 for obtaining a tighter enclosure of
portfolio investments, the bounds on expected stock returns should be sufficiently accurate.
However, the estimates in Table 3.3 are overly inexact by the nature of methodology for
computing the upper bounds. Reinvestment rates during the buy-and-hold investment
period completely overestimate the unknown parameter of expected returns due to the

impossibility of reinvestment strategy. Therefore, the upper bounds are adjusted to

Fadi )y — _H I 7.1
fi HeRaam UNveRsiT (7.1)

depending upon the parameter p € [0,+00). No adjustment occurs when g = 0. The

return bounds become more precise with an increasing value of p. These adjusted returns

are illustrated in Table 7.1 across three different values of the parameter u = 0,7, 27.

Table 7.1: Adjusted bounds on expected S&P 500 stock returns accrued in the next six
months from November 2018 to April 2019 with the parameters u = 0,7,27

Adjusted upper bounds on return
Ticker Lower bound on return

AAPL 2.78% 3.12% 3.97% 12.34%
ADBE 3.87% 6.32% 12.44% 72.42%
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Table 7.1: Adjusted bounds on expected S&P 500 stock returns accrued in the next six
months from November 2018 to April 2019 with the parameters p = 0, 7,27 (continued)

Adjusted upper bounds on return

Ticker Lower bound on return
p=27 p="1 p=0
ADSK 6.39% 7.69% 10.94% 42.83%
AET 3.59% 4.61% 7.15% 32.08%
ALGN 7.87% 8.56% 10.28% 27.13%
ALL 3.46% 4.66% 7.67% 37.13%
AMGN 3.38% 4.81% 8.41% 43.63%
AMT 4.06% 4.97% 7.27% 29.77%
AVGO 3.99% 5.02% 7.59% 32.80%
AXP 2.70% 9.17% 25.35% 183.92%
BLK 4.35% 5.22% 7.41% 28.81%
CCL.U 4.16% 5.58% 9.12% 43.80%
CI 417% 5.08% 7.36% 29.73%
CMCSA 4.38% 5.18% 7.16% 26.60%
COG 5.79% 6.46% 8.14% 24.64%
COL 4.85% 5.91% 8.56% 34.54%
CTSH 4.46% 5.20% 7.06% 25.29%
D 3.45% 4.04% 5.52% 20.01%
DFS 5.84% 6.23% 7.20% 16.70%
DIS 2.52% 3.09% 4.49% 18.28%
DRI 4.80% 5.51% 7.29% 24.711%
DUK 2.99% 4.10% 6.89% 34.17%
DVA 9.61% 9.62% 9.65% 9.94%
EBAY 3.74% 5.09% 8.47% 41.57%
ECL 3.72% 4.03% 4.81% 12.39%
EOG 4.62% 5.24% 6.79% 21.94%
ETN 3.72% 4.03% 4.81% 12.38%
FDX 2.87% 3.87% 6.37% 30.83%
FMC 5.14% 5.46% 6.27% 14.19%
IBM 2.67% 3.24% 4.65% 18.51%

INTC 3.68% 4.81% 7.65% 35.48%
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Table 7.1: Adjusted bounds on expected S&P 500 stock returns accrued in the next six
months from November 2018 to April 2019 with the parameters p = 0, 7,27 (continued)

Adjusted upper bounds on return

Ticker Lower bound on return
p=27 p="1 p=0
INTU 3.67% 4.65% 7.09% 31.06%
ISRG 6.55% 6.78% 7.35% 12.91%
IVZ 6.74% 7.73% 10.20% 34.41%
KMX 6.15% 6.42% 7.10% 13.74%
LLL 3.79% 4.37% 5.80% 19.84%
LRCX 7.17% 7.53% 8.43% 17.30%
MA 3.42% 4.06% 5.64% 21.20%
MAR 5.17% 6.79% 10.83% 50.39%
MCHP 5.90% 6.09% 6.56% 11.20%
MMM 3.16% 4.00% 6.11% 26.74%
MPC 4.46% 4.74% 5.43% 12.15%
MRO 9.89% 10.84% 13.23% 36.60%
MS 2.77% 3.33% 4.72% 18.41%
MSFT 2.52% 3.70% 6.65% 35.59%
NUE 4.00% 4.42% 5.49% 15.96%
PHM 6.98% 8.33% 11.70% 44.69%
PX 5.66% 5.93% 6.61% 13.29%
ROK 5.52% 6.00% 7.20% 18.97%
STI 3.82% 4.79% 7.21% 30.92%
SWK 5.03% 5.48% 6.58% 17.42%
TROW 3.45% 3.70% 4.32% 10.36%
TRV 3.43% 5.51% 10.72% 61.75%
TXN 3.56% 3.94% 4.90% 14.33%
UPS 3.39% 4.38% 6.86% 31.11%
VRTX 8.97% 9.92% 12.31% 35.71%
WEC 2.75% 3.14% 4.12% 13.711%
WM 3.57% 4.34% 6.25% 25.01%
WY 4.13% 4.41% 5.11% 11.92%

ZION 6.17% 6.77% 8.26% 22.85%
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Table 7.1: Adjusted bounds on expected S&P 500 stock returns accrued in the next six
months from November 2018 to April 2019 with the parameters p = 0, 7,27 (continued)

Adjusted upper bounds on return
Ticker Lower bound on return

ZTS 4.07% 5.04% 7.47% 31.31%

7.2 Examples of 2-Asset Portfolios

Two portfolios consisting of 2 assets are considered with unadjusted return bounds
(at the parameter p = 0). The first invests in MPC and DVA stocks as shown in Table 7.2.
The other invests in ALL and DVA stocks as also shown in Table 7.3. Algorithm 6.1 implies
an investor cannot have a prior expectation of more than 9.61% return from investments

(ie. 6 < 1.0961).

With a no-loss guarantee (the threshold rate of return 6 = 1 is selected), both tables
provide details on various investment strategies: the overall enclosures from Algorithm
6.2, the tight enclosures suggested in Algorithms 6.3 and 6.5, the optimal portfolios at
a particular scenario based on the model (4.4) and the bilevel portfolios obtained by the
models (5.3) and (5.5). Adding ALL stock to DVA stock is more risky compared to adding
MPC stock. A portfolio of MPC and DVA stocks yields a return of ranging from 7.63% to
10.68%, and both stocks must be included. A portfolio of ALL and DVA stocks guarantee a
return of 8.37% but no more than 9.94%, and over 79.82% of the capital must be allocated
to DVA stock.

It is also revealed that applying bilevel optimization to tackle a portfolio problem
contributes to misleading results as previously discussed in Section 5.3. To illustrate, the
bilevel portfolio investing in MPC and DVA stocks has the highest risk of 0.0658 which does
not lie between 0.0525 and 0.0593 as reported in the overall enclosure. The same problem
also arises in the same type of optimal portfolio investing in ALL and DVA stocks. The
erratic behavior of the bilevel portfolio model (5.5) can be explained by the inconsistency
of the attainable rate of an individual stock’s return &, /y; based on the formula (5.6) as

shown in Tables 7.4 and 7.5.

Furthermore, both bilevel portfolios do not serve as a bound on optimal portfolio
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composition. In Table 7.2, when MPC and DVA stocks attain the rates of return 12.15%
and 9.94%, an investor should allocate exactly 33.51% of the capital to MPC stock. This
proportion is not between 24.51% and 24.79% as formed by the bilevel portfolios. However,
our proposed method yields a more universally efficient bound on optimal investments, at

least 13.71% but no more than 38.49%.

Our novel approach of tightening enclosure completely outperforms the rest of
methods for optimal portfolio investments in ALL and DVA stocks. Despite up to 33.76%
and 0.33% disagreements over the expected returns on both stocks, a unique optimal
portfolio composition is suggested: investing all money in DVA stock. This agrees on all
compositions under the specific scenario when ALL and DVA stocks attain 3.46% and 9.94%
returns and also under bilevel optimization. The exactness of optimal portfolio composition
does not contradict its corresponding high risk because risk simply measures the deviation

of exact return observed in the future from its expected value.
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7.3 Examples of 9-Asset Portfolios

A portfolio including D, DVA, ETN, KMX, MCHP, MPC, PX, TROW and WY stocks
across 9 different U.S. sectors is considered. The initial value of the parameter 6 cannot
exceed 9.61%. When the upper bounds on their expected returns are unadjusted, optimal
portfolio weights returns are illustrated in Table 7.6 with returns of between 3.55% and
11.26%. The enclosure cannot be improved because the data are overly inexact. As a result,
the upper return bounds are adjusted with the parameter g = 7. The new optimal portfolio
composition is shown in Table 7.7. A tightened enclosure suggests investing in only 5 out
of 9 stocks (D, DVA, ETN, KMX and MCHP) and reports attainable returns of between
5.81% and 6.82%. The problematic issue of bilevel optimization also arises as seen in Tables

7.8 and 7.9.
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7.4 Examples of 61-Asset Portfolios

A portfolio including all 61 S&P 500 stocks empirically exhibiting the negative
correlation condition (NCC) is considered. The initial value of the parameter 6 cannot
exceed 9.81%. When the upper bounds on their expected returns are unadjusted, optimal
portfolio compositions are illustrated in Table 7.10 with a wide range of returns, between
3.55% and 11.26%. The enclosure cannot be improved because the data are overly inexact.
As a result, the upper return bounds are adjusted with the parameter p = 27. The new
optimal portfolio weights are shown in Table 7.11. A tightened enclosure suggests investing
in only 9 out of 61 stocks: ADBE, AMGN, AXP, CCL.U, DIS, EBAY, MAR, TROW and
TRV. Returns of between 5.81% and 6.82% are obtained. The problematic issue of bilevel

optimization also arises as seen in Tables 7.12 and 7.13.

According to Table 7.11, the bilevel portfolio with the lowest risk seems to oppose
our tight enclosure because the first recommends investing 3.40% in AAPL stock whereas
the latter suggests none. This is due to the assumption of unique optimal solution which is
reasonably relaxed as noted in Subsection 6.2.4. The tight enclosure is merely a suggestion.

All combinations of optimal portfolio compositions are reported in the overall enclosure.
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CHAPTER VIII

CONCLUDING REMARKS

Throughout this thesis, we have developed a framework for describing bounds on
optimal portfolios in the mean absolute deviation portfolio selection model introduced in
1991 by Konno and Yamazaki but with the incorporation of uncertainty during an estimation
of expected future asset returns. Proposed algorithms utilize historical asset returns, ranges
of future returns and minimum portfolio return, and they return bounds on optimal portfolio
risks and returns in addition to bounds on optimal portfolio compositions. As the estimates

become more precise, the computed bounds can significantly be improved.

In many works of literature, discrete optimal compositions are suggested based on
each approach or underlying parameter without a sense of continuum as it should have
been. We also detect a minor flaw in the bilevel portfolio optimization method. Limitations
of our study include the relaxation of feasible regions to derive an overall enclosure and the
ignorance of alternative optimal solutions to obtain a tight enclosure. An overall enclosure
may contain excess of nonoptimal outcomes, but the computed bounds are still correct.
A tight bound, if any, may omit certain possibilities. Therefore, further investigation is

required.

This framework is not limited to the MAD model. Indeed, it is applicable to
all LP solvable problems including multicommodity network flows and pricing policies.
Our single-period problem can be generalized to a multiperiod problem which entails the
repetition of the same procedures suggested in this work. However, uncertainty in optimal

sequential policies is amplified as a compensation.
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