CHAPTER V

CONCLUSIONS

The free-volume theory is mainly used to explain the effect of aging on polymer materials. We find the applicability of the equation $\varepsilon(t) = \varepsilon(0) \exp [(t/t_0)^{\beta}]$.

For the effect of time, during aging, Young's modulus (E) and retardation time (t₀), also $\langle \tau \rangle$, increase as the aging time increases because of low V_f and molecular mobility.

For the effect of polymer concentrations, we demonstrated that E, t_0 , $<\tau>$ and μ increase with the % PPO. This results from the effects of chemical structure, flexibility of polymer chain, mobility and free volume.

For the effect of temperature, the change in temperature affects mobility and V_f, as mentioned above. So modulus, t₀, $\langle \tau \rangle$ and μ vary with the aging temperature. E, t₀ and $\langle \tau \rangle$ decrease as the aging temperature increases. In the temperature aging window T_β $\langle T_1 \rangle \langle T_g$, as T₁ increases μ first increases from zero to a maximum about unity and then decreases to zero at T_g. At low temperatures, finally, the aging begins to cease, and μ decreases.