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The multivariate curve resolution-alternative least square (MCR-ALS) algorithm was 

modified with sample insertion constraint. This developed method was proposedly used to 
deconvolute the overlapping signals in Surface enhance Raman attering (SERS) measurement. 
The developed method was elucidated with the spectral data simulated by using Gaussian 
distribution function to generate two independent peaks which correspond to capping agent 
and analyte, respectively. The spectrum of the two peaks was generated with different 
overlapping levels (RS = 0 – 1.50) and concentration ratio of analyte and capping agent 
concentration at 0.01 – 1.00. In MCR-ALS with sample insertion constraint, the number of 
capping agent spectra were added in the range of 10 – 100 times. After excluding the signal 
from the capping agent, the calibration model of the analyte was built with R2 > 0.92 in all 
conditions. The obtained calibration model is dramatically improved compared with the 
model generated using either conventional background subtraction or original MCR-ALS. In the 
case, the appropriate number of added spectra was automatically optimized. Furthermore, our 
developed method was performed on a real SERS measurement to quantify carbofuran 
(analyte) by using azo-coupling reaction with p-ATP (capping agent) on the silver nanoparticles 
as SERS substrate. The calibration model was generated with R2 values = 0.99 and LOD = 28.19 
ppm which highly improved with the conventional methods. To access the performance of the 
calibration model, the model was used to estimate the concentrations of carbofuran in an 
external validation set. It was found that root mean square error (RMSE) of prediction was only 
2.109 and R2 = 0.97. 
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CHAPTER I 

INTRODUCTION 

1.1 Problem and background 

Surface-enhanced Raman scattering (SERS) spectroscopy is a rapid and 

ultrasensitive technique for detecting the vibrational signatures of target molecules. 

This technique has dramatically gained considerable attention in recent years due to 

its versatility and high selectivity and sensitivity1-4. To enhance Raman scattering 

efficiency, a target molecule should diffuse close proximity to a surface of metallic 

nanostructures such as Ag, Au or Pt. 5-10 The appropriate types of metal should 

complementally depend on the frequency of a laser light source in order to generates 

strong local electromagnetic near-field. 11-14 Although SERS has the potential to be 

used as a general sensing platform, but its poor selectivity is an important limitation 

for quantifying the target analytes in the complex matrices.  

To overcome the limitation, an integration step with separation of the sample 

was employed to circumvent this issue. However, this additional separation step 

involves complicated route, time-consuming and some of analytes might be lost 

during the process15-17. Therefore, functionalization of the nano-surface with selective 

and specific capping agents has been preferred and successfully employed to deal 

with the limitation14, 18-21. The capping agent should be designed to contain functional 

groups which easily interact with the target analyte. Due to the interaction, the signal 

patterns between the capping agents and the target analyte can be either partially or 

completely overlapped. From SERS measurement, the combination signals of the 

capping agent and the target analyte were obviously occurred. Therefore, the 

functional groups of capping agents and the analyte must be carefully considered and 

chosen. In the case, if the affinity and absorptivity of the analyte to the metal surface 

is abundant to overcome the signal generated from the capping agents, its 

quantification might be performed even presenting overlapping bands by curve fitting 

and some multivariate data analysis methods19, 22-25 However, amount of the capping 

agent is particularly excessively added to fully cover an extensive surface of SERS 

substrate (metal surface) and the analyte is usually in trace amount as shown in Figure 

1.1. Therefore, to quantify the signal selectively to the target analyte might be 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

complicated and difficult. It is not possible to obtain only analyte information by 

either directly measuring of peak intensity or using conventional background 

subtraction22, 24. 

 

 

Figure 1.1 Problematic observation in SERS measurement in order to quantify amount 

of target analyte when excessive amount of capping agent is used and the overlapped 

SERS signals between the capping agent and the target analyte are occurred 

 

To solve the problem stated above, chemometrics provides the great advantage 

to discover and extract analytical information from a complex mixture using the 

statistical and mathematical approaches. Conventional linear analysis such as Multiple 

Linear Regression (MLR) 26-29 and Principal Component Regression (PCR) 26-32 are 

commonly employed to interpret the relationships between the independent 

variables(Raman spectra in the case) and dependent variable (the analyte 

concentration) 33-39. 
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Although they are easy to program, simple and provide good predictive 

performance but they do not properly handle any collinearity presented in the data and 

they risks to overfit problems23, 40. Therefore, Partial Least Square regression (PLSR) 

is probably the most popular multivariate calibration techniques employed in 

quantitative analysis23, 41-44. The golden aim of PLSR is to establish a calibration 

model of multivariate data to predict the analyte concentrations even in the presence 

of interferences. Thus, PLSR usually provides high predictive accuracy for 

spectroscopic data but it lacks of the capability to reveal any qualitative information 

about the analytes e.g. vibrational modes of functional groups and spectral pattern of 

the target molecule. Moreover, from analytical point of view, the standard 

performance indices such as the limit of detection (LOD) and limit of quantitation 

(LOQ) of the multivariate calibration model are difficult to be defined by PLSR 45. To 

prevent the problems, Multivariate curve resolution-alternative least square (MCR-

ALS) can better overcome the problems and provide significant advantages relative to 

univariate analyses23, 46-51.  

 

Figure 1.2 Schematic of the MCR-ALS techniques 
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The main advantages of MCR-ALS are to estimate the bilinear decomposition 

of mixed experimental data into concentration and absorptivity profiles of the 

respective chemical species presented in the sample which represents to quantitative 

and qualitative information, respectively as shown in Figure 1.2. This could increase 

signal-to noise ratios (S/N ratio) which lead to better visualization of chemical 

distribution and selectivity which better describes chemical information of each specie  

51-54. Although MCR-ALS models has revealed a highly efficient method to resolve 

overlapping spectroscopic bands but there are a few works about its application in 

SERS sensing 23, 48, 50-51. A correlation constrained MCR-ALS method was developed 

to resolve overlapping SERS bands to quantify physiologically relevant 

concentrations of the bioanalytes in complex media 50. The standard addition method 

combined with MCR-ALS were applied to compensate the matrix effects to resolve 

overlapping bands between uric acid and interference SERS spectra 23. Combination 

of the high detectability and specificity of the SERS technique with MCR-ALS was 

used to obtain hyperspectral images to quantify the distribution of polymeric 

microfilms loaded with paracetamol as an active compound 48 SERS and MCR-ALS 

was used as a label-free method to quantify urinary adenosine (a potential cancer 

biomarker) 
51. In most case of SERS detection, the MCR-ALS was mainly used to 

extract the chemical information of main component and to exclude the signal from 

interferences (minor components) which might originate from the sample matrix. 

More cases of the applications of chemometrics method on SERS information are 

concluded in Table 1.1. As it already discussed in Figure 1.1 that the interferences 

from capping agent in SERS measurement could be possibly considered as a major 

component instead of the target analytes. Therefore, the application on MCR-ALS to 

extract information of the minor components with excluding the main components 

have not been discussed and discovered.  
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In this work, we propose an alternative way to enrich the power of MCR-ALS 

in order to eliminate the signal backgrounds, which is Raman signal from the capping 

agent, to remain only the analyte information. This methodology involves initially 

building MCR-ALS models with sample insertion constraint. The constraint is 

performed by simply adding external spectra of capping agent to obtain the bilinear 

chemical information of species which is concentration and absorptivity profiles. It 

starts with low number of added spectra and systematically increasing the number of 

added spectra until both the estimated quantitative correlation and “lack of fit” of the 

analyte is satisfactory. The constraint is a crucial step to completely excludes the main 

signal (from capping agent) from the spectral data. Using this approach, only the 

chemically relevant specie (even they are minor component) can be determined and 

might be well matched with the “true” intrinsic Raman profiles. In order to evaluate 

our methodology, the modified MCR-ALS algorithm was performed on the simulated 

spectra which were generated by several conditions such as overlapping levels, and 

the peak intensity ratios (between capping agent and analyte). From the test, it 

provides some evidences to further support an impact application on the real acquired 

Raman signal. Then, the developed method was performed on the experimental 

Raman dataset which involve the detection of carbofuran via diazotization-coupling 

reaction with p-aminothiophenol (p-ATP) on silver nanoparticles as SERS substrate .
55 

Using this methodology, MCR-ALS can be more widely utilized by the scientific 

community for the analysis of SERS data in a data-driven and quantitative platform 

 

1.2 Objective 

 The objective of this work is developed the chemometric method (MCR-ALS) 

to extract the analyte signals from SERS spectra to increase the sensitivity and 

selectivity of the quantification. 
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1.3 Scope of this work 

The MCR-ALS was modified with sample insertion methods. The developed 

protocol was tested with the simulated spectra generated by using only Gaussian 

distribution. After validation with the simulated spectra, the efficiency of the 

developed program was performed on the real SERS spectra on the determination of 

carbofuran by the azo-dye coupling reaction between carbofuran and p-

aminothiophenol. 
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CHAPTER II 

THEORITICAL BACKGROUND 

2.1 Raman Spectroscopy 

 Raman spectroscopy is an analytical technique used to reveal chemical 

fingerprint of target molecule through their vibrational spectrum patterns, while 

infrared (IR) spectroscopy detects the functional groups of sample molecule. The 

pattern of IR bands is originated from a change in the dipole moment of a molecule 

whereas pattern of Raman bands is initiated from a change in the polarizability of the 

molecule due to the deformation of electric field surrounding the molecule. By 

measuring the absorbance (or transmittance) of the light which passes through a 

sample, the frequency of the scattered light usually smaller than the original incident 

light. This interaction between molecule and incident light is called Stokes scattering, 

as illustration in Figure 2.1. On the other hand, if the frequency of the scattered light 

is higher than the incident light, it was called anti-Stokes shift56-57. 

 

 

Figure 2.1 Energy level diagram involving Rayleigh scattering and Raman scattering. 
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The advantages of the Raman spectroscopy are I) The Raman scattering of 

water and carbon dioxide (CO2) molecules are weak, which make them not be 

considered as interference II) Few or not needed in the sample preparation step III) 

Inexpensive of sample holder or carrier. The Raman spectroscopy can be detecting the 

signal of the chemical molecule in any phases. However, the low intensity of the 

scattered light was obtained in the Raman spectroscopy. So, the low concentration of 

the samples is hard to be operated58-59. 

 

2.2 Localized surface plasmon resonance (LSPR) 

 The nanostructure of the precise metal (such as Au, Ag, Pt ) in the size 

between 1-100 nm or nanoparticles (NPs) provides some properties with uncommon 

characteristics, which cannot be detected in the bulk materials, including mechanical, 

electrical, thermal, chemical and optical properties. To consider the unique optical 

properties phenomenon, surface plasmon (SP) are involved with delocalized electron 

oscillation at the surface of metal-dielectric interface. The movement of the oscillating 

electron can always generate the electromagnetic near-field around the surface of the 

nanoparticle.  

According to the size of the nanoparticles which smaller than the wavelength 

of incident light, the frequency of incident light probably resonance the natural 

frequency of electron oscillating on the surface of NPs. This phenomenon called 

“Localized surface plasmon resonance (LSPR)” which can be locally occurred around 

the NPs as shown in Figure 2.260. By the plasmon resonance that was generated is 

depended on the size of the NPs and it can resonance with the matched light source 

from the Raman laser. The excitation source can be tuned to get the maximum 

enhancement with the peak of the plasmon resonance. Because of the strong 

enhancement of surface electric field. The use of Raman spectroscopy combined with 

LSPR from the metal nanoparticles to enhance the Raman signals. This technique is 

called “Surface enhanced Raman spectroscopy” 
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Figure 2.2 Localized surface plasmon resonance (LSPR) 

 

2.3 Surface-enhanced Raman scattering (SERS) 

Surface-enhanced Raman scattering (SERS) is a technique which enhances the 

Raman signal intensity. This technique has widely used in trace analysis to detect the 

analyte whether it be biomolecule such as tuberculosis 
61, chlorpyrifos in tea 62or 

chemical molecules such as polycyclic aromatic hydrocarbon63. By using metal 

nanoparticles (MNPs), such as silver nanoparticles (AgNPs) or gold nanoparticles 

(AuNPs), as a SERS substrate. The SERS technique is descending the amplification 

of the Raman signal by the localized surface plasmon resonance. Depending of the 

material of the SERS substrate, the electromagnetic enhancement can be calculated to 

reach factor of 1010 – 1011. Another mechanism involving signal enhancement is 

chemical enhancement with charge transfer mechanism. The chemical enhancement 

factors from the charge transfer are up to 103. The SERS can be used to detect the 

analyte molecules by depositing them on the surface of the MNPs which generate the 

intense electromagnetic fields. This phenomenon leads to the enhancement capability 

of Raman measurement when the target molecules are in “hot spot” of nanoparticles. 

The high sensitivity and the selectivity of the SERS was obtained and could be 

increased by modified the surface of the nanoparticles to induce the analyte molecules  

immobilizing closely the hotspot 
64-65. The hot spot in the SERS technique is generally 

located between the gap of the MNPs that was used as the SERS substrate. The area 

of hot spot and the enhancement factor of the hot spot is shown in Figure 2.3. The hot 

spot is related with the enhancement ability. If the gap of the MNPs is closet in the 
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range of sub-nanoscale (2-20nm), the signal of SERS is highest enhanced. So, the 

closer of the analyte molecules within the hot spot, the higher obtained SERS signal 

66. 

 

Figure 2.3 Illustration of a hot spot generated between the gap of the nanoparticles. The 

SERS enhancement related with the gap size of the connected nanoparticles 

 

2.4 Multivariate Curve Resolution-Alternative Least Square (MCR-ALS) 

Multivariate curve resolution-alternative least square (MCR-ALS) is an 

iterative algorithm that can be solve the mixture analysis problem into the pure 

contributions from the individual information of an original data matrix of the mixed 

measurement. The multicomponent data set (X) consisting of r rows of wavelength 

(nm) or spectral channels and c column of samples.  

𝑿 =  [

𝒙𝟏,𝟏 𝒙𝟏,𝟐 … 𝒙𝟏,𝒏𝒄

𝒙𝟐,𝟏 𝒙𝟐,𝟐 … 𝒙𝟐,𝒏𝒄

⋮ ⋮ ⋮
𝒙𝒏𝒓,𝟏 𝒙𝒏𝒓,𝟐 𝒙𝒏𝒓,𝒏𝒄

] 

2.1 

 

The symbol xi,j represent the data point represents the data point associated with ith 

and jth column of the matrix 
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In the spectroscopy technique, the absorbance data can be explanation with the 

Beer Lambert’s law. So, the data point (xi,j) of the spectroscopic can be extracted in 

term of the absorptivity (si,j) and the concentration (ci,j). The xi,j can be expressed as: 

𝒙𝒊,𝒋 =  ∑ 𝒄𝒌,𝒋𝒔𝑻
𝒊,𝒌 + 𝒆𝒊,𝒋

𝒏

𝒌=𝟏

 
2.2 

Where ei,j is the noise of the data matrix. 

From the eqs 2.2 the classical equation of the MCR-ALS of the bilinear data 

model including concentration profiles (C) and pure spectra profiles (S) is shown in 

general matrix form (eqs 2.3). By the overall process was shown in Figure 1.2. 

X = CST + E 2.3 

When E is the error or variance matrix 

The steps of the MCR-ALS algorithm are detailed67  

1. Determinations of the number of components 

The number of components of the data set can be known or determined from 

principal component analysis (PCA). The MCR-ALS and PCA methods describing by 

the variance to consider the number of the components. By the first rank chemical 

component is the maximum of the variance value. In this work, only one component 

which might relate to capping agent was selected and extracted from the MCR-ALS 

algorithm. 

 

2. Generation of initial estimates of C or ST 

Initial estimates in MCR-ALS can be concentration profile or pure spectra. 

Normally, the initial estimates are the profiles of the components that want to be 

recovery. It can be based on the previous knowledge, such as, the spectra of the 

component in data set, spectra at maximum chromatographic peaks. In this work, the 

mean spectra of the capping agent were selected to the initial estimates of the pure 

spectrum. 
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3. Iterative alternating least square optimization of C and ST under constraint until 

convergence is achieved 

 The constraints are the essential part of the MCR-ALS algorithm. The 

beneficial of the constraint are 1) introducing chemical and mathematical information 

to afford the chemical meaning to the concentration profiles and the pure spectra and 

2) suppressing the ambiguity related to the MCR solutions. The most common and 

applicable constraints in MCR-ALS are non-negativity, unimodality, closure, 

selectivity and local rank, and equality constraints. In this work, the non-negative 

least square (nnls) 68 was selected, due to the non-negativity of the output spectra are 

similar as spectroscopic spectra67.  

 The nnls constraint was calculated the coefficients (a) are not allowed to 

become negative. The argument of the nnls can be written form 

𝒎𝒊𝒏 ‖𝑿𝒂 − 𝒀‖𝟐  

Subject to a ≥ 𝟎 

2.4 

 Where the X is intensity of the spectroscopic data in m x n dimension, Y is 

response in m dimension, a is coefficient, min is argument to minimize the 

calculation, and ǁ ǁ.is the Euclidean norm denotes. 

From the eqs 2.4, the spectroscopic spectra were forced to the non-negative 

values in both the concentration and pure spectra profiles. The negative values were 

forced to zero with this constraint. It should be avoided in certain kinds of 

spectroscopic profiles that provide some of negative values or when working with the 

derivative spectra. So, the nnls be appropriate to use in this work due to the 

subtraction of the stronger signal68.  

The MCR-ALS algorithm that was used is MCR-ALS toolbox (version GUI 

2.0)69. This GUI perform under MATLAB (version R2018a). 
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Figure 2.4 Scheme of the step of MCR-ALS GUI that was used in this work 
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CHAPTER III 

EXPERIMENTAL SECTION 

3.1 Spectrum simulation 

In order to elucidate the features and reliability of MCR-ALS with sample 

insertion constraint, the proposed method was performed on the series of simulated 

spectra. The pure spectra with independent peaks and intensity variations are 

generated using a Gaussian function70.  

𝐹(𝑥) =  
𝐴

𝜎√2π
e

−
(𝑣−𝜇)2

2𝜎2  
(3.1) 

Where A, v, , and σ are the peak intensity, spectral variables, peak position, 

and standard deviation, respectively. Generally, the parameter values especially peak 

position and peak width could be assigned to any values, but they were adjusted to be 

closet in the range of real Raman spectra. The peak position of the capping agent was 

fixed at 1715 cm-1, the peak width of the capping agent and the analyte were fixed at 

75 and 45, respectively. The peak position of the analyte was varied from 1632, 1671, 

1687, 1700, and 1715 cm-1. It has been assumed that peak intensity (A) only depends 

on a function of wavenumber (Raman shift). Each spectrum consists of two 

independent peaks which represent the Raman signal of a capping agent and a target 

analyte, respectively. The spectrum was modified closet to the real Raman spectral 

peaks by adjusting different overlapping conditions and intensity ratios between the 

analyte and the capping agent. 

The resolution (RS) between the two peaks was adjusted to be 0 (completely 

overlap) to 1.5 (non-overlap). The value of RS is directly corresponding to the 

overlapping level of the two peaks. By the RS values were calculated by eqs 3.2 

𝑅𝑆 =  
2(𝑝𝑎𝑛𝑎 − 𝑝𝑐𝑎𝑝 )

(𝑤𝑎𝑛𝑎 + 𝑤𝑐𝑎𝑝)
 

(3.2) 

 When pana is peak position of the analyte, pcap is peak position of the capping 

agent, wana is width of the analyte peak, and wcap is width of the capping agent peak. 
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The value of RS is directly corresponding to the overlapping level of these two 

peaks. The higher value of RS, the lower overlapping level. On the other hand, the 

low RS value express the high overlapping level of these two peaks. The overlapping 

level and the combined peaks at different RS values are shown in Figure 3.1. The 

position of the analyte peak was changed by the vary of the mean values of the 

analyte signal at 1632 (RS = 1.5), 1671 (RS = 0.8 ), 1687 (RS = 0.5), 1700 (RS = 0.2), 

and 1715 (RS = 0), while the peak position of capping agent equal to 1715. 

 

 

Figure 3.1 (A) pure spectra of analyte (sana) at the different RS values compared with 

pure spectra of capping agent (scap) (blue line) when the red, green, cyan, purple, and 

yellow line represent the sana at RS = 1.5, 0.8, 0.5, 0.2, and 0, respectively. (B1) – (B5) the 

combined of sana and scap at the RS values = 1.5, 0.8, 0.5, 0.2, and 0, respectively. The 

decrease of the RS values the peak of the analyte moved closer to the peak of the capping 

agent and more overlapped. ANA and CAP are represent analyte and capping agent, 

respectively. 

 

The simulated spectra of capping agent (Xcap) can be computed by the 

multiplication of concentration vector of capping agent (ccap ) with %RSD is 10% by 

simulated concentration profiles of capping agent with 10% of capping agent 

concentration using normal distribution calculated. The eqs of the %RSD as 

𝐹(𝑥) =  
1

𝜎√2π
e

−
(𝑣−𝑚)2

2𝜎2  
(3.3) 
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While m is mean = 500 and σ is standard deviation = 10% 

while the spectra of an analyte (Xana) were computed by multiplication of 

concentration (cana) and the pure spectra (sana) as shown below. In our case, the 

concentration value of analyte was constantly constrained without any added %RSD. 

Xcap = ccap . scap and Xana = cana . sana 

 

(3.4) 

 

Figure 3.2 The simulated spectra from A) – E) the ratio of the concentration of the 

analyte were varied form 0.01-0.20, 0.21-0.40, 0.41-0.60, 0.61-0.80, and 0.81-1.00and 1) - 

5) the RS values were varied from 1.5, 0.8, 0.5, 0.2, and 0, respectively. The red, blue and 

grey line represent the highest, lowest and moderate concentration of the analyte. ANA 

and CAP represent the analyte and capping agent peaks, respectively. 

 

Moreover, the intensity ratio between the analyte was set to 0.01- 1.5 

compared to the intensity of the capping agent. To simplify the definition, the 
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intensity ratio of 0.01 refer to the average intensity of the analyte is approximately 1% 

compared to the average intensity of the capping agent.  

Despite to SERS, it is a scattering technique, therefore, it normally provides 

some fluctuated SERS signals with %RSD between 1-10%. In simulated spectra, the 

%RSD of the signal from capping agent was adjusted to 10%. In the last step, the 

0.5% of the random noise was added to the spectra in order to include part of non-

linear in the synthetic spectra (the random light scattering from the small particle and 

external rays). The random noises were estimated from the baseline intensity of 

polystyrene as a reference. The simulated spectra of two independent peaks with 

different overlapping levels and different intensity ratio are shown in Figure 3.2 

 

3.2 Removal of Main components in SERS signal 

In SERS signal, the traces of analytes can be hidden by the major species, 

particularly corresponds to the large amount of surface capping agent on the metal 

surface. However, because of their relative abundance, the SERS signal of major 

species are difficult to be determined and removed to remain only the signal from the 

traces. This goal of the data analysis is to pursue with uses of MCR-ALS techniques23, 

50-51. The method assumes that each spectrum can be described as a bilinear 

combination of the signal of pure component spectra (S) and its concentration (C). 

The relationship can be written as. 

X = C . ST + E (3.5) 

Where the data matrix X (set of Raman spectra) with rows corresponding to sample 

and columns corresponding to the Raman shift (cm -1), C is the concentration profiles 

of all species detected, and S is representing their pure spectral profiles. At the 

beginning of the MCR-ALS original algorithm, the first guess of the concentration or 

the spectral profiles was estimated for each component. In the study, a first guess on 

the pure spectra and then the concentration profile can be estimated by the 

pseudoinverse as follows: 

�̂� = X . 𝑺T. (𝑺 .  𝑺T)-1  (3.6) 

and in turn, the concentration matrix C can be updated to  
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𝑺 = (�̂� T. �̂�  ̂)-1. �̂� T. X (3.7) 

Where 𝑺 and �̂� are the estimates and the T symbol denotes as transposition. The ALS 

algorithm iterates between eqs 3.6 and 3.7 until reconstructed matrix from the 

estimates minimize the error between and calculated �̂� (= �̂� . 𝑺T) and original data 

matrix X. During the ALS calculation, a non-negative least square (nnls) 68 constraints 

of both concentration and pure spectrum profiles are also performed. 

In the case under investigation, the goal is simpler because X is largely 

dominated by the presence of a single compound (capping agent on the metal surface) 

that is required to be modelled and removed and that appears as a very strong signal 

compared to the signal from the analyte. Therefore, the initial rank is determined as 1, 

a guess of the spectral profile (average spectrum of capping agent) is taken as the 

initial profile of the most abundant signal in Raman spectrum. Calculation on eqs. 3.6 

and 3.7 will leads to a �̂�cap and 𝑺cap which characterize as the major component of 

capping agent in the case. The principal of the developed method is to seek for pure 

vectors of capping agent and then subtracted from the original data matrix to remain 

only the analyte signal (Xana) calculated as 

�̂�ana = �̂�– ccap . scap
T (3.8) 

 It should be noted that some of the information held in Xana may still relate to 

some residual interferences. However, if the capping agent signal was not completely 

removed, this will strongly disturb the underlying quantitative information of the 

analyte signal. To completely exclude the capping agent signal, an additional 

constraint of sample insertion is applied. The external spectra of capping agent (Xcap) 

was added to the data matrix X to obtain Xc (= [X; Xcap]) prior to perform MCR-ALS. 

The generated Xc were used instead of X in the iterative eqs 3.6 and .3.7 until it 

converges. The number of added spectra is monitored to reveal the completely 

elimination of capping agent signal. Since Xana has been extracted, it is used to build 

models of univariate calibration directly from the extracted spectra. In the case, a 

calibration curve is individually built for each set of samples after including known 

analyte concentration. The intensity of the analyte is plotted against its concentrations, 

thereby obtaining the standard calibration curve used to calculate the analyte 

concentration in an unknown sample. 
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Figure 3.3 Scheme describe the extraction of capping agent signal by using sample 

insertion constraint with MCR-ALS method and Remove the signal of capping agent 

and construct the standard calibration curve from the analyte signal which then is used 

to predict the test samples 

 

This protocol provides the capability to predict analyte concentration even in 

the presence of unknown interferences. Thus, the identification of the interferences is 

not required as SERS with capping agent is already designed to be selective to the 

target analyte. Moreover, the calibration and test samples can be either arranged in the 

same matrix or the different matrix before applying the MCR-ALS algorithm. The 

correlation coefficient (R2) and the Mean average percentage error (MAPE) was used 

to evaluate the calibration model. In this work, multivariate data analysis was 

performed using MATLAB (version R2018a) and MCR-ALS toolbox (version GUI 

2.0)69. The overall calculation scheme is displayed in Figure.3.3. 
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3.3 Performance Indices 

The R2 and MAPE values were used to evaluate the calculation model. The R2
 

value was calculated the coefficient of the determination by proportion of the variance 

in the dependent variable that is predictable from the independent variables. The 

relation of the intensity and presetting concentration. The higher value of the R2 value 

(close to 1) shows the small differences and unbiases between the preset values and 

the predicted values. Unbiased means that the fitted values are not systematically too 

high or too low in the observation space. 

The MAPE value was calculated the difference between the predicted 

concentration (Conccal) and the presetting concentration (Concpre) by the MAPE value 

was calculated from the absolute subtraction between the predicted concentration and 

the presetting concentration divided by presetting concentration. After that multiply 

by 100 and average this value, it can be written as follow. 

𝑀𝐴𝑃𝐸 =
1

𝑛
 ∑ |

𝐶𝑜𝑛𝑐cal − 𝐶𝑜𝑛𝑐pre

𝐶𝑜𝑛𝑐pre
| 𝑥 100𝑛

1   
(3.9) 

The predicted concentration was calculated by linear regression equation the intensity 

of analyte plot with presetting concentration can be written as follow. 

Intensity = slope x concentration + intercept (3.10) 

When, intercept and slope were obtained from the calibration curve.  

 In the part of the real system, the root-mean-square error (RMSE) value was 

reveals difference between the predicted concentration and the presetting 

concentration. The RMSE value was calculated by square root of the mean of square 

value of difference between predicted concentration and actual concentration. It can 

be written as follow 

𝑅𝑀𝑆𝐸 =  √∑
(𝐶𝑜𝑛𝑐𝑐𝑎𝑙 − 𝐶𝑜𝑛𝑐𝑝𝑟𝑒)

2

𝑛

𝑛

1

 

 

(3.11) 

 The lower of the RMSE value refer to the smaller error of the concentration 

prediction 

 

The Euclidean distance used to reveal the similarity of the extracted capping 

agent spectra and the pure capping agent spectra. It can calculate the distance between 
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two datasets of the observed capping agent spectra (Sobs) that were obtained from the 

calculation and the capping agent spectra (Xcap). By the Euclidean distance calculation 

from equation 3.12 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  (𝑿𝑛 − 𝑺𝑛)(𝑿𝑛 − 𝑺𝑛)𝑇  

 

(3.12) 

When, n is spectra. The lower value of the Euclidean distance (close to 0) shows the 

higher similarity of the extracted pure capping agent spectra and the capping agent 

spectra 

 

3.4 Real system (quantify carbofuran using SERS) 

The detection of carbofuran though the diazotization-coupling reaction was 

used as a real experimental SERS system. Briefly, silver nanoparticles (AgNPs) as 

SERS substrate were prepared by conventional procedure71. The reduction of AgNO3 

with Na3C6H5O7 was occurred to obtain the uniform AgNPs with in-plane plasmon 

resonance band at 450 nm indicating an average size of approximately 50 nm. 55 Prior 

to SERS measurement, carbofuran was converted to carbofuran phenol by hydrolysis 

reaction. The hydrolysis reaction was prepared by diluting carbofuran by KOH 

solution and then was incubated at 50oC for 3 hours to obtain carbofuran phenol. In 

another batch, diazonium ion was prepared by adding 5% NaNO2 into a solution of p-

ATP in HCl at 0°C for 1 min. The diazonium coupling reaction was immediately 

attained by mixing with the solution with the carbofuran phenol in alkaline condition 

at 0°C for 1 min. After the diazo-coupling reaction, each sample was combined with 

silver colloid solution for 5 min. The mixture was dropped on a virgin aluminum 

plate. SERS spectra were collected using a DXR Raman microscope (Thermo 

Scientific) with a 780-nm excitation laser of 14 mW laser power. The signal 

acquisition was operated under a 10X-objective lens with a laser spot of 3.1 um. 

SERS spectra were obtained using a 2-sec exposure time with 8 accumulations. The 

details of experiment were described elsewhere55. The overview scheme of SERS 

measurement of carbofuran though diazo-coupling reaction with p-ATP when AgNPs 

colloidal solution was used as SERS substrate is demonstrated in Figure 3.4 
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Figure 3.4 SERS measurement of carbofuran via diazo-coupling reaction with p-ATP 

when AgNPs colloid is used as SERS substrate 
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CHAPTER IV 

RESULTS AND DISCUSSION 

4.1 Spectral simulation 

Three different criteria involving background subtraction, classical MCR-ALS 

and MCR-ALS with sample insertion constraint were performed on the simulated 

datasets with different overlapping levels at the various intensity ratios. The 

calibration curve was constructed similar to a univariate calibration involving 

intensity and concentration of the analyte peak. The index of R2 value was used to 

estimate the prediction accuracy of the calibration curve generated by the three 

criteria. The contour mapping of R2value at different RS and different intensity ratios 

are shown in Figure 4.1A. The contour areas with grey color reveal the calibration 

curve with satisfied R2 (> 0.99) while yellow-red color represent badly prediction 

accuracy (R2 < 0.5).  

In case of using background subtraction, the expected results of the R2 value 

are satisfactory when RS is higher than 0.5. However, the R2 value is improper when 

RS is lower than 0.3 (badly overlapped peaks). By using original MCR-ALS, the peak 

of analyte considered as minor component could not be possibly extracted as the R2 

values of the calibration curve are unsatisfied in all cases (R2 value < 0.3). Based on 

the theory, the MCR-ALS could not appropriately be used to monitor either the 

interferences or a minor component (an analyte in the case) in the system.  

To improve the prediction, the sample insertion criterion was modified in the 

beginning step of MCR-ALS calculation. In order to completely remove the capping 

agent peaks considered as a major component, the virgin spectra of this capping 

specie should be much higher than the set of mixture spectra. Therefore, MCR-ALS 

could identify them as the first rank component utterly. By using the sample insertion 

criteria, it can be seen that the R2 value is dramatically improved and is acceptable in 

all conditions especially when the peaks are highly overlapped (RS<0.5). Figure 4.1B 

shows the calibration plot of the condition at position (I)-(V) on the contour map of R2   
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value (Figure 4.1A). From the scatter plots, it can be clearly seen that the calibration 

curve produced by using MCR-ALS modified with sample insertion constraint is 

noticeably improved especially in the case of low RS (high overlapped conditions). 

The scatter plot of the analyte signal and concentration shows the good correlation 

compared with the other criteria. This suggests that the sample insertion constraint is 

crucial and necessary to be applied with MCR-ALS calculation in order to completely 

exclude the dominate unnecessary large peak. Inset Figures show the extracted 

analyte peak after the capping agent peak was removed by the three criteria. By 

classical MCR-ALS, it could be clearly seen that the combination peaks between 

capping agent and analyte were occurred, while the analyte peak was completely 

isolated by using the MCR-ALS modified by sample insertion constrain. The number 

of added capping agent spectra in each condition was optimized as shown in Figure 

4.2A1. 

In this section, the number of spectrum (of capping agent) required to be 

inserted in the MCR-ALS calculation is monitored, optimized and investigated. The 

extra set of the capping agent spectra were added as the constraint with the ratio of the 

number of capping agent spectra divided by the number of calibration spectra between 

2-100 times. An appropriate ratio of the added capping agent spectra was 

automatically determined by the change of mean absolute percentage error (MAPE) 

which is less than 5% as follows. 

𝑀𝐴𝑃𝐸𝒊 − 𝑀𝐴𝑃𝐸𝒊−𝟏

𝑀𝐴𝑃𝐸𝒊−𝟏
𝑥100 < 𝟓 

Where i is the step of ratio. 

The indicator of MAPE was used instead of root mean square error (RMSE) 

because MAPE could be calculated in term of percentage. In the data simulation, the 

peak intensity is shown in arbitrary unit (a.u.), therefore, the MAPE index is more 

appropriated rather than RMSE which was normally used to display the actual value.  
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Figure 4.1(A) The contour map of R2 value of the calibration curve calculated from 

analyte peak extracted by criterion (I) background subtraction, (II) MCR-ALS and (III) 

MCR-ALS with sample insertion constrain. (B) the calibration curve plot from point (I), 

(II), (III), (IV), and (V) on the contour map with the inset Figures as the analyte peak 

after extraction. All Figures are in the same scale of intensity and concentration (a.u.). 

Scatter plot of the RS = 0 and 0.20 were shown in APPENDIX 
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Figure 4.2A1 shows the mapping of the sample ratio which appropriately 

added to the data matrix in order to completely eliminate the capping agent peak. 

Surprisingly, the number of added samples is not strongly related to the overlapping 

levels, but the added ratio tends to significantly increase when the intensity ratio is 

high. This observation suggests that the system contains the target analyte with large 

peak intensity, it requires more added capping spectra. On the other hand, only small 

amount of adding spectra is needed for the system with low peak intensity of the 

analyte. The relation of intensity ratio of the analyte might be strongly correlated to 

the selection of the chemical rank. In the developed algorithm, the signal from the 

capping agent should be selected as the first chemical rank as it will further be 

eliminated in the next calculation step. However, if the intensity ratio of the analyte is 

approximately close to the peak intensity of the capping agent, it is possible that the 

capping agent could not be determined as the first chemical rank. Therefore, the 

added number of capping agent spectra should be increased in the simulated data with 

high peak intensity ratio of the analyte. After the number of added spectra was 

determined, the prediction accuracy from the calibration set and the validation set was 

revealed in term of MAPE values shown in Figure 4.2A2 - 4.2A3.  

From MAPE map, they show that most of the conditions give the acceptable 

percentage error of prediction (MAPE < 10) in both calibration and validation sets. To 

get the insight information, the scatter plots of the predictive concentrations against 

the actual concentrations at various conditions, e.g. RS = 0, 0.2 and 0.5 with intensity 

ratio of 0.5 was shown in Figure 4.2B1 – 4.2B3. The results were extracted by using 

the optimized added samples of capping agent spectra shown in Figure 4.2A1. In the 

scatter plots, the black circle plot represents the results from the calibration model and 

the red circle demonstrates the prediction of the validation set. In case of RS > 0, 

fulfilled R2 value of the prediction from calibration and validation is higher than 0.99. 

The spectra shown in inset Figures display the original simulated spectra of 

calibration set (black), the simulated spectra for validation set (grey), the extracted 

spectra of calibration set (blue) and the extracted spectra of validation set (red), 

respectively.  
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Figure 4.2 (A1) The contour map of the sample ratio appropriately added to the data 

matrix to completely removed the capping agent peak. The map of mean absolute 

percentage error (MAPE) of calibration set (A2) and validation set (A3) at different 

conditions. (B1-B3) Plot of the MCR-ALS predicted concentrations versus actual 

concentrations using the sample insertion constraint for RS = 0,0.2 and 0.5 respectively. 

Inset Figures of B1-B3 demonstrate the original simulated spectra of calibration set 

(black), the simulated spectra for validation set (grey), the extracted spectra of 

calibration set (blue) and the extracted spectra of validation set (red). 
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The dissimilarity of the capping agent and the extracted spectra at the different 

number of added capping agent spectra were shown in the Figure 4.3. The 

dissimilarity between the preset spectra and the extracted spectra of the capping agent 

was calculated using the Euclidean distance at the RS =0.5. From the Figure 4.3A, the 

dissimilarity of the preset and the extracted spectra of the capping agent were 

decreased when the number of the added spectra were increased. The dissimilarity 

was insignificantly changed when the number of added capping agent spectra are 

larger than 40 times compared to the number of the analyte spectra. Figure 4.3B-F 

shows the pure spectra and the extracted pure spectra of the capping agent from the 

condition of RS = 0.5 at the sample ratio of 10, 40 and 100 times. From the inset 

Figure, the differences between the preset spectra and the extracted spectra are small 

at the lowest analyte concentration (Figure 4.3B) compared with the condition of high 

concentration ratio (Figure 4.3F). For condition with low concentration ratio, only 10 

times of sample insertion is adequate for MCR-ALS to extract the pure spectra of 

capping agent, while 100 times of sample insertion ratio is required for the system 

with high concentration ratio. From the observations, it confirms that the number of 

added spectra strongly affect the determination of the chemical rank in the system. 

High number of capping agent spectra in the system tend to provide the first chemical 

rank of the capping agent to be extracted. Therefore, the smaller number of added 

spectra for the system with low concentration ratio is required, while the larger 

number of added spectra is necessary when the concentration ratio is getting larger.  

The results express that the capping agent peaks was completely eliminated 

from both calibration set, and validation set when the appropriate number of capping 

agent spectra was added as constraint in MCR-ALS calculation. The developed 

method is very powerful as it can solve even the spectra with very high overlapped 

peaks (RS~0). Furthermore, the method is fully automating on either generate set of 

capping agent spectra or optimize the appropriate number of added spectra. From this 

section, it is now ready to elucidate the performance of developed method with the 

real experimental spectra on SERS measurement.  
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Figure 4.3 (A) The Euclidean distance of the preset spectra and the extracted spectra of 

capping agent at the various number of the added capping agent. The black square, red 

circle, blue triangle, green triangle, and purple diamond are the distance at the different 

concentration ratios from 0.01-0.20, 0.21-0.40, 0.41-0.60, 0.61-0.80, and 0.81-1.00, 

respectively. (B) the preset spectra (black line) and the extracted spectra of the capping 

agent using sample insertion at 10 (red dash line), 40 (blue dash line) and 100 (green 

dash line) times, respectively. The inset Figures show the spectra at the 1700 cm-1 with 

condition of RS = 0.5. 
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4.2 Real system (quantify carbofuran using SERS) 

 The detection of carbofuran using the diazotization-coupling reaction between 

p-ATP (capping agent) on the AgNPs and derivative of carbofuran phenol (target 

analyte) was used as a real experimental SERS system. Figure 4.4 shows the SERS 

spectra of the diazonium ion and the carbofuran-derived azo compounds on AgNPs as 

SERS substrate. The peaks at 1075, 1327, 1429 and 1570 cm-1 represent the typical 

bands of C-S stretching, CCH, NCC (phenyl-N) in-plane bending, C-H and O-H 

bending and finally C-C stretching in phenol ring, respectively. In this system, the 

diazonium ion are not stable and can change to the para-mercaptophenol form which, 

can be detected by the SERS measurement. So, para-mercaptophenol are the same 

function as the capping agent species. The C-C stretching in phenol ring of the 

capping agent and the analyte are appeared as shown in the same wavenumber at 1571 

cm-1. The table of the peak assignment was shown in Table 4.1. These observations 

confirm the chemical adsorption and the formation of the carbofuran-derived azo 

compound molecules on the AgNPs surface. From SERS technique, the efficiency of 

adsorption in a high near electric field is critically affects to the sensitivity of the 

SERS signal. Therefore, amount of capping agent and analyte diffused close to 

AgNPs surface is directly proportion to the SERS intensity. 0.1 ppm to 100 ppm. 

However, only peak of C-C stretching in phenol ring (1570 cm-1) display the 

characteristic peaks of the analyte derivates from the capping agent. 

Due to the high similarity of chemical structures between p-ATP and 

carbofuran, the intensity of those assigned peaks was increased when the amount of 

carbofuran was increased from 0.1 – 100 ppm. 

Firstly, the number of added capping agent spectra was optimized in order to 

obtain the best calibration model (R2 value). The R2 value of the calibration model at 

the different sample insertion ratio is shown in Figure 4.5. It can be seen that the R2 

value was reached to 0.99 when the sample ratio at 100 times was used as the 

constraint in MCR-ALS calculation. Therefore, in the real sample part, the ratio of 

added capping agent was used at 100 times for extracted the capping agent spectra 
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Table 4.1 SERS peak assignment for p-mercaptophenol and carbofuran-derived azo 

compound 
Raman shift/cm-1  

para-

mercaptophenol 

Carbofuran-derived 

azo compound 

SERS assignment 

 

1075 1075 C-S stretching 

 1201 C-N stretching, CCN (phenyl-N) in-plane bending, C-H and 

O-H bending, C-C stretching from phenol group 

1327 1333 CCH bending 

NCC bending with phenyl ring 

 1410 -N=N- strectching 

1429  C-H and O-H bending from phenol group 

1571 1571 C-C stretching within phenol 

 

 

 

Figure 4.4 SERS spectra of azo compounds derived from carbofuran of 0.1-100 ppm. 

The yellow highlight is the region that was used to examine the relationship between the 

intensity and concentration. The yellow highlight is the selected peaks to quantify the 

amount of cabofuran 
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Figure 4.5 The R2 values of the calibration model using sample insertion constraint with 

the added capping agent at  ratio of 5, 10, 50, 100, and 150 times 

  

To examine the relationship between concentration and intensity of SERS 

signal, only intensity from the peak at 1570 cm-1 (yellow highlight) was used. From 

Figure 4.6A, the calibration plot using the intensity against the concentration of 

carbofuran was directly performed from the original SERS spectra (Figure 4.4) The 

plot can be fitted by linear equation of A1057 = 42.6 C + 5702.6 where C is the 

concentration of carbofuran in ppm unit with R2 = 0.731. The limit of detection 

(LOD) can be calculated as 125.19 ppm. Due to the high overlapping peak, the 

correlation coefficient (R2) calculated directly from the peak intensity is not satisfied.  

In the case, the SERS spectra was projected to our propose method in order to extract 

the signal from capping agent to remain only the analyte signal. Figure 4.6B shows 

the extracted SERS spectra of the analyte. The calibration curve elucidated from peak 

at 1570 cm-1 against the carbofuran concentration give a promising R2 up to 0.99 with 

the linear equation of A1057 = 28.3 C + 245.3. The limit of detection (LOD) can be 

calculated as 28.19 ppm.  
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Figure 4.6 (A) SERS spectra of azo compounds at peak 1570 cm-1 and the calibration 

curve with R2 = 0.731. (B) SERS spectra after MCR-ALS extraction with sample 

insertion constraint and the calibration curve with R2 = 0.990. The yellow highlight is 

the peaks corresponding to amount of carbofuran 

 

The concentration of the carbofuran in the calibration and validation set was 

predicted by the intensity of the extracted spectra and it was shown in Figure 4.7. The 

relationship between the predicted concentration and the presetting concentration 

were shown. From the results, the high R2 values of predicted concentration were 

obtained in both of calibration (R2 = 0.98) and validation sets (R2 = 0.97). The error of 

the prediction in the both sets were reported by using root-mean-square error (RMSE) 

value. From the results, the RMSE = 0.188 and 2.109 were obtained from calibration 

and validation set, respectively. The error of the concentration is in the acceptable 

range. It can be seen that the developed algorithm can eliminate capping agent peak 

and can be used to quantify the concentration of analyte with high precision and 

accuracy. 

From the results, it shows that the MCR-ALS with sample insertion constraint 

can be used to exclude the interrupted signal from capping agent in SERS detection 
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system. This generates the higher correlation coefficient and sensitivity of SERS 

techniques without any requirement of additional experiments. 

 

Figure 4.7 Predicted concentration versus presetting concentration in the carbofuran 

derived azo-compound at the 1570 cm-1 peaks the black square and red circle represent 

the calibration and validation set, respectively by the RMSEC is the RMSE values of 

calibration and RMSEP is the RMSE of the validation sets. 
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CHAPTER V 

CONCLUSION 

The MCR-ALS method was successfully modified with sample insertion 

constraint in order to extract the analyte signal which represents as minor component 

in SERS measurement. The developed program was elucidated with the simulated 

spectral data. The simulated spectral data was generated using gaussian distribution 

function with different overlapping level (RS = 0(completely overlapped) – 1.5 

(completely separated) and different concentration ratios between intensity of capping 

agent and analyte in the range of 0.01 – 1.00. By using MCR-ALS with sample 

insertion constraint, the calibration model of the analyte peak in the all conditions, 

including highly-low overlapping levels, can be generated with high precision (R2 > 

0.95) and high accuracy with MAPE < 20. Moreover, the influences of the number of 

spectra which had been added in the calculation were monitored and investigated. The 

suitable added spectra need to be carefully considered in order to completely exclude 

the unwanted signals which is capping agent spectra in the case. The appropriate 

number of added spectra was automatically optimized by using the change of MAPE 

which less than 5%. Interestingly, it was found that the smaller number of added 

spectra is required in the system with high concentration ratio, while the large number 

of added spectra is needed for the condition with low concentration ratio.  

In the part of the real experiment on SERS measurement, the carbofuran 

(analyte) derived azo-coupling with p-ATP (capping agent) acquisition was used to 

validate the developed algorithms. The peaks of the carbofuran overlapped with the 

azo-compound at 1570 cm-1 (The C-C stretching within phenol) was monitored. By 

using conventional background subtraction technique, the calibration model of the 

carbofuran was obtained with unsatisfied results of R2 = 0.73 and LOD = 125.19 ppm. 

The R2 value of the model were raised to 0.99 and LOD was down to 28.19 ppm when 

the modified MCR-ALS with sample insertion constraint was used. To inspect the 

prediction performance, the validation set of spectra were used and the concentrations 

of carbofuran of the validation set were quantified by the calibration model built from 

our developed program. It was found that the R2 value of validation set equal to 0.97 

and RMSE with only 2.109 was satisfactory obtained.  
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APPENDIX 

 

 

Figure 1 the calibration curve plot from analyte peak extracted by criterion (I) 

background subtraction, (II) MCR-ALS and (III) MCR-ALS with sample insertion 

constrain on the RS = 0 at the various concentration ratio of the analyte 
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Figure 2 the calibration curve plot from analyte peak extracted by criterion (I) 

background subtraction, (II) MCR-ALS and (III) MCR-ALS with sample insertion 

constrain on the RS = 0.2 at the various concentration ratio of the analyte 
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