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Chapter 1

INTRODUCTION

In 1849, Dirichlet proved in [4] that the probability that two natural numbers, chosen
randomly, are relatively prime is equal to %

In 1885, Gegenbauer showed in [5] that the probability that a natural number, chosen
randomly, is square-free is pok

These show that the probabilities of these two events are coincide. In the literature, there
are a number of folklore proofs of these results. We present some of these proofs in this chapter.
First let us fix some notations.
Let

P(k|n)=P({n € N|Ek|n}) be the probability that a randomly chosen natural number
n can be divided by a fixed chosen natural number k,

P((a,b) =n) = P({(a,b) € NxN| (a,b) = n}) the probability that the greatest common
divisor of randomly chosen natural numbers a, b is equal to a fixed natural number n,

Sq(a) the greatest integer such that its square can divide a,

P(Sq(a) =n) = P({a € N | Sq(a) = n}) the probability that the largest square factor of
a is a fixed natural number n.
If a € {a € N| Sq(z) = 1}, then a is called square-free. Let aN be the set of positive multiples

of a when a € N.

Here are some common folklore proofs of the above two results.

First folklore proof of a Dirichlet’s theorem. Let a be the probability that a given
randomly chosen positive integers a and b are relatively prime.

Let A, = {(a,b) e Nx N | (a,b) =n}. Note that

b
Ay ={(@b) eNxN|nlaAn|bA (Z,n>:1},



1 a b
Since three events are mutually independent, P(n | a) = — and the probability that —,— are
n n'n

coprime is equal to a,

a b 11 «a
P(A,) =P -Pn|b)-Pl|—,—]=1)= - —-a=—.
(1) =P@la)-Poo 0P ((42)=1) = 1 tia= 5
Since P is a probability measure, the sum of these probabilities is equal to 1. So
_ 1 6
a=—= T
2 e
i=1

First folklore proof of a Gegenbauer’s theorem. Let 3 be the probability that a given
randomly chosen positive integers b is square-free.

Let B, = {b € N | Sq(b) = n}. Note that

b
2

b b
Since two events are mutually independent, P(n? | b) = — and the probability that — is
n n

square-free is equal to 3,
b 1 B
P(Bn)P(n2|b).P(sq<nQ> 1) = 5-8=5
Since P is a probability measure, the sum of these probabilities is equal to 1. So

f-m— =
2

i=1

Second folklore proof of a Dirichlet’s theorem.

Let a,b be natural numbers such that they are relatively prime. Since a, b are relatively prime,
there is no prime number p such that p | @ and p | b. Therefore (a,b) = 1 if and only if

(2 faor2 fb)and (3 faor3 fb)and ... ). Note that these events are mutually independent.

Hence,
P((a,b)=1)=P((2fa VvV 2f0) AN Bfa VvV 3}fb) A ..)
=P2)faV2/)b) - -PB3jfaVv3)b - ..

=[] whavopte)y= J[ @ - Planplb)

p prime p prime

ILG3)

p prime



1 1
By the identity H (1 — p”) = @’

p prime

1 1 6
P(ab)=1)= ]I (1_p2>:<(2):7r2

p prime

Second folklore proof of a Gegenbauer’s theorem
Let n be a natural number such that n is square-free. Since n is square-free, there is no prime
p such that p?| n. Therefore, Sq(n) = 1 if and only if ((22 / n) and (3% J n)and... ). Note that

these events are mutually independent.

P(Sq(n) =1)=P(2% fn) A P(3% fn) A ...)

=P((2> fn) - P((3* fn) - ..

I I
— ==
A~ =
— o
| =
= 2
~_ I
—]
—
|
o
Y
_w
=

1 1
By the identity H (1 — p) = m’
n n

p prime



In these proofs, we intuitively use that P(k | n) = % when n € N. The question to ask is
that: How one define the probability of a subset of N. That is P(A4) = ? for A C N. If we can
define such P(A), then we should ask: Is this P a probability measure on N? It turns out that
the reasonable P that we should define will be the so-called the natural density measure on N
and unfortunately this density measure is not a probability measure. We will discuss these in
Chapter 3. Now come to the second question. Does there exists a probability measure P on N
such that P(k | n) = % when n € N? The answer is negative. We will explore this in Chapter
3. In the next chapter, we provide some basic definitions and theorems in number theory, real
analysis, probability theory and analytic number theory. After Chapter 3, finally in Chapter 4,

we give an analytic number theoretical proof of Dirichlet’s result.



Chapter 11

PRELIMINARIES

In this chapter, relevant concepts are given in order to prove our main results. These
include elementary definitions and theorems in analysis, analytic number theory and probability

number theory.

2.1 Some background on Real Analysis

This section covers basic definitions and theorems in real analysis. We state these theorems

without proofs. All of these facts and their proofs can be found in [8], [10] and [13].

Definition 2.1.1. A sequence (z,) converges to a real number z if for all € > 0, then there
exists N such that |z, —z| < € for all natural number n > N. The sequence (z,,) is said to tend

to or converge to z, written x,, — x or lim z,, = x. Symbolically, this is:
n—oo

lim z, =z <= VYe>03IneNVn >N, |z, —z| <e

n—oo

We called a (x,,) convergent sequence. Otherwise, (x,) is called a divergent sequence.

Definition 2.1.2. Let (x,) be a sequence in R U {—o00,00}. The limit superior of z,, which

denoted limsup x,, or lim x,, is defined by
n—oo n—oo

limsupzx, = lim (supxk> = inf <supxk>.

n—00 n—=00 \k>n neN \g>n

Similarly, the limit inferior of x,,, which is written by liminfx, or lim z,, is defined by
n—oo n— o0

liminfz, = Ilim (inf xk) = sup (supxk).

n— o0 n—oo \ k>n neN \k>n

Definition 2.1.3. Let § # A C RU {—o00,00}. We called € RU {—00,00} a limit point or
a cluster point or an accumulation point of A if every neighbourhood of = contains a point

in A\{z}. Contrarily, y is called an isolation point if it is not a limit point.



Definition 2.1.4. Let A C R, let f be a real-valued function such that its domain includes
A. Let a,L € R U {—00,00} where a is a limit point of A. We say that L is a limit of f
when & — a if for all € > 0, there exists a § > 0 such that for all x € A with 0 < |z —a| < 4,
|f(z) — L| < e. The limit can be written as il_}n; f(z) = L.

To write symbolically,

lim f(z) =L <= Ve>03>0VzcA0<|z—al]<d— |f(z)-L| < e

r—a

Definition 2.1.5. Let f be a real-valued function such that its domain includes A. Let z € A
and a € RU {—o00, 00} where a is a limit point of A. For each neighbourhood Bc(a) when € > 0
define

limsup f(z) = lim+ sup{f(z) |z € ANB(r)}ifa €R.
r—0

Tr—a

liminf f(z) = liI(I)1+ inf{f(z) |z € ANB.(r)}ifa €R.
r—

r—a

limsup f(z) = Tlirgosup{f(x) | € ANB(r)} if a= +oo.

r—a

liminf f(z) = lim inf{f(z) |z € ANB(r)}ifa= +oo.

T—ra T—>00

Clearly, for all a € RU {—o00, 0},

liminf f(z) <limsup f(z)

r—a T—a

Theorem 2.1.6. Let f be a real-valued function such that its domain includes A. Let x € A

and a € RU{—o00,00} where a is a limit point of A. Then, lim f(zx) exists in R U {—o0, 00} if
r—a

and only if

limsup f(z) = :ll_r)rtll f(z) = liminf f(z)

T—a r—a

Definition 2.1.7. Let (4, | n € N) be a sequence of subsets of a set X.

If (A, | n € N) is an increasing sequence that is 4,, C A, 41 for all n € N, we define

lim A, = U A, = {ze X |xzeA, for some n € N}

n—oo
n € N

If (A, | n € N) is a decreasing sequence that is A, O A, 41 for all n € N, we define

lim A, = () A, = {z€X |z€ A, forallneN.}

n—oo
n € N



Definition 2.1.8. The limit inferior and limit superior of a sequence of subsets (4,, | n € N) of

a set X are defined by

limsup 4,, = U ﬂ Ay

noreo neEN k<N
liminfA, = ) | 4«
n—oo

neN k<N

Theorem 2.1.9. Let (A, | n € N) be a sequence of subsets of a set X.Then

1. liminfA,, = {z € X | z € A, for all but finitely many n € N}.

n—o0

2. limsup 4,, = {x € X | 2 € A, for infinitely many n € N}.

n— oo
3. liminf A,, C limsup A,,.
n—oo n—oo

Definition 2.1.10. Let (A4, | n € N) be a sequence of subsets of a set X. We say that the

sequence (A,,) converges if and only if

limsup A, = lim A, = liminfA,
n—00 n—00 n—00

Several theorems on infinite product

Definition 2.1.11. Let (b,) be a sequence of complex numbers. We say that H b, converges
n=1

if there exists m € N such that (b,) are nonzero for all n > m and the limit of the partial

n
products H b,

k=m

lim_ kH b= lim_ (b - b - . - by)

converges to a nonzero complex number p that is

[Ibn=0b1-b2 e bms-p
n=1

o0
The infinite product H b, diverges if it does not converge, in other word, exactly one of these

n=1
n

events occur: there are infinitely many zero, lim | | by, diverges or the limit converges to zero
n—oo
k=m
which is called diverges to zero.

o0
Theorem 2.1.12. An infinite product H a, converges if and only if a, — 0 and the series

n=1
0 o

Z log(1+ a,,) = L converges. Moreover, H an =1 +ay)..(1+a,) e
k=m+1 n=1



Let ((z)

>
il
Theorem 2.1.13. For all z € C with Re(z) > 1,

=TI (1—;)_1= 2

p prime p prime

In particular,

7T2 00 1 -1 00 p2
6 - H (1 - 2) - H 2 _1°
. p ime P
p prime p prime

Theorem 2.1.14. For all z € C with Re(z) > 1,
N ﬁ (11> :iu(n)
((2) p* n?

when p(n) is a Mobius function.

Several theorems on Measure Theory

Definition 2.1.15. Let 91 be a collection of subsets of an arbitrary set X. We will call 91 a
o-algebra or o-field if 9 satisfied the following properties
1. X e M.
2. If A € M, then A° € M.
3. If A; € Mfor all i € N, GAZ-GDJI.
i=1

The pair (X,90) is called a measurable space. A set A is measurable or 2l measurable if

Aen.

Definition 2.1.16. Let 9t be a collection of subsets of an arbitrary set X. A measure u on
(X,9M) is a a nonnegative extended real-valued function if it satisfies the following conditions:
1. (@) =o0.

2. (Countable Additive Property) If A; € M for all i € Nand A; N A; = () for all i # j that

is they are pairwise disjoint, then p is finitely additive that is

We will call a triplet (X, 9, 1) measurable space.



Theorem 2.1.17. Let j1 be a measure on a o-algebra M of subsets of a set X and let (A, | n € N)
be a sequence in M.
1. If A, C Apqq for allm €N, then lim u(A,) = p( lim A,).

n—roo n—roo

2. If A, D Apyq for allm € N and p(Ay) < oo, then li_>m w(Ay) = p( lim A,).
n o0

n—oo

Definition 2.1.18. 1. A p be a measure on a g-algebra 9t of subsets of a set X is called a
finite measure if 4(X) < co and (X, M, u) is called a finite measure space.

2. A p be a measure on a o-algebra 91 of subsets of a set X is called a o-finite measure if
there exists a sequence (A, | n € N) in with U A, = X and p(A4,) < oo for all n € N. In this

neN
case, (X, M, u) is called a o-finite measure space.

Definition 2.1.19. Given two measure spaces (X, 2, p1) and (Y, 9, po). Consider the

product measurable space (X x Y, (9 x N)). A measure p on M x N such that
‘LL(A) = ,Ufl(Al) . /LQ(AQ) fOT’ A= Al X A2 EMxMN

is called a product measure of pj, ps and it is denoted p; X p2. The measure space (X x

Y, oM x M), u1 X ug) is called a product measure space of (X, M, uy) and (Y, N, wp2).

Definition 2.1.20. Given two sets X and Y. Let A C X x Y and let f be an extended real-
valued function on A.

1. For each z € X, A(z,:) :=={y € Y | (z,y) € A} is the x-section of A. For each y € Y,
A(,y) ={z € X | (z,y) € A} is the y-section of A.

2. For each x € X, f(x,-) on A(z,-) is the x-section of f. For each y € Y, f(-,y) on A(-,y) is

the y-section of f.

Theorem 2.1.21. Given the product measurable space (X X Y,a(9M x N)) of the measurable
spaces (X, M) and (Y, N) and [ is an extended real-valued function on A.

1. If A€ o(M xN), then A(z,-) € N for each v € X and A(-,y) € M for each y € Y.

2. If f is o(9M x N)-measurable function on E € o(M x N), then f(z,-) is a MN-measurable
function on A(zx,-) € M for every each x € X and f(-,y) is a M-measurable function on

A(-,y) € M for every each y €Y.



10

Theorem 2.1.22. Given the product measurable space (X XY, o(IMxN), uxv) of two o— finite
measurable spaces (X, M, w), (Y, N, v) and for every A € (M x N). Then,
1. v(A(z,-)) is a N-measurable function on € N for every each x € X .

2. u(A(,y)) is a M-measurable function on € M for every each y € Y.

2.2 Some background on Analytic number theory

Basic definitions and relevant theorems are provided in this section. For their proofs and further

details, they are available in [1] and [12].

Definition 2.2.1. An arithmetic function is a function whose domain is the natural numbers.
Definition 2.2.2. The Mdbius function p is defined by

1 ifn=1

p(n) = (—=1)* if n is a product of k distinct primes (k > 0)

0 if p?|n for some prime p.

Definition 2.2.3. The Euler totient function or Euler’s phi function ¢(n) is the quantity

of natural numbers not exceeding than n which are relatively prime to n that is

Theorem 2.2.4. Ifn > 1, we obtain

Theorem 2.2.5. Ifn > 1, we have

f(z)
g()

|f(x)] < Mg(x) for all x > a

that f(x) is big oh of g(z) is if bounded; in other word, there exists M > 0 such that
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Definition 2.2.7. If
f(x)

lim —= =1
v—o0 g()

we called that f(x) is an asymptotic to g(x). Symbolically,
f(x) ~g(x) as x — o0

Definition 2.2.8. An averaged order of an arithmetic function f(n) is g(n) if

To find the average of an arithmetic function f(n) we can find by considering an arbitrary
positive real number x instead which is in the form
> fn)
n<x
Theorem 2.2.9. For z > 1 we have
3 9
Z p(n) = =z~ + O(xlogz).
n<x g
Theorem 2.2.10 (Divergence of the sum of the reciprocals of the primes). For x > 2 we have

p prime <z

1
when ¢ = v — Z <logp — > and v is an Euler-Mascheroni constant. If x tends to
p prime p= 1 p

infinity, the sum of the reciprocals of the primes will diverge.

Theorem 2.2.11 (Mertens’ first theorem). For x > 2, we have

Z logp _ logz + O(1)

p prime <z

Theorem 2.2.12 (Mertens’ second theorem). Forz > 2 and v is an Euler-Mascheroni constant.

T (5) = (o)

p prime <z

Thus,
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Corollary 2.2.13 (Mertens’ third theorem).

1
i — — —e 7
nlgrgo logn || (1 p) e

p prime <n

when « is an Euler-Mascheroni constant.

Theorem 2.2.14 (Prime Number Theorem). Let w(x) be the number of primes not exceeding

x
than z is asymptotic I . Symbolically,

og T

T

7(x)

- log x

Theorem 2.2.15. Let p, be the nth primes. Then,

Pn ~ nlogn

2.3 Some background on Probability Theory

This section covers basic definitions and theorems whose details and proofs can be found in [2],

[11].

Definition 2.3.1. Let § be a collection of subsets of a sample space 2. We will call § a o-
algebra or o-field if § satisfies the following properties
1. Qeg.
2. If A € §, then A° € F.
3.IfA; eFloralli €3, GAZ-ES.
We will call a member in ?évent or a measurable set.
Definition 2.3.2. Suppose that § be a o-algebra on a sample space ). Suppose that
P: § — [0,1] is such that
1. P() = 1.
2.IfA; e Fforalli e Nand A; N A; =0 for all i # j,

P(lJA) =) P(4)

i=1 i=1

We will call P a probability measure and the second property is called the countably addi-

tive property. We will call a triplet (2, §, P) a probability space.
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Definition 2.3.3. If Ay, As, ..., A, are mutually independent, then every k > n and every
k-element nonempty subsets of events By, As, ..., By, of A1, As, ..., Ay,
k k
P <ﬂ Bi> = HP(B,-).
i=1 i=1

Theorem 2.3.4. If Ay, Ay, ..., A, are independent, AS, AS, ..., AS are also mutually independent.

Theorem 2.3.5 (Inclusion-Exclusion Principle). Consider Ay, As,...,A,. Let |A| denote the
number of elements of a set A. Then,

P(UA1> :ZlA"'_ZZ'AlQAJ‘J’_ ZZ |AZﬂAJﬂAk|
=1 1

=
1<ij<n 1<i,j,k<n

ok (CDMTE Y Y A N A N N A (FDF AN AN N Ay
1<q1<q2<...<qr<n

Theorem 2.3.6 (First Borel-Cantelli Lemma). Let {A,}22, be a sequence of events in a prob-

ability space with a probability measure P(-). If Z P(A,) converges,

n=1

P(limsup(A,)) =0

n—oo

Theorem 2.3.7 (Second Borel-Cantelli Lemma). Let {A,}52, be a sequence of mutually inde-

pendent events in a probability space with a probability measure P(-). Then,

0 ifz P(A,) converges,
P(limsup(4,)) = n=1

n—oo
1 otherwise.



Chapter 111

PROBABILISTIC PROOF

This chapter presents our main result with probabilistic approach. First we define the

density measure on N. Then, we show that the density measure is not a probability measure.

3.1 The density measure is not a probability measure.

Before we give a proof that the density measure is not a measure, we give a definition of the

density measure which is used intuitively as a probability measure in many folklore proofs.

Definition 3.1.1. Let N, be {1, 2, ..., n} and A be a subset of N and | A| denotes its cardinality.
If

D(A) = lim 7‘A0Nn|

exists, then D(A) is called the density measure. This quantity represents the possibility of

the occurrence of A.

1
Theorem 3.1.2. D(kN) = Z when k is a natural number.

Proof. Let n be a randomly chosen natural number and &k be a natural number. By the Division
algorithm,
n =kqg, + r

when ¢, is a quotient of n divided by k and r is a natural number such that 0 < r < &k

n—r

k

and

Consider occurrences of the event, then we have occurrences are ¢, which equal to
all possibilities are equal to n.
By the measure, the probability is

n—r

D(kN) = lim —*- = 1

n—oo N k

as we desired. O
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1
By Theorem 3.1.2, D(kN) = T when k is a natural number. If a and b are coprime

natural numbers, then aNNON = abN and

D(aNNbN) = D(aN) - D(bN) (3.2)
and by using induction, the Equation 3.2 also holds for any finite collection of a1N, asN, ..., apN
when a1, aso,..., aj are pairwise coprime.

Following the idea in [3], we have the following observation.

Theorem 3.1.3. If D(-) is a probability measure, then the second Borel-Cantelli Lemma fails.

Hence, D(-) is not a measure.

Proof. Let pi be the kth prime and piN be the collection of multiples of p;. Since p; and
px are obviously coprime, p1, p2,..., Pm,..., Pr are pairwise coprime and we can imply that
D1, P2, -y Pm,---, Pk are mutually coprime so p1N, poN, ..., pxN are mutually independent.

It is obvious that D(pyN) = pik By Theorem 2.2.10, D(p;N) diverges. In the other method,
to determine the number of growth asymptotically, we use Theorem 2.2.14(Prime Number The-
orem) and Theorem 2.2.15. Then, py is approximately k log k.

> D(pN) ~

k=1

= 1
+ I;leogk'

N[ =

It is easy to show that f(x) = is continuous, decreasing and positive on [2,00).Then, we

zlogx
can apply the Integral Test with the series.

The related improper integral is

o0 1 00
/ dx =log(logz)| =o0
9 xlogx 2

Since the improper integral diverges, so does the infinite series.

By Theorem 2.3.7 (the second Borel-Cantelli lemma), D(limsup(p;N)) = 1.

k—o0

However, limsuppyN = MpZ; U2, (p;N) = 0 because M2, U2, (p;N) consists of integers
k—o0

divisible by infinitely many prime pg. Since D(-) is a probability measure, D(limsup(pgN)) =0

k—o0

contradicting with the necessary condition of the lemma. O
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Theorem 3.1.4. Let ® be the class of events that have a density under the density measure
D(-). Then,

1. N €®.

2. ® s closed under complementation.

3. ® is not closed under countable unions.

Proof. 1t is easy to show the first and the second statements by the definition of the measure.
Now we need to find the counterexample that if Ay, Az, ..., A €D but UjZ; A; ¢ ©. In other
word, the goal is to find Ay, As, ..., Ag such that there densities under the density measure exist
while U72; A; ¢ D does not.

Firstly, construct a sequence of events with density 0 for each k € N, let

Agkfl = {mEN | 22k_2 < m < 22k_1}

Aoy = {2m e N | 221 < 2m <229}

Then, |Agp_1| = |Aox| = 2272 and D(A) = 0 for each k € N. Let A = U2 | Ag. Consider the

ratios
. |ANNy2n—1] q . |A N Nozn |
T92n—1 = 22717_1 and 7rg2n = T
For n > 2,
|A N N22n71| = |A1 UAs U ..U Agn_l‘
:1+1+4+4+22n74+22n74+22n72
2
— 7<4n—1 _ 1) +4n—1
3
. ) ) 2
Hence, lim rg2n-1 = 5 By the same method, lim rg2n = 3 Consequently, A ¢ © because
n—oo n—oo
ANN
A does not have a density under D(-) because the sequence of ratio r, = M has two
n

subsequences ry2n—1 and re2» tending to distinct limits. O
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Theorem 3.1.5. Let ® be the class of events that have a density under the density measure
D(-). Then,
1. DN)=1and D(-) >0 on ®

2. D(-) is not countably additive.

Proof. 1t is explicit to show the first part of the theorem by the definition of the measure. To
prove the second, we give two counterexamples. The first is the example we gave on Theorem
3.1.4.3 which show that D(-) cannot give a measure to A = U2, A,. The other is the sequence
of mutually exclusive singletons generated from N which can be verified that each singleton has

density zero while the countable union of the sequence is N having density 1. O
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3.2 There is no product probability measure ug on (9 x 9) when
1
9 C P(N) such that aN x bN € 9t x 9 and pg(aN x bN) = - for all
a
a,b e N.

Initially, we prove the statement in one-dimension in Theorem 3.2.1 and then we extend this in

two-dimension in Theorem 3.2.2.

Theorem 3.2.1. On a given probability measure space (N, M, ), there is no probability measure

1
w on M C P(N) such that kN € M and p(kN) = Z for all k € N.

Proof. For the sake of contradiction, assume that there is a probability measure p such that
1

kN € 9t C P(N) and p(kN) = Z for all k € N. Then, we show that a group of multiples of finite

distinct primes are mutually independent.

Let a and b are coprime natural numbers, then aNNON = abN and

w(aNNbON) = p(abN)

_1
" ab

— p(al) - p(bN)

Hence, aN and bN are independent. Next, assume that there are k primes that is not exceeding

than fixed n when n € N. Now we have,

m PN =p NNpNN...Npr_1NNpN

p prime<n

= (NN p2N) NN (pr— 1NN ppN)

=p1p2NNpspsN N .o Npr_1pkN

By matching a pair of primes inductively, we obtain

N W= Il »|N

p prime<n p prime<n

Hence, p1N, poN, ..., pr—1N, pxN are mutually independent.



By Theorem 2.3.4, (p1N)¢, (po2N), ..., (pr_1N)¢, (pN)€ are also mutually independent. Hence,

pl ) @) = ] (1;)

p prime<n p prime<n

1
lim sup p ﬂ (pN)¢ | = limsup H (1 — p)

n—roo p prime<n noreo p prime<n

Consider the left hand side, since u is a probability measure, consequently,

c

limsupp [ () (N | =p U N

oo p prime<n p prime<n

=1-p| |J »N
p prime<n

oo

1
:1_25

p prime<n

(oo}
1
Since Z — diverges to infinity, by Theorem 2.2.10,

p prime<n

1
lim sup H (1—) = —©
p

n—00 .
p prime<n

That is

li H 1 L —00

oo ) =

p prime<n
Since lim log(n) = oo,
n— o0
. 1
nh_)n;o log(n) H (1 - p) = —00
p prime<n

Meanwhile, by the Mertens’ third theorem,

lim log(n) [] <1—;> =

n—00
p prime<n

where v is the Euler-Mascheroni constant. This result yield the desired contradiction.

19
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Theorem 3.2.2. On a given product measure space (NxN, a(IMxM), ug), there is no product
1

probability measure pg on M C P(N) such that aN x bN € MM x M and pg(aN x bN) = s for
a

all a,b € N.

Proof. Let us give a proof by contradiction. Suppose that there is a product probability measure

lg on a given product measure space (N x N, o(9 x M), pg) when M C P(N) such that

aN x bN € I x M and p(aN x ON) = % for all a,b € N and let A € o( x M)).

Then, pug(aN x N) = %.

Since there exists a sequence (nN | n € N) in P(N) such that U (nN) = Nand p(nN) < co for
neN

every n € N, (N, 9, p) is a o-finite measure space and aN x N € 9t C P(N x N), by Theorem

2.1.22 and the definition a product measure,
p(aN) = p(aN) - 1(N) = pg(aN, n)

is measurable on N when n € N.
Since dom(s) = dom(jie) and pu(aN) = g (aN, n), u(-) = s (A(-,n)), in addition, i (A(-,n))

is a probability measure on M C P(N) contradicting Theorem 3.2.1 as we desired. O
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3.3 Main proof of the statement

In this section, we can conclude that we cannot define a probability measure satisfying the
conditions so we need to prove the statement without properties of a probability measure to

complete the objective.

Theorem 3.3.1. The probability that two natural numbers, chosen randomly, are relatively
prime is equal to ol
Proof. Let N be a fixed natural number and there are by k distinct primes p1, ps, ..., pr Which
less than or equal to N. Let a,b be randomly chosen natural numbers not exceeding than N
and n be a fixed natural number. We have done that D(a4) = 2 when a € N. Consider an
event (a,b) > 1. The event (a,b) > 1 if and only if there is a prime p such that p | e and p | b ;in
other word, there are at least m distinct primes p1,pa, ..., pm such that pips...pm | (a,b) when
1 < m < k. For each prime p, the event that p | a and p | b has probability ]% and let .S,,, denote

the probabilities of events that at least m distinct primes can divide (a,b). Then,

=2 2 o

P1<p2<...<pPpm

p1p2 pm

By Theorem 2.3.5 (Inclusion-Exclusion Principle), we obtain

P((a,b) > 1) = P((a,b) can be divided by at least 1 prime) — P((a,b) can be divided by at
least 2 primes) + ...+ (—1)*"1P((a,b) can be divided by at least k primes)

DD e I D

1<i,j<k p1<p2<...<pg

[
Eﬁ»

=1 p1p2 pk

=NS; — NSy + ... +(-=1)FINS,
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Therefore,

D((a,b) = 1) = lim |(p? f N) A P((p3 f N) A ... N P((pz [ N)|

N—o00 N
B . |Sq(N) > 1
=1 Jim N
i NG AN) v PR A N) V(@R [N
N—oo N
~ i N — NS; + NSy + ... +(=1)FINS,
_N—>oo N

= lim 1 — S + Sy + ... +(=1)F718,.

N —oc0

By Theorem 2.1.14, if we denote in this proof that p(n) is a Mébius function, thus,

N
) - 1 pir) _ 1 _ 6
D((a,b) =1) = ngr(lx)nzl nz (2 7
. . - .6
Hence, the density of the event, in other word the probability of the event, is —. O
™

Similarly, we obtain Corollary 3.3.2 and we can show that the probabilities of the events

in Theorem 3.3.1 and Corollary 3.3.2 are coincide.

6
Corollary 3.3.2. The probability that a natural number, chosen randomly, is square-free is —
T



Chapter 1V

ANALYTIC NUMBER THEORETICAL

PROOF

In this chapter, an analytic number theoretical approach for a proof of the statement will
be presented. Properties of arithmetic functions and average order are crucial topics for our

proof. In this chapter, we follow the argument in [1].

4.1 Main proof by analytic number theoretical approach

Definition 4.1.1. A lattice point is a point in a Cartesian coordinate system such that both

every coordinates of the point is an integer.

Remark. In this chapter, we are interested in lattice points which all coordinates are positive

integers only.

Definition 4.1.2. Two lattice points A and B are called to be mutually visible if there are
no lattice points excluding the endpoints A and B containing in the line segment which join two

endpoints.

Example 4.1.3. (1,2) and (0,0) are mutually visible but (1,1) and (3,3) are not mutually

invisible.

Theorem 4.1.4. Two lattice points (a,b) and (¢,d) are mutually visible if, and only if, a — ¢

and b — d are relatively prime.

Proof. Obviously, (a,b) and (¢, d) are mutually visible if and only if (a — ¢,b — d) is visible from
the origin. Thus, it is sufficient to prove that (a,b) is visible from the origin if and only if a and
b are relatively prime. Suppose that (a, b) is visible from the origin we must show that (a,b) =1

so we proof by contradiction by assuming that (a,b) = d where d > 1.
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Then, a = da’, b = db’ when a’,b" are natural numbers. Hence, the line segment connecting the
origin and (a,b) through (a’,b"). This contradicts the assumption that the lattice point (a,b) is
visible from the origin. Conversely, suppose that (a,b) = 1. If there is a lattice point o', on

the line segment connecting the origin and (a,b), then
a = ta, b =tb where 0 < t < 1.

r
We obtain that ¢ is rational that is ¢ = — when r, s are natural numbers and r, s are relatively
s

prime. Hence,
sa’ = ar, sb’ = br.

so slar and s|br. Since (r,s) = 1, s|a and s|b so s = 1 that is t = 1 because r is a natural number
and (a,b) = 1. This contradicts the condition 0 < ¢t < 1.

Consequently, the lattice point (a, b) is visible from the origin. O

To proof our statement, by Theorem 4.1.4, we need to find the quantity of lattice points
distributed in the plane. Consider a square region with extremely large x- and y- coordinates r

in the zy-plane with the condition
1<x <, 1<y <r

Let N(r) denote the quantity of all lattice points in the square and let N’(r) denote of the

N'(r)

quantity of lattice points which are visible from the origin. The quotient W) tells the ratio
r
of lattice points in the square which are visible from the origin. The next theorem shows that

the ratio tends to a limit as 7 tends to infinity which is called the density of the lattice points

which are visible from the origin.

6
Theorem 4.1.5. The density of the set of lattice points which are visible from the origin is — .
0

Proof. We will show that
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Firstly, consider the quantity of N’(r). There is one lattice point nearest the origin is all visible
from the origin. By the symmetry (see Figure 4.1), N’(r) is equal to 1 plus 2 times the number

of visible points in the region

(the shaded region in Figure 4.1), Hence,

N(r)y =1+ > > 1

2<n<r 1<m<n

=2 Z o(n) — 1.

1<m<n

By Theorem 2.2.9, we obtain
/ 6 2
N'(r) = ﬁr +O(1) + O(rlogr)

6
= —27“2 + O(rlogr).
T

Figure 4.1

Meanwhile, the total quantity of lattice points in the square is

N(r) = (Ir])* = (r+ 0(1))* = r* + 2rO(1) + (O(1))*

=72+ 0(r).
Hence,
6
N'(r) —7° + O(rlogr) 6
lim = lim T =—
r—oo N(1) r—00 r2+0(r) 2
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Now we can conclude that if two natural numbers a and b are chosen randomly, the
6

probability of the event is —. Furthermore, by the same method, the probability of the event
0

6
that two randomly chosen integers are relatively prime is equal to —; as in Corollary 4.1.6.
T
Corollary 4.1.6. If two integers a and b are chosen randomly, the probability of the event is

6

2
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