AR NAVEINTULUUINADIVDIADNT-DULNDYDA-TDAFLALLUUINADIVDIAINY

wlsUsruinnuaveunsinfngnuenglagnisnselan

WLHIUNT NaUN

o 1
1 = a v a

eninusiidudrumilvainsfinwanumdngnsusyanineremansum U
AU NIVIAAAAIENSUTEENARAEINGINITAN
AAIYIANAAIEASTHATINGINITABNTILADS
ANIEINEIANENS PHBINTANNINYFE
UnsAnw 2562

SUAVSURIPIRIN TN



NUMERICAL METHODS FOR JUMP-EXTENDED COX-INGERSOLL-ROSS

AND CONSTANT ELASTICITY OF VARIANCE MODELS

Mr. Purin Klunklar

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Applied Mathematics and
Computational Science
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2019

Copyright of Chulalongkorn University



Thesis Title NUMERICAL METHODS FOR JUMP-EXTENDED COX-
INGERSOLL-ROSS AND CONSTANT ELASTICITY OF
VARIANCE MODELS

By Mr. Purin Klunklar
Field of Study Applied Mathematics and Computational Science
Thesis Advisor Associate Professor Petarpa Boonserm, Ph.D.

Thesis Co-advisor Raywat Tanadkithirun, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment

of the Requirements for the Master’s Degree

............................................... Dean of the Faculty of Science
(Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

............................................... Chairman

............................................... Thesis Advisor

............................................... Thesis Co-advisor

............................................... Examiner

............................................... External Examiner

(Sirod Sirisup, Ph.D.)



v

'
U %

Q3und nadunan : BWdnavdmTuLUUTIaIvRIARNd-BUINeYa-Sead kAL
wuudasavesmuuUsUTIUTiANuEanguasiignuielaenisnszlan. (NU-
MERICAL METHODS FOR JUMP-EXTENDED COX-INGERSOLL-ROSS AND
CONSTANT ELASTICITY OF VARIANCE MODELS) o.71USnw13neniinus

VAN © 9A.AT. INYTRINN YRSy, 8. USnunIneinussin : 0.5 1530 atnfa

sy 71w,

LUUINADIADNT-DULNDVDA-SOEA LAZLUUIIABIVDIANNUBUTUTIUNT AU
1 LY} d‘ I~ o d'a o (Y] eglj A
neupiiignuenglagnisnselan Wukuuiaesmtedldlunisvingdnsnendenie
510197 Tuaudl 5110vNImAIeUTD UL TRt AUMUUNIIASIFI8 S8 T8 UTD
ANAANAaTRUAIS Usenaulumey 09elaesun3ens B08IABTUNITUINE 08194
¢ aa ) ¢ aa Y]

P08aR U JUUENANMIAAKUAINITNIELAN DaElARsINFUINENTNIARLUAINIINTY
AR BY1991Y DUAUEDILUUDBUNANISANLUAINISATL IR DUAUEDILUUBDBUNI NS
anudasnsnselanegnediy duduasawuuliiowiusiinmsdaudainsnselon uag
dudvaswuulifioyiusnlimssakUasnsnselanegedie tnslunuil waulaluis
N5 8UAIN BUA 2L T8UT ANUIUIBIALAY MY 157 b9 Y115 WU iU UseanSnaw

Y9952 08UITAIUIUTIFLATLAENISNAADUANULTUUINVDIAINDULTIFLEY NNSUSU

NSRIMUUEOU UAETEEEIAINITATUINYBIUARLTD

AP AdeERsway Aneloveldn ...
a a s A d‘ d’ <2 v
Aneanseeuimes anedlete 0. MUTNWMEN ...
v edeenansussend anelore 8. NUTAWITIM ...
WAZINEINITALU

UnsAnen 2562



## 6071984923 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE
KEYWORDS : JUMP-EXTENDED CIR AND CEV MODELS / JUMP-ADAPTED METHOD,
WEAK ORDER OF CONVERGENCE / ITO TRANSFORMATION
PURIN KLUNKLAR : NUMERICAL METHODS FOR JUMP-EXTENDED COX-IN-
GERSOLL-ROSS AND CONSTANT ELASTICITY OF VARIANCE MODELS. AD-
VISOR : ASSOC. PROF. PETARPA BOONSERM, Ph.D., CO-ADVISOR : RAYWAT

TANADKITHIRUN, Ph.D., 71 pp.

The jump-extended Cox-Ingersoll-Ross and jump-extended constant elasticity of
variance models are stochastic differential equations (SDEs) used to forecast interest
rates or stock prices. We simulate these SDEs directly by eight numerical methods:
Euler Maruyama method, simplified Euler method, jump-adapted Euler method, jump-
adapted simplified Euler method, jump-adapted order two weak method, jump-adapted
simplified order two weak method, jump-adapted order two derivative free method and
jump-adapted simplified order two derivative free method. The transformed approach
is also applied with these eight numerical methods. We compare their performance by
testing the positivity preserving of numerical solutions and finding their weak orders of

convergence as well as their run time.

Department  : Mathematics and Student’s Signature .....................

Computer Science Advisor’s Signature .....................

Field of Study : Applied Mathematics and ~ Co-advisor’s Signature ..................

Academic Year : 2019



vi

ACKNOWLEDGEMENTS

First, I would like to express my sincere gratitude to my dissertation advisor, As-
sociate Professor Dr. Petarpa Boonserm and my coadvisor Dr. Raywat Tanadkithirun for
the continued support on my study in the master’s degree. Their encouragement, mo-
tivation and guidance helped me during the time for writing researches and this disser-
tation until it was accomplished. I further would like to thank all of my dissertation
committees: Associate Professor Dr. Khamron Mekchay, Associate Professor Dr. Ratinan
Boonklurb and Dr. Sirod Sirisup, for their insightful comments and suggestions which
motivated me to extend my research from various perspectives. Moreover, I would like
to express my special appreciation and thanks to my financial sponsors, “Development
and Promotion of Science and Technology Talents Project (DPST)” for the scholarship
and funding to present my research on international conferences on applied mathematics
and computational sciencs. My sincere thanks also go to the Department of Mathematics
and Computer Science, Faculty of Science, Chulalongkorn University which give me an
opportunity that I received throughout my graduate studies. Finally, I would like to
thank my family for supporting me throughout writing this dissertation. Also, I wish to
express my gratitude to all friends and colleagues, who stayed with me and provided their
encouragement, relaxation, great suggestions and supports in many ways during a hard

time studying in my master degree.



CONTENTS

Page

ABSTRACT IN THATI . . . . . . . e iv

ABSTRACT IN ENGLISH . . . . . . . ... . v

ACKNOWLEDGEMENTS . . . . . .. e vi

CONTENTS . . . s vii

LIST OF TABLES . . . . . . . e X

LIST OF FIGURES . . . . . . e xi
CHAPTER

1 INTRODUCTION . .. . .. e 1

2 BACKGROUND KNOWLEDGE ... ... ... ... ... .......... 4

2.1 Basic knowledge . . .. ... 4

2.1.1 Normal distribution . . . ... ... ... ... ... . . ... 4

2.1.2  Lognormal distribution . . . . . .. ... .. ... ... .. ... ... 4

2.1.3 Poisson distribution . . .. ... Lo oo 5

2.1.4  Wiener process . . . . . . .o )

2.1.5  Poisson process . . . . ... 7

2.1.6 Compound Poisson process . . . . . ... ... . ... ... ..., 7

2.2 SDEwithjumps . . . .. 8

2.3 Itd formula QWIAIRLNSTAUHMIAANNENIAE! - - - -« v v v oo 8

2.4 Numerical methods . . . ... ... oo 9

2.4.1 Euler Maruyama method . . ... ... ... ... ... .. ... .. 10

2.4.2  Simplified Euler method . . . . . ... ... ... . L. 10

2.4.3 Jump-adapted Euler method . . ... .. ... ... .......... 10

2.4.4  Jump-adapted simplified Euler method . . . . ... ... ... .. .. 10

2.4.5  Jump-adapted order two weak method . . . ... ... ... ... .. 11

2.4.6  Jump-adapted simplified order two weak method . . . ... ... .. 11

2.4.7 Jump-adapted order two derivative free method . ... ... .. .. 11

2.4.8 Jump-adapted simplified order two derivative free method . . . . . 12

2.5 Weak order of convergence . . . . .. ... .. 12



viii

CHAPTER Page
3 Methodology . . . ... . . . . . . 14
3.1 Transformed approach . . . ... ... .. ... .. 14
3.2 Numerical schemes . . . ... ... ... ... 16
321 EM .. 16

322 SE . 16

323 JE e 16

324 JSE . o e e e e 16

325  JW e 17

326 JSW . 17

327 ID ... A Y R R s e e e 17

328 JSD .. AT e 18

329 TEM . .. /. e 18

3210 TSE . . . . o e 19

3211 TIE . . o 19

3212 TISE . Q. o U 19

3.213 TIW o 19

3.2.14 TISW . . o 20

3215 TID .. . 20

3.2.16 TJSD . . . 21

3.3 Test for positivity preserving . . . . . ... .. 21
3.4 Expectation of exact solution . . . ... ... ... ... L L. 22
3.5 Finding weak orders of convergence . . . . . . ... ... L 23

4 EXPERIMENTAL RESULTS . . ... ... ... . .. 25
4.1 Positive sample paths . . . . . .. ... 25
4.2 Weak order of convergence result . . . . ... ... Lo 30
4.2.1 Order-one regression results . . . . . . . ... .. ... ... ... ... 33

4.2.2  Order-two regression results . . . . . ... ... ... ... L. 36

4.3 Runtimes . . . . . . . . 40



X

CHAPTER Page
5 Conclusion . . . .. ... 44
5.1 Conclusions . . . . ... . 44
5.2 Future work . . . ... 44
REFERENCES . . . . . .. e 46
APPENDICES . . . . . . 48

BIOGRAPHY . . . . e 71



LIST OF TABLES

Table Page
4.1 The regression results of order-one schemes when o = % with A = i, %, 1—16, 3—12, 6%1 35
4.2 The regression results of order-one schemes when o = % with A = i, %, 1—16, 3—12, 6%1 35
4.3  The regression results of order-two methods when o = % with A = i, %, %6, % 39
4.4 The regression results of order-two schemes when o = % with A = i, %, %, 3—12 .39

4.5 The run time of all 16 schemes when o« = % ..................... 42

L[N

4.6 The run time of all 16 schemes when o« =



el

LIST OF FIGURES

Figure Page
2.1 The PDF of normal distribution with parameters 1 =0, and 62 =1 ... ... 5
2.2 The PDFs of LogN(0,0.1) and SLogN(0,0.1,1) . . . ... ............ 6
2.3 The PMF of Poisson distribution with parameters A =5 on {0,1,2,...,10} .. 6
3.1 Procedure diagram . . . . . . ... 15
3.2 Direct approach and transformed approach diagram . . . . ... ... ... ... 16
4.1 10 sample paths of EM and TEM simulations . . . . . .. ... ... ... .... 26
4.2 10 sample paths of SE and TSE simulations . . . . .. ... ... ... ... ... 26
4.3 10 sample paths of JE and TJE simulations . . . . .. ... ... ... ... ... 27
4.4 10 sample paths of JSE and TJSE simulations . . ... ... ... ... ..... 27
4.5 10 sample paths of JW and TJW simulations . . . . .. ... ... ... ..... 28
4.6 10 sample paths of JSW and TJSW simulations . . . ... ... ... ...... 28
4.7 10 sample paths of JD and TJD simulations . . . . .. ... ... ... ... ... 29
4.8 10 sample paths of JSD and TJSD simulations . . . .. ... ... ... ..... 29
4.9 Regression results when o = % with A = %, %, 1—16, 3%, 6—14 .............. 31
4.10 Regression results when o = % with A = ;11, %, %6, 3%, 6—14 .............. 31
4.11 Regression results when o = % with A = %n %, -11—6, % ................ 32
4.12 Regression results when o = % with A = i, %, %6, 3% ................ 32
4.13 Order-one regression results when o = % with A = %, %, %, 3%, 6—14 ........ 34
4.14 Order-one regression results when o = % with A = %, %, %, 3%, é ........ 34
4.15 Order-two regression results when a = % with A = %, %, 116’ 312 .......... 38
4.16 Order-two regression results when a = % with A = i, %, 116, 312 .......... 38
4.17 Run times when a = % ................................. 42
4.18 Run times when a = % ................................. 43



CHAPTER 1

INTRODUCTION

In 1976, Cox and Ross [3] presented constant elasticity of variance (CEV) model to

forecast stock prices at time ¢. The CEV model has the form

dSt = ,uStdt + USgth,

where S; is the value of the stock at time ¢, u is a parameter characterising the drift, o2 is
the instantaneous variance of the return, - is the elasticity parameter of the local volatility
and W; is a Wiener process. To get a more realistic stochastic differential equation (SDE)
model, a jump process should be added into the model. In the same year, Merton [7]

introduced an SDE with jumps driven by a Poisson process which has the form

AS; = (o — Ak)Sidt + oS, dWy + Sid Ny,

where « is the instantaneous expected return on the stock, o2 is the instantaneous variance
of the return, X is the mean number of arrivals per unit time, V; is a Poisson process with
rate A independent of Wy and k is the random variable representing percentage change in
the stock price if the Poisson event occurs. In 1985, Cox, Ingersoll and Ross [2] proposed

Cox-Ingersoll-Ross (CIR) model to predict an interest rate. The model has the form

dry = k(0 — r)dt + o/r d Wy,

where 74 is the value of interest rate at time ¢, k is the rate of convergence of the process,

6 is the long run mean for the process and o2 is the instantaneous variance of the return.



In 2012, Beliava and Nawalkha [1] proposed a jump-extended CEV model

dry = k(0 — ry)dt + orPdWy + f(re, J)d Ny,

where p > % and the function f(rs, J) depends on r; and the jump variable J. They fo-
cused on two specific type of jumps. The first one is f(r, J) = J where J is exponentially
distributed with mean § and the second one is f(r, J) = r; (e/ — 1) where J is normally
distributed with mean jz and variance 2. In 2017, Yang and Wang [12] suggested a
transformed jump-adapted backward Euler method to apply with jump-extended CIR
and CEV models

dXt = /i(e—Xt_)dt—f-O'X?_th—i-’th_dNt, (11)
where X, is the target stochastic process, X, = hI{l X, ais the parameter that controls
s—>t—

the effect of the current value of the process to its variation and + is the parameter that
controls the size of jumps. If a = %, then it is called jump-extended CIR (JCIR) model.
If a € (%, 1), then it is called jump-extended CEV (JCEV) model. They transformed
the SDE (1.1) into another SDE via the transformation Y; = X}~ using the It6 formula
with jumps. The transformed SDE has the form

dY; = fo (Yo )dt + (1 — a)odW; +

1 1\ -«
(v ) oviefan o)

with

Ca a02
fa(y) = (1 — a) <f§0y1—a — Ky — yl)

for a € [%, 1). They claimed that their transformation secures the positivity preserving
of the solution for the SDEs. In 2007, Bruti-Liberati and Platen [6] presented a survey
paper for a bunch of numerical schemes used to solve SDEs with jumps in both strong
and weak senses. They applied those schemes to the SDEs with jumps in [9]. However,

the jump process used in their work is only a Poisson process.

In our research, we focus on JCIR and JCEV models when the jump process is a



compound Poisson process. Our JCIR and JCEV models have the form

dXt = IQ(H - Xt,)dt + O'X;l_th + ’)/Xt,dg]t, (13)
where X is the target stochastic process, X;_ = lir? X, K is the rate of convergence of
s—t—

the process, 6 is the long run mean for the process, o2 is the instantaneous variance of
the return, « is the parameter that controls the effect of the current value of the process
to its variation, W; is a Wiener process, v is the parameter that controls the size of jumps
and J; is a compound Poisson process with intensity A and shifted lognormal jump size
distribution H with parameters i, 3 and the shift of size one, i.e., log(H + 1) ~ N (j1,52).
From now on, we denote this jump size distribution by H ~ SLogN (ji,52,1). The SDE
(1.3) is actually the JCEV model in [1] with H ~ SLogN (ji,5%,1). Here, we assume that
Xop >0, v > 0 and one of the following two conditions holds: (i) a = %, K, 8, 0 >0 and
2k0 > 0; (ii) a € (%, 1), k, 8, 0 > 0. These conditions ensure the regularity and moment

conditions [1, 5].

We will transform (1.3) via the transformation f(t,X;) = X!, which is the
suggested transformation in [1], using the It6 formula with jumps in [10]. We choose
seven numerical methods from [6] and another modified method to solve for numerical
solutions of (1.3) in both direct and transformed approaches. Then, we compare their
efficiency by testing their positivity preserving of the numerical solutions, finding weak

orders of convergence and run time.



CHAPTER 11

BACKGROUND KNOWLEDGE

In this chapter, we present basic knowledge about some important distributions
and processes, SDEs with jumps, It6 formula and numerical methods which we use in this

work.
2.1 Basic knowledge
2.1.1 Normal distribution

A random variable X is said to have a normal distribution with parameters g € R
and 52 > 0, denoted by X ~ N (j1,2), if its probability density function (PDF) is given
by

1 (e=i)?

flz|,c%) = e 22 for all z € R.

4 o\ 2

If X ~ N (j1,52), then E[X] = fz and Var[X] = 2. Fig. 2.1 shows the PDF of the normal

distribution with parameters 7 = 0 and 62 = 1.
2.1.2 Lognormal distribution

A random variable X is said to have a lognormal distribution with parameters
i € R and 2 > 0, denoted by X ~ LogN (fi,52%) or In(X) ~ N (1,5?), if its PDF is
given by
1 _1(111(1;)7;)2

f(x|ﬁ,52):& 2776 2\7 % , for all z > 0

If X ~ LogN (ji,52), then E[X] = ¢#*3%" and Var[X] = 217" (e —1).

In this work, we focus on a shifted lognormal distribution with shift 1 called H

denoted by H ~ SLogN (f1,52,1) or In (H + 1) ~ N (f,5%) . Fig. 2.2 shows the PDFs of
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Figure 2.1: The PDF of normal distribution with parameters i = 0, and o2 = 1
LogN(0,0.1) and SLogN(0,0.1,1).

2.1.3 Poisson distribution

A random variable X is said to have a Poisson distribution with parameter A > 0,
denoted by X ~ Poi()), if its probability mass function (PMF) is given by

me—A
fa|ay=2

— for all z € NU {0}.
x!

If X ~ Poi(\), then E[X]| = Var[X] = A. Fig. 2.3 shows the PMF of the Poisson distri-
bution with parameter A =5 on {0, 1,2, ...,10}

2.1.4 'Wiener process

A stochastic process is a collection of random variables.

The Wiener process
{Wt}te[o,T] is a stochastic process characterized by the following properties.
1. Wy = 0 almost surely.

2. W, has independent increments, i.e., for every 0 < s < t < u < v < T, the

increments Wy — Wy and W,, — W,, are independent.
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3. For 0<s<t<T, Wy — Wy ~N(0,t—s).

4. W, has continuous sample paths.

2.1.5 Poisson process

A counting process {Ct}te[o,T] is a stochastic process characterized by the following

properties.

1. C; is a non-negative integer for each t.
2. C} is non-decreasing in t.

3. C; is right continuous.

A Poisson process {Nt}te[o,T] with intensity A > 0 is a counting process characterized by

the following properties.

1. Ny=0.

2. It has independent increments, i.e., for every 0 < s < t < u < v < T, the

increments N; — Ng and N, — N, are independent.

3. The number of events in any interval of length 7 has a Poisson distribution with

intensity At, i.e., for 0 < s < ¢ < T, the increment N; — Ns ~ Poi(A(t — s)).

A waiting time 7 between consecutive jumps of a Poison process with intensity A is

exponentially distributed with mean % and the PDF is

e M for z > 0.
fx]A) =

0, for x <0.

2.1.6 Compound Poisson process

A compound Poisson process {Jt}te[o,T] is defined by

Ny
=Y &,
i=1



where {Nt}eo 77 is a Poisson process with intensity A > 0 and {;};c is a sequence of
independent and identically distributed (i.i.d.) random variables representing the corre-

sponding jump sizes which has a common distribution D.
2.2 SDE with jumps

In our work, we consider SDEs with jumps in the form
dX; = a(t, Xt)dt + b(t, Xt)th + C(t, Xt_)th, (21)
where the actual meaning is an integral equation

t t t
X, =X+ / a(s, Xs)ds + / b(s, Xs)dWs + / c(s, Xs—)dJs,
0 0 0

where a, b and ¢ are functions of two variables, W; is a Wiener process and J; is a
compound Poisson process. The integral fg a(s, Xs)ds is interpreted in the sense of Rie-
mann integral [11], the integral fot b(s, X)dWs is an Itd integral [4] and the last integral
fg c(s, Xs—)dJg can be written as vazt}”\;;iﬂ (i, Xr,— )& where Ny is a Poisson process
with intensity A , 7;’s are jump time and &;’s have a common distribution D. Here, func-
tions a, b and ¢ must satisfy the regularity condition in order to make these integrals

well-defined [8].
2.3 Itd formula

Consider the SDE with jumps
dX; = a(t, X¢-)dt + b(t, X¢- )dW,; + c(t, Xi-)dJy, (2.2)

where J; is a compound Poisson process with a corresponding Poisson process Ny and a
sequence of jump sizes {&;};cy. If f is a twice continuously differentiable function, then

the It6 formula for f(X) is given by [10]



f(Xy) = f(Xo) +/0 b(s, Xs) f(Xs)dWy + ;/0 (X% (s, Xs)ds (2.3)

+/ a(s, Xs)f (Xs)ds —|—/ (f (Xs— +c(s,Xs)éN.) — f(Xs—))dNs.
0 0

Proposition 2.3.1. [10] Let (¢¢)ier+ be a stochastic process adapted to the filtration

generated by (Y;)ier+, and such that

T
E U ]¢t|dt] <oo, forallT>0.
0

Let J; be a compound Poisson process with a corresponding Poisson process N; with
intensity A and a jump size distribution D. The expected value of the squared compound

Poisson stochastic integral can be computed as

E UOT ¢tht] —E UOT ¢t-gtht] — \E[D|E [/OT qbtdt] . (2.4)

2.4 Numerical methods

In general, a jump-diffusion SDE has a form (2.2), for ¢ € [0,7]. To find a numerical
solution for this SDE, we first construct an equidistant time discretization 0 = ty <
t1 <ty < -+ < ty = T, where N is the number of sub-intervals for [0,7], so that
the time step size is A = % and t, = nA for all n € {0,1,2,...,N}. However, for
jump-adapted numerical methods, we have to build an equidistant time discretization
0 = %Vo <t <1ty < - <ty =T with time step size A = %, draw all jump times
in [0, 7] namely 7; for i € {1,2,...,L}. Then, we combine the equidistant times and
jump times into the final time discretization 0 < tp < t; <o < --- <tgy =T, which is
{t: 3N U{ri}L . Let Y, be a numerical solution at time ¢,. For simplicity, we denote a =
a(tn, Yn),b = b(tn,Yy), ¢ = c(tn, Yn), Ap = tnt1 — tn, AW, = Wy ., — Wi, ~ N(0,A)
and AJ, = Ji, ., —Ji, = ZZR{;H &;, where & ~ D. We choose seven methods from [6]

which are described in Subsections 2.4.1- 2.4.7. The last selected method is a simplified
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version of the method in Subsection 2.4.7. For every methods, Yy is set to be Xj.

2.4.1 Euler Maruyama method
This method is sometimes called just Euler method. The Euler Maruyama method
has the form

Y1 =Y, + al, + bAW, + cAJd,.

2.4.2 Simplified Euler method

The simplified Euler method has the form

Yn+1 =Y, +aA, + bAWn + CanI/)\m

where P(AWn +VA,) = %, &y ~ D and

N | =

2.4.3 Jump-adapted Euler method

The jump-adapted Euler method has the form

Ypi1- = Yy + al\, +bAW,

and

Yn+1 = Yn+1f + C(Yn+17)(<]n+1 - Jn+17)-

2.4.4 Jump-adapted simplified Euler method

The jump-adapted simplified Euler method has the form

Ypi1— = Yo + al\, + bAW,

and

Yn+1 = Yn+1— + C(Yn+1—)(Jn+1 - Jn—f—l—)y

where P(AWn =+VA,) =

N[ =



2.4.5 Jump-adapted order two weak method

The jump-adapted order two weak method has the form

bb! 1 1
Yopro =Yoo+ aln + bAW, + = (AW,)? = A,) + 5 (aa’ + 2a"b2> A2

1 1
+5 <a’b +ab + 2b”b2> AW, A,

and
Yoi1 =Yo1- + C(YnJrlf) (Jn+1 - Jn+1,) .

2.4.6 Jump-adapted simplified order two weak method

The jump-adapted simplified order two weak method has the form

_ i bo’ T \2 1 / 1 7.2 2
Yori—- =Yn + alA, + bAW,, + ? (AWn) A, )+ 5 aa + 2a b An

1 1 AL
+3 (db +ab + 5b"b2> AW, A,

and
Yot1 = Yoqi— + c(Yat1-) (Jnt1 — Jny1-)

where P(Wn =+2A,) = % and P(AWn == %

2.4.7 Jump-adapted order two derivative free method

The jump-adapted order two derivative free method has the form
1 _ 1 _
Yii1- =Y, + 5 (a(tn, Yn) + a(tn,Yy)) An + 1 (b(tn, Y,")

+ b(tn, Y, ) 4 2b(tn, Yn)) AW,

1 _ .
+ A (b(tn, Y1) = b(tn, Y, )) ((AWR)? — A)

and
Yn+1 = Yn+1f + C(YnJrlf) (Jn+1 - Jn+17) s

with supporting values
Y, =Y, +aA, + bAW,,

11
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and

YE =Y, +aA, £by/A,.

2.4.8 Jump-adapted simplified order two derivative free method

The jump-adapted simplified order two derivative free method has the form

1 _ 1 _
Yn+1, = Yn + - (a(tna Yn) + a(tna Yn)) An + Z (b(tna Yn+)

2
+ b(t, V) 4 2b(tn, Vo)) AW,
1 ; e
+ g7 (bl Vi) = bl ¥,0) (AW - A,)

and

Yn—i—l = Yn+1— + C(Yn-‘rl—) (Jn+1 - Jn—i—l—) 5

with supporting values

Y, =Y, +al, + bAW,

and

YE =Y, +al, £b/A,,

where P(AWn =+VA,) = 1.

From now on, we call Euler Maruyama method, simplified Euler method, jump-
adapted Euler method, jump-adapted simplified Euler method, jump-adapted order two
weak metod, jump-adapted simplified order two weak method, jump-adapted order two
derivative free method and jump-adapted simplified order two derivative free method by

EM, SE, JE, JSE, JW, JSW, JD and JSD, respectively.
2.5 Weak order of convergence

For a certain numerical method, the discrete time approximation Y7 converges

weakly with order 8 to X, if for each g € C%ﬁH(R,R), there exists a positive constant
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C independent of A, such that

ew(A) :=| Elg(Xr)] — Elg(Yr)] |< CA?, (2.5)

2

for all sufficiently small A. Here, Cp(ﬂ 1) (R, R) denotes the space of 2(8+1) continuously

differentiable functions, which together with their derivative of order up to 2(5 + 1) have
polynomial growth. This means that for g € Cz(ﬁ H)(R,R), there exist constants K > 0

and r € N depending on g such that
| g9 (y) |< K1+ [y, (2.6)

forally e Rand j <2(8+1).

To find a weak order of convergence for a certain method, we have to find the
highest § that holds the inequality (2.5). In practice, we select the function g in (2.5)

and (2.6) to be the identity function. Then, perform a linear regression of
log (ew(A)) = log(C) + Blog (A), (2.7)

where log(A) is the explanatory variable and log (£,,(A)) is the response variable.



CHAPTER III

METHODOLOGY

In this chapter, we explain how we proceed our research. Section 3.1 explains
how to transform the SDE (1.3) into another SDE which has a constant drift coefficient.
Section 3.2 provides eight numerical schemes for the SDE (1.3) and the corresponding
eight numerical schemes for the transformed SDE. We test the positivity preserving of the
numerical solutions for the sixteen schemes in Section 3.3. We derive the formula for the
expectation of the exact solution in Section 3.4. Section 3.5 shows how to numerically find
weak orders of convergence for the sixteen schemes. Then, we compare their performance
in Chapter IV and conclude in Chapter V. Fig.3.1 shows a diagram of our procedure

described above.

We set parameters k = 2, § = 50, ¢ = 0.30, v = 0.80, A\ = 5, Xp = 100 and
D ~ SLogN(0,0.1,1). We choose o = % for JCEV model and of course, o = % for JCIR

model for all simulations.
3.1 Transformed approach

For a transformed approach, the regular SDE (2.1) can be transformed by (2.3).

Applying the transformation f(X;) = X/ suggested in [12] to the SDE (1.3), we obtain

t 1 [t
X=X [oXs - X g [ - X (oX) s
0 0

t t
+ / k(0 — X)(1 — )X, %ds + / ((XS_ + X, En ) - Xsl__o‘> dNs.
0 0

We substitute X}~ by U;. Therefore, the transformed SDE of (1.3) is

B (a? — a)o? -
U, = (2Ut +r(1—a) (QUt - Ut> dt

+ o(1— a)dW, + U_En,d N, (3.1)
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Choose 8 numerical schemes and find their corresponding
transformed schemes. Section 3.1
Section 3.2

Check for their positivity preserving properties of the numerical
solutions.

Numerically find their weak orders of convergence and run time.

Section 3.4
Section 3.5

Compare their performance.

Chapter IV
Chapter V

€€€L

Figure 3.1: Procedure diagram
where &y, = (1+17€x,)'~* — 1 and €y, ~ SLogA'(7i, 5%, 1).

We use the time-discretization notation from Section 2.4. Let {z,}, {01,2,.,N} bea
numerical solution of SDE (1.3) from the direct approach at time ¢, and {vn}, (012 N}
be a numerical solution of the SDE (3.1) from the transformed approach at time ¢,. For
the direct approach, we find numerical solutions z,, of (1.3) directly. For the transformed

approach, to get a numerical solution of the original SDE (1.3), we need to transformed
1

vy, back via the transformation z,, = v, . Fig. 3.2 shows a diagram of the procedure for
both direct and transformed approaches to get numerical solutions of the original SDE

(1.3).

Since there are eight methods for the direct approach, we also apply them to (3.1)
for the transformed approach. For the eight transformed schemes for (3.1), we call them
transformed Euler Maruyama scheme, transformed simplified Euler scheme, transformed
jump-adapted Euler scheme, transformed jump-adapted simplified Euler scheme, trans-
formed jump-adapted order two weak scheme, transformed jump-adapted simplified order
two weak scheme, transformed jump-adapted order two derivative free scheme and trans-
formed jump-adapted simplified order two derivative free scheme. We abbreviate them
by TEM, TSE, TJE, TJSE, TJW, TJSW, TJD and TJSD, respectively, where T stands

for “Transformed”.
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Direct Transformed
approach approach
Exact solution I Uy = th_a ﬁ E

1
_ 1«
n

. : %

Figure 3.2: Direct approach and transformed approach diagram

3.2 Numerical schemes

We use numerical schemes in this section to solve for numerical solutions of SDEs

(1.3) and (3.1).

3.2.1 EM

The EM for the SDE (1.3) has the form
Nn+1

Tpy1 = Tp + k(0 — zp) Ay, + o0 AW, + vy, Z &.
i=N,+1

3.2.2 SE

The SE for the SDE (1.3) has the form

Tnt1 = T + (0 — zp) Ay, + U:cﬁAWn + YL En ADn.

3.2.3 JE
The JE for the SDE (1.3) has the form

Tppl— = Tp + k(0 — 20) Ay + o AW,

and

Tpt+1 = Tptl1— + VTnt1-En-

3.2.4 JSE
The JSE for the SDE (1.3) has the form



Tngl— = Tp + k(0 — xn) Ay, + UQ:%AI//V\n

and
Tyl = Tptl— + VTnt1-En-
3.25 JW
The JW for the SDE (1.3) has the form
2. n2a—1
Tnt1— =Tp + k(0 — x2) Ay + cTC AW, + 7 Xn ((AWn)2 - An)
S#(0 — 2)A
5 Tn) A
1 1
+ 5( — koxy + koa(f — xy) + 50304(04 - 1)xia*2>AWnAn
and
T4l = Tntil- + YTny1-n.
3.2.6 JSW
The JSW for the SDE (1.3) has the form
NS 2 2a-1 N
Tnt1- = @n + K0 = 20) Ay + 0T AWy, + 5—% <(AWn)2 - An>
1
- 5,%2(9 B o, A
1 a L 5 3a—2 A7
+ 5( — koTy + koa(l — x,) + ot ala— 1)z )AWnAn
and
Tntl = Tnti— + VYTnt1-En.
3.2.7 JD

The JD for the SDE (1.3) has the form

1 1
Tpi1- =Tp + 51@(29 — Ty — xp) Ay + ZU(@IO‘ +z,% + 2x5) AW,

o(T4* — 7, %) (AW,)* — A,
4 A,

+

17



and

Tp4+1 = Tn+1-— + 'Yxn—i—l—gn;

with supporting values

Tn = Tp + k(0 — x0) Ay, + oxn AW,

and
a’cff =op + k(0 — zp) A, £ oz Ay
3.2.8 JSD
The JSD order two scheme for the SDE (1.3) has the form
1 1 —
Tpal. =Tp + 5,%(29 — Ty — Tn) Ay + Za(@fo‘ +z,% 4+ 220) AW,
| OB —E (AW, - A,
4/ Ay,
and

T+l = Tl + YTnt1-En,

with supporting values
Ty =n + k(0 — ) A, + Ul‘gAWn,

and

5 = x4 k(0 — 20) A, £ 028/ A,

3.2.9 TEM
Recall that for the transformed scheme En = (1 + &)Y — 1, where &,

SLogN(0,0.1,1). The TEM for the SDE (3.1) has the form

B (a2 — a)02 -
Unt+1 =Un + (211 + k(1 —«a) (9vn — vn) A,

n
Nni1

+o(1—a)AW, + v, Z &.
i=Nn+1



3.2.10 TSE
The TSE for the SDE (3.1) has the form

B ((12 — a)02 -
Unt1 =Un + (2vn + k(1 — ) (HUn — vn> A,

+ 0'(1 - Q)A/Wn + UngnA]/?\n

3.2.11 TJE
The TJE for the SDE (3.1) has the form

2 e

— 2 -
Unt1— = Up + (W + k(1 — @) («9vn e — vn>> A, +o(l—a)AW,

and

Un+tl = Upnt1— + Un—Hfgn-

3.2.12 TJSE
The TJSE for the SDE (3.1) has the form

2u,

2 2 W\ Ne¥y —~
Up4l— = Up + (M + k(1 —a) (an i Un>> A, +o(l—a)AW,

and

Upt+1 = Unti— + Unt1-—En-

3.2.13 TIW
The TJW for the SDE (3.1) has the form

o4

(W + k(1 —a) (91},:H

;((W—i—/ﬁ(l—@) (6?11,:ﬁ —vn)>
y <_(‘*2_O‘)“2+ﬂ(1—a)9 (- @ v,jlla—1>
1
2

(Wz;}g‘)”z + k(1 — a)e(lfla)?m;:j» (o(1— a))2> A2

(s ()

x o(l— a)) AW, A,

+

Un41— =Un

19



and
Un+1 = Unt1— + Un+1—gn~
3.2.14 TJSW

The TJSW for the SDE (3.1) has the form

E— ( of =)t ) (07 - vn)> Ap +o(1 — a) AW,
;( (0 k) (07 )
L (e
+e (“;@;‘“) +nll = Al )) (o(1 a))2> A2

1 (a? — a)o? a -

and

Untl = Upti— + 'Un+1—€n~

3.2.15 TJD

The TJD for the SDE (3.1) has the form

_ (@ —a)e? e
Unal_ =Up + 3 ( <21)n + k(1 —a) <9vn — vn)

and

Un+l = Unt1— + Un+1—§na
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with supporting value

R ((a ~a)o

%0 + k(1 —a) (9vn T — vn>> Ap+o(l—a)AW,.

3.2.16 TJSD

The TJSD for the SDE (3.1) has the form

Vsl = Un +1< <(0‘2_0‘)‘72 + k(1 —a) (0@;:“ —vn)>

2 20y,

(5 - (00 ) )

and

Un+tl = Upt1— + 'Un—f—l—fn;

with supporting value

2 )2 'l e
Up = Up + ((0421}04)0 +r(1—a) (9% e — vn)> Ay +o(l— a)AW,.

3.3 Test for positivity preserving

In this section, we test positivity preserving of numerical solutions to support that
our simulation do not provide the negative paths. Because fractional roots with even
denominator appear in JCIR and JCEV models, sample paths should always be positive.
If numerical solutions obtained from using a certain numerical method became negative,
we would get complex numbers as part of the numerical solutions. This indicates that
the numerical method is not valid to simulate JCIR and JCEV models. Recall that
we set parameters kK = 2, § = 50, 0 = 0.30, v = 0.80, A = 5, Xg = 100 and D ~
SLogN(0,0.1,1). We choose o = % for JCEV model and of course, a = % for JCIR
model for all simulations. We set T" to be 2, 4 and 8 and A to be %, % and %. Therefore,
for each numerical scheme, we have nine cases to simulate sample paths. For each case, we

simulate 10,000 sample paths. Hence, we simulate 90,000 sample paths for each scheme.
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If the numerical scheme provides at lease one negative sample path, we will reject that

numerical scheme.
3.4 Expectation of exact solution

To find the exact expectation of X; in (1.3), we can use the expected value of the

compound Poisson stochastic integral (2.4). For SDE (1.3), we have that

E[X,] =E[Xo] + E [/Ot k(0 — Xs)ds} +E [/Ot axgdws]

t
E Xs_dJg| . 3.2
+B | [ vxas] (52)
Then, we apply (2.4) to (3.2) and have that
t
E[X,] = Xo + K8t — (—k + YAB[D]) / E[X,] ds.
0
Let f(t) = E[X{]. Then, we have
t
F(t) = Xo + kOt + (—r +YAE [D)) / F(s)ds. (3.3)
0

To solve this ordinary differential equation (ODE), we take derivative & to (3.3) and let
A = —k+vyAE[D]. Then, we get

d
&f(t) = Kt + Af(t).
Then,
KO+ Af(t)]
S|~
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Substituting f(0) = E[Xo] = Xo and f(t) = E[X}], we have

K0 + AE[X}]| = |k0 + AXo|e?

k0 + AE[X;] = £|k0 + AXg|et
—K0 £ |kf + AXo|eAt

E X = 3.4
X, . (3.4
Applying the initial condition F [X(] = X, we have that
—kl + |kl + AX,
Xo= = + AXo| (3.5)

To satisfy (3.5), we have to choose the operator + and |kf + AXy| = (k0 + AXj), so that

kb + (k0 + AX
Ko~ (A o) _ Xo. (3.6)

From (3.4) and (3.6), we can conclude that the exact expectation of (1.3) at time ¢ is

—K0 + (K0 + AXp) e

B[X] = ] 7

(3.7)

where A = —k + YAE[D].
3.5 Finding weak orders of convergence

Recall that we set parameters kK = 2, § = 50, 0 = 0.30, v = 0.80, A = 5, Xy = 100
and D ~ SLogN(0,0.1,1). We choose o = % for JCEV model and of course, a = 3 for
JCIR model for all simulations. From (2.7), to numerically find weak order of convergence
B and intercept log(C') for each scheme, we have to perform linear regressions with various
values of A. Here, we use the same notation from Sections 2.5 and 3.1. Let E [a:ﬁ] be

the expectation of numerical solutions using a certain numerical scheme with time step

of size on the time domain [0, T]. Note that x% is a numerical solution at time 7'

1

. . . . _ -1 1 1 1 L1
In our linear regression simulation, we choose T'=1 and A = 7, g, 15, 35 and ;.

To find the expectation of numerical solution E [x%] for each value of A, we simulate 107
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sample paths to get xJA\,i for i = 1,2,...,107. Then, we approximate E [azﬁ] by

107 A
Dzt TN

E[zy] = 107

To find the expectation of the exact solution E [X7], we just substitute T'=1 and
all parameters which we already set to (3.7). Then, we receive log |E [X7] — E [24]| for
each A. Therefore, for each scheme we can perform linear regression where log (A) is
the explanatory variable and log ‘E (X7r] - E [CL‘%] ‘ is the response variable to find weak
orders of convergence  and intercepts log (C'). We collect run time for each numerical

scheme by the Matlab code tic and toc, shown in Appendix A to H.



CHAPTER IV

EXPERIMENTAL RESULTS

In this chapter, we show the positivity preserving result from Section 3.3, the

regression result and run time from Section 3.5 for both JCIR and JCEV models.
4.1 Positive sample paths

Recall from Section 3.3 that we set parameters k = 2, § = 50, ¢ = 0.30, v = 0.80,
A =5, Xg =100 and D ~ SLogN(0,0.1,1). We alsoset T € {2,4,8} and A € {1, 3, 15 }-
Thus, we have nine cases to simulate for each method. For each case, we simulate 10,000
sample paths to see if the numerical method provides any negative sample paths. We
choose a = % for JCEV model and of course, oo = % for JCIR model for all simulations.
For all sixteen numerical methods for JCIR and JCEV models, every T' € {2,4,8} and
every A € { 1> 8, 16 , all of the 10,000 sample paths yield positive numerical solutions.
Therefore, we go on with these numerical methods to find weak orders of convergence by

the procedure in Section 3.5.

Recall from Section 3.5 that for each numerical method, we simulate 107 sample

paths for each value of A € {1, 3 E? @, 6—4} to perform the linear regression to find

weak orders of convergence. For a certain method, within these 5 x 107 sample paths,
if numerical solutions became negative, we would get complex numbers which indicate
invalidity of that numerical method. Fig.4.1 shows the first 10 sample paths from EM

method and the corresponding transformed method, TEM, with 7" = 1 and A = 6—14.

Fig.4.2 - 4.8 have similar explanation to Fig. 4.1 for SE, JE, JSE, JW, JSW, JD and JSD,

respectively. For all 16 numerical methods and for all values of A € {1, 3 1—16, 3—12, 6%1

every sample path is positive.
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(c) TEM with o = % (d) TEM with o = %

Figure 4.1: 10 sample paths of EM and TEM simulations

110

(b) SE with a

t 0.6 0.8 1
TSE with a = 1
(c) TSE with a = 3 (d) TSE with o = 3

Figure 4.2: 10 sample paths of SE and TSE simulations
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1
2

(c) TJE with o= 1 (d) TJE with =3

Figure 4.3: 10 sample paths of JE and TJE simulations

120 120

(c) TISE with a = (d) TJSE with a =3

Figure 4.4: 10 sample paths of JSE and TJSE simulations



(c) TIW with o= (d) TIW with = 3

Figure 4.5: 10 sample paths of JW and TJW simulations

110 N 110

(c) TISW with «

N[ =

(d) TISW with o =

N[

Figure 4.6: 10 sample paths of JSW and TJSW simulations
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(c) TIJD with a =} (d) TJD with a =3

Figure 4.7: 10 sample paths of JD and TJD simulations

10 . 1o

(c) TISD with o =

(d) TJISD with a = 3

D=

Figure 4.8: 10 sample paths of JSD and TJSD simulations
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4.2 Weak order of convergence result

Recall from Section 3.5 that we set parameters k = 2, # = 50, o = 0.30, v = 0.80,
A =5, Xo =100 and D ~ SLogN (0,0.1,1). We choose o = % for JCEV model and of
course, o = % for JCIR model for all simulations. We use A = %, %, %, 3%, 6%1 and final

time T" = 1 to perform linear regression in order to find weak order of convergence 8 and

intercept log(C) for each method.

Fig. 4.9 and Fig. 4.10 show the regression results with A = %, %, %, 3%, & for JCIR
and JCEV models, respectively. The X-axis represents log(A) and the Y-axis represents
log }E (X7] - F [:U]%] ‘ In these figures, red and green lines are the results for order-
one numerical methods. Blue and magenta lines are the results for order-two numerical
methods. The results from the direct approach are presented by solid lines, and the results
from the transformed approach are presented by dash lines. The reference lines with slope
one and two are also provided by the black solid line and the black dash line, respectively.
From these figures, we regard the results for A = é as outliers because JW, TJW, JD
and JTD do not perfectly fit with straight lines. Notice that JW, TJW, JD and JTD are
order-two numerical methods. Therefore, for order-two numerical methods, we use the
1

a5. We show the regression results for JCIR and

regression results only for A = %, %, %, 35-

JCEV models with A = i, %, 1—16, % in Fig. 4.11 and Fig. 4.12, respectively.

From Fig.4.11 and Fig. 4.12, we can see that there are two separate groups of order-
one methods and order-two methods. The group of order-two methods is lower and more
steep than the group of order-one methods. Therefore, all of the order-two methods

provide less weak error than all of the order-one methods.

When we exclude the outliers, the dash lines always be lower than their corre-
sponding solid lines. Thus, the transformed methods can reduce weak error from their

corresponding direct methods.
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Figure 4.12: Regression results when a = % with A = %, %, %, 35
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4.2.1 Order-one regression results

Since there are no outliers in order-one methods, we use A = 7, ¢, 75,35, g1 t0
find weak orders of convergence for JCIR and JCEV models. We show their regression
results in Fig.4.13 and Fig. 4.14, respectively. From Fig.4.13 and Fig.4.14, the green
dash lines are lower than the red solid lines. This guarantees that for order-one methods,
the transformed schemes provide less weak error than their corresponding direct schemes.
Moreover, the red solid lines almost overlap with each other for each model. Therefore,
EM ,SE; JE and JSE yield almost conformable weak errors. From Fig.4.13 and Fig. 4.14,

every regression result for order-one methods seems to have slope 1 when we compare

them with the reference line.

Table 4.1 and Table 4.2 show the regression results for order-one numerical methods
(EM, TEM, SE, TSE, JE, TJE, JSE and TJSE), which are weak orders of convergence
and intercepts log(C') where A are i, é, %, 3% and 6%1 for both JCIR and JCEV models, re-
spectively. The computed weak orders of convergence from order-one numerical methods
for JCIR and JCEV models are in the close interval [0.9052,1.0254] and [0.9020, 1.0267],
respectively. Therefore, these order-one numerical methods provide weak order of con-
vergence 1 as the theory says. For JCIR and JCEV models, TJE provides the lowest
weak order of convergence, and EM provides the highest weak order of convergence. The
value of intercepts for JCIR and JCEV models are in the close interval [2.1020,2.6959]
and [1.9830, 2.6990], respectively. TJE provides the lowest intercept for JCIR model, and
TJSE provides the lowest intercept for JCEV model. EM provides the highest intercept
for both JCIR and JCEV models. From all of the regression results of order-one meth-
ods, the most accurate order-one methods for JCIR and JCEV model are TSE, TJE and

TJSE.
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Numerical Weak orders Intercepts
scheme  of convergence 5 log(C)

EM 1.0254 2.6959
TEM 1.0184 2.5105
SE 1.0232 2.6904
TSE 1.0124 2.3710
JE 0.9082 2.2801
TJE 0.9052 2.1020
JSE 0.9102 2.2822
TJSE 0.9057 2.1045

Table 4.1: The regression results of order-one schemes when o = % with
AL 1N ST
T 418116732’ 64

Numerical Weak orders Intercepts

scheme  of convergence 5 log(C')
EM 1.0267 2.6990
TEM 1.0179 2.4081
SE 1.0231 2.6906
TSE 1.0070 21717
JE 0.9074 2.2785
TJE 0.9020 1.9896
JSE 0.9077 2.2734
TJSE 0.9025 1.9830

Table 4.2: The regression results of order-one schemes when o = % with
Al 1 1 1 1

T 4787167327 64
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4.2.2 Order-two regression results

L
64>

111 1
4> 8167 32

Since order-two methods provide outliers when A = we choose A =
to find weak orders of convergence for order-two methods. Fig.4.15 and Fig.4.16 show
order-two regression results with A = %, %, %, 3—12 for JCIR and JCEV models, respec-
tively. The magenta dash lines are lower than the blue solid lines. This guarantees that
for order-two methods, the transformed schemes provide less weak error than their cor-
responding direct schemes. As for JCIR model, the blue solid lines almost overlap with
each other. Therefore, JW, JSW, JD and JSD yield quite indistinguishable weak errors.
We can see that TJW provides lowest weak error. As for JCEV model, the regression
results from JSD and TJSD provide highest weak errors, and TJW and TJSW provide
the lowest weak errors. However, the regression results from JW, JSW and JD are almost

overlap with each other. Therefore, JW, JSW and JD yield quite indistinguishable weak

€eITors.

Table 4.3 and Table 4.4 show the regression results for order-two numerical methods
(JW, TJIW, JSW, TJSW, JD, TJD, JSD and TJSD), which are weak orders of conver-

1, & and 35 for both JCIR and JCEV

gence ( and intercepts log(C) where A are %,
models, respectively. From Table 4.3 and Table 4.4, there are no order-two methods
whose weak orders of convergence reach 2. As for JCIR model, the computed weak or-
ders of convergence from order-two methods are in the close interval [1.7058, 1.8563]. JW
and JD provide the highest weak orders of convergence, and TJSW provides the lowest
weak order of convergence. The intercepts are in the close interval [0.9929,1.8150]. JW
and JD provide the highest intercepts, and TJSW provides the lowest intercept. As for
JCEV model, the weak orders of convergence from order-two methods are in the close
interval [1.3963,1.8887]. JW and JD provide the highest weak orders of convergence,
and TJSD provides the lowest weak order of convergence. The intercepts are in the close

interval [0.4258,1.8727]. JW and JD provide the highest intercepts, and TJSW provides

the lowest intercept.

For JCIR and JCEV models, JW and JD provide the highest weak order of con-



37

vergence with the same regression result, but their corresponding transformed schemes,
TJD and TJW provide difference regression result. TJD provides higher weak order of

convergence than TJW, but TJW provides less weak error than TJD.

From all regression results of order-two methods, the most accurate order-two nu-
merical method for JCIR model is TJW, and the most accurate order-two numerical

methods for JCEV model are TJW and TJSW.
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Numerical Weak orders Intercepts
scheme  of convergence 5 log(C)

JW 1.8563 1.8150
TJW 1.7923 1.1571
JSW 1.7979 1.7049
TISW 1.7058 0.9929

JD 1.8563 1.8150
TJD 1.8318 1.4896
JSD 1.7148 1.7718
TJSD 1.7290 1.3694

Table 4.3: The regression results of order-two methods when o = % with
A L\ TN N

— 4>8>16 32
Numerical Weak orders Intercepts

scheme  of convergence §  log(C)
JW 1.8887 1.8727
TIW 1.8156 0.8344
JSW 1.7758 1.6616
TISW 1.5983 0.4258
JD 1.8887 1.8727
TJD 1.8667 1.4138
JSD 1.6021 1.4962
TJSD 1.3963 1.1392

Table 4.4: The regression results of order-two schemes when o = % with

111 1
A_4’8’16’32
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4.3 Run times

Table 4.5 and Table 4.6 show the run times of all numerical methods for both JCIR
and JCEV models, respectively. Note that the unit of run times in this subsection is x 103

seconds.
As for JCIR model, run times for A = %, %, %, é and 6—14 are in the close intervals
[0.3874,1.5089], [0.7702,1.6628], [1.3547,2.7691], [1.4258, 4.9013] and [1.5860, 9.0855], re-

spectively. TSE provides lowest run time for A = % and %. JE provides the lowest run

time for A = %6 and 3% TJSE provides the lowest run time for A = 6%1. JD provides the

1 1

highest run time for A = %. EM provides the highest run time for A = %, ig> 33 and 6—14.

As for JCEV model, run times for A = i, %, %, % and é are in the close intervals
[0.4034, 1.5530], [0.7813,1.7240], [1.3731, 2.8058], [1.4747,4.9687] and [1.6223,9.1591], re-
spectively. TSE provides the lowest run time for A = %. SE provides the lowest run time
for A = %. JE provides the lowest run time for A = 1—16. TJE provides the lowest run
time for A = 3—12 and é. TJW provides the highest run time for A = %. JSD provides

the highest run time for A = %. EM provides the highest run times for A = %, 3% and

&

Fig. 4.17 and Fig. 4.18 show run times of all 16 numerical schemes for both JCIR and
JCEV models, respectively. For JCIR and JCEV models, the group of highest-run-time-
schemes consists of EM, TEM, SE and TSE, and the group of the lowest-run-time-schemes
consists of JE, TJE, JSE and TJSE.

From all of run times result for both JCIR and JCEV models, we can see that for
the high values of A (A = %, %)7 the non-jump-adapted schemes, which are EM, TEM,
SE and TSE, tend to run faster than the jump-adapted schemes. However, for the value
of small A (A = %6, 3%, 6%1), the jump-adapted schemes, which are JE, TJE, JSE, TJSE,
JW, TIJW, JSW, TJSW, JD, TJD, JSD and TJSD, tends to run faster than the non-jump-
adapted schemes. When A become smaller, JE, TJS, JSE and TJSE tend to consume

less time than the other schemes. Comparing run time between the simplified schemes



41

(JSE, JSW, JSD, TJSE, TJSW and TJSD) and the corresponding non-simplified schemes
(JE, JW, JD, TJE, TJW and TJD), we find that simplified methods do not significantly

reduce run time.



Numerical schemes

Run times (x10% seconds)

Run times (x 1.0e+03 second)

A= % A= % A= 1—16 A= % A= é
EM 1.0682 1.6628 2.7691 4.9013 9.0855
TEM 1.0597 1.6604 2.7155 4.8078 8.8945
SE 0.4433 0.7910 1.5298 3.1057 6.2547
TSE 0.3874 0.7702 1.5486 3.0848 6.1581
JE 1.3226 1.3484 1.3547 1.4258 1.5945
TJE 1.3137 1.3381 1.3762 1.4405 1.5972
JSE 1.3296 1.3368 1.3593 1.4264 1.6445
TJSE 1.3075 1.3236 1.3752 1.4414 1.5860
JW 1.4692 1.5541 1.6931 1.9703 2.5309
TIJW 1.5014 1.5843 1.7450 2.0689 2.6781
JSW 1.4892 1.5605 1.7111 2.0094 2.6256
TJSW 1.4312 1.5004 1.6280 1.8761 2.3540
JD 1.5089 1.5872 1.6811 1.9949 2.4479
TJD 1.3537 1.3855 1.4512 1.6093 1.8839
JSD 1.4438 1.5109 1.6549 1.9273 2.4821
TJSD 1.4526 1.4948 1.5996 1.8301 2.2603
Table 4.5: The run time of all 16 schemes when o = %
10
9
8
7
6
mA=1/4
5 mA=1/8
mA=1/16
4 A=1/32
3 HA=1/64

EM TEM SE TSE

JE

Numerical schemes

Figure 4.17: Run times when a =

1

2

TIE JSE TISE JW TIW JSW TISW ID TID JSD TISD



Numerical schemes

Run times (x10% seconds)

Run times (x 1.0e+03 second)

A= % A= % A= 1—16 A= % A= é
EM 1.1052 1.6744 2.8058 4.9687 9.1591
TEM 1.0828 1.6688 2.7531 4.8743 8.9742
SE 0.4662 0.7813 1.5661 3.1244 6.2211
TSE 0.4034 0.8037 1.5596 3.0964 6.2498
JE 1.3134 1.3276 1.3731 1.4803 1.7160
TJE 1.3285 1.3478 1.3900 1.4747 1.6223
JSE 1.3015 1.3645 1.3843 1.5107 1.7387
TJSE 1.3727 1.3816 1.4438 1.5520 1.7838
JW 1.5411 1.6190 1.8170 2.1941 2.9708
TIW 1.5530 1.6471 1.8405 2.2040 2.9889
JSW 1.5316 1.6469 1.8649 2.2882 3.1274
TJSW 1.4713 1.5516  1.6972 2.0012 2.6336
JD 1.5417 1.6722 1.8902 2.2681 3.2163
TJD 1.4190 1.4859 1.6026 1.8460 2.3258
JSD 1.0460 1.6100 1.7240 1.9070 2.6100
TJSD 1.4967 1.6609 1.7374 2.0668 2.7347
Table 4.6: The run time of all 16 schemes when o = %
10
9
8
7
6
mA=1/4
5 mA=1/8
mA=1/16
4 A=1/32

EM TEM SE TSE

Numerical schemes

Figure 4.18: Run times when a =

TIE JSE TISE W TIW ISW TISW ID TID IsD TISD

3
4

mA=1/64



CHAPTER V

CONCLUSION

In this chapter, we conclude the results from our simulation and suggest possible

future work.
5.1 Conclusions

o The sixteen schemes are valid to approximate for numerical solutions of the JCIR

and JCEV models.
+ The transformation f(X;) = X}~ reduces the weak error from simulations.

o Simplified methods do not significantly reduce run time when compared with the

corresponding non-simplified methods.
o For JCIR model, TJW tends to provide lower weak error than the other schemes.

e For JCEV model, TJW and TJSW tend to provide lower weak error than the other

schemes.

o For both JCIR and JCEV model, JD and JW provide the same highest weak order

of convergence.

e For both JCIR and JCEV model, JE, TJE, JSE and TJSE provide the lowest run

times.

o We suggest TJW or TJSW to simulate numerical solutions for JCIR and JCEV
models, because they tend to give lower weak errors than the other schemes and

they consume reasonably low run time.

5.2 Future work

In this work, we focus on weak convergence of numerical methods. However, there is

another type of convergence for numerical methods called “strong convergence”. To find a
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strong order of convergence, we need to find the exact solution of the SDE. Unfortunately,
we do not have a closed form solution of the SDE (1.3). However, we may approximate
the exact solution of the SDE (1.3) and numerically find the strong order of convergence.
Moreover, higher order method can be consider to numerically solve the SDE (1.3). As
for the model, to make it more realistic, the jump size distribution can be change and the
Poisson process can be inhomogeneous, i.e., the intensity rate can be a function varying in
time or another stochastic process. Also, other parameters in the model can be modeled
by a system of SDE. In addition, the source of natural noises in the model can be changed.

For example, a fractional Brownian motion can be used instead of the Wiener process.
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In appendix, we show Matlab code to simulate for test for positivity preserving and

findind weak order of convergence of EM, JEM, TEM and TJE. For the other scheme,

we simulate with the same structure of code but difference only in updated numerical

schemes.

N O Ot = W

10
11
12
13
14
15
16
17
18
19
20
21
22
23

APPENDIX A : EM simulation for test positivity preserving matlab code

randn('state',100)

rand('state',100)

alpha 0.5; % 0.5 for CIR, 0.75 for CEV

kappa = 2 ; theta =1 ; sigma = 1.5 ; gamma = 0.5;

Szero 2;

lambda = 5; mu_ln = 0; sigma 1n = 0.1;

T =1;

M = 10000;

mean_Xi = exp(mu_ln + 0.5%(sigma_1n"2)) - 1;

dt_step = [1/4, 1/8, 1/16]; %The size of each step size
%Defind function

a = @(x) kappa*(theta-x);

b = @(x) sigma*(x~alpha);

c = 0(x) gammaxx;

Time = [2,4,8];
P_count = zeros(length(Time),length(dt_step));
for k=1:length(Time)

T = Time(k);

for p = 1:length(dt_step)




24
25
26

27
28
29
30
31
32
33
34
35

36
37

38
39
40
41
42
43
44
45
46
47
48
49
50

end

end

disp(P_

dt = dt_step(p);
N = T/dt;
count = 0; 7 the number of invalid paths (negative at

least once)

for i = 1:M
Stemp = Szero;
for j = 1:N

Winc = sqrt(dt)*randn;

poi = poissrnd(lambdaxdt);

if poi ==
Xi = 0;
else
Xi = sum(lognrnd(mu_ln,sigma_ln, [1,poil)-ones(1,
poi));
end

Stemp = Stemp + a(Stemp)*dt + b(Stemp)*Winc + c(
Stemp) *X1;
if Stemp < 0
count = count+1;
break; % go to the next i
end
end
end
P_count(k,p) = count;
k

P

count)

20
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(2 B )

o o N O

10
11
12
13
14
15
16

17
18
19

20
21
22
23
24

eval(sprintf('save P1_EM 0.50_test P_count'));

o1

APPENDIX B : JEM simulation for test positivity preserving matlab code

randn('state',100)

rand('state',100)

alpha = 0.75; % 0.5 for CIR, 0.75 for CEV

kappa = 2 ; theta 50 ; sigma = 0.3; gamma = 0.8;

Szero 100;

lambda = 5; mu_In = 0; sigma_1ln = 0.1;

M = 10000; % the number of sample paths

Time = [2,4, 8];

dt_step = [1/4, 1/8, 1/16];

P_count = zeros(length(Time),length(dt_step));
for 1=1:length(Time)
T = Time(1l);
for p = 1:length(dt_step) % take
various timesteps
dt = dt_step(p);
count = 0;
0ldGrid = 0:4dt:T; %% construct a jump-

adapted time discretization

for k = 1:M
ei = [1; Yol
t_jump = 0; hh
while(1) oo

eii = exprnd(1l/lambda); %/ exponential random
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26

27
28
29

30
31
32

33

34
35
36

37
38
39
40
41
42
43
44

45
46

variable (jump length)
t_jump = t_jump + eii; %% increase
distant of jump time t 7777
if(t_jump > T) %% determine that t
from exponential is not more than T
break; Tots
else
ei = [ei eiil; %% increase the list of
jump time
end
end
t_jump = cumsum(ei); %% at any t is
increase
newGrid=union(oldGrid,t_jump) ; %% combine jump
time and the time
L = length(newGrid)-1; % L steps
dgrid = diff(newGrid); %Differences and

approximate derivatives

Stemp = Szero;

for j 1:L
WWinc = sqrt(dgrid(j))*randn();
if Stemp < O
count=count+1;
break;
end
Stemp = Stemp + kappa*(theta - Stemp)*dgrid(j) +
sigmax* (Stemp~alpha)*sqrt(dgrid(j))*randn();
if any(t_jump - newGrid(j) == 0)

Xi = lognrnd(mu_ln,sigma_ln)-1;

52
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48
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50
51
52
53
54
55
56
o7

Stemp = Stemp + gamma*Stemp*Xi;

end

end
end

P_count(l,p)= count;

end
end
disp(P_count)

eval(sprintf('save P3_JEM 0.75 P _count'));

23

APPENDIX C : EM simulation for finding weak order of convergence and running

time matlab code

N O Ot = W

10
11
12
13
14
15

rand('state',100)

randn('state',100)

tic

alpha = 0.5; % 0.5 for CIR, 0.75 for CEV

kappa = 2 ; theta = 50 ; sigma = 0.3; gamma = 0.8;

Szero 100;

lambda = 5; mu_ln = 0; sigma_ln = 0.1;

T =1,

=
1]

1077;

mean_Xi = exp(mu_ln + 0.5%(sigma_1n"2)) - 1;

dt_step = [1/4,1/8,1/16,1/32,1/64]; %The size of each step size

%Defind function

a = @(x) kappax(theta-x);
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40
41
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43
44

o4

b = @(x) sigma*(x~alpha);

c = @(x) gammax*x;

S = zeros(length(dt_step),1);
for p = 1:length(dt_step)

final Stemp = zeros(M,1);
dt = dt_step(p);

N = T/dt;

for i = 1:M

Stemp = Szero;

for j=1:N
Winc = sqrt(dt)*randn();

poi = poissrnd(lambdaxdt);

if poi ==
Xi = 0;
else
Xi = sum(lognrnd(mu_ln,sigma 1n, [1,poi])-ones(1,poi)
%
end

Stemp = Stemp + a(Stemp)*dt + b(Stemp)*Winc ...
+ c(Stemp)*Xi;
end
final Stemp(i) = Stemp;
end
S(p) = mean(final Stemp);

%

end

%disp(S)
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52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

95

Ex_exact = (-kappa*theta + ...
(kappa*theta + (-kappat+gamma*lambda*mean Xi)*Szero)*exp((-
kappatgamma*lambda*mean Xi)*T)) ...
/(-kappa + gamma*lambda*mean Xi) ;
Serr = abs(S - Ex_exact);
Dtvals = dt_step;

Yol

A = [ones(length(dt_step),1), log(Dtvals)']; rhs = log(Serr);
sol = A\rhs;

q = s0l(2);

resid = norm(A*sol - rhs);

time = toc;

figure(1)

loglog(Dtvals,Serr, '—*')

saveas(gcf,'G_01_EM 50_10_new.png')

eval(sprintf('save 01 _EM50_10_new Serr Dtvals q sol resid time'));
rand('state',100)

randn('state',100)

tic

alpha = 0.5; % 0.5 for CIR, 0.75 for CEV

kappa = 2 ; theta = 50 ; sigma = 0.3; gamma = 0.8;
Szero = 100;

lambda = 5; mu_In = 0; sigma_ln = 0.1;

T =1,
M =1077;
mean_Xi = exp(mu_ln + 0.5%(sigma_1n~2)) - 1;
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dt_step = [1/4,1/8,1/16,1/32,1/64]; %The size of each step size

%Defind function

a = 0(x) kappa*(theta-x);

b = @(x) sigma*(x~alpha);

c = @(x) gammax*x;

S = zeros(length(dt_step),1);
for p = 1:length(dt_step)

final Stemp = zeros(M,1);
dt = dt_step(p);

N = T/dt;

for i = 1:M

Stemp = Szero;

for j=1:N
Winc = sqrt(dt)*randn();

poi = poissrnd(lambdaxdt);

if poi ==
Xi = 0;
else
Xi = sum(lognrnd(mu_ln,sigma 1n, [1,poil)-ones(1,poi)
)
end

Stemp = Stemp + a(Stemp)*dt + b(Stemp)*Winc ...
+ c(Stemp)*Xi;
end
final Stemp(i) = Stemp;
end

S(p) = mean(final_Stemp);
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end

%disp(S)

Ex_exact = (-kappa*theta + ...

(kappa*theta + (-kappa+gamma*lambda*mean Xi)*Szero)*exp((-

kappatgamma*lambda*mean Xi)*T)) ...

/(-kappa + gamma*lambda*mean Xi) ;
Serr = abs(S - Ex_exact);
Dtvals = dt_step;
oo
A = [ones(length(dt_step),1), log(Dtvals)']; rhs = log(Serr);
sol = A\rhs;
q = s0l(2);
resid = norm(A*sol - rhs);
time = toc;
figure(1)
loglog(Dtvals,Serr, '—*')
saveas(gcf,'G_01_EM 50_10_new.png')
eval(sprintf('save 01 _EM50_ 10 new Serr Dtvals g sol resid time'));

APPENDIX D : JEM simulation for finding weak order of convergence and run-

ning time matlab code

1
2
3

randn('state',100)
rand('state',100)

tic
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10
11
12
13
14
15
16
17
18
19
20

21
22
23
24

25
26
27
28
29

30

alpha = 0.5; % 0.5 for CIR, 0.75 for CEV

kappa = 2 ; theta = 50 ; sigma = 0.3; gamma = 0.8;
Szero = 100;

lambda = 5; mu_In = 0; sigma_ln = 0.1;

T =1;

M= 1077, % the number of sample paths
mean_Xi = exp(mu_ln + 0.5%(sigma_1n"2)) - 1;

dt_step [1/4,1/8,1/16,1/32,1/64];
S = zeros(length(dt_step),1); %mean

%Defind function

a = @(x) kappax(theta-x);
b = @(x) sigmax(x~alpha);
c = 0(x) gammaxx;

for p = 1:length(dt_step)
timesteps
SM final = zeros(M,1);

dt = dt_step(p);

0l1dGrid = 0:4dt:T;
time discretization
for k = 1:M
ei = [1;
t_jump = O;
while(1)
eii = exprnd(1/lambda);
variable (jump length)

t_jump = t_jump + eii;

o8

%#The size of each step size

of final Stemp

% take various

%% construct a jump-adapted

oo
Yol
oo

%% exponential random

%% increase distant
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33
34

35
36
37
38

39
40
41

42
43
44
45
46

47
48
49
50
51
52
53
54

29

of jump time t 7777
if(t_jump > T) %% determine that t

from exponential is not more than T

break; YAA
else
ei = [ei eiil; %% increase the list of
jump time
end
end
t_jump = cumsum(ei); %% at any t is increase
newGrid=union(oldGrid,t_jump) ; %/ combine jump time
and the time
L = length(newGrid)-1; % L steps
dgrid = diff(newGrid); %Differences and

approximate derivatives
Stemp = Szero;
for j = 1:L

Y%Winc

sqrt(dgrid(j))*randn();

Stemp = Stemp + a(Stemp)*dgrid(j) + b(Stemp)*sqrt(dgrid
(j))*randn();
if any(t_jump - newGrid(j+1) == 0)
Xi = lognrnd(mu_ln,sigma_1n)-1;
Stemp = Stemp + c(Stemp)*Xi;
end
end

SM_final(k) = Stemp;

end

S(p) = mean(SM_final);
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p

end
Ex_exact = (-kappa*theta + ...
(kappa*theta + (-kappatgamma*lambda*mean_Xi)*Szero)*exp

((-kappatgamma*lambda*mean Xi)*T)) ...

/(-kappa + gamma*lambda*mean Xi);
Serr = abs(S - Ex_exact);
Dtvals = dt_step;
Yoo
A = [ones(length(dt_step),1), log(Dtvals)']; rhs = log(Serr);
sol = A\rhs;
q = s0l(2);
resid = norm(A*sol - rhs);
figure(3)
loglog(Dtvals,Serr, '—*')

saveas(gcf,'G_03_JEM 50 10 IM.png')

eval(sprintf ('save 03_JEM50 10 _IM Serr Dtvals q sol resid time '))

APPENDIX E : TEM simulation for test positivity preserving matlab code

randn('state',100)

rand('state',100)

alpha = 0.5; % 0.5 for CIR, 0.75 for CEV

kappa = 2 ; theta = 50 ; sigma = 0.3; gamma = 0.8;
Szero = 100;

lambda = 5; mu_In = 0; sigma_ln = 0.1;
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M = 10000; % the number of sample paths

Time = [2,4, 8];
dt_step = [1/4, 1/8, 1/16];

P_count = zeros(length(Time),length(dt_step));

for k = 1:length(Time)
T = Time(k);
for p = 1:length(dt_step)

dt = dt_step(p);

N = T/dt;
count = 0;
for i = 1:M

Stemp = Szero~(l-alpha);
for j=1:N
if Stemp<O0
count=count+1;
break;
end
Winc = sqrt(dt)*randn();

poi = poissrnd(lambdaxdt);

if poi ==
Xi = 0;
else
Xi =
poi));
end

Stemp = Stemp+(0.5*(1-alpha)*(-alpha)*(Stemp~ ((-

alpha-1)/(1-alpha)))*abs(sigma*Stemp~ (alpha/(1-

alpha)))~2 ...

sum(lognrnd (mu_ln,sigma_1n, [1,poi])-ones(1,
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+kappa* (theta-Stemp~(1/(1-alpha)))*(1-alpha)*(
Stemp~ ((-alpha)/(1-alpha))))*dt ...
+ sigma*(l-alpha)*Winc;
if poi =0
Stemp = Stemp +((Stemp~(1/(1-alpha))+gamma*Stemp
~((1/(1-alpha)))*Xi)~(1-alpha)-Stemp)*poi;

end

end
end
P_count (k,p)=count;
end
end
disp(P_count)

eval(sprintf('save PT1 TEM 0.5 P_count'));

APPENDIX F : TJE simulation for test positivity preserving matlab code

randn('state',100)

rand('state',100)

alpha = 0.75; % 0.5 for CIR, 0.75 for CEV
kappa = 2 ; theta = 50 ; sigma = 0.3; gamma = 0.8;
Szero = 100;

lambda = 5; mu_In = 0; sigma_ln = 0.1;

M = 10000; % the number of sample paths
Time = [2,4,8];

dt_step = [1/4, 1/8, 1/16];
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P_count = zeros(length(Time),length(dt_step));

a = @(y) 0.5%(alpha™2 - alpha)*sigma™2/y ...
+ kappa*(theta- y~(1/(1-alpha)))*(1l-alpha)*y~ (-alpha/(1-alpha)
);
b = sigma*(1-alpha);
c = 0(y,Xi) ((y~(1/(1-alpha))*(1+gamma*Xi)).” (1-alpha)-y);
for 1 = 1:length(Time)

T = Time(l);
for p = 1:length(dt_step) % take
various timesteps
dt = dt_step(p);
count = 0;
0ldGrid = [0:dt:T]; %% construct a jump-

adapted time discretization

for k = 1:M
ei = [1; Yoo
t_jump = 0; Dot
while(1) Tolh
eii = exprnd(1/lambda); %% exponential random

variable (jump length)

t_jump = t_jump + eii; %% increase
distant of jump time t 7777

if (t_jump > T) %% determine that t

from exponential is not more than T

break; hols
else
ei = [ei eii]l; %% increase the list of
jump time
end
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t_jump = cumsum(ei); %% at any t is

increase

newGrid=union(oldGrid,t_jump); %% combine jump

time and the time

L = length(newGrid)-1; % L steps
dgrid = diff (newGrid);

approximate derivatives

Stemp = Szero~(1-alpha);
for j = 1:L
Winc = sqrt(dt)*randn();
Stemp = Stemp + a(Stemp)*dt + b*Winc;
if any(t_jump - newGrid(j) == 0)
jump if step j is a jumpt time
Xi = lognrnd(mu_ln,sigma 1n)-1;
Stemp = Stemp + c(Stemp,Xi);
end
if Stemp~(1/(1-alpha)) < O
count=count+1;
break;
end

end

end
P _count(l,p) = count;
end
end
eval(sprintf('save PT3 TJEM 0.75 P_count'));

disp(P_count)

%Differences and

%% add a
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APPENDIX G : TEM simulation for finding weak order of convergence and

randn('state',100)

rand('state',100)

tic
alpha = 0.5; % 0.5 for CIR, 0.75 for CEV
kappa = 2 ; theta = 50 ; sigma = 0.3; gamma = 0.8;

Szero = 100;

lambda = 5; mu_In = 0; sigma_1ln = 0.1;

T =1;

M= 10"7;

mean_Xi = exp(mu_ln + 0.5%(sigma_1n"2)) - 1;

dt_step = [1/4, 1/8, 1/16, 1/32, 1/64]; %The size of each step

size
%Defind function
a = @(y) 0.5x(alpha”2 - alpha)*(sigma~2)/y ...
+ kappa*(theta- (y~(1/(1-alpha))))*(1-alpha)*(y~(-alpha
/(1-alpha)));
b = sigma*(1-alpha);
c =0y y;
S = zeros(length(dt_step),1);

for p = 1:length(dt_step)
final Stemp = zeros(M,1);
dt = dt_step(p);
N = T/dt;
for i = 1:M

Stemp = Szero~(1-alpha);




26
27
28
29
30
31
32

33
34
35

36
37
38

39
40
41
42
43
44
45
46
47
48

49
50
51

66

for j=1:N
Winc = sqrt(dt)*randn();

poi = poissrnd(lambdaxdt);

if poi ==
Xi = 0;
else
Xi = lognrnd(mu_ln,sigma 1n, [1,poi])-ones(1,poi)

Xi_sum = O;
for n = 1:length(Xi)
Xi sum = Xi_sum + ((1+gamma*Xi(n))~(1-alpha)
71\
end
end
Stemp = Stemp + a(Stemp)*dt + b*Winc + c(Stemp)*
Xi_sum;
end
final Stemp(i) = Stemp~(1/(1-alpha));
end
S(p) = mean(final Stemp);
p
end

%disp(S)

Ex_exact = (-kappaxtheta + ...
(kappa*theta + (-kappatgammaxlambda*mean_Xi)*Szero)*exp
((-kappat+gamma*lambdaxmean_Xi)*T)) ...
/(-kappa + gamma*lambda*mean Xi) ;
Serr = abs(S - Ex_exact);

Dtvals = dt_step;
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Yol

A = [ones(length(dt_step),1), log(Dtvals)']; rhs =
sol = A\rhs;

q = sol(2);

resid = norm(A*sol - rhs);

time = toc;
figure(11)
loglog(Dtvals,Serr, '—*')

saveas(gcf,'G_0T1 TEM 0.50 10 _IMi.png')

)

eval(sprintf ('save 0T1 TEM50 10 IM1 Serr Dtvals g sol resid time')
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log(Serr);

APPENDIX H : TJE simulation for finding weak order of convergence and run-

ning time matlab code

[ B )
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randn('state',100)

rand('state',100)

tic

alpha = 0.5; % 0.5 for CIR, 0.75 for CEV

kappa = 2 ; theta = 50 ; sigma = 0.3; gamma = 0.8;
Szero = 100;

lambda = 5; mu_In = 0; sigma_ln = 0.1;

M=10"7; T =1;

mean_Xi = exp(mu_ln + 0.5%(sigma_1n"2)) - 1;

dt_step

size

[(1/4, 1/8, 1/16, 1/32, 1/64]; 7The size of each step
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S = zeros(length(dt_step),1); %mean of final Stemp
%Defind function
a = @(x) 0.5xalpha*(alpha-1)*(sigma~2)/x + kappa*(1-alpha)*(theta
*(x~(-alpha/(1-alpha))) - x);
b = @(x) sigma*(l-alpha);
c = @(y,Xi) (y~(1/(1-alpha))*(1+gamma*Xi))~(1-alpha)-y;
for p = 1:length(dt_step) % take various
timesteps
SM_final = zeros(M,1);
dt = dt_step(p);
0ldGrid = 0:dt:T; %% construct a jump-adapted
time discretization
for k = 1:M
ei = []; hto
t_jump = 0; Wo
while(1) oo
eii = exprnd(1/lambda); %) exponential random
variable (jump length)
t_jump = t_jump + eii; %% increase distant
of jump time t 7777
if (t_jump > T) %) determine that t
from exponential is not more than T
break; YAA
else
ei = [ei eiil; %% increase the list of
jump time
end
end
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t_jump = cumsum(ei); %% at any t is increase
newGrid=union(oldGrid,t_jump) ; %/ combine jump time

and the time

L = length(newGrid)-1; % L steps
dgrid = diff(newGrid); JDifferences and

approximate derivatives

Stemp = Szero~(1-alpha);

for j 1:L
Winc = sqrt(dgrid(j))*randn();
Stemp = Stemp + a(Stemp)*dgrid(j) + b(Stemp)*Winc;
if any(t_jump - newGrid(j+1) == 0)
Xi = lognrnd(mu_ln,sigma_ln)-1;
Stemp = Stemp + c(Stemp,Xi);
end
end
SM_final(k) = Stemp~(1/(1-alpha));
end
S(p) = mean(SM_final);
p
end
Ex_exact = (-kappaxtheta + ...
(kappa*theta + (-kappatgammaxlambda*mean Xi)*Szero)*exp
((-kappat+gamma*lambda*mean Xi)*T)) ...
/(-kappa + gammaxlambda*mean Xi);
Serr = abs(S - Ex_exact);
Dtvals = dt_step;

Yol

A = [ones(length(dt_step),1), log(Dtvals)']; rhs = log(Serr);
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sol = A\rhs;
q = sol(2);
resid = norm(Axsol - rhs);

time = toc;

figure(14)

loglog(Dtvals,Serr, '—*')
saveas(gcf,'G_0T3_TJEM 50 _10_IM new.png')

eval (sprintf ('save 0T3_TJEM50_10_IM new Serr Dtvals q sol resid

time'));
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