## บทที่ 4 ผลการวิจัยและการอภิปรายผล

#### 4.1 การวิเคราะห์สมบัติของแก้วคอร์เดียไรต์

### 4.1.1 ผลการสังเกตเรื่องของสี

แก้วคอร์เดียไรต์ที่ได้จากการทดลองมีสีน้ำตาลอ่อนไปถึงน้ำตาลเข้มแสดงดังรูปที่ 4.1 สี น้ำตาลของแก้วเกิดจาก Fe<sub>2</sub>O<sub>3</sub> ในส่วนผสมซึ่งเป็นมลทินที่มาจากดิน Kaolin ที่มี Fe<sub>2</sub>O<sub>3</sub> เท่ากับ 0.75% โดยน้ำหนัก ส่วนวัตถุดิบอื่นเช่น ควอตซ์ และ ทัลค์ มีปริมาณ Fe<sub>2</sub>O<sub>3</sub> เพียงเล็กน้อยเท่ากับ 0.10% และ 0.07% ตามลำดับซึ่งเป็นปริมาณที่น้อยเมื่อเทียบกับดิน Kaolin ดังนั้นสีของแก้วคอร์ เดียไรต์จึงขึ้นอยู่กับปริมาณดิน Kaolin ในสูตรผสมเป็นตัวหลัก



**รูปที่ 4.1** สีของแก้วคอร์เดียไรต์ CG1-CG12

จากรูปที่ 4.2 เป็นสีของแก้วคอร์เดียไรต์ CG1-CG12 เปรียบเทียบกับเปอร์เซ็นต์ของ Fe<sub>2</sub>O<sub>3</sub> ที่ ได้จากการคำนวนส่วนผสมรวม สูตร CG5 มีสีอ่อนที่สุดเนื่องจากไม่ได้ใส่ดิน Kaolin ในส่วนผสมทำ ให้ปริมาณ Fe<sub>2</sub>O<sub>3</sub> ในส่วนผสมมีเพียง 0.05% แต่ CG7 มีสีเข้มที่สุดเพราะใส่ดิน Kaolin ในปริมาณ ที่สูงมากถึง 50% ทำให้เปอร์เซ็นต์ของ Fe<sub>2</sub>O<sub>3</sub> ที่ได้จากการคำนวนส่วนผสมรวมเท่ากับ 0.44%

ความหนืดของน้ำแก้วมีส่วนสำคัญในการขึ้นรูป จากการทดลองสูตร CG5 จะใสมากขณะเท ส่วนสูตร CG7 เป็นสูตรที่หนืดมากที่สุดขณะเทโดยดูจากปริมาณแก้วที่ติดกับ crucible ในปริมาณ มากกว่าสูตรอื่น



**ฐปที่ 4.2** สีของแก้วคอร์เดียไรต์ CG1-CG12 โดยเรียงตาม % Fe<sub>2</sub>O<sub>3</sub>

## 4.1.2 ผลการวิเคราะห์ค่าการความเปลี่ยนแปลงทางความร้อน (Differential thermal analysis)

ผลการวิเคราะห์หาค่าการเปลี่ยนแปลงทางความร้อนด้วยด้วยเครื่อง DTA ทำให้ทราบ Glass Transition Temperature (T<sub>q</sub>) และ Crystallization temperature (T<sub>c</sub>) จากรูปที่ 4.3 ได้หาค่า Glass Transition Temperature (T<sub>q</sub>) โดยการหาจุดที่มีการเปลี่ยนความชันของกราฟระหว่าง % การเปลี่ยนแปลงการดูดหรือคายพลังงงาน กับ อุณหภูมิ โดยกำหนดจุดเริ่มต้นและจุดสุดท้ายของ การเปลี่ยนความชัน ซึ่งค่าระหว่างกลางระหว่างจุดจุดเริ่มต้นและจุดสุดท้ายของการเปลี่ยนความ ชันคือ จุด ค่า Glass Transition Temperature (T<sub>g</sub>) ส่วน Crystallization temperature (T<sub>c</sub>) เป็น การหาจุดสูงสุด (peak) ของกราฟ

จากการทดลองของ Zhang และคณะ<sup>(17)</sup> ทำให้เราทราบความสัมพันธ์ระหว่าง Nucleation temperature กับ Glass Transition Temperature (T<sub>g</sub>) และ อุณหภูมิการโตของผลึกกับอุณหภูมิ ในการเกิดผลึก

โดยจากผลการวิเคราะห์ด้วย Differential thermal analysis ของ CG1 ซึ่งทำให้ทราบ Glass Transition Temperature (T<sub>g</sub>) อยู่ที่อุณหภูมิ 765 °C และ Crystallization temperature (T<sub>c</sub>) อยู่ที่ อุณหภูมิ 927 °C ดังแสดงในรูปที่ 4.3 แล้วจึงนำมากำหนดตารางการทำ กระบวนการทางความร้อน (Heat Treatment) ซึ่งเป็นกระบวนการทำเป็น glass ceramic โดยการควบคุมการเกิดผลึก



โดยทั่วไปจะทำ 2 ขั้นตอนคือการสร้าง nucleus และการโตของนิวเคลียสที่อุณหภูมิ Nucleation และอุณหภูมิ Crystal growth

ฐปที่ 4.3 ผลการวิเคราะห์ด้วย Differential thermal analysis ของ CG1

จากตารางที่ 4.1 Glass Transition Temperature (T<sub>g</sub>) และ Crystallization temperature (T<sub>c</sub>) ของ CG1 ถึง CG12 อุณหภูมิ Glass Transition Temperature (T<sub>g</sub>) ของ CG1 ถึง CG12 อยู่ ระหว่าง 720 °C ถึง 789 °C โดยทั่วไปจะกำหนดอุณหภูมิ Nucleation ให้ใกล้เคียงอุณหภูมิ Glass Transition Temperature (T<sub>g</sub>) ดังนั้นในการทดลองนี้จึงกำหนดอุณหภูมิ Nucleation อยู่ที่ 850 °C

ส่วนอุณหภูมิ Crystallization temperature (T<sub>c</sub>) ของ CG1 ถึง CG12 อยู่ระหว่าง 894 °C ถึง 980 °C ซึ่งในการกำหนดอุณหภูมิ Crystal growth ก็จะพิจารณาจากอุณหภูมิ Crystallization temperature (T<sub>c</sub>) โดยเริ่มจากกำหนดเท่ากับอุณหภูมิ Crystallization temperature (T<sub>c</sub>) คือ 950 °C แล้วจึงเพิ่มขึ้นเป็น 1050 °C และ 1100 °C ตามลำดับ

| Sample | Glass Transition    | Crystallization     |  |  |
|--------|---------------------|---------------------|--|--|
| Sample | Temperature         | temperature         |  |  |
| Number | T <sub>g</sub> (°C) | Τ <sub>c</sub> (°C) |  |  |
| CG1    | 765                 | 927                 |  |  |
| CG2    | 778                 | 976                 |  |  |
| CG3    | 744                 | 923                 |  |  |
| CG4    | 720                 | 927                 |  |  |
| CG5    | 740                 | 941                 |  |  |
| CG6    | 733                 | 933                 |  |  |
| CG7    | 789                 | 980                 |  |  |
| CG8    | 758                 | 894                 |  |  |
| CG9    | 749                 | 908                 |  |  |
| CG10   | 758                 | 918                 |  |  |
| CG11   | 742                 | 931                 |  |  |
| CG12   | 728                 | 939                 |  |  |

ตารางที่ 4.1 Glass Transition Temperature (T<sub>g</sub>) และ Crystallization temperature (T<sub>c</sub>) ของ CG1 ถึง CG12

ดังนั้นเมื่อได้ผลการทดลองของ Glass Transition Temperature (T<sub>g</sub>) และ Crystallization temperature (T<sub>c</sub>) ของ CG1 ถึง CG12 ตามตารางที่ 1 ดังกล่าวจึงได้นำมากำหนดภาวะการทำ กระบวนการทางความร้อน (Heat Treatment) เป็น 3 ภาวะดังนี้

- 1. ที่อุณหภูมิ 850 °C เป็นเวลา 2 ชม. และเพิ่มอุณหภูมิขึ้นเป็น 950 °C เป็นเวลา 2 ชม.
- 2. ที่อุณหภูมิ 850 °C เป็นเวลา 2 ชม. และเพิ่มอุณหภูมิขึ้นเป็น 1050 °C เป็นเวลา 2 ชม.
- 3. ที่อุณหภูมิ 850 °C เป็นเวลา 2 ชม. และเพิ่มอุณหภูมิขึ้นเป็น 1100 °C เป็นเวลา 2 ชม.

4.1.3 ผลการวิเคราะห์องค์ประกอบทางเฟส (X-ray diffraction analysis) ของแก้วคอร์ เดียไรต์

การวิเคราะห์องค์ประกอบทางเฟสของแก้วคอร์เดียไรต์เพื่อตรวจสอบว่าแก้วที่หลอมนั้น สามารถหลอมได้หมดหรือไม่ โดยตรวจสอบจากผลึกที่เหลือจากการหลอมด้วยการวิเคราะห์ องค์ประกอบทางเฟส ซึ่งสมบัติของแก้วเป็นอสัณฐานซึ่งไม่มีผลึก ดังนั้นจากการวิเคราะห์ องค์ประกอบทางเฟสถ้าไม่เหลือผลึกแสดงว่าสามารถเป็นแก้วที่หลอมได้หมด



**รูปที่ 4.4** วิเคราะห์องค์ประกอบทางเฟส ด้วย XRD ของแก้วคอร์เดียไรต์ CG5

CG5 ซึ่งเป็นสูตรที่สามารถหลอมได้ดีที่สุด ดังนั้นจึงเลือกมาทำการวิเคราะห์องค์ประกอบ ทางเฟส ด้วย XRD ผลการวิเคราะห์แสดงในรูปที่ 4.4 ซึ่งไม่พบ peak ของผลึกเกิดขึ้น แสดงว่า วัตถุดิบสูตร CG5 หลอมที่ 1500 °C เป็นแก้วที่เป็นอสัณฐาน

จากผลวิจัยของ H. Shao และคณะ<sup>[13]</sup> จะพบเฟสคอร์เดียไรต์ได้ต้องนำไปผ่านกระบวนการ ทางความร้อนที่อุณหภูมิสูงกว่า 950 °C แต่ถ้าต่ำกว่าหรือที่ 780 °C จะได้แก้วที่เป็นอสัณฐาน ดังนั้น เราจึงนำไปผ่านกระบวนการทางความร้อนเพื่อให้เกิดเป็นกลาสเซรามิก

## 4.1.4 ผลการวิเคราะห์สัมประสิทธิ์การขยายตัวทางความร้อน (Thermal expansion coefficient) ที่ 100-500 °C ของแก้วคอร์เดียไรต์

การหาค่าสัมประสิทธิ์การขยายตัวทางความร้อน (Thermal expansion coefficient) ที่ อุณหภูมิ 25 °C ถึง 500 °C แต่จะวิเคราะห์ที่อุณหภูมิที่ 100-500 °C เพราะในช่วง 25 °C ถึง 100 °C ส่วนใหญ่จะได้กราฟที่ไม่คงที่ จากรูปที่ 4.5 เป็นการวิเคราะห์สัมประสิทธิ์การขยายตัวทางความร้อน ที่ 25-500 °C ของ CG1 จะเห็นได้ว่าในช่วงแรกกราฟจะไม่คงที่แต่หลังจากอุณหภูมิ 100 °C กราฟ จะคงที่ ดังนั้นจึงเลือกวิเคราะห์ที่อุณหภูมิที่ 100-500 °C



**รูปที่ 4.5** วิเคราะห์สัมประสิทธิ์การขยายตัวทางความร้อน ที่ 25-500°C ของ CG1

แก้วคอร์เดียไรต์ทั้ง 12 สูตร มีค่าสัมประสิทธิ์การขยายตัวทางความร้อนได้ผลการทดลองดัง ตารางที่ 4.2 ผลที่ได้คือ CG7 ได้ค่าสัมประสิทธิ์การขยายตัวทางความร้อนต่ำสุดเท่ากับ 3.97X10<sup>-6</sup> / °C ที่ 100-500 °C และกลุ่มที่มีค่าสัมประสิทธิ์การขยายตัวทางความร้อนต่ำรองลงมาคือ CG8, CG2, CG9 เท่ากับ 4.52 X10<sup>-6</sup>, 4.59X10<sup>-6</sup> และ 5.06 X10<sup>-6</sup> ตามลำดับ และกลุ่มที่ค่าสัมประสิทธิ์ การขยายตัวทางความร้อนสูงที่สุดคือ CG6, CG5 และ CG4 เท่ากับ 5.53 X10<sup>-6</sup>, 5.63 X10<sup>-6</sup> และ 5.75X10<sup>-6</sup>

เมื่อวิเคราะห์จากสูตรส่วนผสมแก้ว โดยใช้อัตราส่วนของออกไซด์โดยน้ำหนัก ในตารางที่ 3.2 CG7 มี SiO<sub>2</sub> สูงสุดคือ 66.52 wt% ซึ่ง SiO<sub>2</sub> มีค่าสัมประสิทธิ์การขยายตัวทางความร้อนต่ำกว่า ออกไซด์ตัวอื่น เท่ากับ 0.55 X10<sup>-6</sup> /°C <sup>[20]</sup> ส่วน MgO และ Al<sub>2</sub>O<sub>3</sub> เท่ากับ 13.50 X10<sup>-6</sup> /°C <sup>[20]</sup> และ 8.50 X10<sup>-6</sup> /°C <sup>[21]</sup> ดังนั้นสูตรส่วนผสมแก้วที่มี SiO<sub>2</sub> สูงก็จะมีค่าสัมประสิทธิ์การขยายตัวทางความ ร้อนต่ำ

| Glass for CG1 to CG12 | COE(X10 <sup>-6</sup> ) | ค่าที่ได้จากการคำนวนด้วย                |
|-----------------------|-------------------------|-----------------------------------------|
|                       | 100-500 °C              | <b>โปรแกรม</b> Uniglass <sup>[12]</sup> |
| CG1                   | 5.15                    | 3.25                                    |
| CG2                   | 4.60                    | 3.66                                    |
| CG3                   | 5.48                    | 4.00                                    |
| CG4                   | 5.75                    | 4.11                                    |
| CG5                   | 5.63                    | 4.11                                    |
| CG6                   | 5.53                    | 3.86                                    |
| CG7                   | 3.97                    | 3.27                                    |
| CG8                   | 4.52                    | 3.24                                    |
| CG9                   | 5.06                    | 3.50                                    |
| CG10                  | 5.13                    | 3.58                                    |
| CG11                  | 5.51                    | 3.60                                    |
| CG12                  | 5.19                    | 3.77                                    |

**ตารางที่ 4.2** ค่าสมประสิทธิ์การขยายตัวทางความร้อน ของแก้ว (X10<sup>-6</sup>/ °C)



**รูปที่ 4**.6 กลุ่มค่าส้มประสิทธิการขยายตัวทางความร้อนของแก้วคอร์เดียไรต์จากต่ำ (สีเข้ม) ไปสูง(สีอ่อน)

จากรูปที่ 4.6 แสดงค่าสัมประสิทธิ์การขยายดัวทางความร้อนของแก้วคอร์เดียไรต์เทียบกับ พื้นที่ในเฟลไดอะแกรมแบบไตรภาคของ MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> โซนที่มีสีเข้มจะมีค่าสัมประสิทธิ์การ ขยายตัวทางความร้อนต่ำกว่าโซนที่มีสีอ่อน

จากตารางการคำนวนค่าส้มประสิทธิ์การขยายดัวทางความร้อนโดยใช้โปรแกรม UNIGLASS<sup>[19]</sup> ได้นำสูตรของ CG1 ถึง CG12 ได้ค่าดังแสดงในรูปที่ 4.7 แสดงว่าจุดที่อยู่ทางขวา ของเฟสไดอะแกรมหรือที่เส้นอุณหภูมิสูงจะมีค่าสัมประสิทธิ์การขยายตัวทางความร้อนต่ำกว่าจุดที่ อยู่ทางซ้ายของเฟสไดอะแกรมหรือที่เส้นอุณหภูมิต่ำ

ดังนั้นจึงแบ่งตามค่าสัมประสิทธิ์การขยายตัวทางความร้อนได้เป็น 3 กลุ่มคือ กลุ่มสูงได้แก่ CG3, CG4 และ CG5, กลุ่มกลางได้แก่ CG2,CG6,CG12, CG9,CG10 และ CG11 และกลุ่ม สุดท้ายคือกลุ่มต่ำได้แก่ CG1,CG8 และ CG7

ซึ่งก็สอดคล้องกับผลการทดลองของค่าสัมประสิทธิ์การขยายตัวทางความร้อนของแก้วคอร์ เดียไรต์ที่ได้แบ่งเป็นกลุ่มเช่นกัน

แต่ผลที่ได้จากโปรแกรม UNIGLASS ต่ำกว่าผลที่ได้จากผลการทดลอง ดังในตารางที่ 4.2 เพราะผลการวิเคราะห์วัตถุดิบได้จากผู้จำหน่ายวัตถุดิบโดยตรงยังไม่นำมาวิเคราะห์ XRF ดังนั้นอาจ เป็นข้อผิดพลาดประการหนึ่งได้



**รูปที่ 4.7** กลุ่มค่าสัมประสิทธิ์การขยายตัวทางความร้อนของแก้วคอร์เดียไรต์โดยการคำนวณโดยใช้ โปรแกรม UNIGLASS

## 4.1.5 ผลการวิเคราะห์ความหนาแน่น (Density) ด้วยวิธีอาร์คีมิดิส (Archemedes Method) โดยใช้มาตรฐาน ASTM C373-88

| Class Sample | Density (g/cm <sup>3</sup> ) |  |  |  |  |
|--------------|------------------------------|--|--|--|--|
| Glass Sample | B=D/(M-S)                    |  |  |  |  |
| CG1          | 2.76                         |  |  |  |  |
| CG2          | 2.65                         |  |  |  |  |
| CG3          | 2.72                         |  |  |  |  |
| CG4          | 2.77                         |  |  |  |  |
| CG5          | 2.82                         |  |  |  |  |
| CG6          | 2.78                         |  |  |  |  |
| CG7          | 2.60                         |  |  |  |  |
| CG8          | 2.69                         |  |  |  |  |
| CG9          | 2.69                         |  |  |  |  |
| CG10         | 2.75                         |  |  |  |  |
| CG11         | 2.75                         |  |  |  |  |
| CG12         | 2.73                         |  |  |  |  |

**ตารางที่ 4**.3 วิเคราะห์ความหนาแน่น (Density) ของแก้วคอร์เดียไรต์ CG1 ถึง CG12

หมายเหตุ M คือ Saturated, D คือ Dry และ S คือ suspended

จากตารางที่ 4.3 แสดงค่าความหนาแน่น (Density) ซึ่งมีค่าระหว่าง 2.6 ถึง 2.82 g/cm<sup>3</sup> CG5 มีค่าความหนาแน่นสูงสุดคือ 2.82 g/cm<sup>3</sup> และ CG7 มีค่าความหนาแน่นต่ำสุดคือ 2.60 g/cm<sup>3</sup>

เมื่อวิเคราะห์จากสูตรส่วนผสมแก้ว โดยใช้อัตราส่วนของออกไซด์โดยน้ำหนัก ในตารางที่ 3.2 CG7 มี SiO<sub>2</sub> สูงสุดคือ 66.52 wt% ซึ่ง SiO<sub>2</sub> มีค่าความหนาแน่นต่ำกว่า ออกไซด์ตัวอื่น เท่ากับ 2.65 g/cm<sup>3 120]</sup> ส่วน MgO และ Al<sub>2</sub>O<sub>3</sub> เท่ากับ 3.60 g/cm<sup>3 120]</sup> และ 3.89 g/cm<sup>3 120]</sup> ดังนั้นสูตรส่วนผสม แก้วที่มี SiO<sub>2</sub> สูงก็จะมีค่าความหนาแน่นต่ำ

### 4.2 การวิเคราะห์สมบัติของกลาสเซรามิก (cordierite glass ceramic) ในboundary ของ คอร์เดียไรต์

จาก Glass Transition Temperature (T<sub>g</sub>) และ Crystallization temperature (T<sub>c</sub>) แล้ว นำมากำหนดตารางการทำ กระบวนการทางความร้อน (Heat Treatment) โดยกำหนดทั้งหมด 3 แบบดังนี้คือ

- Heat treatment ภาวะที่ 1 (ht1) Nucleation temperature ที่ 850 °C 2 ชั่วโมง และ Crystal growth temperature ที่ 950 °C 2 ชั่วโมง

- Heat treatment ภาวะที่ 2 (ht2) Nucleation temperature ที่ 850 °C 2 ชั่วโมง และ Crystal growth temperature ที่ 1050 °C 2 ชั่วโมง

- Heat treatment ภาวะที่ 3 (ht3) Nucleation temperature ที่ 850 °C 2 ชั่วโมง และ Crystal growth temperature ที่ 1100 °C 2 ชั่วโมง

ผลการทดลองจะแบ่งเป็นทั้งหมด 3 ภาวะซึ่งสรุปเป็นหัวข้อสำคัญ 5 หัวข้อคือสีของคอร์เดีย ไรต์กลาสเซรามิก การวิเคราะห์องค์ประกอบทางเฟสด้วย XRD วิเคราะห์ความหนาแน่น (Density) ของกลาสเซรามิก การวิเคราะห์สัมประสิทธิ์การขยายตัวทางความร้อน และการทดสอบอุณหภูมิ Thermal shock resistance

 CG1ht1
 CG2ht1
 CG3ht1
 CG4ht1
 CG5ht1
 CG6ht1

 Image: CG7ht1
 CG8ht1
 CG9ht1
 CG10ht1
 CG11ht1
 CG12ht1

 Image: CG7ht1
 CG8ht1
 CG9ht1
 CG10ht1
 CG11ht1
 CG12ht1

4.2.1 การสังเกตสี และการเป็นเนื้อเคียวกันของคอร์เดียไรต์กลาสเซรามิก

**รูปที่ 4.8** ด้วอย่างของคอร์เดียไรต์กลาสเซรามิก Heat treatment ht1 850 °C 2 ชั่วโมง และ 950 °C 2 ชั่วโมง

จากรูป 4.8 Heat treatment ภาวะที่ 1 (ht1) Nucleation temperature ที่ 850 °C 2 ชั่วโมง และ Crystal growth temperature ที่ 950 °C 2 ชั่วโมง สียังเป็นสีเข้มเป็นส่วนใหญ่และไม่เป็นเนื้อ เดียวกัน



**รูปที่ 4.9** ตัวอย่างของคอร์เดียไรต์กลาสเซรามิก Heat treatment ht2 850 °C 2 ชั่วโมง และ 1050 °C 2 ชั่วโมง

จากรูป 4.9 Heat treatment ภาวะที่ 2 (ht2) Nucleation temperature ที่ 850 °C 2 ชั่วโมง และ Crystal growth temperature ที่ 1050 °C 2 ชั่วโมงสีส่วนใหญ่เริ่มเป็นสีเทาและเป็นเนื้อเคียว กันแต่ยกเว้น CG7 ยังคงเป็นสีเข้มเหมือนเดิม

| CG1_ht3 | CG2_ht3 | CG3_ht3 CG4_ht3 |          | CG5_ht3  | CG6_ht3  |
|---------|---------|-----------------|----------|----------|----------|
|         |         |                 |          |          |          |
| CG7_ht3 | CG8_ht3 | CG9_ht3         | CG10_ht3 | CG11_ht3 | CG12_ht3 |
| E       |         | -               |          | -        |          |

**รูปที่ 4.10** ตัวอย่างของคอร์เดียไรต์กลาสเซรามิก Heat treatment ht3 850 °C 2 ชั่วโมง และ 1100 °C 2 ชั่วโมง

จากรูป 4.10 Heat treatment ภาวะที่ 3 (ht3) Nucleation temperature ที่ 850 °C 2 ชั่วโมง และ Crystal growth temperature ที่ 1100 °C 2 ชั่วโมงการเพิ่มอุณหภูมิของ Crystal growth temperature เป็น 1100 °C ทำให้สีของคอร์เดียไรต์กลาสเซรามิกเป็นสีเทาอ่อนเกือบขาวทุก ตัวอย่างและเป็นเนื้อเคียวกัน

#### 4.2.2 ผลการวิเคราะห์องค์ประกอบทางเฟส (X-ray diffraction analysis) ของคอร์เดีย ไรต์กลาสเซรามิก

จากการวิเคราะห์องค์ประกอบทางเฟส ด้วย XRD ของคอร์เดียไรต์กลาสเซรามิกในรูปที่ 4.11 พบว่า Heat treatment ภาวะที่ 1 (ht1) Nucleation temperature ที่ 850°C เป็นเวลา 2 ชั่วโมง และ Crystal growth temperature ที่ 950°C เป็นเวลา 2 ชั่วโมง สูตรแก้วส่วนใหญ่ยังมีสมบัติเป็น แก้วอยู่เนื่องจากว่ายังไม่มี peak ที่ชัดเจน เพราะใช้ Crystal growth temperature ที่อุณหภูมิต่ำ เกินไป แต่สูตร CG1 เกิดเฟสควอตซ์ (JCPDS: 01-075-1555) และสูตร CG10, CG12 เกิดเฟส Magnesium Aluminum Silicate (JCPDS: 00-014-0346)

จากการวิเคราะห์องค์ประกอบทางเฟส ด้วย XRD ของคอร์เดียไรต์กลาสเซรามิกในรูปที่ 4.12 พบว่า Heat treatment ภาวะที่ 2 (ht2) Nucleation temperature ที่ 850 °C 2 ชั่วโมง และ Crystal growth temperature ที่ 1050 °C 2 ชั่วโมง จะเห็นได้ว่าเกิดเฟสคอร์เดียไรต์ (JCPDS : 01-084-1219) เป็นเฟสหลักและเกิดเฟส Magnesium Aluminum Silicate (JCPDS : 00-014-0346) เป็น เฟสรอง ยกเว้น CG7 เกิดเฟสหลักคือ ควอตซ์ (JCPDS : 01-075-1555)

จากการวิเคราะห์องค์ประกอบทางเฟส ด้วย XRD ของคอร์เดียไรต์กลาสเซรามิกในรูปที่ 4.13 พบว่า Heat treatment ภาวะที่ 3 (ht3) Nucleation temperature ที่ 850 °C 2 ชั่วโมง และ Crystal growth temperature ที่ 1100 °C 2 ชั่วโมง เกิดเฟสหลักเป็นคอร์เดียไรต์ (JCPDS : 01-084-1219) และเฟสรองเป็น Magnesium Aluminum Silicate (JCPDS : 00-014-0346) เหมือน Heat treatment2 แต่ความสูงของ Peak (Intensity) ของกราฟน้อยกว่า Heat treatment ภาวะที่ 2 ส่วน CG7 เกิดเฟสหลักคือ ควอตซ์ (JCPDS : 01-075-1555) เหมือน Heat treatment ภาวะที่ 2 แต่ ความสูงของ Peak (Intensity) ของกราฟมากว่า Heat treatment ภาวะที่ 2

จากผลการวิเคราะห์องค์ประกอบทางเฟส ด้วย XRD ของคอร์เดียไรต์กลาสเซรามิกทั้ง 3 ภาวะ Heat treatment ภาวะที่ 1 (ht1) ทุกสูตรยังมีสมบัติเป็นแก้วเนื่องจากใช้ Crystal growth temperature ที่อุณหภูมิต่ำเกินไปแต่เมื่อเพิ่มอุณหภูมิ Crystal growth temperature เป็น 1050°C ในภาวะ Heat treatment ภาวะที่ 2 (ht2) สูตรส่วนใหญ่เริ่มเกิดเฟสคอร์เดียไรต์เพราะเป็นอุณหภูมิ ที่เหมาะสม ซึ่งสอดคล้องกับผลวิจัยของ H. Shao และคณะ<sup>(13)</sup> ที่พบเฟสคอร์เดียไรต์ได้เมื่อนำไป ผ่านกระบวนการทางความร้อนที่อุณหภูมิสูงกว่า 950 °C แต่เมื่อเพิ่มอุณหภูมิ Crystal growth temperature เป็น 1100 °C ใน ภาวะ Heat treatment ภาวะที่ 3 (ht3) สูตรส่วนใหญ่ยังเกิดเฟส คอร์เดียไรต์อยู่ แต่ในปริมาณที่น้อยลงดังนั้นภาวะ Heat treatment ที่เหมาะสมที่สุดในการเกิดเฟส คอร์เดียไรต์คือ Heat treatment ภาวะที่ 2 (ht2)



**รูปที่** 4.11 วิเคราะห์องค์ประกอบทางเฟส ด้วย XRD ของคอร์เดียไรต์กลาสเซรามิก ht1



**รูปที่ 4.12** วิเคราะห์องค์ประกอบทางเฟส ด้วย XRD ของคอร์เดียไรต์กลาสเซรามิก ht2



รูปที่ 4.13 วิเคราะห์องค์ประกอบทางเฟล ด้วย XRD ของคอร์เดียไรต์กลาสเซรามิก ht3

#### 4.2.3 ผลการวิเคราะห์ความหนาแน่น (Density) ของกลาสเซรามิก

จากตารางที่ 4.4 ความหนาแน่น (Density) ของกลาสเซรามิก Heat treatment 2 ที่สูงสุดคือ CG5 เท่ากับ 3.00 g/cm<sup>3</sup> และความหนาแน่น (Density) ของกลาสเซรามิก Heat treatment 2 ที่ ต่ำสุดคือ CG8 เท่ากับ 2.64 g/cm<sup>3</sup>

| ht2               | Density (g/cm <sup>3</sup> ) |  |  |  |
|-------------------|------------------------------|--|--|--|
| 850°C2h.1050°C2h. | B=D/(M-S)                    |  |  |  |
| CG1               | 2.65                         |  |  |  |
| CG2               | 2.91                         |  |  |  |
| CG3               | 2.82                         |  |  |  |
| CG4               | 2.88                         |  |  |  |
| CG5               | 3.00                         |  |  |  |
| CG6               | 2.81                         |  |  |  |
| CG7               | 2.75                         |  |  |  |
| CG8               | 2.64                         |  |  |  |
| CG9               | 2.70                         |  |  |  |
| CG10              | 2.92                         |  |  |  |
| CG11              | 2.76                         |  |  |  |
| CG12              | 2.77                         |  |  |  |

#### **ตารางที่ 4.4 ผ**ลการวิเคราะห์ความหนาแน่นของคอร์เดียไรต์กลาสเซรามิก CG1 ถึง CG12 ht2

## 4.2.4 ผลการวิเคราะห์สัมประสิทธิ์การขยายตัวทางความร้อน

ผลการทดลองหาสัมประสิทธิ์การขยายตัวทางความร้อน (Thermal expansion coefficient) ที่ 100-500 °C ของคอร์เดียไรต์กลาสเซรามิกพบว่าถ้ายิ่งต่ำก็ทำให้ Thermal shock resistance สูงขึ้นดังนั้นต้องหาตัวอย่างที่มีค่าสัมประสิทธิ์การขยายตัวทางความร้อนต่ำสุด โดยจะต้องคำนึงถึง ความเป็นเนื้อเดียวกันของตัวอย่างด้วย

| COE                   | Heat treatment1  | Heat treatment2   | Heat treatment3   |
|-----------------------|------------------|-------------------|-------------------|
| (X10 <sup>6</sup> /K) | 850°C2h.950°C2h. | 850°C2h.1050°C2h. | 850°C2h.1100°C2h. |
| 100-500°C             |                  |                   |                   |
| CG1                   | 4.41             | 1.28              | 1.59              |
| CG2                   | 4.65             | 11.53             | 6.6               |
| CG3                   | 6.82             | 5.86              | 5.1               |
| CG4                   | 7.7              | 5.83              | 5.31              |
| CG5                   | 7.94             | 7.94              | -                 |
| CG6                   | 7.23             | 3.94              | -                 |
| CG7                   | 3.92             | 4.9               | 11.23             |
| CG8                   | 4.43             | 4.08              | 3.81              |
| CG9                   | 4.6              | 4.28              | 4.98              |
| CG10                  | 8.57             | 5.98              | 3.43              |
| CG11                  | 8.21             | 3.73              | -                 |
| CG12                  | 5.41             | 4.76              | 4.9               |

ดารางที่ 4.5 ค่าสัมประสิทธิ์การขยายตัวทางความร้อนของกลาสเซรามิกของ CG ht1 ถึง ht3

จากตารางที่ 4.5 CG7 ที่ทำเป็นกลาสเซรามิกถ้า Heat treatment ที่อุณหภูมิสูงขึ้นก็จะทำให้ ค่าส้มประสิทธิ์การขยายตัวทางความร้อนสูงขึ้นอย่างมากเพราะ CG7 เปลี่ยนจากแก้วเป็นเฟล ควอตซ์ แต่ไม่เกิดเฟลคอร์เดียไรต์ ส่วน CG1 เมื่อ Heat treatment ภาวะที่ 1 ค่าส้มประสิทธิ์การ ขยายตัวทางความร้อนใกล้เคียงกับแก้วของ CG1 เพราะ CG1 ที่ Heat treatment ภาวะที่ 1 เกิด เฟลควอตซ์ แต่ถ้าเมื่ออุณหภูมิ Crystal growth temperature สูงขึ้นเป็น 1050 °C และ1100 °C เป็น Heat treatment ภาวะที่ 2 และ Heat treatment ภาวะที่ 3 ตามลำดับ มีผลให้ค่าส์มประสิทธิ์การ ขยายตัวทางความร้อนต่ำลงเพราะเกิดเฟลคอร์เดียไรต์ โดยสูตรที่ทำให้ค่าส้มประสิทธิ์การ ขยายตัวทางความร้อนต่ำลุดคือ CG1 ที่ Heat treatment ภาวะที่ 2 เท่ากับ 1.28X10<sup>-6</sup> / °C

# 4.2.5 ผลของเวลาในการทำ Heat treatment ต่อสมบัติของคอร์เดียไรต์กลาสเซรามิก- ผลการสังเกตสี

Heat treatment ภาวะที่ 4 (ht4) Nucleation temperature ที่ 850 °C เป็นเวลา 4 ชั่วโมง และ Crystal growth temperature ที่ 1050 °C เป็นเวลา 4 ชั่วโมง เป็นการเพิ่มเวลาจาก 2 ชั่วโมง เป็น 4 ชั่วโมงทำให้ได้สีที่เป็นเนื้อเดียวกันมากขึ้นดังรูปที่ 4.14

| CG1_ht4 | CG2_ht4 | CG3_ht4 | CG4_ht4  | CG5_ht4  | CG6_ht4  |
|---------|---------|---------|----------|----------|----------|
|         |         | 6       |          |          | and the  |
| CG7_ht4 | CG8_ht4 | CG9_ht4 | CG10_ht4 | CG11_ht4 | CG12_ht4 |
| ý       |         |         | - SA     |          |          |

**รูปที่ 4.14 ตัวอย่**างของคอร์<mark>เดียไรต์กลาสเซรามิก Heat treatment ht4 850</mark> °C 4 ชั่วโมง และ 1050 °C 4 ชั่วโมง

- ผลการวิเคราะห์องค์ประกอบทางเฟส ด้วย XRD ของคอร์เดียไรต์กลาสเซรามิก ht4 เปรียบเทียบกับ ht2





จากรูปที่ 4.15 เป็นการวิเคราะห์องค์ประกอบทางเฟสของคอร์เดียไรต์กลาสเซรามิก ht4 เปรียบเทียบกับ ht2 ของ CG1 เฟสที่เกิดขึ้นเหมือนกันแตกต่างกันที่ Intensity ของ peak เพียง เล็กน้อย และจากรูปที่ 4.16 แสดง CG7 เมื่อ ht4 เปรียบเทียบกับ ht2 เฟสที่เกิดขึ้นเหมือนกันแต่ Intensity ของ peak ควอตซ์ของ ht4 สูงกว่า ht2 มาก



**ฐปที่** 4.16 องค์ประกอบทางเฟลของคอร์เดียไรต์กลาสเซรามิก ht4 เปรียบเทียบกับ ht2 ของ CG7

- ผลการวิเคราะห์สัมประสิทธิ์การขยายตัวทางความร้อน (Thermal expansion coefficient) ของกลาสเซรามิกของ ht4 เปรียบเทียบกับ ht2

จากตารางที่ 4.6 เป็นการเปรียบเทียบค่าส้มประสิทธิ์การขยายตัวทางความร้อนของกลาส เซรามิกระหว่าง ht4 กับ ht2 จะเห็นได้ว่า CG1 ค่าส้มประสิทธิ์การขยายตัวทางความร้อนภายใต้ ภาวะของ ht4 เพิ่มขึ้นเพียงเล็กน้อย ส่วน CG7 ค่าส้มประสิทธิ์การขยายตัวทางความร้อนภายใต้ ภาวะของ ht4 เพิ่มขึ้นมากซึ่งสอดคล้องกับ Intensity ของ peak ของการวิเคราะห์องค์ประกอบทาง เฟส

| COE                    | Heat treatment2   | Heat treatment4   |
|------------------------|-------------------|-------------------|
| (X10 <sup>-6</sup> /K) | 850°C2h.1050°C2h. | 850°C4h.1050°C4h. |
| 100-500°C              |                   |                   |
| CG1                    | 1.28              | 1.92              |
| CG7                    | 4.9               | 13.27             |

ตารางที่ 4.6 ค่าส้มประสิทธิ์การขยายตัวทางความร้อนของกลาสเซรามิกของ ht4 เปรียบเทียบกับ ht2

- ผลการวิเคราะห์ Scanning electron microscopy (SEM) ของกลาสเซรามิก ht4 เปรียบเทียบกับ ht2

จากรูป 4.17 แสดงสัณฐานวิทยาของคอร์เดียไรต์กลาสเซรามิก ht4 เปรียบเทียบกับ ht2 ของ CG1 จะเห็นได้ว่า ht2 มีโครงสร้างที่ร่อนที่ผิว แต่ถ้าเพิ่มเวลาในการทำ Heat treatment เป็น 850°C 4 ชั่วโมงและ 1050°C 4 ชั่วโมง ทำให้ผิวเรียบไม่ร่อนแต่มีรูพรุน

| CG1                        | SEM micrographs of samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nt2(850°C 2h - 1050°C 2h.) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| nt4(850°C 4n +1050°C 4n.)  | And Sections of the section of the s |

**รูปที่ 4.17** SEM micrographs ของคอร์เดียไรต์กลาสเซรามิก ht4 เปรียบเทียบกับ ht2 ของ CG1



**รูปที่ 4.18** SEM micrographs ของคอร์เดียไรต์กลาสเซรามิกCG1 ht2

จากรูป 4.18 แสดงสัณฐานวิทยาของคอร์เดียไรต์กลาสเซรามิก CG1 ht2 เกิดผลึกกระจาย อยู่ซึ่งจากผลจากการวิเคราะห์องค์ประกอบทางเฟสด้วย XRD เกิดเฟสของคอร์เดียไรต์เป็นเฟสหลัก

| CG7                                                 | SEM micrographs of samples |
|-----------------------------------------------------|----------------------------|
| nt2(850 <sup>°</sup> C 2h1050 <sup>°</sup> C 2h.)   | AND NOT MANY SIL IS O IN I |
| ht4(850 <sup>°</sup> C 4h.−1050 <sup>°</sup> C 4h.) | ANT SALINATI DA MULTO TAL  |

**ฐปที่ 4.19** SEM micrographs ของคอร์เดียไรต์กลาสเซรามิก ht4 เปรียบเทียบกับ ht2 ของ CG7

จากรูปที่ 4.19 แสดงสัณฐานวิทยาของคอร์เดียไรต์กลาสเซรามิก ht4 เปรียบเทียบกับ ht2 ของ CG7 จะเห็นได้ว่า CG7 ht2 ผลึกเกิดขึ้นเล็กมาก แต่ถ้าเพิ่มชั่วโมงการทำ Heat treatment เป็น 850°C 4 ชั่วโมงและ 1050°C 4 ชั่วโมง ก็จะเกิดผลึกของควอตซ์ โดยดูจากผลจากการ วิเคราะห์องค์ประกอบทางเฟสด้วย XRD เกิดเฟสของควอตซ์เป็นเฟสหลัก

|            | CG1                                                             | CG2              | CG3      | CG4     | CG5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CG6                                                                                                            | CG7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CG8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CG9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CG10       | CG11        | CG12      |
|------------|-----------------------------------------------------------------|------------------|----------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-----------|
| Glass      |                                                                 |                  | 0        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |             |           |
| ht1        | 100                                                             | All and a second |          | 19      | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Notes .                                                                                                        | $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1- and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 104.34      | STR.      |
| 850°C 2h.  |                                                                 | 1 Card           | 8        | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SERV                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1. Cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ( Minter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1          |             |           |
| 950°C 2h.  |                                                                 |                  | De-      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n Participanti de la companya de la |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and the second se |            |             |           |
| ht2        | 1000                                                            |                  | 1 Carlos |         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (·.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\left( \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · .        | (           |           |
| 850°C 2h.  | an same                                                         | A died           | a second | A mart  | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | States                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - HERRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | " House    | (Nelson)    | -         |
| 1050°C 2h. |                                                                 |                  |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - And |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |             |           |
| ht3        | 1993                                                            | Survey and       |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1000                                                                                                           | Contra Contra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |             | Sec. 19   |
| 850°C 2h.  | No. Barbara                                                     | -                | -        | -       | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in an and the                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Carlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3130M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - Constant | . Single    |           |
| 1100°C 2h. |                                                                 | -                |          |         | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                | and the second sec |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |             | - House - |
| ht4        | maint                                                           | and his          |          |         | of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                | Maria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ALC: NO    | and a state |           |
| 850°C 4h.  | 1 and                                                           | State of the     | -        | autre . | Signal S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                | and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | . Santa     | tense!    |
| 1050°C 4h. |                                                                 | train the second |          |         | and the second se |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 The Part of St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |             |           |
| ฐปที       | <b>รูปที่ 4.20</b> ตัวอย่างคอร์เดียไรต์กลาสเซรามิก CG1 ถึง CG12 |                  |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |             |           |
| a          |                                                                 |                  |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |             |           |

## 4.3 การวิเคราะห์สมบัติของคอร์เดียไรต์กลาสเซรามิก ในไดอะแกรม Forsterite-spinelcordierite ภายในขอบเขตของคอร์เดียไรต์

จากผลค่าสัมประสิทธิ์การขยายตัวทางความร้อนของ CG1ht2 ต่ำสุดคือ 1.28X10-6 / °C และต่ำรองลงมาคือ CG11ht2 คือ 3.73X10-6 / °C ดังนั้นจึงสรุปว่าสูตรที่อยู่ในสามเหลี่ยม Forsterite-spinel-cordierite ภายใน boundary ของคอร์เดียไรต์จะได้ค่าสัมประสิทธิ์การขยายตัว ทางความร้อนต่ำ

ในสามเหลี่ยม Forsterite-spinel-cordierite ภายใน boundary ของคอร์เดียไรต์ได้ทดลองทำ ดัวอย่างทั้งหมดอีก 12 จุด ตั้งแต่ CGn01 ถึง CGn12 ซึ่งมี่จุด CGn12 เป็นจุด stoichiomatric ของ คอร์เดียไรต์ ดังรูปที่ 4.21



รูปที่ 4.21 Phase diagram ของระบบ MgO-Al<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> <sup>[8]</sup>

ซึ่งมีวัตถุดิบที่ใช้แตกต่างจาก CG1 ถึง CG12 คือ เปลี่ยนดิน Kaolin Microbrite (FH95) จาก Skardon river kaolin PTY limited. ประเทศออสเตรเลีย เป็น หินสบู่ Phyrophilite จากบริษัท เซอมาส จำกัด จากตารางที่ 4.7 หินสบู่มีปริมาณ TiO<sub>2</sub> น้อยกว่า Kaolin มาก ดังแสดงในตารางที่ 4.7

ตารางที่ 4.8 แสดง % ออกไซด์โดยน้ำหนักจากสูตร CGn1 ถึง CGn12 จาก phase diagram ในสามเหลี่ยม Forsterite-spinel-cordierite และตารางที่ 4.9 แสดง % วัตถุดิบโดยน้ำหนัก

|                                | Kaolin          | หินสบู่      |
|--------------------------------|-----------------|--------------|
|                                | Microbrite FH95 | Phyrophilite |
| SiO <sub>2</sub>               | 44.00           | 76.44        |
| TiO <sub>2</sub>               | 2.00            | 0.12         |
| Al <sub>2</sub> O <sub>3</sub> | 37.50           | 16.68        |
| Fe <sub>2</sub> O <sub>3</sub> | 0.75            | 0.19         |
| CaO                            | 0.04            | 0.10         |
| MgO                            | 0.10            | 0.10         |
| K <sub>2</sub> O               | 0.13            | 0.19         |
| Na <sub>2</sub> O              | 0.36            | 0.10         |

**ตารางที่ 4.7** องค์ประกอบทางเคมีของ Kaolin และ หินสบู่

**ตารางที่ 4.8** สูตร CGn1 ถึง CGn12 % ออกไซด์โดยน้ำหนัก

| Glass Sample | MgO (%) | Al <sub>2</sub> O <sub>3</sub> (%) | SiO <sub>2</sub> (%) |
|--------------|---------|------------------------------------|----------------------|
| CGn1         | 16.36   | 34.89                              | 48.75                |
| CGn2         | 17.25   | 33.85                              | 48.90                |
| CGn3         | 19.16   | 31.43                              | 49.41                |
| CGn4         | 20.58   | 29.37                              | 50.05                |
| CGn5         | 23.03   | 26.39                              | 50.58                |
| CGn6         | 20.22   | 28.46                              | 51.32                |
| CGn7         | 18.30   | 29.96                              | 51.74                |
| CGn8         | 16.70   | 31.20                              | 52.10                |
| CGn9         | 15.00   | 32.30                              | 52.70                |
| CGn10        | 17.21   | 32.12                              | 50.67                |
| CGn11        | 15.72   | 33.67                              | 50.61                |
| CGn12        | 13.86   | 35.23                              | 50.91                |

| Glass sample | ทัลคัม (%) | หินสบู่(%) | อะลูมินา(%) | ไททาเนียม(%) |
|--------------|------------|------------|-------------|--------------|
| CGn1         | 45.70      | 18.00      | 27.30       | 9.00         |
| CGn2         | 48.20      | 16.10      | 26.70       | 9.00         |
| CGn3         | 53.50      | 12.30      | 25.20       | 9.00         |
| CGn4         | 57.50      | 9.70       | 23.80       | 9.00         |
| CGn5         | 64.30      | 4.70       | 22.00       | 9.00         |
| CGn6         | 56.40      | 12.00      | 22.60       | 9.00         |
| CGn7         | 51.00      | 16.90      | 23.10       | 9.00         |
| CGn8         | 46.50      | 21.00      | 23.50       | 9.00         |
| CGn9         | 41.70      | 25.60      | 23.70       | 9.00         |
| CGn10        | 48.00      | 18.20      | 24.80       | 9.00         |
| CGn11        | 43.80      | 21.60      | 25.60       | 9.00         |
| CGn12        | 38.60      | 26.20      | 26.20       | 9.00         |

ดารางที่ 4.9 สูตร CGn1 ถึง CGn12 % วัตถุดิบโดยน้ำหนัก

หมายเหตุ TiO<sub>2</sub> ทำหน้าที่เป็น nucleating agent

4.3.1 ผลการทดลองสำหรับ CGn1 ถึง CGn12 Heat treatment 2 (850 °C 2 ชั่วโมง 1050 °C 2 ชั่วโมง)

#### - ผลการสังเกตสี

การสังเกตเรื่องของสี และการเป็นเนื้อเคียวกันของคอร์เดียไรต์กลาสเซรามิก จากรูปที่ 4.22 พบว่าสีของกลาสเซรามิกมีสีขาว-สีเทาอ่อน โดยเป็นเนื้อเดียวกัน

- ผลการวิเคราะห์ค่าสัมประสิทธิ์การขยายตัวทางความร้อน (Thermal expansion coefficient)

จากตารางที่ 4.10 ค่าสัมประสิทธิ์การขยายตัวทางความร้อนของกลาสเซรามิกที่ต่ำที่สุดคือ CGn1-ht2, CGn2-ht2, CGn8-ht2, CGn9-ht2 และ CGn11-ht2 เท่ากับ 2.8X10<sup>-6</sup> / °C, 2.22X10<sup>-6</sup> <sup>6</sup> / °C, 2.81X10<sup>-6</sup> / °C, 2.66X10<sup>-6</sup> / °C และ 2.80X10<sup>-6</sup> / °C ตามลำดับ

| CGn1     | CGn2 | CGn3 | CGn4  | CGn5  | CGn6  |
|----------|------|------|-------|-------|-------|
| S.       | 3    |      |       |       |       |
| CGn7     | CGn8 | CGn9 | CGn10 | CGn11 | CGn12 |
| 2132<br> | -    | 1    |       | i ta  | Sec.  |

รูปที่ 4.22 ตัวอย่างของ CGn ที่ Heat treatment ht2 850 °C 2 ซม. และ1050 °C 2 ซม. จาก 12 จุดของ CGn ค่าส้มประสิทธิ์การขยายตัวทางความร้อนของ CGn1-ht2 และ CGn2ht2 ต่ำสุดซึ่งเป็นจุดที่ใกล้เคียงกับ CG1-ht2 แต่ค่าส้มประสิทธิ์การขยายตัวทางความร้อนของ CG1-ht2 ยังต่ำกว่า CGn1-ht2 และ CGn2-ht2 ซึ่งเป็นผลมาจาก CGn1-ht2 และ CGn2-ht2 สูตร ผสมของทั้ง 2 สูตรมีปริมาณ TiO<sub>2</sub> ที่ลดลง

| CGn01-12 ht2 | COE(X10 <sup>6</sup> ) 100-500°C |
|--------------|----------------------------------|
| CGn01_ht2    | 2.79                             |
| CGn02_ht2    | 2.22                             |
| CGn03_ht2    | 6.55                             |
| CGn04_ht2    | 6.79                             |
| CGn05_ht2    | 4.72                             |
| CGn06_ht2    | 3.99                             |
| CGn07_ht2    | 3.44                             |
| CGn08_ht2    | 2.81                             |
| CGn09_ht2    | 2.66                             |
| CGn10_ht2    | 3.23                             |
| CGn11_ht2    | 2.80                             |
| CGn12_ht2    | 3.38                             |

ดารางที่ 4.10 ค่าสัมประสิทธิ์การขยายตัวทางความร้อนของกลาสเซรามิก CGn1 ถึง CGn12

4.4 การวิเคราะห์สมบัติของคอร์เดียไรต์กลาสเซรามิกที่เดิม B<sub>2</sub>O<sub>3</sub>และ เพิ่ม TiO<sub>2</sub>

จากผลการทดลอง CGn ค่าสัมประสิทธิ์การขยายตัวทางความร้อนของกลาสเซรามิกที่ต่ำ ที่สุดคือ CGn1-ht2, CGn2-ht2, CGn8-ht2, CGn9-ht2 และ CGn11-ht2 แต่ก็ยังสูงกว่าสูตร CG ดังนั้นจึงนำสูตรทั้ง 5 มาพัฒนาต่อ

งานวิจัยของ Nandi และ คณะ<sup>(9)</sup> ศึกษาการใส่ Boron Oxide ในคอร์เดียไรต์กลาสเซรามิก มี ผลต่อค่าสัมประสิทธิ์การขยายตัวทางความร้อนให้ต่ำลง หลักการคือขนาดเล็กของ boron cation จะเข้าไปในช่องว่างของ lattice จะทำให้ค่าสัมประสิทธิ์การขยายตัวทางความร้อนต่ำกว่าการใช้ ขนาดของ cation ที่ใหญ่กว่า และงานวิจัยของ Vladimir M. Fokin และคณะ<sup>(14)</sup> ศึกษาปริมาณของ TiO<sub>2</sub> ที่มีผลต่อการเกิดนิวเคลียสบริเวณผิวหน้าและเนื้อของคอร์เดียไรต์กลาสเซรามิก ซึ่งการเพิ่ม ปริมาณของ TiO<sub>2</sub> ซึ่งจะทำให้เกิดนิวเคลียสทั้งที่ผิวและในเนื้อของคอร์เดียไรต์กลาสเซรามิก

ดังนั้นจึงนำสูตร CGn1, CGn2, CGn8, CGn9 และ CGn11 มาเติม Boron Oxide และเพิ่ม TiO<sub>2</sub> โดยทำเป็น 4 แบบคือ

- เพิ่ม TiO<sub>2</sub> เป็น 12%

- เติม B<sub>2</sub>O<sub>3</sub> 0.5%

- เดิม B<sub>2</sub>O<sub>3</sub> 1%

- เดิม B<sub>2</sub>O<sub>3</sub> 0.5% และ เพิ่ม TiO<sub>2</sub> เป็น 12%

4.4.1 CGn เพิ่ม TiO<sub>2</sub> เป็น 12% คือ CGn01ht2, CGn02ht2, CGn08ht2, CGn09ht2 และ CGn11ht2

### - ผลการสังเกตสีของแก้ว

สูตร CGn01, CGn02, CGn08, CGn09 และ CGn11ที่เผา Heat treatment 2 (850 °C 2 ชั่วโมงและ 1050 °C 2 ชั่วโมง) เมื่อเพิ่ม TiO<sub>2</sub> จาก 9% เป็น 12% มีผลต่อความหนืดของน้ำแก้ว ต่ำลงสามารถเทน้ำแก้วลงในแบบเหล็กได้ง่ายขึ้น เป็นทำให้สีเป็นเนื้อเดียวกันและมันแวว ยกเว้น CGn01\_ht2 และ CGn11\_ht2 เมื่อเพิ่ม TiO<sub>2</sub> เป็น 12% ซึ่งความหนืดสูงกว่าสูตรอื่นเป็นผลให้ ความเงาแววก็ลดลงแสดงดังรูปที่ 4.23

| 1.CGn add TiO <sub>2</sub> =12% |            |            |            |            |  |
|---------------------------------|------------|------------|------------|------------|--|
| 1.CGn01ht2                      | 1.CGn02ht2 | 1.CGn08ht2 | 1.CGn09ht2 | 1.CGn11ht2 |  |
| )                               | )          |            | 0          |            |  |

**รูปที่** 4.**23** ตัวอย่างของ CGn เพิ่ม TiO₂ เป็น 12% ที่ Heat treatment ht2 850 °C 2 ชม. และ 1050 °C 2 ชม.

## ผลการวิเคราะห์สัมประสิทธิ์การขยายตัวทางความร้อน (Thermal expansion coefficient)

จากตารางที่ 4.11 สูตร CGn01\_ht2 และ CGn11\_ht2 เป็นสูตรที่ค่าส้มประสิทธิ์การขยายตัว ทางความร้อนต่ำกว่าสูตรอื่นแสดงว่าการเพิ่ม TiO<sub>2</sub> จาก 9% เป็น 12% ถ้าสูตรที่ความหนืดของน้ำ แก้วสูง, ความมันวาวสูง ก็จะมีผลต่อค่าสัมประสิทธิ์การขยายตัวทางความร้อนสูงขึ้น

**ตารางที่** 4.11 ค่าสัมประสิทธิ์การขยายตัวทางความร้อนของ CGn เมื่อ TiO<sub>2</sub> เพิ่มเป็น 12%

| CGn เมื่อ TiO <sub>2</sub> เพิ่มเป็น 12% | COE(X10 <sup>-6</sup> ) 100-500°C |
|------------------------------------------|-----------------------------------|
| 1.CGn01_ht2                              | 2.52                              |
| 1.CGn02_ht2                              | 11.29                             |
| 1.CGn08_ht2                              | 11.45                             |
| 1.CGn09_ht2                              | 11.06                             |
| 1.CGn11_ht2                              | 2.78                              |

4.4.2 CGn เติม B<sub>2</sub>O<sub>3</sub> 0.5% คือ CGn01ht2, CGn02ht2, CGn08ht2, CGn09ht2 และ CGn11ht2

#### -ผลการสังเกตสีของแก้ว

สีของกลาสเซรามิก CGn เติม B<sub>2</sub>O<sub>3</sub> 0.5% เปลี่ยนแปลงเรื่องความมันแววเพิ่มเพียงเล็กน้อย เมื่อเทียบกับ CGn ก่อนเติม แสดงดังรูปที่ 4.24 ส่วนความหนืดของน้ำแก้วก็ต่ำลงเพียงเล็กน้อย เช่นกัน

| 2.CGn dope B <sub>2</sub> O <sub>3</sub> =0.5% |            |            |            |            |  |
|------------------------------------------------|------------|------------|------------|------------|--|
| 2.CGn01ht2                                     | 2.CGn02ht2 | 2.CGn08ht2 | 2.CGn09ht2 | 2.CGn11ht2 |  |
|                                                |            |            |            | .)         |  |

**ฐปที่ 4.24** ตัวอย่างของ CGn เติม B₂O₃ 0.5% ที่ Heat treatment ht2

- ผลการวิเคราะห์สัมประสิทธิ์การขยายตัวทางความร้อน (Thermal expansion coefficient)

เมื่อเติม B<sub>2</sub>O<sub>3</sub> 0.5% ทำให้ค่าสัมประสิทธิ์การขยายตัวทางความร้อนลดลงทุกตัวเมื่อเทียบกับ สูตร CGn โดยเฉพาะ 2.CGn01\_ht2 และ 2.CGn02\_ht2 ซึ่งมีค่าสัมประสิทธิ์การขยายตัวทางความ ร้อนต่ำลงมาก เท่ากับ 1.42 X10<sup>-6</sup> / °C และ 1.76 X10<sup>-6</sup> / °C ตามลำดับซึ่งแสดงดังตารางที่ 4.12

| CGn dope $B_2O_3=0.5\%$ | COE(X10 <sup>-6</sup> ) 100-500°C |
|-------------------------|-----------------------------------|
| 2.CGn01_ht2             | 1.42                              |
| 2.CGn02_ht2             | 1.76                              |
| 2.CGn08_ht2             | 2.83                              |
| 2.CGn09_ht2             | 2.17                              |
| 2.CGn11_ht2             | 2.58                              |

**ตารางที่ 4.12** ค่าสัมประสิทธิ์การขยายตัวทางความร้อนของ CGn B<sub>2</sub>O<sub>3</sub> 0.5%

4.4.3 เดิม B<sub>2</sub>O<sub>3</sub> 1% คีอ CGn01ht2, CGn02ht2, CGn08ht2, CGn09ht2 และ CGn11ht2

#### - ผลการสังเกตสีของแก้ว

สูตร CGn เติม B<sub>2</sub>O<sub>3</sub> 1% ที่ Heat treatment ht2 850 °C 2 ชม.และ1050 °C 2 ชม. มีผล ต่อความมันแววอย่างมากในทุกสูตร ส่วนสีเป็นเนื้อเดียวกันยกเว้น CGn09\_ht2 ดังรูปที่ 4.25

| 3.CGn dope B <sub>2</sub> O <sub>3</sub> =1% |            |            |            |            |  |
|----------------------------------------------|------------|------------|------------|------------|--|
| 3.CGn01ht2                                   | 3.CGn02ht2 | 3.CGn08ht2 | 3.CGn09ht2 | 3.CGn11ht2 |  |
|                                              |            |            | ×9         |            |  |

**รูปที่ 4.25** ตัวอย่างของ CGn เดิม B<sub>2</sub>O<sub>3</sub> 1% ที่ Heat treatment ht2 ชม.

- ผลการวิเคราะห์สัมประสิทธิ์การขยายดัวทางความร้อน (Thermal expansion coefficient)

จากตารางที่ 4.13 เมื่อเดิม B<sub>2</sub>O<sub>3</sub> 1% ทำให้ค่าสัมประสิทธิ์การขยายตัวทางความร้อนสูงขึ้น ทุกตัวเมื่อเทียบกับสูตร CGn เดิม B<sub>2</sub>O<sub>3</sub> 0.5% ทำให้สรุปได้ว่าการ เดิม B<sub>2</sub>O<sub>3</sub> 1% เป็นการเดิมที่มาก เกินไป

|             | 6             |            |            |             |
|-------------|---------------|------------|------------|-------------|
| a           | 1 4 1 9 9     | ~          | 2          |             |
| ดารางท 4.13 | คาสมประสทธการ | ขยายดวทางค | าวามรอนของ | CGn B,O, 1% |

| CGn dope B <sub>2</sub> O <sub>3</sub> =1% | COE(X10 <sup>6</sup> ) 100-500°C |
|--------------------------------------------|----------------------------------|
| 3.CGn01_ht2                                | 5.98                             |
| 3.CGn02_ht2                                | 6.26                             |
| 3.CGn08_ht2                                | 7.71                             |
| 3.CGn09_ht2                                | 6.27                             |
| 3.CGn11_ht2                                | 6.95                             |

4.4.4 เดิม B<sub>2</sub>O<sub>3</sub> 0.5% <mark>และ เพิ่ม</mark> TiO<sub>2</sub>= 12% คีอ CGn01ht2, CGn02ht2, CGn08ht2, CGn09ht2 และ CGn11ht2

#### -ผลการสังเกตสีของแก้ว

สูตรทุกสูตรมีสีขาวอมเทาและกึ่งเงากึ่งด้าน ส่วนความหนืดของน้ำแก้วต่ำดีสามารถเทน้ำ แก้วได้ง่ายกว่า เพราะเมื่อเทน้ำแก้วแล้วแก้วจะไม่แข็งตัวทันทีจะมีช่วงเวลาอ่อนตัว หรือ Working range นานขึ้นทำให้การขึ้นรูปของแก้วทำได้ดีขึ้นดังแสดงในรูปที่ 4.26

| 4.CGn dope $B_2O_3 = 0.5\% + add TiO_2 = 12\%$ |            |            |            |            |  |
|------------------------------------------------|------------|------------|------------|------------|--|
| 4.CGn01ht2                                     | 4.CGn02ht2 | 4.CGn08ht2 | 4.CGn09ht2 | 4.CGn11ht2 |  |
| 8                                              |            |            |            | J          |  |

ฐปที่ 4.26 ตัวอย่างของ CGn เดิม B $_2O_3$  0.5% และ เพิ่ม TiO $_2$  เป็น 12% ที่ Heat treatment ht2

- การวิเคราะห์สัมประสิทธิ์การขยายตัวทางความร้อน (Thermal expansion

coefficient)

จากตารางที่ 4.14 สูตรที่มีค่าสัมประสิทธิ์การขยายตัวทางความร้อนต่ำสุดคือ 4.CGn02\_ht2 เท่ากับ 1.59X10<sup>6</sup>/ °C ซึ่งเมื่อเปรียบเทียบกับ 2.CGn01\_ht2 จะมีค่าสัมประสิทธิ์การขยายตัวทาง ความร้อนใกล้เคียงกันแต่ความหนืดของ 4.CGn02\_ht2 สามารถขึ้นรูปได้ง่ายกว่า หรือ working range นานขึ้น

| a           |                 |            | 9/         |                 |            |       |
|-------------|-----------------|------------|------------|-----------------|------------|-------|
| ตารางท 4.14 | คาสมประสทธการขย | ยายตัวทางค | วามรัคนของ | CGn B O         | 0.5%+TiO   | 12%   |
|             |                 |            |            | $0010_{2}0_{3}$ | 0.070 1102 | 12 /0 |

| CGn dope $B_2O_3$ =0.5%+TiO <sub>2</sub> 12% | COE(X10 <sup>-6</sup> ) 100-500°C |  |  |
|----------------------------------------------|-----------------------------------|--|--|
| 4.CGn01_ht2                                  | 2.03                              |  |  |
| 4.CGn02_ht2                                  | 1.59                              |  |  |
| 4.CGn08_ht2                                  | 2.30                              |  |  |
| 4.CGn09_ht2                                  | 3.27                              |  |  |
| 4.CGn11_ht2                                  | 2.39                              |  |  |

จากผลการทดลองเติม B<sub>2</sub>O<sub>3</sub> ที่ทำให้ค่าสัมประสิทธิ์การขยายตัวทางความร้อนต่ำลง โดยเติม ในจำนวนเพียงเล็กน้อย (B<sub>2</sub>O<sub>3</sub>=0.5%) ก็จะทำให้ค่าสัมประสิทธิ์การขยายตัวทางความร้อนต่ำลง มากกว่าการเติมในปริมาณมาก ซึ่งสอดคล้องกับงานวิจัยของ Nandi และคณะ<sup>(9)</sup> ที่กล่าวมาคือการ เติม B<sub>2</sub>O<sub>3</sub> จำนวนเพียงเล็กน้อยคือเติม B<sub>2</sub>O<sub>3</sub> เท่ากับ 1% ซึ่งเป็นจำนวนน้อยที่สุดในการทดลองทำ ให้ได้ค่าสัมประสิทธิ์การขยายตัวทางความร้อนต่ำที่สุดเช่นกัน

## - ผลการวิเคราะห์องค์ประกอบทางเฟส ด้วย XRD ของคอร์เดียไรต์กลาสเซรามิก ของ 4.CGn02\_ht2

จากรูปที่ 4.27 แสดงผลการวิเคราะห์องค์ประกอบทางเฟสของ 4.CGn02\_ht2 ซึ่งแสดงว่า เฟสหลักคือ คอร์เดียไรต์





#### - ผลการวิเคราะห์ Scanning electron microscopy (SEM) ของ 4.CGn02\_ht2

จากรูปที่ 4.28 แสดงโครงสร้างของคอร์เดียไรต์กลาสเซรามิก 4.CGn02\_ht2 ซึ่งถ้าเป็นแนวตั้ง จะเกิดผลึกคอร์เดียไรต์กระจัดกระจายอยู่ใน glassy phase แต่ถ้าในแนวนอนจะเกิดผลึกคอร์เดีย ไรต์อัดแน่น



**รูปที่ 4.28** SEM micrographs ของคอร์เดียไรต์กลาสเซรามิก 4.CGn02\_ht2 แนวตั้ง เปรียบเทียบกับแนวนอน

#### -การทดสอบการต้านทานการเปลี่ยนแปลงอุณหภูมิอย่างฉับพลัน ของ4.CGn02\_ht2

จากผลของค่าสัมประสิทธิ์การขยายตัวทางความร้อน ของ CGn B<sub>2</sub>O<sub>3</sub> 0.5% และ TiO<sub>2</sub> 12% จะได้ 4.CGn02\_ht2 มีค่าสัมประสิทธิ์การขยายตัวทางความร้อนต่ำสุดเท่ากับ 1.59X10<sup>-6</sup>/ °C จึง นำมาทดสอบการต้านทานการเปลี่ยนแปลงอุณหภูมิอย่างฉับพลัน โดยนำไปอบที่อุณหภูมิ 400°C เป็นเวลา 45 นาทีแล้วนำไปแซ่น้ำ 20 °C และนำมาตรวจสอบการรานตัวด้วย Methylene blue dye ถ้าไม่รานทำซ้ำอีก 4 ครั้ง และเมื่อไม่รานทั้ง 5 ครั้งจึงเพิ่มอุณหภูมิการอบเป็น การอบเป็น 450 °C และ 500 °C ผลการทดลองตามตารางที่ 4.15

ตารางที่ 4.15 ค่าการด้านทานการเปลี่ยนแปลงอุณหภูมิอย่างฉับพลันของ 4.CGn02\_ht2

|             | 400°C  | 450°C  | 500°C  |
|-------------|--------|--------|--------|
| 4.CGn02_ht2 | ไม่ราน | ไม่ราน | ไม่ราน |

สรุปผลการทดสอบการต้านทานการเปลี่ยนแปลงอุณหภูมิอย่างฉับพลันของ 4.CGn02\_ht2 ผ่าน 500 °C