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บทคัดย@อ 

การเย็บแผลดPวยไหมและลวดเย็บแผลมักใชPเพื่อปUดบาดแผลและสKงเสริมกระบวนการสมานแผลใน

รKางกาย อยKางไรก็ตามวิธีการที่กลKาวมาน้ีอาจทำใหPเกิดความเสียหายเพิ่มเติมกับเนื้อเยื่อและไมKสามารถปYองกัน

การรั่วไหลของเหลวในรKางกายหรืออากาศไดP อีกทั้งไมKเหมาะสำหรับขั้นตอนการผKาตัดเล็กในบริเวณที่มีการ

ผKาตัด จำกัด กาวติดเนื้อเยื่อหรือที่เรียกวKา "กาวชีวภาพ" กลายเป4นอีกทางเลือกหนึ่งที่นKาสนใจเนื่องจากชKวยใหP

การรักษาบาดแผลผKานการยึดเกาะระหวKางเนื้อเยื่อและระหวKางเนื้อเยื่อกับพื้นผิวที่ไมKใชKเนื้อเยื่อ ในงานวิจัยน้ี

ไดPพัฒนาระบบพอลิเมอร-ไฮโดรเจลสองชนิดเพื ่อใชPเป4นกาวชีวภาพ ชนิดแรกเป4นพอลิฟอสโฟเอสเทอร-

สังเคราะห-ซึ่งเป4นหนึ่งในพอลิเมอร-ที่ยKอยสลายไดPและเขPากันไดPกับรKางกายซึ่งสังเคราะห-จากมอนอเมอร- 2 ตัว 

ไดPแกK 2-isopropoxy-1,3,2-dioxaphospholane-2-oxide (IPP) และ protected N-tyrosine-methyl-

ester phospholane (P-TMP) ตามดPวยการกำจัดหมูKปกปYอง โดยมีจุดประสงค-ใหPโคพอลิเมอร-แบบสุKมท่ี

เกิดขึ ้นของpoly(TMP-r-IPP) จะไดPรับการเชื ่อมขวางของหนKวยไทโรซีนในภาวะที่มี [RuII(bpy)3]2+ และ

โซเดียมเพอร-ซัลเฟต (SPS) หลังการฉายแสงขาว เพื่อสรPางเจลอKอนที่สามารถใชPเป4นกาวชีวภาพ อยKางไรก็ตาม

ผูPวิจัยไมKสามารถทำใหP P-TMP บริสุทธิ์ไดPสำเร็จตามกำหนด จึงไมKสามารถศึกษาการสังเคราะห-โคพอลิเมอร-

และการเกิดเจลไดP เพ่ือบรรลุจุดประสงค-ขPางตPนไดP ชนิดท่ีสองเป4นพอลิแซ็กคาไรด-ท่ีไดPจากธรรมชาติ อัลจิเนตท่ี

ดัดแปลงดPวยไทโรซีน (OAT) และควอเทอร-ไนซ-ไคโตซาน (QC) ถูกเตรียมขึ้นผKานการดัดแปลงทางเคมีของอัลจิ

เนตและไคโตซานตามลำดับ คาดวKา OAT และ QC จะสรPางไฮโดรเจลเครือขKายแบบคูK การเช่ือมขวางแบบปฐม

ภูมิของพันธะอิมมีน เกิดขึ้นระหวKางหมูKอัลดีไฮด-ใน OAT และหมูKอะมิโนใน QC ในขณะที่การเชื่อมขวางแบบ

ทุติยภูมิเกิดขึ้น ผKานเกิดเชื่อมขวางของหนKวยไทโรซีนของ AOT เมื่อไดPรับการฉายแสงสีขาว การศึกษาเบื้องตPน

ช้ีใหPเห็นวKา OAT ท่ีมีคKาการแทนท่ีของไทโรซีน 16.8% มีแนวโนPมท่ีจะนำไปใชPในการสรPางเจลตKอไปไดPเน่ืองจาก

สามารถละลายน้ำไดPสูงถึง 2% w/v และเกิดเจลไดPภายใน 30 วินาที 
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ABSTRACT 

Surgical sutures and staples are usually used to close wounds and improve wound 

healing process in our body. Nevertheless, they are still invasive and may cause additional 

damage to the tissues and cannot prevent body fluid or air leakage. They are not suitable for 

microsurgical procedures in a limited surgical site. Tissue adhesive or so-called “bio-glue” 

becomes an interesting alternative as it enables wound healing via the adhesion among tissues 

as well as between tissues to non-tissue surfaces. In this research, two polymeric hydrogel 

systems were developed to be used as bio-glue. The first system is based on a synthetic 

polyphosphoester, one of biodegradable and biocompatible polymer which was synthesized 

from two monomers namely, 2-isopropoxy-1,3,2-dioxaphospholane-2-oxide (IPP) and 

protected N-tyrosine-m-ester phospholane amidate (P-TMP) followed by deprotection. It was 

anticipated that the resulting random copolymer of poly(TMP-r-IPP) would undergo tyrosine 

crosslinking upon visible light irradiation in the presence of [RuII(bpy)3]2+ and sodium 

persulfate (SPS) to form soft gel that can be applied as bio-glue. Unfortunately, we cannot 

successfully purify P-TMP in due course so that the investigation on the copolymerization and 

gelation cannot be fulfilled. The second system is based on naturally derived polysaccharides. 

Tyrosine-modified alginate (OAT) and quaternized chitosan (QC) were first prepared by 

chemical modification of alginate and chitosan, respectively. It was expected that OAT and 

QC would form a double network hydrogel. Primary crosslinking of imine bonds took place 

between aldehyde groups in the OAT and amino groups in the QC while the secondary 

crosslinking was formed via visible light-induced gelation of tyrosine units in the AOT. 

Preliminary investigation suggested that OAT with 16.8% substituted tyrosine seems to be a 

promising candidate to be further used for gel formation as it is water soluble with up to 2%w/v 

and it can form gel within 30 s. 

 

Keywords: tissue adhesives, polyphosphoesters, crosslinking, Schiff base linkage, chitosan, 

alginate, visible light, gelation.  
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction  

In each year, more than ten million people have suffered from a variety of tissue wounds 

ranging from minor skin cuts to severe injuries, such as traumatic incidents, chronic wounds 

such as diabetic ulcers, and surgical incisions. [1-3] Therefore, medical treatments for those 

injuries essentially enhance reconnection of the injured tissues and closure of the defect areas 

in order to stop bleeding, prevent leakage, and ultimately build up tissue structures and 

functions are certainly important issues. [4]  

Traditionally, staples and sutures have been the first choice for wound treatment 

process. Both techniques can firmly approximate the tissues until they heal and resist 

mechanical loads such as stretching of tissues for reducing the risks of surgical wound 

dehiscence. [5,6] Even, these approaches have well improved wound and surgical care, they 

are often unsuitable in certain situations, for example, those that require leakage prevention of 

body fluids or air. Moreover, its challenge lies in achieving effective closure when wounds are 

large. On the other hand, they are not applicable to minimally invasive or microsurgical 

procedures in a limited surgical site. Therefore, new kinds of materials have been constantly 

researched and developed and one of promising biomaterials is tissue adhesives.  

Tissue adhesives have been increasingly important elements in modern medicine, with 

rapid development over the past 30 years. The tissue adhesives enable the innate wound healing 

processes to occur through the adhesion of tissue to the tissue on-site or tissue to non-tissue 

surfaces on-site. An ideal tissue adhesive should possess a number of characteristics as shown 

in Figure 1.1, including 1) biological compatibility and nontoxicity, 2) suitable chemistry to 

create robust tissue adhesion, 3) mechanical similarity to the underlying tissue, 4) mechanical 

capacity to withstand repeated dynamic forces imposed by the tissue, 5) acceptable swelling 

profile to minimize tissue compression, and 6) biodegradability at a compatible rate related to 

tissue healing. [7-12] Recently, several classes of tissue adhesives have been developed, but 

there is still a serious concern due to toxicity and performance problems. For example, 

cyanoacrylate-based adhesives are brittle and release degradable formaldehyde products, [13] 

and the use of cyanoacrylate adhesives can cause inflammation and tissue necrosis. [14] Fibrin 
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sealants may exhibit poor adhesion and pose a risk of viral infection. [15-16] Thus, synthetic 

biomaterial sealants are alternatively sought to relieve these concerns. 

 

Figure 1.1 Examples of tissue injuries and primary functions of tissue adhesives. [2] 

 

In this senior project studies, we have explored the possibility to develop tissue 

adhesives from two polymeric compounds, namely synthetic polyphosphoesters and naturally 

derived polysaccharide-based materials.  

Part 1: Polyphosphoester-based hydrogel 

Biopolymers have always inspired scientists to mimic their performance and properties 

as synthetic analogs (Figure 1.2). Elastomer as natural rubber derived from rubber trees and 

its deficiency in the past wars led to the development and the discovery of polyolefin chemistry. 

Polyesters are found in nature and have found increasingly used also as synthetic polymers. 

Polyamides provide polar amide bonds to share with natural proteins and an attempt is currently 

being undertaken to imitate the sequential control and the great mechanical properties offered 

by the polypeptide of spider web. [17] 

In addition, synthetic main-chain poly(phosphoester)s (PPEs) are attractive candidates 

possesing biocompatibility and biodegradability because the similarity of their building blocks 

to natural nucleic acids, and their backbone is recognizable with enzymes and can be cleaved 

under physiological conditions. [18] Furthermore, hydrolytic degradation of the 

polyphosphoester backbone with or without an enzyme (e.g. phosphatase) also makes PPEs 

interesting for biomedical applications. 



 3 

 

Figure 1.2 Examples of synthetic polymers mimicking natural polymers. [17] 

 

Polyphosphoester as a class of biodegradable polymers has several advantages, 

including good biocompatibility, favorable biodegradability, facile functionalization. [19] 

Therefore, it can fully meet not only the requirements of the current drug delivery system but 

also tissue adhesives. Deoxyribonucleic acid/tannic acid (DNA/TA)-based hydrogel was 

performed by using intermolecular force as hydrogen bonding between catechol groups on 

tannic acid and bases on DNA structure. Phosphodiester bonds presented efficient tissue 

adhesiveness and can be an excellent hemostatic agent in coagulation process. [20]  

PPEs were synthesized by ring-opening polymerization (ROP). 2-chloro-1,3,2-

dioxaphospholane-2-oxide (COP), which is one of cyclic phospholane monomers, can be 

modified via nucleophilic substitution for replacing chlorine position to nucleophilic side chain 

groups (O-attack or N-attack) (Figure 1.3). The different functionalities of their side chain 

groups are easily tunable, endowing them with desirable mechanical, chemical, and biological 

potential, in contrast to other biodegradable polyesters (e.g., polylactide and polycaprolactone). 

Examples of the phospholane monomer analogs with different functionalities are 2-(but-3-yn-

1-yloxy)-2-oxo-1,3,2-dioxaphospholane (BYP), 2-ethoxy-1, 3, 2-dioxaphospholane (EEP), 

and 2-isopropoxy-2-oxo-1,3,2-dioxaphospholane) (IPP). Iwasaki et al. reported the synthesis 

of a copolymer consisting of PEEP and PIPP which are thermo-responsive polymer by anionic 

ROP using triisobutylaluminum as an initiator. The copolymers with a composition of 24% 
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PIPP and 74% PEEP exhibit lower critical solution temperature (LCST) approximately 31°C 

via controlling the PIPP ratio in the polymer chain. [21]  

 

Figure 1.3 Example molecules of COP derivatives [62] 

In this study, we would like to introduce thermo-responsive property to PIPP so it can 

be when applied on tissue surface by optimizing LCST of the synthesized copolymer. IPP 

monomer was copolymerized with methyl-3-(4-((tert-butyldimethylsilyl) oxy)phenyl)-2-(((2-

oxido-1,3,2-dioxaphospholan-2-yl)oxy) amino) propanoate or protected N-tyrsosine-m-ester 

phospholane amidate (P-TMP) monomer to prepare a copolymer of poly(TMP-r-IPP) which 

can form hydrogel upon visible light-induced crosslinking in the presence of ruthenium catalyst 

as shown in Figure 1.4. It is anticipated that this hydrogel can be used as biodegradable tissue 

adhesive or bio-glue. 

 
Figure 1.4 Overview of polyphosphoester-based hydrogel formation. 

 

Part 2: Polysaccharide-based hydrogel 

Dynamic covalent bonds, such as Schiff bases, disulfide bonds and Diels–Alder 

reactions have been employed for the preparation of hydrogels with various functions. 
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Especially, chitosan-based hydrogels constructed via Schiff bases have been widely explored 

as biomaterials for hemostasis, drug delivery, and bio-adhesives due to their good 

biocompatibility and biodegradability under physiological conditions. [22-23] For example, 

Liu and coworkers developed a chitosan/aldehyde-PEG to form self-healing hydrogel for use 

as bioink in 3D bioprinting and modular 3D bioprinting and the mechanical properties of 

hydrogel was enhanced by secondary crossrelinking. [24] In bio-adhesive applications, 

antibacterial and anti-inflammatory properties of tissue adhesives play an important role in 

wound healing. [25] Synthetic materials had shown their excellent antibacterial and 

anti-inflammatory properties according to the previous reports. For example, functionalized 

poly(ethylene glycol)-co-poly(glycerol sebacate) was used to prepare antibacterial, 

antioxidant, and electroactive dressing for cutaneous wound healing. [26] However, some 

synthetic materials have those properties, but they cannot degrade in physical environment. It 

was a sensible choice to select natural polymers as the tissue adhesives via chemical 

modifications. 

Chitosan is a linear natural polysaccharide, partially deacetylated derivative from 

chitin. Chitosan has been widely used in drug delivery and tissue engineering because of its 

excellent biocompatibility, biodegradability, hemostatic properties and antibacterial properties 

[27]. For its strong inter-molecular hydrogen bonding, chitosan has poor solubility in 

physiological solvents, which limited its applications in tissue engineering. [28] To get rid of 

this disadvantage, polymeric quaternary ammonium compounds have received the most 

attention over the years to improve solubility of chitosan in physical condition as exhibited in 

Figure 1.5 and still have antimicrobial properties. Liu and coworkers reported quaternized 

chitosan exhibiting antimicrobial properties against microorganisms such as Escherichia coli, 

Staphylococcus aureus [29] and it has been rarely investigated in tissue adhesive fields. 
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Figure 1.5 Structure of chitosan and chitosan derivatives related with their solubility. [30] 

Alginate is a linear and naturally occurring anionic and hydrophilic polysaccharide 

containing blocks of (1–4)-linked β-D-mannuronic acid (M) and α-L-guluronic acid (G) 

monomers [31]. Alginate has been extensively investigated and used for many biomedical 

applications due to its biocompatibility, biodegradability and relatively low cost, as well as 

excellent gel-forming properties by addition of divalent cations such as Ca2+ [32] and was 

easily modified via carboxylate groups on each unit. Unfortunately, Alginate is biologically 

inert and inherently nondegradable in the body due to the lack of enzymes that can cleave the 

polymer chains and low tissue adhesiveness. Therefore, alginate is often oxidized into 

dialdehyde for use in the body, creating hydrolytically labile bonds as shown in Figure 1.6. 

[33] Moreover, the aldehyde groups on alginate can react with amino groups on modified 

chitosan and primary amine on amino acid via the Schiff-base linkage [34]. In previous paper, 

Yuan and coworkers presented that aldehyde of oxidized alginate was crosslinked with gelatin 

to form soft tissue adhesive. [35] The results found that its adhesive strength equal to the 

commercial adhesive fibrin glue and the ratio of the alginate to gelatin could be tunable. Thus, 

these hydrogels could be a promising candidate as tissue adhesive for bio-applications 
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Figure 1.6 Chemical modification of alginate backbone through oxidation using sodium 

periodate. [2] 

In this study, we aimed to develop polysaccharide-based hydrogel via Schiff-base 

linkage between oxidized alginate-tyrosine (OAT) and quaternized chitosan (QC) to generate 

as bio-glue as tissue adhesive. Moreover, visible light-induced crosslinking was induced after 

Schiff-base formation to reinforce the gel. We hypothesized that this double network hydrogel 

would exhibit good characteristics that are suitable to be used as tissue adhesive as shown 

Figure 1.7.  It should also be clinically applicable such as being less traumatic closure and 

suffering, easy application, no stitches required after surgery, excellent cosmetic result, and 

localized drug release. 
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Figure 1.7 Overview of polysaccharide-based hydrogel formation and expected properties. 

 

1.2 Theory and Literature Review 

1.2.1 The Mechanisms of Adhesion 

The key function of a tissue adhesive is to form strong adhesion between tissues and 

adhesives surface under physiological conditions, which can limit adhesiveness of the 

adhesives among the wet environment due to blood and body fluids. [36] The main adhesion 

mechanisms of these tissue adhesives include molecular bonding, mechanical coupling, and 

thermodynamic adhesion [37]. Among them, molecular bonding is the most popular 

explanation. Briefly, interatomic and intermolecular forces occur between the molecules on the 

tissue and adhesive surface, involving hydrogen bonding, capillary forces, Van der Waals 

forces, static electric forces, and covalent bonds as shown in Figure 1.8.  
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Figure 1.8 Schematic overview of tissue-adhesive interface. The interface can be spatially 

divided into two regimes; adhesion layer and adhesive matrix. The adhesion layer forms tissue 

adhesion through covalent and noncovalent cross-linking mechanisms (upper box). The 

adhesive matrix largely determines the physicochemical properties of the adhesive (lower box). 

[2] 

 

Chemical functional groups presented on the tissue surface allow for covalent 

interactions with adhesives, and functional groups originating from amino acid residues in 

proteins which are particularly prominent targets. Whereas basic amino acids with positively 

charged residues such as lysine provide primary amines (i.e., ε-amines), acidic amino acids 

such as glutamic acid contribute carboxylic acids. [38] Additional primary amines (i.e., α-

amines) and carboxylic acids at the C- and N-ends of a polypeptide, imidazole from histidine, 

and thiol from cysteine also contribute to the available tissue functional groups. [39] They are 

able to initiate a variety of chemical reactions by proving an active electron pair for conjugation 

with the reactive groups of tissue adhesives for forming covalent bonding between tissue 

surface and hydrogel surface.  
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1.2.2 Coagulation process 

Coagulation is a complicated process of plasma transformation from an unstable 

platelet plug to stable and insoluble fibrin, which is a body’s multifaceted response to bleeding. 

This process is divided into two hemostasis steps as displayed in Figure 1.9. Initial platelet 

plug is formed in the primary hemostasis when the vascular wall is injured. Inactive platelets 

circulating in blood become activated, subsequently. Platelets trigger an aggregation of other 

locally activated platelets. Fibrin in the secondary hemostasis is then formed, when the 

coagulation cascade is initiated. The clotting factor involved in this stage is activated gradually. 

Activated X cleaves prothrombin into thrombin, then fibrinogen is cleaved into fibrin 

monomers by the enzymolysis of thrombin. Finally, the fibrin monomers are crosslinked with 

Ca2+ and subsequently activated factor XIII to stable fibrin clot on tissue injuries. [40] 

 

Figure 1.9 Schematic of the coagulation process: (a) the primary hemostasis (b) the secondary 

hemostasis (c) Process of the coagulation cascade, which includes intrinsic and extrinsic 

coagulation pathways (including the common pathway). [41-42] 

 

In case of polyphosphoester-based materials, the polymer chain contains plenty of 

electively charges due to phosphoester moieties that can induce positive factors in coagulation 

process via active pathway. On the other hand, polysaccharide-based materials, hemostatic 

mechanisms can be divided into the active pathway and the passive pathway. 

1. The active pathway includes directly activating the coagulation cascade to begin the 

coagulation process or contribute to the coagulation process. Besides, for the 

polysaccharide-based materials, hemostatic dressings based on chitosan and alginate are 

C 
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capable of facilitating fibrin clot formation. For instance, the positively charged surface 

on the chitosan can adhere platelets via charge interaction and the negatively charged 

surface of alginate can induce coagulation initiating via the autoactivation of coagulation 

factor XII. [43] 

2. The passive pathway needs to possess surface properties of materials. The modification 

of material surface was found to improve the hemocompatibility. [44] It is reported that 

surface modification of PEG, zwitterionic polymers, heparin and bioactive 

macromolecules (such as gelatin, and serum albumin) can improve anti-platelet 

adhesion and anti-protein adsorption abilities. For example, polysaccharide-based 

materials, such as oxidized regenerated cellulose (ORC) gauze and starch-based 

microspheres, can instantly extract fluid from blood when applying to an active bleeding 

site, causing proteins, platelets, red blood cells and other effective components of blood 

concentrate on the material surface. [45] 

 

1.2.3 Antibacterial Activity 

The exact mechanism of antibacterial activity is yet clearly understood. The most 

prevalent proposed antibacterial activity of chitosan is by binding to the negatively charged 

bacterial cell wall causing disruption of the cell, thus altering the membrane permeability, 

followed by attachment to DNA causing inhibition of DNA replication and subsequently cell 

death as Figure 1.10. [46]. Another possible mechanism is that chitosan acts as a chelating 

agent that electively binds to trace metal elements causing toxin production and inhibiting 

microbial growth [47].  
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Figure 1.10 Schematic representation of antimicrobial mechanisms of chitosan and its 

derivatives. [48] 

For the quaternized chitosan, Liu and colleagues had been reported that modifying 

chitosan via quaternization can improve antimicrobial property of its materials according to 

quaternization degree. [29] 

 

1.2.4 Visible light-induced Crosslinking 

There are various methods for improving mechanical properties of hydrogel. The most 

well-known approach is secondary photo-crosslinking by using ultraviolet (UV) or visible 

light. For example, methacrylated chitosan was formed into 3D constructs and stabilized by 

UV-crosslinking. [49] Meanwhile, the visible light-induced crosslinking using a ruthenium-

initiated chemistry has been investigated in tissue engineering. Moreover, UV light irradiation 

can influence chromosomal and genetic instability in cells and visible light can penetrate to a 

greater depth for thick constructs. [50] Previously, Lim and coworkers reported the utility and 

the potential of visible light-induced hydrogelation using ruthenium II trisbipyridyl chloride 

([Ru(bpy)3]2+) and sodium persulfate (SPS) were demonstrated. In the system, phenolic 

hydroxyl groups in the amino acid residues such as tyrosine are able to crosslink to form the 

gelation via light irradiation. [51] Elvin and coworkers reported a highly elastic tissue sealant 

and studied cytoxicity of ruthenium catalyst and initiators as [RuII(bpy)3]2+ and sodium 

persulfate (SPS) in Figure 1.11. The results showed that ruthenium catalyst and SPS were not 
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toxic to cells at concentration of 1 mM and 0.3 mM. However, SPS was rapidly consumed 

during the photochemical crosslinking reaction until the concentration was less than 20 mM 

that were not toxic to L929 fibroblast cells. [52] 

 

Figure 1.11 Toxicity of individual components to L929 mouse fibroblast cells in vitro. 

Components that reduced cell viability to less than 70% (dashed line) were deemed cytotoxic. 

Negative controls: PBS and Serum-Free Media (SFM). Positive control: 5% DMSO in PBS. 

A) Cytotoxicity of [RuII(bpy)3]2+. B) Cytotoxicity of SPS. [52] 

 

Moreover, on tissue surface, there are many amino acids including tyrosine. The 

tyrosine on tissue surface can also crosslink by ruthenium catalyst and SPS to provide chemical 

covalent bonding from tyrosine into di-tyrosine for enhance adhesion at interface as shown in 

Figure 1.12 

 

Figure 1.12 Schematic representation of adhesion bonding between polysaccharide-based 

hydrogel and tissue surface. 
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1.3 OBJECTIVES 

Part 1: Polyphosphoester-based hydrogel 

1. To synthesize and characterize IPP and P-TMP monomers 

2. To synthesize and characterize poly(IPP-r-TMP) via ROP 

3. To form hydrogel via visible photo-crosslinking 

Part 2: Polysaccharide-based hydrogel 

1. To synthesize and characterize oxidized alginate-tyrosine (OAT) via EDC/NHS 

coupling and oxidation reaction 

2. To synthesize and characterize quaternized chitosan (QC) via nucleophilic 

substitution with glycidyltrimethylammonium chloride (GTMAC). 

3. To prepare and characterize the hydrogel formed via gelation of OAT and QC. 

 



 
CHAPTER 2 

EXPERIMENTAL METHOD 

2.1 Instruments 

1. Balances (Precisa, Model XT220A, Switzerland) 

2. Hot plate-stirrer (IKA, Model C-MAG HS 7, Germany) 

3. Freeze dryer (LABCONCO, Model 77535-01, USA) 

4. Nuclear magnetic resonance spectrometer (JEOL, JNM-ECZR 500 MHz, USA) 

5. Infrared spectrometer (FTIR) (Nicolet Impact 6700 FT-IR, USA) 

6. UV-Visible Spectrophotometer (Agilent, HP 8453, USA) 

 

2.2 Polyphosphoester-based hydrogel 

 
Scheme 2.1 Synthesis overview of polyphosphoester-based hydrogel. 
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2.2.1 Materials 

2-Chloro-1,3,2-dioxaphospholane-2-oxide (COP), triethylamine (TEA), L-tyrosine-

methyl-ester hydrochloride (L-tyr), imidazole and tert-butyldimethylsilyl chloride 

(TBDMSCl) were purchased from Tokyo Chemical Industry Co., Ltd. 2-Propanol (IPA) and 

anhydrous tetrahydrofuran (THF) were purchased from Sigma-Aldrich. Sodium sulfate 

(Na2SO4) and dichloromethane (DCM) were purchased from Carlo Erba Reagents. DCM was 

dried over calcium hydride and refluxed under a nitrogen (N2) atmosphere prior to use. Sodium 

chloride was purchased from Merck KGaA. Ethyl acetate (EtOAc) and hexane were supplied 

from RCI Labscan. 

 
2.2.2 Synthesis of 2-isopropoxy-1,3,2-dioxaphospholane 2-oxide (IPP) monomer 

  

Scheme 2.2 Synthesis of IPP monomer. 

 

Firstly, IPP monomer was prepared according to a modified version of a previously 

published method [21, 53]. IPA (6.37 g, 106 mmol, 1 eq) and TEA (12.87 g, 127 mmol, 1.2 

eq) were dissolved and stirred in 180 mL of anhydrous THF in an ice bath. Then, COP (15.01 

g, 106 mmol, 1 eq) in 20 mL of anhydrous THF was dropwise added into the mixture under N2 

atmosphere for 12 h. The mixture was stirred on ice bath for 2 h and at ambient temperature 

for 10 h. After 12 h, the mixture was filtered by vacuum filtration to remove ammonium salt 

as by-product (white solid) and the product was washed with THF. After that, THF was 

removed by rotatory evaporator. IPP was purified by vacuum distillation with 80% yield, as 

clear liquid and the monomer was characterized by 1H-NMR spectroscopy. 
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2.2.3  Synthesis of methyl-3-(4-((tert-butyldimethylsilyl)oxy)phenyl)-2-(((2-oxido -1,3,2-

dioxaphospholan-2-yl)oxy)amino)propanoate, protected N-tyrsosine-m-ester 

phospholane amidate (P-TMP) monomer 

  

Scheme 2.3 Synthesis of protected L-tyrosine methyl ester. 

 

To synthesize P-TMP monomer, the phenolic hydroxyl group on L-tyrosine-methyl-

ester was protected by TBDMSCl reagent following the previous work [54]. Briefly, the L-tyr 

(695.0 mg, 3 mmol, 1 eq), imidazole (1.021 g, 18 mmol, 6 eq) and TBDMSCl reagent (904.3 

mg, 6 mmol, 2 eq) were stirred in 10 mL of distillated DCM under N2 atmosphere at ambient 

temperature. After 3 h, 30 mL of DCM and 50 mL of DI water were added into the mixture for 

extraction. The organic phase was collected and extracted with DI water 2 times. After that, 

the organic phase was further extracted with 50 mL of brine and added with Na2SO4 to remove 

trace amount of water. DCM was then eliminated by rotatory evaporator and the product was 

confirmed by TLC. The concentrated product (protected Tyrosine-m-ester, P-tyr-m-ester) was 

separated by silica gel column chromatography (mobile phase 4:6 EtOAc:Hexane) with 75% 

yield as pale yellow liquid. Finally, the product was characterized by 1H-NMR and ATR-FTIR 

spectroscopy. 

 

Scheme 2.4 Synthesis of P-TMP monomer. 

O

O

NH2

O

Si

O

O

NH2

OH

Si

Cl

N

N
H

+

L-tyrosine-methyl-ester
(1 eq.)

Imidazole 
(6 eq.)

10 ml DCM
3 h. at RT

Protected
L-tyrosine-metyl-ester

yield = 75.01%

TBDMSCl
(2 eq.)

N

TEA (1.2 eq.)

200 ml anhydrous THF
12 h on ice, N2

O

O

H2N
O SiO O

P
O Cl

+

COP (1 eq.)

O

O

HN
O Si

O O
P

O

protected
TMP monomerProtected L-tyr

(1 eq.)



 18 

Then, P-TMP monomer, which was synthesized following the modified procedure of 

phospholane monomers [55], was prepared using a mixture of P-tyr-m-ester (2.6917 g, 8.70 

mmol, 1 eq) and TEA (1.0560 g or 1.46 ml, 127 mmol, 1.2 eq), which were dissolved and 

stirred in 30 mL of anhydrous THF in an ice bath. Then, COP (1.239 g, 8.70 mmol, 1 eq) in 20 

mL of anhydrous THF was dropwise added into the mixture under N2 atmosphere for 12 h. The 

mixture was stirred on ice bath for 2 h at ambient temperature for 10 h. After 12 h, the mixture 

was filtered by vacuum filtration to remove ammonium salt as by-product (white solid) and 

washed with THF. After complete conversion of COP, as confirmed by TLC, the reaction 

mixture was filtered, and the filtrate was concentrated. The concentrated filtrate was purified 

by column chromatography using silica gel as stationary phase and ethyl acetate as an eluent 

giving pale-yellow liquid. Finally, the product was characterized by 1H-NMR, 31P-NMR and 

FT-IR spectroscopy.  

 

2.3 Polysaccharide-based hydrogel 

 

 

Scheme 2.5 Structures of quaternized chitosan and oxidized tyrosine-modified alginate to be 

used for hydrogelation via Schiff base linkage. 

 

2.3.1 Materials 

Alginic acid sodium salt (viscosity of 2% solution at 25 °C : 250 cps), L-tyrosine-

methyl-ester hydrochloride (L-tyr), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

hydrochloride (EDC.HCl), N-hydroxysuccinimide (NHS), and glycidyltrimethylammonium 

chloride (GTMAC) were purchased from Sigma-Aldrich. Chitosan (DD = 95% and Mw= 

100,000 Da) was purchased from Seafresh Chitosan (LAB). Trifluoroacetic acid was purchased 
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from Honeywell International Inc. Sodium chloride (NaCl) and acetic acid were purchased 

from Merck KGaA. Sodium metaperiodate was purchased from Kemaus, Molecule. 

Tris(bipyridine)ruthenium(II) chloride ([Ru(bpy)3]Cl2 , 98%) and sodium persulfate (SPS, 

98%) were purchased from Acros Organics B.V.B.A. 

 

2.3.2 Synthesis of tyrosine-modified alginate (AT) 

 

 

Scheme 2.6 Synthesis of oxidized tyrosine-modified alginate in 2 reaction steps. 

 

Firstly, alginate has to be modified with tyrosine before oxidation step to prevent Schiff-

base linkage between aldehyde groups on alginate and primary amine on tyrosine. Tyrosine-

modified alginate was synthesized via amidation using a modified procedure. [56] Briefly, an 

1% (w/v) solution of sodium alginate in 25 mL phosphate-buffered saline (PBS) pH 7.4 was 

prepared. Then, 443.6 mg of EDC.HCl and 266.3 mg of NHS were added to the mixture to 

activate the carboxylic acid groups of the alginate. After 5 min, 134.0 mg of L-tyr (molar ratio 

of NHS:EDC:L-tyr:alg unit 2:2:0.5:1) was added to the solution. And the reaction proceeded 

at room temperature for a predetermined period of time (1, 3, 6, 9, 12 and 24 h). After that, the 

tyrosine-modified alginates were purified by dialysis against 100 mM NaCl, 30% EtOH, and 
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DI water (MWCO 3500; SnakeSkinTM, Thermo Scienific, USA for 1, and 2 days, respectively 

and lyophilized to obtain solid-like white cotton. The product was finally characterized by 

ATR-FTIR spectroscopy and UV-Visible spectrophotometer. The amount of L-tyr (0.5, 1.0, 

1.5, and 2.0 eq) was also varied to determine its effect of the degree of L-tyr substitution. 

 

2.3.3 Gelation by visible light-induced crosslinking 

Visible light-induced crosslinking was performed following a previous work. [52] 

Stock solutions of 50 mM [RuII(bpy)3]2+ and 1 M SPS was then prepared in aqueous media. 

Mixture of 1% of AT with different % of tyrosine , 1 mM [RuII(bpy)3]2+ and 20 mM SPS in 

PBS, pH 7.4 were dispersed in 3 mL vial, and the mixture was irradiated for 30 s at room 

temperature by Cool Daylight lamp (Helix 42W) with a distance of 3 cm. 

 

2.3.4 Syntheisis of oxidized tyrosine-modified alginates (OAT) 

Tyrosine-modified alginate was oxidized following a previously reported procedure 

[35]. Tyrosine-modified alginate was dissolved in 50 mL Milli-Q water to prepare 1% (w/v) 

solution and added with 500 mg of sodium periodate (1:1 mass ratio). The mixture solution 

was then stirred at room temperature for 30 min and kept out of the light. After that, 5 mL 

ethylene glycol was added to terminate the reaction. The mixture solution was dialyzed 

(MWCO = 3,500) for 3 days against DI water, lyophilized to obtain the final product with 80% 

yield as white cotton. The product was characterized by FT-IR technique and 2,4-

dinitrophenylhydrazine (DNP) test. 

 

2.3.5 Determination of degree of tyrosine substitution on tyrosine-modified alginates 

Determination of degree of tyrosine substitution was based on the measurement of 

phenolic hydroxyl groups on alginate backbone by UV-Visible spectrophotometer at 280 nm 

using PBS buffer pH 7.4 as a blank. Firstly, standard calibration curve of L-tyrosine methyl 

ester.HCl was established in a range of 0.01-10 mM. Then 2.5 mg of tyrosine-modified 

alginates was dissolved in 1.0 mL of pH 7.4 PBS buffer to prepare 0.25% (w/v) solution as 

stock solution. The solution was then measured for its absorbance and the amount of tyrosine 

can be determined from the calibration curve. 
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2.3.6 Synthesis of quaternized chitosan (QC) 

 

Scheme 2.7 Synthesis of quaternized chitosan. 

 

 Quaternized chitosan was synthesized as reported in a previous work. [57] Briefly, 0.5 

g of chitosan powder was suspended in 19 mL DI water, and then 0.2 mL of acetic acid (i.e. 

∼0.5% v/v) was added. [58] The mixture was stirred for 30 min prior to a dropwise addition of 

GTMAC with continuous stirring. The mole ratio of GTMAC to chitosan unit was fixed at 6:1 

to produce QC. The reaction mixture was stirred at 100 rpm at 50-60 °C for 18 h. Following 

the reaction, the undissolved polymer was removed by centrifugation of the mixture at 6000 

rpm for 5 min at ambient temperature. For purification, the solution was filtered, methanol was 

added to remove the excess GTMAC, and the QC was precipitated in acetone. The purification 

process was repeated three times, and the purified QC was dried in a vacuum oven at 25 °C for 

5 days with subsequent grinding of the product to obtain fine powder. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

 

3.1 Polyphosphoester-based hydrogel 

3.1.1 Synthesis of 2-isopropoxy-1,3,2-dioxaphospholane 2-oxide (IPP) monomer 

The IPP monomer was synthesized via nucleophilic substitution of COP and IPA using 

TEA as catalyst and anhydrous THF as solvent to avoid violent reaction between COP and 

moisture. The monomer was then filtered to eliminate by-products and was purified by vacuum 

distillation to give the product with 80% yield. According to 1H-NMR spectra of IPP and COP 

(Figure 3.1), methylene protons of COP appear in the range of 4.2 - 4.5 ppm (HA, B), while 

chemical shifts at 1.3 (HD), and 4.7 (HC) ppm can be attributed to the isopropyl protons of IPP. 

Thus, it can be confirmed that IPP monomer was successfully synthesized and purified. 

 

Figure 3.1 1H-NMR spectra of COP precursor and IPP monomer in CDCl3. 

 

 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5

Chemical shift (ppm)

COP

IPP monomer

O O
P

O Cl

A B

O O
P

O O

A B

C

D

A,B

A,BC

D

CHCl3

CHCl3

In
te
ns
ity



 23 

3.1.2 Synthesis of methyl-3-(4-((tert-butyldimethylsilyl)oxy)phenyl)-2-(((2-oxido 

-1,3,2-dioxaphospholan-2-yl)oxy)amino)propanoate, protected N-tyrosine-m-

ester phospholane amidate (P-TMP) monomer 

To synthesize P-TMP monomer, the phenolic hydroxyl groups on L-tyrosine-methyl-

ester had to be specifically protected by TBDMSCl reagent because L-tyrosine-methyl-ester 

contains 2 nucleophilic groups as phenolic hydroxyl group and amino group. TBDMSCl was 

used for preventing O-attack to COP in P-TMP monomer synthesis and the remaining amine 

would be allowed to react with COP in the next step. After polymerization and deprotection 

step, phenolic hydroxyl moieties play a crucial role in the crosslinking step via visible light 

irradiation with ruthenium catalyst.  

After being synthesized and purified, the resulting protected L-tyrosine methyl ester 

was characterized by FT-IR spectroscopy. As depicted in Figure 3.2, FT-IR spectra 

demonstrated characteristic signals of Si-C stretching at 780 and 836 cm-1. Moreover, the 

product was characterized by 1H-NMR spectroscopy. Signals at chemical shift of 0.21 ppm 

(HA) and 0.98 ppm (HB) of silyl groups and proton of tyrosine methyl ester (HC) shifted from 

4.25 to 3.66 ppm because of different solvents were used for analysis as shown in Figure 3.3. 

Thus, these results confirmed that the protected L-tyrosine methyl ester was successfully 

synthesized and purified by this method. 

 

 

Figure 3.2 FT-IR spectra of L-tyrosine methyl ester, TBDMSCl and protected L-tyrosine 

methyl ester. 
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Figure 3.3 1H-NMR spectra of L-tyrosine methyl ester in D2O, TBDMSCl and protected L-

tyrosine methyl ester in CDCl3. 

 

After O-nucleophile protection of tyrosine methyl ester, the protected product was used 

as N-nucleophile that was expected to substitute chlorine atom on COP via nucleophilic 

substitution reaction. After the reaction, concentrated filtrate of the monomer was purified by 

column chromatography such as flash column and silica gel plug instead of vacuum distillation. 

The cyclic structure of protected N-tyrosine-m-ester phospholane amidate (P-TMP) monomer 

is vulnerable to be broken at high temperature so that distillation cannot be used for 

purification. Firstly, crude P-TMP monomer of the first batch was purified by flash column 

chromatography using ethyl acetate (EtOAc) and 1% triethylamine (TEA) as mobile phase. 

TEA was used for neutralizing the silica gel because acidity of silanol groups may affect ring-

opening of the cyclic phospholane. Unfortunately, the result after separation (second to fourth 

fractions were collected) showed that the reactant, P-tyrosine-m-ester, was observed by TLC 

and 31P NMR spectroscopy indicating that no product occurred. (Figure 3.4) 
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Figure 3.4 A) TLC results of standard PT, fraction, separated product in different mobile 

phase and B) 31P-NMR spectra of crude product and separated product. 

 

 In different mobile phase (Figure 3.4A), all TLC spots of products that appear at the 

same position as PT (reactant). Thus, we hypothesized that both P-TMP synthetic route or the 

purification method were not effective. Thus, to prove the hypothesis, crude product of P-TMP 

monomer was characterized by 31P-NMR spectroscopy. There were both phospholane amidate 

at 24 ppm (N-attack) and phosphate phospholane at 18 ppm (O-attack) signals but the amidate 

intensity was lower than that of phosphate phospholane, indicating that the product could not 

be separated by this method. Moreover, 31P-NMR spectrum of fraction 3-4 show no signal 

(Figure 3.4B), implying that the method was not suitable for this reaction. We proposed that 

sensitive P-TMP might be decomposed and hydrolyzed in silica gel column. According to 1H-

NMR spectrum of fraction 3-4 in Figure 3.5, the obtained product was P-tyrosine-m-ester 

which came from hydrolysis of P-TMP. 
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Figure 3.5 1H-NMR spectra of crude product and fraction 3, 4 in CDCl3. 

 

The second batch of P-TMP monomer was synthesized again and crude P-TMP was 

checked with 31P-NMR spectroscopy. According to the results, P-TMP was the major product 

but there was an impurity (18 ppm) of O-attacked phospholane as demonstrated in Figure 

3.6B. To avoid the problem due to monomer decomposition, a very fast method as silica gel 

plug [59] was selected to separate P-TMP monomer. A set-up is shown in Figure 3.7A 
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Figure 3.6 A)1H-NMR and B) 31P-NMR spectra of crude product of the first and second 

batches. 

 

 In Figure 3.7B, the crude P-TMP monomer was separated into 3 spots observed on 

TLC plate (4:1 THF:hexane was used as mobile phase). The first spot (from top) was protected 

tyrosine (PT), indicating that the substrate did not completely convert to the product. We 

proposed that the second one was P-TMP monomer because it shows higher polarity. The last 

one was probably all ring-opened compounds and by products. 
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Figure 3.7 A) A setup of instrument used for silica gel plug method B) TLC spots of 

standard PT and crude product. 

 

 After separation, fraction 1–3 were obtained and checked by TLC. The TLC still 

showed 3 spots (Figure 3.8). From this result, the TLC did not match for following separation 

process. Then, fraction 1–3 were characterized by 31P-NMR and integration of each peaks were 

calculated as PA/PP ratio to determine ratio between phospholane amidate at 24 ppm (N-attack) 

and phosphate phospholane at 18 ppm (O-attack) (Figure 3.9). Besides, the result showed that 

all of fractions had low PA/PP ratio meaning that the product could not be separated by this 

method. We proposed that P-TMP monomer may react with moisture in the air or silanol 

groups on silica surface in the column, resulting in ring-opened phosphoester. Possible 

products that could occur were summarized in Figure 3.10.  

 In conclusion, P-TMP monomer could be synthesized by this method with low yield 

but it could not be purified by flash column chromatography and silica gel plug methods. Thus, 

a suitable synthetic and purifying procedure need to be optimized in order to avoid 

decomposition of sensitive P-TMP monomer.  

 

 

80% THF:HEX
§ PT = P-tyrosine-e-ester 

(reactant)
§ C = crude P-TMP monomer

PT C

A B



 29 

 

Figure 3.8 TLC spots of standard PT, crude product and fractions. 

 

 

Figure 3.9 31P-NMR spectra of crude product and fraction 1, 2 and 3 and PA/PP ratio. 
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Figure 3.10 The possible products in the reaction and purification methods. 

 

3.2 Polysaccharide-based hydrogel 

3.2.1 Synthesis of oxidized tyrosine-modified alginate (OAT) 

To synthesize oxidized tyrosine-modified alginate, tyrosine-modified alginate (AT) 

was synthesized by coupling reaction between carboxylic groups on alginate units and primary 

amine groups on L-tyr and using EDC/NHS to activate carboxylic groups to improve reactivity 

between carboxylic groups and amine groups. Phenolic groups of AT enable covalent photo-

crosslinking between adjacent polysaccharide chains in aqueous solutions, forming hydrogel. 

AT synthetic conditions were optimized by varying reaction time and feed mole ratio of L-tyr 

to alginate units. FTIR spectral analysis shown in Figure 3.11A revealed the characteristic 

signals of unmodified sodium alginate at 3386 cm−1 (O-H stretching), 2925 cm−1 (C-H 

stretching), 1581 cm−1 (C=O stretching), and 1414 cm−1 (O-H bending). The emergence of ester 

(C=O stretching) signal at 1730 cm−1 in FTIR spectrum of AT (Figure 3.11B) verifying the 

success of L-tyr modification. Nevertheless, carbonyl groups of amide (C=O stretching) at 

approximately 1600 cm−1 cannot be obviously observed because of overlapping with C=O 

stretching signal of alginate. As tyrosine can absorb UV wavelength at 280 nm, the absorption 

of AT confirmed the presence of tyrosine in its structure (Figure 3.12) by using PBS buffer 

pH 7.4 as blank.  

To provide Schiff-base linkage with chitosan, AT was further oxidized by NaIO4 with 
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3.13A) because dialdehyde structures on the alginate backbone decrease hydrogen bonding 

among polymer chains. FT-IR spectrum (Figure 3.11C) of the oxidized product, OAT shows 

a band of the carbonyl (C=O stretching) for aldehyde on alginate backbone at 1715 cm−1 albeit 

its low intensity. Thus, 2,4-DNP reagent was used to evaluate whether alcohol groups in 

pyranose ring could be oxidized into aldehyde groups. Yellow-orange precipitates of 

dinitrophenylhydrazone was observed as a positive test indicating the presence of aldehyde 

groups in OAT (Figure 3.13B). Therefore, OAT was successfully synthesized by oxidation 

reaction.  

 

 

Figure 3.11 FT-IR spectra of A) sodium alginate, B) tyrosine-modified alginate and C) 

oxidized tyrosine-modified alginate. 
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Figure 3.12 Absorption spectra of sodium alginate compared with tyrosine-modified 

alginate. 

 

Figure 3.13 Appearance of A) tyrosine-modified alginate (AT) and oxidized tyrosine-modified 

alginate (OAT) in aqueous media and B) 2,4-DNP test results of AT and OAT. 

 

In order to determine degree of tyrosine substitution (%DS) in the product by using 

UV-Visible spectrophotometer, a calibration curve of standard tyrosine methyl ester in a 

concentration range of 0.01-10 mM was first established as shown in Figure 3.14. A linear 

equation was evaluated as y = 1.272x + 0.0061 with acceptable R2 = 0.9998. 
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Figure 3.14 Standard calibration curve of tyrosine-m-ester concentration (0.01-1.0 mM). 

 

 Effect of reaction time and feeding mole ratio of L-tyr on %DS of tyrosine in AT 

products were investigated. Firstly, AT was synthesized by varying reaction time (1, 3, 6, 9, 12 

and 24 h) and the kinetic plot was demonstrated in Figure 3.15. The %DS of tyrosine 

dramatically increased in the first 1 h, reaching 13.77% tyrosine. Then, it slightly rose until 3 

h, representing 14.63% and the %DS of tyrosine did not significantly change with extension of 

the reaction time. So, the coupling reaction of sodium alginate with tyrosine methyl ester was 

basically completed in 3 h, indicating that this period of time was sufficient for the generation 

of the highest degree of tyrosine substitution. 
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Figure 3.15 Degree of tyrosine substitution (%DS) in AT versus reaction time. 

 

With reaction time of 3 h, equivalent of tyrosine methyl ester was varied (0.5, 1.0, 1.5, 

3.0 eq). It was found that %DS in each sample increases with increasing feeding mole ratio of 

tyrosine methyl ester (Table 3.1). Unfortunately, by increasing % tyrosine in the samples, the 

solubility in PBS buffer (pH 7.4) decreases. For example, 3% w/v of all samples could not 

dissolve in an aqueous media homogeneously, 2% w/v of only AT1 and AT2, which has lower 

%tyrosine (less than 20%) could well dissolve, and 1%w/v of all samples were soluble in the 

aqueous media. This is because of interactions between polymer chain such as hydrogen 

bonding, polar-polar force, Van der Waals forces, static electric force, and also π-π interactions. 

The aromatic groups of tyrosine introduced to the AT would increase its hydrophobicity so 

thus decreases its aqueous solubility. 

Moreover, gel formation of AT was tested as compared with the unmodified sodium 

alginate via the reaction between Ru(III) and persulfate (Figure 3.16). In the presence of 

persulfate with visible light, Ru(III) and sulfate radical are produced from photolyzed 

[Ru(II)(bpy)3]2+. Ru(III), which is a potent single-electron oxidant, would oxidize residues such 

as tyrosine molecule. The radical could subsequently form crosslinked networks. [60] 

According to the gelation results (Figure 3.17), all of 1%w/v AT samples could form hydrogel 

upon photoirradiation within 30 s while the unmodified sodium alginate could not form gel. 

Therefore, AT1 sample was chosen to be further studied because of its great solubility and 

gelation performance. 
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Figure 3.16 Mechanism of a photo-initiated tyrosine crosslinking reaction. [61] 
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Table 3.1 AT products synthesized using different feeding of L-tyr mole equivalents and 

their solubilization in aqueous media at RT. 

 

 

 

Figure 3.17 Gelation of products via visible light-induced crosslinking by using ruthenium as 

catalyst. 

 

3.2.2 Synthesis of quaternized chitosan (QC) 

To overcome the limitation of chitosan solubility in physiological condition, chitosan 

was modified by quaternization with GTMAC to introduce positively charged quaternary 

ammonium and improve solubility of the modified chitosan in aqueous media. FTIR spectra of 

chitosan and QC are illustrated in Figure 3.1. A signal of C-H bending appeared at 1475 cm-1 

Sample Tyr eq. Absorbance %Tyrosine Solubility

3% w/v 2% w/v 1% w/v

AT1 0.5 0.7271 (± 0.1423) 16.81 x ✓ ✓
AT2 1.0 0.7799 (± 0.1170) 18.11 x ✓ ✓
AT3 1.5 0.9992 (± 0.1490) 23.49 x x ✓
AT4 3.0 1.1309 (± 0.08062) 26.73 x x ✓

✓ homogeneous dispersion

x non-homogeneous dispersion

Sodium
alginate AT1 AT2 AT3 AT4
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suggesting that trimethyl entities were incorporated. Also, the band at 1581cm-1 of N-H 

bending that corresponds to the primary amino groups on chitosan shifted to approximately	

1550 cm-1 after the modification. In this way, the FTIR analysis confirmed the successful 

conjugation of GTMAC to chitosan.  

 

Figure 3.18 FT-IR spectra of A) chitosan and B) quaternized chitosan. 

 

In addition, 1H NMR analysis of chitosan and QC was performed in CF3-COOH and 

D2O solution, respectively. The characteristic peaks of each functional group of chitosan and 

QC detected by 1H-NMR are shown in Figure 3.17. The signal at 1.9 ppm was attributed to -

COCH3 from chitin and the peaks of H3,4,5,6 in a range of 3.5-4.0 ppm were assigned to all 

protons in the pyranose ring of both chitosan and QC. However, peaks at 3.1 and 3.3 ppm were 

only found in QC spectrum, implying that -+N(CH3)3 and -N-CH2- groups were incorporated, 

respectively. These evidently confirmed the successful synthesis of QC.  Nevertheless, the 

glycidyltrimethylammonium content of QC needs to be evaluated and optimized for 

preparation of polysaccharide-based hydrogel in combination with OAT. For solubility test, 

QC can dissolve in PBS buffer pH 7.4 homogeneously at 2% w/v but chitosan cannot. 
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Figure 3.19 1H-NMR spectra of A) chitosan and B) quaternized chitosan in CF3COOH and 

D2O, respectively. 
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CHAPTER 4 

CONCLUSIONS 

 In this project, we aimed to prepare polymeric hydrogels to be applied as bio-glue. For 

the polyphosphoester-based hydrogel, IPP monomer was successfully synthesized by reacting 

COP with IPA via nucleophilic substitution and was characterized by NMR spectroscopy. The 

P-TMP monomer can be synthesized but it cannot be effectively purified. 31P-NMR analysis 

can identify species of phospholane of crude product and PA/PP ratio. PA species (N-attack) 

were more than PP (O-attack). Unfortunately, the purification methods such as flash column 

and silica gel plug cannot successfully purify the monomer. We suspect that P-TMP, which is 

cyclic phospholane, is sensitive to several nucleophiles such as water, silanol on column and 

also temperature to open the phospholane ring. In the future, we would like to find new ways 

to synthesize P-TMP monomer and perhaps use reverse-phase column as stationary phase for 

monomer purification.  

For the polysaccharide-based hydrogel, we successfully synthesized tyrosine-modified 

alginate (AT) and hydrogelation via visible light-induced crosslinking by using ruthenium 

catalyst can be successfully achieved within 30 s. AT1 having %DS of 16.8% was chosen for 

further study because it can dissolve in water. To be able to form Schiff base linkage with QC, 

AT1 was oxidized by NaIO4 into OAT. The presence of aldehyde groups of OAT was verified 

by the positive test against 2,4-DNP reagent. Chitosan was successfully modified by reacting 

with GTMAC and yield QC that can dissolve in pH 7.4 buffer with the highest concentration 

of 2%w/v. For the future work, we are going to identify an optimal gelation condition to form 

the soft hydrogel having double network via Schiff base linkage followed by visible light-

induced crosslinking before mechanical tests. 
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