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CHAPTER 3

MINORITY OVERSAMPLING FRAMEWORK FOR CLASS IMBALANCE

PROBLEM

As mentioned from the previous chapter, dealing with an imbalanced dataset 

by creating synthetic minority instances to balance class distribution of the dataset is 

an effective approach. However, current techniques have some limitations and 

weaknesses. เท this chapter, the framework which explores those limitations and 

weaknesses and new oversampling techniques modified from some existing 

oversampling algorithms based on this framework are introduced.

3.1 Minority outcast handling

The first problem of SMOTE is how to utilize positive instances which are 

placed away from other positive instances. Normally, these positive instances are 

viewed as insignificant instances since its number is very low comparing to the 

number of instances in the entire dataset, especially in class imbalance problem 

where the total number of positive instances is already low. Some classifiers such as 

decision tree or support vector machine prefer misclassifying them as negative for 

the sake of overall accuracy performance.

Borderline-SMOTE [27] and safe-level SMOTE [28] define positive instances 

whose c-nearest neighbors are all negative as danger/noise instances and exclude 

them for being used to generate synthetic instances. DBSMOTE [29] also identifies 

positive instances which do not belong to any density-based clusters as noise and 

excludes them. On the other hand, ADASYN [26] considers these noises whose 

definition are the same as ones from borderline-SMOTE [27] and safe-level SMOTE

[28] as critical to have a number of additional synthetic instances generated around 

these instances in order to make a classifier recognize them as positive. Since 

borderline-SMOTE, safe-level SMOTE and ADASYN all use the criterion to determine 

that positive instances whose c nearest neighbors are all negative are special 

instances that require extra treatments, this dissertation also adopts the same 

criterion and renames positive instances under this criterion as m inority outcasts. An 

example of a minority outcast in a dataset is illustrated in figure 13. On the side note, 

the original SMOTE [25] treats these noises or minority outcast instances as normal 

positive instances. เท a process of creating synthetic instances from an imbalanced 

dataset containing these minority outcasts, synthetic instances generated from these 

minority outcasts usually expand the decision region in a negative region which
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locates between these outcasts and their positive neighbors. This expanded decision 

region ultimately increases the number of positive predictions and causes the 

increase of recall since there are more actual positive instances predicted correctly. 

However, this also increases the number of false positive instances as the trade-off 

for increasing recall. เท some class imbalance problems where a false positive error is 

crucial, a misleading positive region caused by synthetic instances generated from 

these minority outcasts might not be appropriated. As mentioned prior, some 

algorithms such as borderline-SMOTE [27], safe-level SMOTE [28] and DBSMOTE [29] 

consider them as noises and exclude them from being used to generate synthetic 

instances. This idea can lower the false positive error. However, since every positive 

instance is critical and important to represent the positive class in the class 

imbalance problem, completely neglecting these instances may not be appropriate. 

An alternative approach should be considered.
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Figure 13: An exam p le  o f  a m in o rity  o u tca s t in  a da tase t

เท this section, an alternative technique which specifically deals with these 

minority outcasts is introduced. It starts with identifying which positive instance is a 

minority outcast using c-nearest neighbors. After minority outcast instances are 

identified and removed, the rest of positive instances are used to generate synthetic 

instances based on a selected oversampling technique in order to obtain a balanced 

dataset. The minority outcasts which are removed in the previous stage are added to 

a set of negative instances for a new training set. This new training set is used to train 

a l-nearest neighbor model. To utilize this model, unknown instances from a test set
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are sent to this l-nearest neighbor model (1-NN model) in order to refine their 

classification results after the original classification on these instances is finished. If 

any unknown instances are classified as positive by this 1-NN model, they are 

automatically classified as positive regardless of the result from the trained classifier. 

This additional process is called a m in o rity  ou tcas t hand ling  process w ith  1-NN or 

m in o rity  o u tca s t hand ling . It is an extension to other oversampling techniques 

featuring an outcast exclusion process. It captures missing positive regions caused by 

a sampling process or a potentially important positive instance which is hardly found 

due to a small number of positive instances. The algorithm for extracting outcasts is 

given in algorithm 1 and the algorithm for the minority outcast handling is given in 

algorithm 2.

A lg o rith m  1: M in o rity  O utcast e x tra c tio n  a lgo rithm

D a ta : A  n u m e r ic a l-a t t r ib u te  b in a ry  class d a ta s e t D c o n ta in in g  a se t o f  p o s it iv e  in s ta n ce s  p  

a n d  a s e t o f  n e g a tiv e  in s ta nce s  N a n d  th e  v a lu e  o f  c.

R e s u lt:  A  se t o f  p o s it iv e  in s ta nce s w h ic h  are  n o t  o u tc a s ts  P ', a se t o f  m in o r ity  o u tc a s ts  oc, 

a v e c to r  o f  s a fe - le v e l v a lu e s  o f  P ', SL ( fo r SLS), a v e c to r  o f  n e g a tive  n e a re s t d is ta n c e  £0c ( fo r 

ANS) a n d  a v e c to r  o f  p o s it iv e  n e a re s t d is ta n c e  Ep• ( fo r  ANS)

1. O u tc a s tE x tra c t io n (D , p ,  c)

2. For Pi €  p  d o

3. Id e n t ify  a l l  c -n e a re s t n e ig h b o r o f  Pi in  D
4. C o u n t th e  n u m b e r  o f  n e ig h b o rs  o f  Pi w h ic h  are p o s itiv e  as ร / , (safe le v e l)  o f  p,
5. If ร/, = 0 th e n

6 . P la ce  P i in  o c
7. K e e p  th e  d is ta n c e  b e tw e e n  P i a n d  its n e a re s t n e g a tiv e  n e ig h b o r as 00, in £0c

8 . End if

9. O th e rw is e , P lace P i in  P ' a n d  c o l le c t  ร/, in  SL

10. K ee p  th e  d is ta n c e  b e tw e e n  Pi a n d  its  n e a re s t p o s itiv e  n e ig h b o r as 8 , in Ep•
11. R e tu rn  { P ' , O C , S L , E ]
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A lg o rith m  2: M in o rity  o u tca s t hand ling  a lgo rithm

Data: A numerical-attribute binary class dataset D containing a set of negative instances N, a 

set of minority outcast instances o c  and a set of unknown instances บ.

Result: A vector of assigned class CL (d  1, d 2, ..., d )  of บ.

1. OutcastHandlinglD, N, o c ,  บ)

2. For น, e บ do

3. Calculate the distance from น, to every instance in a set N and oc

4. Let บ* as argmin{d(u„ x)| X e N or X e OQ

5. If บ* e OC then

6 . d, = +

7. End if

8 . Otherwise, d, = -

9. Return CL

เก the minority outcast extraction process, a parameter c is related to the 

number of minority outcasts since it is the number of nearest neighbors which are 

used to decide the outcast. The higher value of the parameter c is, the fewer 

number of positive instances which have all c-nearest neighbors as negative is. if c is 

set to 1, it could turn the whole classification model to a 1-nearest neighbor classifier 

since many positive instances are defined as minority outcasts and applied with 1- 

nearest neighbor except ones inside a dense cluster of positive instances.

I f  c  is s e t  t o o  h ig h ,  t h e  n u m b e r  o f  o u tc a s ts  m ig h t  b e  t o o  f e w  a n d  m in o r i t y  

outcast handling has little effect on the classification result. For the choice of 

selecting an appropriate c, the amount of noises of positive instances expected to 

have in each dataset should be considered. It is possible to use some criteria that 

can distinguish noises such as an outlier scoring algorithm to replace c-nearest 

neighbor. For this dissertation, the empirical experiment is conducted to help 

determining the parameter c. This procedure is explained in chapter 4.

in this dissertation, this minority outcast handling is applied into two new 

oversampling techniques. The empirical results from this process are shown along 

with the performance of these two new oversampling techniques in the next 

chapter.

3.2 T riangu la r m in o rity  oversam pling  te ch n iq u e

The pattern of generating synthetic instance in SMOTE [25] and its variances is 

to generate a synthetic instance along the line segment between two original
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minority instances which is the simplest relationship between these two minority 

instances. By using a line segment, it requires only one additional parameter and a 

simple arithmetic calculation in order to create a new synthetic instance. This 

synthetic instance is guaranteed to be inside the convex set of two positive instances 

as shown in figure 14. It also helps strengthen the border of minority instance regions 

to be denser and easier to be detected by a classification algorithm that works on 

identifying the border between two classes such as a support vector machine [10] or 

a decision tree [32],

Figure 14: A v isua liza tion  showing th a t  syn th e tic  instances are n o t 

generated ou ts ide  th e  convex h u ll o f  th e  o rig ina l pos itive  region

One question is raised as what would happen if synthetic instances are 

generated inside the area forming by three or more minority instances instead of the 

line segment between two. Since oversampling techniques generally aim to increase 

the density of this region, synthetic instances which are created in the convex hull of 

three or more minority instances are reasonable. To investigate whether this 

approach is actually effective, an oversampling technique that employs this idea is 

designed and the experiments with benchmark datasets are conducted.
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Figure 15: The com parison  o f  syn th e tic  generation  o f  SMOTE and TM O T

The designed oversampling technique is called Triangular minority 

oversampling technique (TMOT). For each minority instance, it forms two line 

segments to two of its positive nearest neighbors and creates two pseudo end points 

on these two lines. Then, a new synthetic instance is generated on a line segment 

between these two pseudo end points, causing the new instance to be inside the 

triangle formed by edges linking a minority instance and its two nearest neighbors. It 

is trivial to see that this technique does not create synthetic instances on the border 

of a set of minority instances. This result is similar to synthetic instances generated 

with DBSMOTE [29] where synthetic instances are generated only on the path to the 

pseudo centroid of the cluster of positive instances, not around the border of the 

cluster. Later in chapter 4, the classification result from this technique is compared 

using the original dataset and SMOTE algorithm.

3.3 Relocating fra m e w o rk  fo r  sa fe -leve l SMOTE

The common procedure of SMOTE [25] on generating synthetic instances is to 

randomly create synthetic instance on a line segment between one positive instance 

and one of its k-positive nearest neighbors. This part ignores the existence of 

surrounding negative instances which might be located around each positive 

instance. Sometimes, there may be negative instances lying between those positive 

instances and the synthetic instance is generated among these negative instances. 

Some oversampling techniques use the existence of surrounding negative instances 

to configure how synthetic instances are generated. Safe-level SMOTE [28] is one 

variation of SMOTE that takes account of majority instances around each positive 

instance to determine the possible position of synthetic instances. Safe-level SMOTE 

uses the number of positive instances in c-nearest neighbor of each positive instance 

to define its “ safe-level” value. Then, the safe-level ratio o f two positive instances
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that form the line segment is used to define the possible interval that a synthetic 

instance is created. This interval guarantees that the synthetic instance is not created 

close to the positive one with lower safe-level value and it is hypothetically able to 

avoid creating these synthetic instances close to negative instances.

Despite of adapting the safe-level approach to control the possible location 

of synthetic instances, sometimes synthetic instances are generated too close to 

existing negative instances. เท order to remedy this, relocating safe-level SMOTE is 

suggested which implements an additional step to relocate synthetic instances once 

they are located too closed to negative instances. This algorithm follows the process 

of safe-level SMOTE, starting with finding c-nearest neighbors of every positive 

instance and calculating its safe-level value. Then, for each positive instance p, one 

of its k-positive neighbors p is selected to form a pair. The safe-level values of these 

two instances and the safe-level ratio are used to set up the interval on the line 

segment for synthesizing as shown in table 1. After the location is set randomly on 

that interval, a supposedly new synthetic instance p ' is generated. However, this 

synthetic instance is required to enter the trial whether it is too close to surrounding 

negative instances. If it is closer to surrounding negative instances than two positive 

instances which generate it, then the location of this synthetic instance is going to be 

changed. The direction to move p ‘ is going toward the positive instance with a higher 

safe-level value. The procedure for this trial is set based on the value of the safe- 

level ratio of the pair that generates p'. If the ratio is higher than 1, it implies that p is 

the positive instance with a higher safe-level value. The distance values between the 

new synthetic instance and surrounding negative instances (which are selected from 

negative neighbors of p  and a positive neighbor p ) is compared with the distance 

value from p '  to the positive instance p. If the distance is larger, a new location of p ' 

is needed to be chosen on the line segment between old p '  and p. Similarly, if the 

safe-level ratio is less than 1, p is the positive instance with a higher safe-level 

value. The distance value from p ' to the positive instance p is used to compare 

with the distance values between p ' and surrounding negative instances. If the former 

is larger, a new location of p ' is needed to be chosen on the line segment between 

old p ’ and p . This process continues until p ' is closer to positives than negatives. The 

visualization of this procedure is shown in figure 16.
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Figure 16: An e xa m p le  o f  re loca ting  a s yn th e tic  instance

This approach is called re loca ting  sa fe -leve l SMOTE (RSLS). The algorithm of 

RSLS is shown in algorithm 3. Apart from the relocating process, this algorithm also 

includes the minority outcast handling process from section 3.1 to improve the 

classification performance from the synthetic dataset which is generated from RSLS.
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Algorithm 3: Relocating safe-level SMOTE

D a ta : A  n u m e r ic a l-a t t r ib u te  b in a ry  c lass d a ta s e t D c o n ta in in g  a s e t o f  p o s it iv e  in s ta n c e s  p an d  

a se t o f  n e g a tiv e  in s ta n ce s  พ, th e  n u m b e r  o f  p o s it iv e  n e a re s t n e ig h b o r k, a n d  th e  p a ra m e te r  c. 

Result: A  n e a r ly  b a la n c e d  d a ta s e t w h ic h  is a c o m b in a tio n  o f  D a n d  a s e t o f  s y n th e tic  

in s ta n ce s  ร , a se t o f  m in o r ity  o u tc a s t  o c .

1. In it ia liz a t io n  t = 1;

2. F in d  c -n e a re s t n e ig h b o r o f  p in  D, le t  Wc, b e  th e  se t o f  c -n e a re s t n e ig h b o rs  o f  e a c h  Pi e  p.
3. F in d  /c-nearest n e ig h b o r o f  p in  p, le t  Pki b e  th e  se t o f  /c-(positive) n e a re s t n e ig h b o rs  o f  

e a c h  P i e  p.
4. {Pused, oc, 5L, E] = O u tc a s tE x tra c tio n lD , p, c)

^  \N \
5. W h ile  t < ---------—  d o

|Pused|
6 . For Pi e  Pused d o

7. R a n d o m  s e le c t p j f ro m  PKi, le t  slj = a safe  le v e l o f  p i a n d  safejatio = sl/slj
8 . gap = G apC alcu la te(s/y, safejatio)
9- p' = p, + gapx(p,.-p,)

10. L e t NR b e  { ne, e  w c , I nc, is n e g a tive  } nCj e  w c  o f p ,  I riCj is n e g a tiv e  }

11. If NR is n o t  e m p ty  th e n

12. If safejatio i  1 th e n  p' = R e loca ting P rocess lp ,, p\ safejatio, NR)

13. If safejatio < 1 th e n  p' = R e lo c a tin g P ro c e s s lp , 1 p', safejatio, NR)

14. A d d  p‘ in to  5

15. End fo r

16. t  = f +  1

17. End w h ile

1. GapCalculatelsl,-, s a f e j a t i o )

2. If ร/, > 0 th e n

3. If safejatio = 1 th e n  se t gap as a ra n d o m  n u m b e r  b e tw e e n  0 to  1

4. If safejatio > 1 th e n  s e t gap as a ra n d o m  n u m b e r  b e tw e e n  0 to  1 /safejatio
5. If  safejatio < 1 th e n  se t gap as a ra n d o m  n u m b e r  b e tw e e n  1 -safejatio t o  1

6 . If  ร/,- = 0 th e n  se t gap as 0

7. R e tu rn  gap
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1. RelocatingProcesslp*, p', safe_ratio, NR)

2. C a lc u la te  th e  d is ta n c e  f ro m  p *  to  p '  as d (p * , p '  ).

3. W h ile  dip*1 p' ) > m in { d ( p ', nr)| n r 6  NR} d o

4. gap = G a p C a lc u la te d , 1)

5. p' = p* + gap X ip' - p * )

6 . E n d w h ile

7. Return p ’

After RSLS provides a set of synthetic instances ร ,  it is added into the original 

imbalanced dataset to turn it into the balanced dataset. This balanced dataset is 

used to train the classifier. Since the number of instances between two classes is no 

longer imbalanced, the training algorithm can be applied. This could help classifier 

provide the better prediction rate on minority class instances. Moreover, the way the 

location of each synthetic instance is controlled, added synthetic instances can 

better represent minority class and achieve a higher positive prediction rate than 

other oversampling techniques. Additionally, minority outcasts which are extracted 

from a set of positive instances are used in the minority outcast handling process 

introduced in section 3.1. 1-nearest neighbor model which is developed through this 

process is going to be used after instances in the test set are classified with a trained 

classifier. The flowchart of the process is shown in figure 17.
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Figure 17: A  d iagram  o f re loca ting  sa fe -leve l SMOTE w ith  1-NN m in o rity  

o u tca s t hand ling

3.4 A d a p tive  ne ighbors S yn the tic  M in o rity  O versam pling TE chnique 

u n d e r 1-NN o u tca s t hand ling

Another problem in SMOTE [25] is how to select the appropriate value of k , 

the number of positive neighbors. This parameter determines the number of possible 

positive neighbors that is chosen to pair up with each positive instance in order to 

create synthetic instances along the line segment of that pair. เท original SMOTE 

paper [25], Chawla used the value of k  as 5 for his experiments and this number is 

inherited to other related oversampling techniques. To verify whether the value of k  

as 5 is actually the optimal value, researchers need to perform various experimental 

runs.

For this section of the dissertation, a new oversampling technique is 

introduced under the name “Adaptive Neighbors Synthetic Minority Oversampling 

Technique” or ANS. This oversampling technique automatically configures the value 

of k  used for each positive instance based on the density of surrounding positive 

instances.

The first step is to exclude minority outcasts from an imbalanced dataset. 

Positive instances which are not identified as minority outcasts are used for
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generating synthetic instances via SMOTE algorithm. Each positive instance requires at 

least one positive neighbor to form the line segment that generates a synthetic 

instance. To guarantee that each positive instance P i contains at least one neighbor, 

the maximum distance value between pairs of two closest positive neighbors is 

chosen as the radius. With this value, every positive instance contains at least one 

positive nearest neighbor under this radius. The number of positive nearest neighbor 

of P i is used as the parameter k j for P i to generate synthetic instances with SMOTE. 

The variation of these numbers of k  depends on the density of positive instances 

around each instance.

Figure 18: A v isua liza tion  o f  assigning th e  n u m b e r o f  K process
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A lg o rith m  4: A d a p tive  ne ighbor SMOTE

D a ta : A  n u m e r ic a l-a t t r ib u te  b in a ry  class d a ta s e t D c o n ta in in g  a s e t o f  p o s it iv e  in s ta n ce s  p  a n d  

a se t o f  n e g a tiv e  in s ta n ce s  N a n d  th e  v a lu e  o f  c.

R e s u lt: A  n e a r ly  b a la n c e d  d a ta s e t w h ic h  is a c o m b in a tio n  o f  D a n d  a s e t o f  s y n th e tic  

in s ta n ce s  ร, a se t o f  m in o r ity  o u tc a s t o c .

1 . In it ia liz a tio n  t  =  1;

2 . {Pused, o c ,  SL, E] =O u tc a s tE x tra c tio n (D , p, 0

3. D e fin e  ธ  = m a x  E
4. For P i e  Pused d o

5. L e t Np; = {P j e Pused1 d (p /, P j) ร £}

6 . L e t ki = 1 Np, 1

7. End fo r

8 .
\N \

W h ile  t  < — — d o

\P u s e d \

9. For p, e  Fused d o

10. R a n d o m ly  s e le c t Pi f ro m  Np,
11. gap = G a p C a lc u la te d , 1)

12. p '= p , + g a p x ( p , - - p , )

13. A d d  p' in to  ร.

14. End fo r

15. t = t + 1

16. End w h ile .

This choice of k j selection is not the optimal choice to provide the best 

accuracy performance. However, it avoids multiple repeating runs for tuning the 

optimal value of k. Since the number of positive instances is relatively low 

comparing to the total number of instances, the distance and neighbor calculation 

take time and resource.

Moreover, the accuracy performance of adaptive neighbor synthetic 

oversampling process (ANS) is enhanced by making use of excluded minority 

outcasts. เท the previous approach, minority outcasts taken out during the ANS 

process are brought back to perform minority outcast handling. As result, a new 

oversampling technique called adap tive  ne ighbors S yn th e tic  M in o rity  

O versam pling TE chnique u n d e r IN N  ou tcas t hand ling  (ANSO) is developed from 

the combination of minority outcast handling and ANS process. The flowchart of the
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whole process of ANSO is shown in figure 19. The effectiveness o f ANSO is presented 

through the experiment in chapter 4.

Figure 19: The flo w c h a rt o f  A d a p tive  neighbors S yn th e tic  M in o rity  

O versam pling T E chnique u nde r 1-NN ou tca s t hand ling

3.5 The tim e  c o m p le x ity  analysis

To calculate the time complexity of suggested oversampling techniques and 

some existing oversampling techniques i.e. SMOTE and safe-level SMOTE, this section 

uses ก as the number of instances in a dataset and p is the number of positive 

instances. Each instance is complete with no missing value having d  attributes. The 

parameter value of k  and c are both set as 5. These values are set based on the 

setting given in the papers of SMOTE and safe-level SMOTE.

For SMOTE, the first stage is to find k  nearest neighbors of p positive 

instances. This nearest neighbor process contains two major steps. The first one is to 

calculate the distance matrix of p positive instances. This step requires the time 

complexity of o(p2-d). The other step is to determine the least k  distance values and 

the indices which provide these k  values. This step requires the time complexity of 

o { p - k ) .  The combined time for the /(-nearest neighbor process is o ( p 2-d  + p 2-k). The 

next stage for SMOTE is to generate new synthetic instances. For each iteration, the
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a lgorithm  has to  go th rou g h  every  p  positive  instance and synthesizes a new  

instance. It takes o (p -d ) fo r processing one ite ra tion. Since th e  oversam pling  is 

needed  to  be d o n e  u n til th e  da tase t is nea rly  balanced, so th e  n u m b e r o f  ite ra tions 

is at least n /p . The tim e  c o m p le x ity  fo r th is  syn the tic  generating process becom es 

o ((ก/p ) p •๘) o r o (ก ■๘). Adding to  th e  tim e  fro m  previous stage, th e  to ta l t im e  

c o m p le x ity  o f  SMOTE is 0 (p 2-d + p 2-k + ก •๘). The biggest te rm  o f  th is t im e  c o m p le x ity  

is b e tw een  o (p 2-d) and 0 (ก ■๘). Since p 2•๘ = 0( 2-n -d > ก ■๘ if a 2-n > 1, w h e re  a  is th e  

ra tio  o f  p  over ก. Then, th e  tim e  c o m p le x ity  o f  SMOTE is 0 (p 2).

S afe-leve l SMOTE conta ins  th e  c-nearest neighbor process in o rder to  

ca lcu la te  th e  sa fe -leve l o f p  pos itive  instances. To  find  c  nearest neighbors fro m  ก 

instances o f  p  pos itive  instances, th e  process requires th e  d istance m atrix  c a lcu la tio n  

w h ich  costs o (n -p -d) and th e  d is tance  se lection  w h ich  costs 0{n-p-k). So th e  to ta l 

tim e  c o m p le x ity  o f  th is  stage becom es o (ก-p •๘ + n-p-k). A fte r th is  process, th e  en tire  

SMOTE a lgorithm  is pe rfo rm ed . Then, th e  to ta l t im e  c o m p le x ity  o f  sa fe-leve l SMOTE 

is o (ก-p •๘ + n p  k + p  •๘ + p 2-k + n -d ) w h ich  equals to  o (ก -p). This tim e  c o m p le x ity  o f  

sa fe-leve l SMOTE is larger than  o n e  fro m  SMOTE depend ing  on th e  im ba lance  o f  th e  

dataset.

For re loca ting  sa fe-leve l SMOTE, th e  en tire  process o f  sa fe -leve l SMOTE is 

p e rfo rm ed  here e xcep t fo r th e  re loca ting  process w h ich  is added fro m  orig inal safe- 

le v e l SMOTE. The re locating  process requires th e  extra d is tance  ca lcu la tion  fro m  th e  

synthetic instance to negative neighbors o f two positive instances which are used to 

generate. The m ax im um  n um be r o f  negative neighbors is 2-{k -  1), so th e  tim e  

c o m p le x ity  fo r th is  stage is 0(2-(/c -  1 )-p-d). Includ ing th e  tim e  c o m p le x ity  fo r safe- 

le v e l SMOTE, th e  to ta l tim e  c o m p le x ity  fo r  re loca ting  sa fe -leve l SMOTE is o (ก-p ■๘ + 

n-p-k + p - d  + p 2-k + ก-๘  + 2-(/c -  l)-p -d ) w h ich  also equals to  o (ก -p) since e ithe r k (the  

d e fa u lt se tting  is 5) o r ๘  is m uch  less tha n  b o th  p  and ก.

For adap tive  neighbor SMOTE, th e  same c-nearest ne ighbor as o ne  in safe- 

le v e l SMOTE is p e rfo rm ed  to  d e te c t th e  m in o rity  ou tcas t giving th e  tim e  c o m p le x ity  

as o (ก-p -d  + n-p-k). The ca lcu la tion  fo r Eps w h ich  is used to  d e te rm in e  th e  dynam ic  k 

fo r each positive  va lu e  can be in c lu d e d  in to  th e  d is tance  sorting s tep  o f  th is process, 

so th e re  is no  a d d itio n a l tim e  fo r th is  ca lcu la tion . Flowever, th e  coun ting  leading to  

th e  n u m b e r o f  k fo r  each positive  n u m b e r requires th e  extra O(p). The same d istance 

m atrix  ca lcu la tion  step  fo r k-nearest neighbor stage o f  ANS is a lso perfo rm ed ; 

how ever, th e  sorting step  becom es 0 (k maxp 2), w h e re  kmax -  m ax {kj I / = 1, 2,..., p}. 

/cmax is usua lly  larger than  5 and som etim es exceeds th e  n u m b e r o f  a ttr ib u te s  d. The
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syn the tic  generating process is th e  same as o ne  o f  SMOTE, so it requires th e  same 

tim e  c o m p le x ity  w h ich  is o (n-d). เท conc lus ion , th e  to ta l t im e  c o m p le x ity  fo r adaptive  

neighbor SMOTE becom es o (n-p-d + n-p-k + p  + p - d  + kmax-p2 + n-d) w h ich  a lso 

equals to  o (n-p). The  com parison  o f t im e  c o m p le x ity  fro m  each oversam pling  

te ch n iq u e  is show n in ta b le  5.

T ab le  5: The  sum m ary  o f  t im e  co m p le x itie s  o f  SMOTE, sa fe -leve l SMOTE 

and suggested oversam pling  te ch n iq u e s  in th e  fram e w o rk

T im e  C o m p le x ity

SMOTE 0  ( p 2-d  + p 2-k  +  n - d )  = 0  (p2)

SLS 0  { n - p - d  + n -p - k  +  p - d  +  p - k  +  n -d )  = o ( n - p )

RSLS 0 { n - p - d  +  n -p -k  + p2- d  + p 2-k + n - d  + 2 (k  -  l ) - p  d )  =  o ( n - p )

ANS 0  [ n - p - d  +  n -p - k  +  p  +  p 2-d  +  k max-p 2 + n -d )  =  0  in - p )

Since p  can be w ritte n  in te rm  o f a n  w here  a  is less th a n  0.5, so e ith e r 0 (p 2) 

o r O(n-p) b o th  equa ls to  0 (ก 2). Then, it can be c o n c lu d e d  th a t the re  is n o t m uch 

d iffe rence  b e tw e e n  th e  tim e  co m p le x itie s  o f  these  oversam pling  techn iques.
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