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Diabetes and diabetic nephropathy are two noticeable disorders in modern
life. Chalcones are considered as a feasible candidate for these medication disorders
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Two dihydrochalcones (121 and 122) exhibited comparable potency to 63. Four
chalcones (63, 65, 121 and 122) were selected to determine the concentration-
response relationship and ECsyvalues. The chalcone 121, considered as the most
potent candidate with the lowest ECs, and cytotoxicity, should be used for further
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CHAPTER |
INTRODUCTION

In modern life, human has to confront with many disease morbidities resulting
from the unhealthy lifestyles such as having a high-fat diet, consuming a lot of sugary
foods, no time for exercise, drinking too much alcohol and so on. Type 2 diabetes is
one of the most popular disorders in developed countries and the number of patients
with diabetes tends to increase in developing countries these years. Notably, most
diabetic patients have been diagnosed to have diabetic nephropathy (DN)
concurrently. A victim with chronic DN will suffer end-stage renal disease requiring
renal replacement therapy containing hemodialysis and renal transplantation.
Therefore, it is imperative to find suitable medication for diabetes and diabetic
nephropathy diseases. In addition, adenosine monophosphate-activated protein kinase
or AMPK was found to regulate many kinds of cellular processes in the cells and AMPK
activation seems to protect podocyte, the most injured part in DN patients, from
impairment and stable insulin activity. Thus, AMPK activation was considered as a
potent target for drug design for diabetes and DN treatment. Besides, it was reported
that chalcone is a feasible structure possessing a diverse variety of biological activity
including anti-diabetic and AMPK activation activity. As a result, the preparation of
chalcone derivatives as AMPK activators would be an attractive direction for finding a
new therapy for diabetes and diabetic nephropathy disorder.

1.1 Chalcone

Chalcone (1,3-diphenyl-2-propen-1-one) is an organic compound with a
resonance system comprising two phenyl rings connecting to each other by an enone
component (Figure 1.1). In the chalcone skeleton, two aromatic rings possibly possess
various substituents such as hydroxy, methoxy and prenyl. It belongs to flavonoid
classification and usually expresses the yellow pigmentation in plants. Chalcone is the

original intermediate taking part in the biosynthetic pathways of various flavonoids.



Theoretically, chalcones carrying 2'-hydroxy, especially those additionally bearing
another one at 6'-position can easily transform into a racemic mixture of (25)- and (2R)-
flavanones by Michael addition on @,B-double bond. In fact, (25)-flavanones are
predominant products due to the catalysis of chalcone isomerase (CHI) (Figure 1.2).
Therefore, only (25)-flavanones can be chosen as intermediates for constructing further
flavonoid diversity."! The chalcone-based skeleton has appealed intensive scientific
studies throughout the world since its derivatives demonstrate a variety of promising
biological activity such as anti-inflammatory? °, NF-KB inhibition*®, HDAC inhibition’,
anticancer>* 8, anti-oxidant’ and anti-diabetic'®. Besides, in addition to chalcone-based
compounds available widely in natural resources, the ease of synthesis allows

chalcone derivatives to be prepared diversely.
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Figure 1.1 Core structure of chalcone.
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Figure 1.2 Chalcone cyclization.

1.1.1 Natural chalcones

Chalcones are prevalent in the natural resources but they do not accumulate
to an appreciable degree in most plants. The largest number of natural chalcones has
been isolated from species of the Leguminosae, Asteraceae and Moraceae families. !

In 2012, Orlikova et al. utilized a series of natural chalcones to evaluate for HDAC



inhibition and TNFa-induced NF-KB inhibition activity because the nuclear factor NF-
KB is controlled by histone deacetylase enzyme.” The results showed that only four
compounds such as isoliquiritigenin (1), butein (9), homobutein (11) and glycoside
marein (13) demonstrated noticeable HDAC activity with ICsyranging from 60 to 190 uM
(Figure 1.3). Besides, with ICs, values of 8 and 11 uM, flavokawain C (10) and
calomelanone (8) were the most feasible NF-KB inhibitors respectively. In addition,
the other chalcones 1, 5-7, 9, 11 and 12 also exhibited good potential with ICs, values
fluctuating between 24-41 pM.
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Figure 1.3 Natural chalcones 1, 5-13.

In addition, three prenylated chalcones 14-16 isolated from Psoralea corylifolia
(L.) were reported to possess potent concentration-dependent inhibitory effects on
NO and PGE, production in lipopolysaccharide (LPS)-activated microglia for the
treatment of neuro-inflammatory diseases by Kim et al. in 2018 (Figure 1.4).° The
signal of protein and mMRNA of inducible nitric oxide synthase (iINOS) and
cyclooxygenase-2 (COX-2) were decreased in LPS-activated microglia. Since NF-KB
governed the expression of pro-inflammatory enzymes such as iINOS and COX-2, the
effect of compounds 1-3 on nuclear factor KB (NF-KB) were assessed. Then, the
reduction of the degradation of I-KBa and nuclear level of NF-KB in LPS-stimulated

BV-2 microglia were obtained by the treatment of these prenylated chalcones at 5 pM.
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Figure 1.4 Prenylated chalcones 14-16 from Psoralea corylifolia (L.).

In 2008, five geranyl chalcone derivatives containing isolespeol (17), 5'-geranyl-
2" 4" 4-trihydroxychalcone (18), lespeol (19), 3,4,2" 4'-tetrahydroxy-3'-
geranyldihydrochalcone (20) and xanthoangelol (21) were isolated from the leaves of
Breadfruit (Artocarpus communis Moraceae) — a tropical and subtropical medicinal
plant by Fang et al. (Figure 1.5)."> They were used to examine the in vitro anticancer
activity on a wide range of tumor cells. The outcome indicated that isolespeol (18)
presented the strongest inhibitory activity (ICs, = 3.8 M) in SW 872 human liposarcoma
cells. Furthermore, the disruption of mitochondrial membrane potential was observed
when SW 872 human liposarcoma cells were treated with isolespeol (17). By some
further testings, they concluded that solespeol (17) caused apoptosis in SW 872 cells

through Fas- and mitochondria-induced pathways.
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Figure 1.5 Geranyl chalcone derivatives isolated from the leaves of Artocarpus
communis.

1.1.2 Synthetic chalcones



Many chalcone derivatives have also been prepared because of their
convenient synthesis by Claisen-Schmidt reaction. In 2009, Srinivasan et al. prepared a
series of chalcone-based compounds with different substituents on both rings such as
halogen, methyl and trifluoromethyl, where several chalcones with only hydroxy and
methoxy substituents on both rings demonstrated good activity with low ICs, values,
some of them are displayed in Figure 1.6." The A-ring with 3,4’ 5'-trimethoxy
substitution was the best component for increasing NF-KB inhibitory activity.
Furthermore, the alteration of 22 to 28 and 29 resulted in relatively unchanged ICs
values, thereby creating a new direction to improve the activity of chalcone-based

compounds.
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Figure 1.6 Some potent chalcones for anticancer activity 22-29.

Chalcone derivatives were also exploited to evaluate antidiabetic activity by
Hsieh et al. in 2012."° A series of chalcones bearing electron donating or electron
withdrawing substitutions by a one-step protocol were synthesized and assessed for
glucose uptake activity. The potent chalcone candidates with halogen except fluoro
or hydroxy group at 2'-position on A-ring showed a feasible activity with glucose
medium concentration from 210 to 236 mg/dL compared to pioglitazone and
rosiglitazone (230 and 263 mg/dL, respectively). Moreover, chalcones bearing iodo
substituent at 3-position on A-ring exhibited considerable activity with glucose medium
concentration lower than 239 mg/dL. Some potent compounds are illustrated in

Figure 1.7.
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Figure 1.7 Some dominant molecules for anti-diabetic activity.

In addition, some kind of chalcone-based derivatives were prepared to test
diverse biological activity due to their privilege structure. In 2017, Shankaraiah et al.
synthesized a series of heterocycles-linked chalcone conjugated by various saturated
carbon chains and utilized for examining cytotoxic and tubulin polymerization
inhibitory activity."® Firstly, the etherification of vanillin compounds (38) with dibromo
alkane linkages of alternating carbon numbers (n = 2, 3, 4), in the existence of K,CO,
as the base to produce the intermediate 39 was performed. Next, the other bromide
atom was replaced by different kinds of nitrogen containing heterocycles under
refluxing in acetonitrile in the presence of K,COs, to obtain vanillin derivatives 40 in
quantitative yields. Finally, different aldehydes 40 were used to combine with several
substituted acetophenones by aldol condensation reaction under the base catalyst as
Ba(OH), to afford the chalcone derivatives 41 in good yields. Regarding biological
evaluation, by many different methods, chalcone 42 demonstrated a strong anticancer
activity on NCI-H460 (lung cancer) cells with ICsy of 1.48 + 0.19 pM. This molecule also
caused apoptosis in NCI-H460 cells and arrested these lung cancer cells in the G2/M
phase of the cell cycle. For tubulin polymerization inhibitory activity, it was found that
tubulin  polymerization and the formation of microtubules were suppressed
considerably by 42 (ICsy = 9.66 + 0.06 uM). In addition, the possible interaction manner
between the most potent candidates (42 and 43) and the colchicine site of the tubulin

was observed by molecular docking investigates.
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Figure 1.8 Procedure for synthesizing heterocycles-linked chalcone hybrid.
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Figure 1.9 Two candidates as cytotoxic agents and tubulin polymerization inhibitors.

1.2 Diabetic nephropathy disease (DN) and AMPK

Diabetes has been spreading as morbid epidemic all over the world in the 21°
century. This consequence is derived from many reasons such as aging population,
abundant nutrition and sedentary lifestyle. With respect to WHO statistics, between
1980 and 2014, there is significant growth from 108 million to 422 million in the number
of people with diabetes. In addition, the ¢lobal pervasiveness of diabetes among
people over 18 years of age has increased rapidly from 4.7% in 1980 to 8.5% in 2014.
Notably, diabetes prevalence has been raising more swiftly in middle- and low-income
countries. Diabetes is the main cause of many kinds of chronic diseases such as
blindness, kidney failure, heart attacks, stroke and lower limb amputation. It is reported
that approximately 1.6 million deaths were directly ensued from diabetes in 2016 and
another 2.2 million deaths were resulted from high blood glucose in 2012. Ultimately,

WHO assesses that diabetes was the seventh leading cause of death in 2016.



Type 2 diabetes (formerly called non-insulin-dependent, or adult-onset)
includes the majority of people with diabetes around the world and is mostly the
consequence of obesity and physical inactivity. Type 2 diabetes results from the
body’s ineffective use of insulin. In the United States, 40% of 29 million citizens
diagnosed to have type 2 diabetes also suffer from diabetic nephropathy (DN).
Similarly, around 45% of 3,795 diabetic patients have been struggling with DN in
Thailand. The prolonging DN will result in end-stage renal disease (ESRD) requiring renal

replacement therapy containing hemodialysis and renal transplantation.
1.2.1 Diabetic nephropathy disease (DN)

In the Industrial Revolution 4.0, population around the world have to face
many new pressures such as many blue-collar jobs have been gradually deserved for
high-technology robots and most of human will become white-collar workers in the
future. Therefore, the sedentary lifestyle has been a hallmark of office job so far, which
would mediate many chronic disorders to the people such as cardiovascular diseases,
obesity, stroke and heart attacks. Diabetes mellitus (DM) or diabetes is also one of the
outcomes, it is a group of metabolic disorders characterized by hyperglycemia derived
from impairments in insulin secretion, insulin action or all together. The number of
global citizens over 18 years of age diagnosed to have diabetes is about 415 million
and this number is estimated to approach 592 million in 2035." Diabetes also take
responsibility for almost half of new cases suffering kidney failure. As a result, kidney
defects induced by diabetes should be a deserved global public health concern to

fulfill the urgent medical requirement."

Diabetic nephropathy (DN), being one of the primary microvascular
complications of DM, emerges in 20-40% of patients with Type 2 DM and over 40% of
new cases of end-stage renal disease (ESRD).'® '’ DN is specialized by immoderate
depletion of protein mostly albumin in the urine (albuminuria), attenuates renal

function and damage property of kidney filtration. These alterations lead to clinical



proteinuria (>300 mg per day). Therefore, kidney can not eliminate waste or abundant
secretion from the body leading to excrement accumulation in the body and fluid
retention. At this period, victim must have their kidney function support by dialysis and

eventually may require a kidney transplant.'®*’

There are five different clinical stages of DN disorder distinguished by the values
of the glomerular filtration rate (GFR), urinary albumin excretion (UAE) and systemic
arterial blood pressure (Table 1.1). Patients suffer more serious conditions in higher
stages. In stage |, the urine is still free of albumin protein and normal blood pressure
is measured. In all diabetic patients, the glomeruli are found to be hypertrophied
leading to an increase in filtration area. In addition, glomerular perfusion and the
transglomerular hydraulic pressure alterations are evaluated to increase. These
structural defects along with hemodynamic factors cause a rise in the GFR exceeding
normal rate of 20 to 40%. Then, patients have to confront microalbuminuria which is
defined as a UAE of 30-300 mg/day in stage Il. Structure of the glomerular and tubular
basement membranes continues to thicken and some degree of podocyte loss are
measured. Moreover, mesangial matrix expansion and diffuse glomerulosclerosis are
manifest. In stage lll, diffuse and/or nodular glomerulosclerosis, as well as podocyte
loss increase significantly and macroalbuminuria, takes place with UAE exceeding 300
mg/day. In the last stages IV and V, proteinuria is approached. The GFR attenuates
progressively at a low rate in stage IV and patients are required renal replacement
therapy in ESRD stage (stage V).

The current therapies for curing DN disorder comprises two approaches such
as glucose-lowering control and blood pressure control through blockade of the renin-
angiotensin system involving angiotensin-converting enzyme (ACE) inhibitor and
angiotensin receptor blocker. Nevertheless, the profound glucose-lowering control
seems to be useless after onset of complexity or prolonging diabetes have been
undergone. Moreover, some drug regulating glucose concentration and blood pressure

can cause some serious side effects such as bone disorder, bladder cancer,



10

hyperkalemia, and cardiovascular diseases if they are utilized for long time.'* Although
some sort of treatments were applied to tackle DN morbidity, they might not be
effective due to the complication of pathogenic mechanisms. As a result, the
imperative need is discovering the drug-target and the pathogenic mechanism of DN

so as to ameliorate renal function of DN patients.

Table 1.1 Clinical stages of diabetic nephropathy (DN).

Stage GFR UAE Blood Pressure
1. Hyperfiltration Supernormal Less than 30 mg/day Normal
2. Microalbuminuria High normal-normal 30-300 mg/day Rising
More than 300
3. Overt proteinuria Normal-decreasing Elevated
me/day
4. Progressive
Decreasing Increasing Elevated
nephropathy
5. ESRD Less than 15 mL/min Massive Elevated

1.2.2 Glomerulus and podocyte

Under usual physiological conditions, the kidneys take a crucial responsibility
in filtration, collection, and stabilization of body homeostasis. Filtration and collection
mean the kidneys or smaller functional units called nephron transport the blood from
artery including important nutrients such as Na* ion, amino acids, protein, as well as
oxygen passing the filter and return them into vein while the abundant salts, exceeding
water and urea are collected to transfer them into urine. Normally, these processes
occur at glomerulus part of nephron and filtrate can pass across glomerular filtration
barrier. This glomerular filtration barrier contains three main layers i.e., fenestrated
capillary endothelium, glomerular basement membrane, and podocyte (Figure 1.10).
These three layers form gates that are size and charge selective to make sure relatively
protein-free urine formation. The rate of filtration and composition of the urine were

determined by the transportation of the filtrate and solutes through glomerular
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filtration system. In DN patients, the composition of kidneys relating to renal filtration
bearing structural defects and functional disorder, which leads to albumin protein
passing through filter system to approach into urine (albuminuria). Some physiological
manners observed in glomerulus of DN patients comprise the early hypertrophy of
glomerular and tubular parts, subsequent thickening of basement membrane in
glomeruli and tubules, gradual accumulation of extracellular matrix proteins in the
glomerular mesangium, loss of podocyte and urine including protein (proteinuria) as

well.

Podocytes are the principal component of the renal glomerulus, are terminally
differentiated epithelial cells. It has long cytoplasmic extensions called foot processes
that prolong from the cell body. Podocyte foot processes, controlled by intact
structure called actin cytoskeleton, are formed on the urinary side of the glomerular
basement membrane, and foot processes from the neighboring cells are interdigitated.
Foot processes wrap around the glomerular capillaries and interlace with one another,
leaving narrow filtration slits, a gap between slit diaphragms that plays a key role as
size, shape, and charge selective barrier to the passage of macromolecules such as
albumin from underlying capillary network to the extravascular urinary space.
Therefore, the integrity of podocyte is very significant for hindering macromolecule

such as protein in entering the urine.?

In addition, insulin action is proposed to be very predominant in regulating
podocyte in order to stable glomerular filtration barrier by glucose uptake stimulation,
cytoskeletal reorganization. However, in the body of DN patients, podocyte fails to
respond correctly with insulin signals leading to the formation of improper structure of
podocyte and then the destruction of podocyte cytoskeleton ensues.?" Albuminuria
occurs due to the disappearance of filtering barrier. Besides, podocyte network is also

vulnerable in response to hyperglycemia disorder, causing apoptosis and disturbance
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Figure 1.10 Renal glomerulus components.

in skeletal integrity.” For instance, it was reported that immortalized podocyte cell
line was killed via apoptosis under high-glucose conditions which was monitored by
DAPI fluorescent staining to approach chromatin condensation and segregation.?® In
contrast, podocyte loss is considered as the sign of diabetes-induced glomerular
diseases as well which can deteriorate to reach tubular damage and thorough nephron
loss. As podocyte are terminally differentiated and have a restricted capability for
amelioration or regeneration, the foot process effacement in podocyte phenotypes
resulting in kidney disorders usually happen at early stages and subsequently podocyte
depletion synchronizes with progression of glomerular disease.”” Experimental animal
models showed that a loss of 20% of podocyte leads to transient proteinuria and
further injury can process to progressive proteinuria, glomerulosclerosis and finally end

up with loss of renal function.?* Thus, the potential therapies for DN treatment should

be addressing insulin resistance and impeding podocyte loss or impairment.

Insulin is a vital hormone involved in the regulation of glucose and lipid
metabolism. Its biological activity is activated when binding of insulin to insulin

receptor occurs. Activation form of insulin receptor causes initiation and
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autophosphorylation of the receptor tyrosine kinase and different cascades of
phosphorylation processes. However, the cellular response to insulin in insulin-
resistant state is diminished leading to higher requirement of insulin concentration for
insulin-mediated cellular events. Some noticeable donors causing insulin resistance
are hyperinsulinemia, hyperglycemia, inflammation, lipid excess, mitochondrial
dysfunction, and endoplasmic reticulum (ER) stress.”” Podocyte is an insulin-responsive
cell which expresses all the elements of the insulin-signaling cascade such as
functional IRS1 and insulin receptor, it also regulates to develop glucose absorption
by slucose transporter, representatively glucose transporter type 4 (GLUT4) under
insulin stimulation. The relationship among insulin signaling, podocyte, and DN
pathogenesis was found in the experiment that podocyte collected from diabetic
db/db mice can not manage to phosphorylate AKT as well as transfer GLUT4 to the
plasma membrane under insulin regulation resulting to vulnerability to cell death.
Therefore, the number of podocytes was declined to pave the way for albuminuria
seen in the early stage of DN disorder.?' Moreover, the mice with insulin receptor gene
removed suffer from albuminuria hypertrophy coinciding with podocyte foot processes
effacement, apoptosis, thickening of the glomerular basement membrane and
enlarging glomerulosclerosis which are all the pathological hallmarks of DN disease.”
These findings propose that proper-operation of insulin signaling pathway is crucial for

maintaining podocyte foot processes and hindering albuminuria event

1.2.3 AMPK - drug target for diabetic nephropathy treatment

Adenosine  monophosphate-activated protein  kinase or AMPK is a
heterotrimeric complex containing three subunits: an o subunit harboring a protein
kinase catalytic domain and non-catalytic B and y (PRKAG) regulatory subunits. There
are two isoforms of @ and B subunits and three isoforms of y subunit resulting in
twelve possible combinations of the heterotrimeric Ay AMPK complex. In addition,

the amino-terminal region of @ subunit possesses a typical serine/threonine kinase
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domain which comprises a region called the activation loop, or T-loop conserved by
many protein kinases and taking prominent responsibility in their regulation. It is
believed that AMPK is stimulated effectively when phosphorylation process of Thr172
(pThr172) within the activation loop occur.??’

There are two upstream kinases controlling the physiological phosphorylation
of Thr172 such as liver kinase B1 (LKB1)*"?’ and calcium/calmodulin-dependent
protein kinase kinase 2 (CAMKK2 or CAMKKP).*>*? These two factors affect AMPK’s
activity through metabolic stresses that increase ADP: ATP and/or AMP: ATP ratios.
There is some evidence proved that the sensitivity between AMPK and cellular stresses
sees a decrease during the aging process so it would cause disorders in downstream
signaling, the stability of cellular energy balance as well as the stress resistance.
Nevertheless, it was recognized that AMPK defect can induce several diseases to young
people. For example, dysfunctions in AMPK signaling cause a decline in mitochondrial
biogenesis, rise in cellular stresses and inflammatory accumulation which are some
typical processes in aged people and they have a close connection to several
pathological movements > It can be seen AMPK regulate a variety of cellular process
in cells; therefore, AMPK-activating treatment seems to a promising therapy for healing
different relating impairments.

AMPK expresses in many types of tissues in the body such as kidney, skeletal
muscle, adipose tissue, liver, heart, and hypothalamus of the brain. Nonetheless, renal
cells containing mesangial cells, slomerular endothelial cells and podocytes see a high
expression of AMPK. It was found that the decrease in AMPK activity is associated with
a metabolic syndrome phenotype such as central adiposity, dyslipidemia, and a
predisposition to type 2 diabetes, atherosclerotic cardiovascular disease.’” In muscle-
specific transgenic mice possessing an inactive form of AMPK; insulin-stimulated
glucose transport declined and insulin resistance was aggravated in high-fat feeding
condition.®® From these two examples, a connection among AMPK dysfunction,
metabolic syndrome disorders, escalation of insulin resistance and type 2 diabetes
diseases was observed.’” Several studies indicated that metformin, a popular drug used
for type 2 diabetes patients to boost insulin sensitivity was realized to be an AMPK

activation agent.*



15

The relationship between diabetic nephropathy disorder and AMPK activity was
also researched, for instance, immunofluorescence staining presented that the
intraglomerular intensity of AMPK phosphorylation was diminished in the kidney biopsy
of DN patients.”” In addition, the hindrance of AMPK action was measured in
immortalized mouse podocytes cultured in glucose circumstance and this suppression
was considered as an upstream pathway via LKB1 kinase.*! Moreover, metformin, which
is used as the first-line drug prescribed for type 2 diabetes because of their positive
pharmacological effect on AMPK, was recognized to reduce permeability of glomerular
filtration barrier as well as improve glucose absorption into rat podocytes cultured in
high glucose condition (25 mM).* On the other hand, activation of AMPK by metformin
was realized to impede the generation of superoxide anion, an oxidative stress
responsible for initiating and handling DN disorder, via down-regulation of the
Nox4/NaD(P)H oxidase subunit in cultured mouse podocytes under both
normoglycemic and hyperslycemic conditions.” Therefore, AMPK seem to have
protective activity by inhibiting of oxidative stress. Furthermore, much research
suggested a connection among DN disorder, disturbed lipid metabolism and renal
accumulation of lipids. In the animal models, it can be seen that mice fed with high-
fat diet (HFD) are not only susceptible to suffer glomerular fibrosis, inflammatory
cytokines and urinary albumin secretion which deteriorate kidneys but they are also
confronted with renal AMPK suppression. Nevertheless, under metformin
administration, inflammatory cytokines and renal impairment were reduced.* In the
streptozotocin-induced diabetic rat, AMPK activity was impeded due to fatty acid
oxidation forming toxic free fatty acid.” It is believed that excessive fatty acids can
injure podocytes, proximal tubular epithelial cells, and the tubulointerstitial tissue
through different mechanisms; particularly, by initiating the production of reactive
oxygen species (ROS) and lipid peroxidation, inducing mitochondrial impairment and
tissue inflammation, which ensue in glomerular and tubular injuries.*® AMPK also has a
close linkage to mitochondria which is known as energy production plant of the cell
and metabolic syndromes have been considered as the results from mitochondrial
defects. For instance, some research indicated that glomerular disease and podocyte

injury are attributed to mitochondrial dysfunction, hyperglycemia and insulin resistance
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in diabetes.* Therefore, AICAR was applied to activating AMPK to stimulate
mitochondrial biogenesis via peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC-1a) promotion in the glomeruli and podocyte of
streptozotocin-induced diabetic mice.®® Notably, the association between insulin
signaling and AMPK activation activity was encouraged by insulin-sensitive podocyte
cells. For example, the abatement of AMPK phosphorylation and insulin-dependent
glucose uptake as well as the apparent insulin resistance were monitored in primary
rat podocytes growth in high glucose circumstances.*” While it was found that
metformin can promote AMPK activity and disrupt high glucose-mediated impairment
of glucose absorption into podocytes leading to maintenance of podocyte function.*
As a result, AMPK activation pathway is considered an appealing direction of drug

discovery for DN remedy.

1.3 Reported chalcones as AMPK activation agents

Licochalcone A (44), isolated from the Glycyrrhiza plant as a major phenolic
compound, was found to display a wide range of pharmacological applications
including the impact on hepatic lipid metabolism by Quan et al. in 2013 (Figure 1.11).”°
44 was suggested to impede the hepatic triglyceride accumulation in HepG2 cells and
ICR mice fed on a high-fat diet (HFD). Particularly, 44 showed upstream regulation of
gene expression of proteins such as peroxisome proliferator-activated receptor a
(PPARQL) and fatty acid transporter (FAT/CD36), which are accountable for lipolysis and
fatty acid transport, respectively. In addition, the mechanism of these effects were
attributed to AMPK activation and they were abolished if HepG2 cells were consumed
with an AMPK inhibitor, compound C. Subsequently, oxygen consumption rate, and
ATP levels were measured in HepG2 cells to discover how 44 is able to stimulate AMPK
and the results presented that mitochondrial respiration and ATP levels dropped
meaning that indirect AMPK activation occurred. Eventually, in vivo outcomes also
matched with available results that triglyceride levels were realized to reduce

considerably in six-week-old mice orally administered with 44 (5 and 10 mg/kg) once
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a day for three weeks; furthermore, AMPK was found to intensify in the liver of ICR

mice fed on an HFD.

o)
"
HO ~o OH
44

Figure 1.11 Licochalcone A (LA) structure.

In 2014, Zhang et al. carried out the research relating to attenuation of
excessive lipid accumulation causing various severe diseases containing
hyperlipidemia, diabetes and fatty liver disorder by chalcones.® There are four
compounds chosen such as 4-hydroxyderricin (45), xanthoangelol (21), cardamonin
(46) and flavokawain B (47) which were reported to possess feasible biological activity
against obesity, inflammation, and diabetes (Figure 1.12). Hepatocyte cells (HepG2)
were firstly treated with a mixture of fatty acids (palmitic acid: oleic acid = 1: 2 ratio),
then lipid level in cells develops markedly. Under the same protocol, addition of 5
UM chalcone compound reduced the concentration of lipid accumulation in
hepatocyte cells. In addition, the results displayed that the decline of SREBP-1
expression and the growth of PPARQ activity were obtained in HepG2 cells under
chalcone treatment, they are also essentially responsible for lipogenesis and fatty acid
oxidation, respectively. Furthermore, phosphorylation of AMPK and LKB1 which up-
regulate SREBP-1 and PPARQ were considered to occur. Thereafter, compound C, an
AMPK inhibitor, was utilized and it was realized that SREBP-1 and PPARQ expression
were abolished in HepG2 cells consuming chalcones. As a result, 21, 45-47 were
proved to decrease lipid accumulation through activation of the LKB1/AMPK signaling
pathway in HepG2 cells.

Two chalcones 21 and 45 isolated from n-hexane/EtOAc (5:1) extract of the
yellow-colored stem juice of Angelica keiskei as major products were also investigated
about the mechanism in rising glucose transporter 4 (GLUT4)-dependent glucose

uptake in 3T3-L1 adipocytes by Ohta et al. in 2015 (Figure 1.12).°? They were found
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Figure 1.12 Chemical structures of 21, 45-47.

to increase glucose uptake and GLUT4 translocation to the plasma membrane.
Moreover, both chalcones also activated the phosphorylation of AMPK; liver kinase B1
(LKB1), which acts upstream of AMPK and AMPK’s downstream target acetyl-CoA
carboxylase. Thus, these outcomes showed that two compounds 21 and 45 are able
to develop GLUT4-dependent slucose uptake via the LKB1/AMPK signaling pathway in
3T3-L1 adipocytes.

Some chalcones can affect the digestive system via AMPK activation pathway.
For instance, Yibcharoenporn et al. used a series of synthetic chalcone derivatives for
biological testing of antidiarrheal activity through CFTR CU inhibition pathway in 2019.>®
After screening 27 compounds, 48 with A-ring as 2'-hydroxyacetophenone and B-ring
bearing 2,4,5-trimethoxy groups was the most potent candidate that reversibly
inhibited CFTR CU” channel secretion in T84 cells with ICsq of approximately 1.5 uM
(Figure 1.13). After that, electrophysiological and biochemical analyses were
performed to explore how 48 was able to suppress the operation of CFTR Cl” channel
and AMPK activation pathway was the answer. Thereafter, it was found that 48 bound
at the allosteric site of an upstream kinase calcium-calmodulin kinase kinase P
(CaMKKB) to activate AMPK which was measured by western blot analyses and
molecular dynamics (MD). Therefore, 48 is considered as a persuasive model to further
investigate structure-activity relationship of synthetic chalcone derivatives for AMPK

activation activity.
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Figure 1.13 Chemical structure of 48.

In this research, 2'-hydroxyacetophenone was used to combine with diverse
benzaldehydes possessing different substituents on B-ring to prepare a series of
chalcone derivatives for AMPK activation activity testing. From literature reviews, most
chalcones as AMPK activator bearing 2"-hydroxy group on A-ring; for instance, 21, 45-
48 having 2'-hydroxy group along with other groups on A-ring demonstrated impressive
activity to activate AMPK. It is thus believed that 2'-hydroxy sroup may be responsible
for AMPK activation activity. In addition, chalcone with A-ring as 3',4'5'-
trimethoxyacetophenone was reported to exhibit strong cytotoxicity and anti-
inflammatory but there have been no literature reviews about AMPK activation activity
of chalcones possessing this kind of A-ring; as a result, it was chosen for screening for
the first time. Furthermore, other types of A-ring were also synthesized to compare
their activity with 2'-hydroxy-and 3',4',5'-trimethoxychalcones. The substituents on B-
ring can alter among mono-, di-, and trisubstitutions with various types of substituents
such as hydroxyl, methoxy and so on. These chalcones were prepared to evaluate

biological activity compared to chalcone 48 which was reported as AMPK activator.
1.4 The aim of this research

Chalcone is a privileged structure that expresses a broad variety of biological
activities such as antidiabetic, anticancer, anti-inflammatory and so on. Thus, this core
skeleton was selected to manipulate a series of products to evaluate AMPK activation
activity. Chalcones bear two aromatic rings (A- and B-rings) with various substituents

linked to each other by a,B-unsaturated ketone component.
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A series of chalcone derivatives with A-ring bearing 2'-hydroxy-, 3',4',5'-
trimethoxyacetophenones or other types was synthesized. The substituents on B-ring
can be mono-, di- or trisubstitutions. The synthesized and characterized chalcones
were submitted to evaluate for biological activity screening to analyse structure-activity
relationship. Thereafter, the most potent compounds were selected for concentration-
response relationship and ECsqvalues calculation. Compounds with the highest

potency, lowest ECyq and cytotoxicity should be utilized for further study.
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CHAPTER Il
EXPERIMENTAL

A series of chalcones were mainly synthesized by Claisen-Schmidt reaction
using acetophenones and benzaldehydes as two components. Many kinds of
benzaldehydes and acetophenones with different substituents at various positions
(mono/di/tri-substitution) on phenyl ring were reacted to form a wide range of
products. In addition, etherification was performed between benzaldehydes with some
hydroxy groups and alkyl bromides to obtain a number of benzaldehyde derivatives.
Moreover, hydrogenation was conducted to achieve some dihydrochalcones. Totally

60 chalcones and related compounds were attained for biological testing.

2.1 Instruments

'H and *C NMR spectra were performed in CDCls, acetone-ds or DMSO-dj or
otherwise stated and were recorded by using a Bruker Ultrashield 400 Plus NMR
spectrometer or a Varian Mercury NMR spectrometer with an Oxford YH400 magnet
operating at 400 MHz for 'H and 100 MHz for *>C. High-resolution mass spectra (HRMS)

were recorded on a Bruker Daltonics microTOF using electron spray ionization (ESI).

2.2 General

All solvents used in this research were distilled prior to use except those which
were reagent grades. Thin-layer chromatography (TLC) was performed on aluminum
sheets precoated with silica gel (Merk Kieselgel 60 PF,s4). Silica gel (No. 7734 and 9385,

Merck) was used as stationary phase on open column chromatography.

23 Preparation of chalcones with monosubstitution on B-ring
The chalcone derivatives were prepared by Claisen-Schmidt reaction as
previously reported with some modification.* The corresponding acetophenone (1

equiv) and NaOH (3 equiv) in EtOH (3 mL for 1 mmol of acetophenone) were stirred at
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room temperature for 10 min. Then the corresponding aldehyde (1 equiv) was added.
The reaction mixture was proceeded at room temperature and monitored by TLC
(usually 12-18 h). After that, HCL (10%) was added until pH 5 was obtained. In the
situation that chalcones precipitated, they were collected by filtration and
crystallization from MeOH. In other situations, the products were purified by utilizing
silica gel chromatography. Nine chalcones (25 and 49-56) with mono-substitution on

B-ring are described in Figure 2.1.

R? Pz R?
S
R¥
49.R"=0H,R?=R¥=R*=H,R2=R%=H,R"= OH 54.R"=0H, R? =R¥=R*¥=H, R'=R?=H, R®= OCH;
50.R"=0OH,R?=R¥=R*=H,R'=R%®=H, R2= OH 55.R"=H, R¥=R¥=R*=0OCH;, RZ=R%®=H, R"= OH
51.R"=0H,R¥=R¥=R*=H,R'=R?=H, R®= OH 25.R"=H, R?=R¥=R¥=0CH;, R'=R3=H, R?= OH
52.R"=0H,R?=R¥=R%*=H,R?=R3=H, R"= OCHj4 56.R"=H, R?=R¥=R*=0OCH3, R'=R?=H, R3= OH

53.R"=0OH,R*=R¥=R*=H,R"=R3=H, R?= OCHj

Figure 2.1 The structures of chalcones with monosubstitution on B-ring.

49 ((£)-1,3-bis(2-hydroxyphenyl)prop-2-en-1-one). 'H NMR (acetone-ds, 400
MHZ): & (ppm) 13.03 (s, 1H), 9.51 (s, 1H), 8.33 (d, J = 15.6 Hz, 1H), 8.19 (dd, J = 8.0, 1.2
Hz, 1H), 8.07 (d, J = 15.6 Hz, 1H), 7.85 (dd, J = 7.6, 1.2 Hz, 1H), 7.55 (td, J = 8.4, 1.6 Hz,
1H), 7.31 (td, J = 8.4, 1.6 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 6.99 (t, J = 7.2 Hz, 1H), 6.97 (4,
J = 6.4 Hz, 1H), 6.92 (d, J = 7.2 Hz, 1H). *C NMR (acetone-d;, 100 MHz): & (ppm) 195.1,
164.2, 158.2, 141.8, 136.9, 133.0, 130.9, 130.1, 122.5, 120.8, 120.7, 120.5, 119.5, 118.7,
117.0.

50 ((F)-1-(2-hydroxyphenyl)-3-(3-hydroxyphenylprop-2-en-1-one). 'H NMR
(CDCls, 400 MHz): & (ppm) 12.79 (s, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 15.6 Hz,
1H), 7.63 (d, J = 15.6 Hz, 1H), 7.51 (t, J = 8.0 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.24 (d, J
= 7.6 Hz, 1H), 7.14 (s, 1H), 7.04 (d, J = 8.0 Hz, 1H), 6.95 (t, J = 7.6 Hz, 1H), 6.92 (d, J =
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7.6 Hz, 1H). >C NMR (CDCl;, 100 MHz): & (ppm) 193.9, 163.7, 156.2, 145.2, 136.6, 136.4,
130.4, 129.8, 121.7, 120.8, 120.2, 119.1, 118.8, 118.2, 115.0.

51  ((F)-1-(2-hydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one). 'H NMR
(acetone-dy, 400 MHz): & (ppm) 13.08 (s, 1H), 9.27 (s, 1H), 8.23 (dd, J = 8.4, 1.6 Hz, 1H),
791(d,J=15.6,1H),7.85(d, J = 15.2 Hz, 1H), 7.77 (d, J = 8.8 Hz, 2H), 7.54 (td, J = 8.4,
1.6 Hz, 1H), 6.96 (m, 4H). >C NMR (acetone-ds, 100 MHz): & (ppm) 194.7, 164.3, 161.3,
146.5, 136.8, 131.9, 130.9, 127.1, 120.8, 119.5, 118.7, 117.8, 116.7.

52  ((E)-1-(2-hydroxyphenyl)-3-(2-methoxyphenylprop-2-en-1-one). 'H NMR
(CDCLls, 400 MH2): & (ppm) 12.95 (s, 1H), 8.23 (d, J = 15.6 Hz, 1H), 7.92 (dd, J = 8.0, 1.2
Hz, 1H), 7.78 (d, J = 15.6 Hz, 1H), 7.65 (dd, J = 7.6, 0.8 Hz, 1H), 7.49 (td, J = 8.4, 1.2 Hz,
1H), 7.40 (td, J = 8.4, 1.2 Hz, 1H), 7.03 (d, J = 8.4 Hz, 1H), 7.02 (t, J = 8.0 Hz, 1H), 6.96
(d, J = 8.0 Hz, 1H), 6.94 (t, J = 7.6 Hz, 1H), 3.94 (s, 3H). *C NMR (CDCl;, 100 MHz): &
(ppm) 194.5, 163.7, 159.2, 141.3, 136.2, 132.3, 129.8, 129.7, 123.8, 121.0, 120.9, 120.4,
118.9, 118.7, 111.5, 55.7.

53  ((E)-1-(2-hydroxyphenyl)-3-(3-methoxyphenyl)prop-2-en-1-one). 'H NMR
(CDCls, 400 MH2): & (ppm) 12.83 (s, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 16.0 Hz,
1H), 7.66 (d, J = 15.6 Hz, 1H), 7.53 (td, J = 8.0, 1.2 Hz, 1H), 7.38 (t, J = 7.6 Hz, 1H), 7.29
(d, J = 7.2 Hz, 1H), 7.19 (s, 1H), 7.06 (d, J = 8.4 Hz, 1H), 7.01 (dd, J = 8.4, 2.0 Hz, 1H),
6.97 (t, J = 7.6 Hz, 1H), 3.89 (s, 3H). °*C NMR (CDCls;, 100 MHz): & (ppm) 193.7, 163.6,
160.0, 145.4, 136.4, 136.0, 130.0, 129.7, 121.3, 120.5, 120.0, 118.8, 118.6, 116.6, 113.8,
554,

54 ((F)-1-(2-hydroxyphenyl)-3-(d-methoxyphenylprop-2-en-1-one). 'H NMR
(CDCls, 400 MHz): & (ppm) 12.95 (s, 1H), 7.91 (dd, J = 8.0, 1.2 Hz, 1H), 7.90 (d, J = 15.6
Hz, 1H), 7.62 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 15.2 Hz, 1H), 7.48 (td, J = 8.4, 1.6 Hz, 1H),
7.02 (d, J = 8.4 Hz, 1H), 6.95 (d, J = 8.8 Hz, 2H), 6.94 (t, J = 7.6 Hz, 1H), 3.86 (s, 3H). *C
NMR (CDCls, 100 MHz): & (ppm) 193.8, 163.7, 162.2, 145.5, 136.2, 130.6, 129.6, 127.5,

120.3, 118.9, 118.7, 117.8, 114.6, 55.6.
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55 ((F)-3-(2-hydroxyphenyl)-1-(3,4,5-trimethoxyphenylprop-2-en-1-one).  'H
NMR (CDCls, 400 MHz): & (ppm) 8.20 (d, J = 16.0 Hz, 1H), 7.72 (s, 1H), 7.64 (d, J = 16.0
Hz, 1H), 7.58 (dd, J = 8.0, 1.2 Hz, 1H), 7.29 (s, 2H), 7.25 (t, J = 8.0, 1.6 Hz, 1H), 6.96 (d, J
= 8.4 Hz, 1H), 6.92 (t, J = 8.0 Hz, 1H), 3.93 (s, 3H), 3.91 (s, 6H). >C NMR (CDCls, 100 MHz):
o (ppm) 191.3, 156.5, 153.2, 142.6, 141.6, 133.7, 132.0, 129.5, 122.5, 122.3, 120.7, 116.8,
106.6, 61.1, 56.5.

25 ((E)-3-(3-hydroxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one).  'H
NMR (DMSO-d;, 400 MH2): & (ppm) 9.64 (s, 1H), 7.85 (d, J = 15.6 Hz, 1H), 7.65 (d, J =
15.2 Hz, 1H), 7.42 (s, 2H), 7.32 (d, J = 7.6 Hz, 1H), 7.26 (m, 2H), 6.88 (dd, J = 7.6, 1.6 Hz,
1H), 3.90 (s, 6H), 3.76 (s, 3H). °C NMR (DMSO-d;, 100 MHz): & (ppm) 187.9, 157.7, 152.9,
144.1, 142.0, 136.0, 133.0, 129.8, 121.8, 120.0, 117.7, 115.3, 106.2, 60.1, 56.2.

56  ((F)-3-(4-hydroxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one).  'H
NMR (DMSO-dj;, 400 MHz): ® (ppm) 10.10 (s, 1H), 7.75 (d, J = 8.4 Hz, 2H), 7.73 (d, J =
14.8 Hz, 1H), 7.68 (d, J = 15.2 Hz, 1H), 7.39 (s, 2H), 6.84 (d, J = 8.4 Hz, 2H), 3.89 (s, 6H),

3.76 (s, 3H). >C NMR (DMSO-dj, 100 MHz): O (ppm) 187.8, 160.1, 152.9, 144.3, 141.8,
133.4, 131.1, 125.9, 118.4, 115.8, 106.0, 60.2, 56.2.

2.4 Preparation of chalcones with disubstitution (OH, OCH; and OCH,0) on
B-ring
Following the procedure described in part 2.3, twelve chalcones with one
hydroxy along with one methoxy, dimethoxy, and methylenedioxy at various positions
on B-ring (57-68) were prepared (Figure 2.2). Among the products, 59 is a new

compound with HR-MS data shown below.
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Figure 2.2 The structures of chalcones with hydroxyl, methoxy, and methylenedioxy

on B-ring.

57 ((£)-3-(2,3-dimethoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one). 'H NMR
(CDCls, 400 MH2): & (ppm) 12.88 (s, 1H), 8.20 (d, J = 15.6 Hz, 1H), 7.90 (d, J = 8.0 Hz,
1H), 7.73 (d, J = 15.6 Hz, 1H), 7.48 (t, J = 8.0 Hz, 1H), 7.27 (d, J = 7.6 Hz, 1H), 7.09 (t, J
= 8.0 Hz, 1H), 7.01 (d, J = 8.4 Hz, 1H), 6.97 (d, J = 8.0 Hz, 1H), 6.92 (t, J = 8.0 Hz, 1H),
3.90 (s, 3H), 3.88 (s, 3H). "°C NMR (CDCls, 100 MHz): O (ppm) 194.2, 163.7, 153.3, 149.3,
140.5, 136.3, 129.8, 128.8, 124.3, 121.7, 120.2, 120.0, 118.9, 118.6, 114.8, 61.4, 56.0.

58  ((E)-3-(2-hydroxy-3-methoxyphenyl)-1-(2-hydroxyphenylprop-2-en-1-one).
'H NMR (CDCls, 400 MHz): & (ppm) 12.94 (s, 1H), 8.14 (d, J = 15.6 Hz, 1H), 7.94 (d, J =
7.6 Hz, 1H), 7.92 (d, J = 15.2 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.20 (dd, J = 6.8 , 1.6 Hz,
1H), 7.02 (d, J = 8.4 Hz, 1H), 6.94 (t, J = 7.6 Hz, 1H), 6.91 (t, J = 8.0 Hz, 1H), 6.90 (d, J =
8.0 Hz, 1H), 6.40 (s, 1H), 3.94 (s, 3H). *C NMR (CDCls, 100 MHz): & (ppm) 194.6, 163.7,
147.1, 146.3, 141.0, 136.3, 130.0, 129.7, 122.4, 121.8, 120.0, 119.9, 118.9, 118.7, 112.5,

56.4.

59  ((E)-3-(benzold][1,3]dioxol-4-yl)-1-(2-hydroxyphenyl)prop-2-en-1-one).  'H
NMR (CDCls, 400 MHz): O (ppm) 12.86 (s, 1H), 7.90 (dd, J = 6.8, 1.6 Hz, 1H), 7.89 (d, J =
16.0 Hz, 1H), 7.81 (d, J = 15.2 Hz, 1H), 7.49 (td, J = 7.2, 1.2 Hz, 1H), 7.01 (m, 2H), 6.94 (t,
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J =1.6,0.8 Hz, 1H), 6.88 (d, J = 4.4 Hz, 2H), 6.14 (s, 2H). >*C NMR (CDCls, 100 MHz): &
(ppm) 194.2, 163.8, 148.2, 147.0, 140.1, 136.5, 129.9, 123.8, 123.1, 122.2, 120.2, 119.0,
118.7,117.9, 110.5, 101.8. HR-MS (ESI) for Cy4H;,04Na [M+Nal" requires 291.06333 found
291.06270.

60 ((£)-3-(2,4-dimethoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one). 'H NMR
(CDCls, 400 MH2): & (ppm) 13.11 (s, 1H), 8.16 (d, J = 15.6 Hz, 1H), 7.90 (d, J = 8.0 Hz,
1H), 7.67 (d, J = 15.2 Hz, 1H), 7.56 (d, J = 8.8 Hz, 1H), 7.46 (t, J = 8.4 Hz, 1H), 7.00 (d, J
= 8.4 Hz, 1H), 6.91 (t, J = 8.0 Hz, 1H), 6.53 (dd, J = 8.4, 2.0 Hz, 1H), 6.46 (d, J = 2.0 Hz,
1H), 3.90 (s, 3H), 3.84 (s, 3H). °C NMR (CDCls, 100 MHz): O (ppm) 194.3, 163.7, 163.6,

160.8, 141.4, 135.9, 131.5, 129.7, 120.4, 118.7, 118.5, 118.2, 117.0, 105.8, 98.6, 55.7, 55.6.

61 ((F)-3-(2,5-dimethoxyphenyl)-1-(2-hydroxyphenylprop-2-en-1-one). 'H NMR
(CDCls, 400 MH2): & (ppm) 12.92 (s, 1H), 8.19 (d, J = 15.6 Hz, 1H), 7.92 (d, J = 8.0 Hz,
1H), 7.74 (d, J = 15.6 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.17 (s, 1H), 7.02 (d, J = 8.4 Hz,
1H), 6.96 (m, 2H), 6.90 (t, J = 8.0 Hz, 1H), 3.89 (s, 3H), 3.83 (s, 3H). °C NMR (CDCls, 100
MHZ): O (ppm) 194.4, 163.7, 153.8, 153.7, 141.0, 136.3, 129.8, 124.4, 121.2, 120.3, 118.9,
118.7, 117.8, 114.4, 112.7, 56.3, 56.0.

62 ((E)-3-(2,6-dimethoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one). 'H NMR
(CDCls, 400 MHz): & (ppm) 13.12 (s, 1H), 8.40 (d, J = 15.6 Hz, 1H), 8.15 (d, J = 15.6 Hz,
1H), 7.91 (dd, J = 8.0, 1.2 Hz, 1H), 7.47 (td, J = 8.4, 1.6 Hz, 1H), 7.32 (t, J = 8.4 Hz, 1H),
7.01 (dd, J = 8.4, 0.8 Hz, 1H), 6.93 (td, J = 8.4, 1.2 Hz, 1H), 6.60 (d, J = 8.4 Hz, 2H), 3.94
(s, 6H). >C NMR (CDCls, 100 MHZ): & (ppm) 195.6, 163.7, 160.8, 136.6, 135.9, 132.2,
129.9,122.9, 120.7, 118.7, 118.6, 112.9, 104.0, 56.1.

63 ((£)-3-(3,4-dimethoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one). 'H NMR
(CDCls, 400 MHz): & (ppm) 12.92 (s, 1H), 7.92 (dd, J = 8.0, 0.8 Hz, 1H), 7.87 (d, J = 15.6
Hz, 1H), 7.51 (d, J = 15.2 Hz, 1H), 7.48 (td, J = 7.2, 1.6 Hz, 1H), 7.26 (dd, J = 8.4, 1.6 Hz,
1H), 7.16 (d, J = 1.6 Hz, 1H), 7.01 (d, J = 8.4 Hz, 1H), 6.94 (dd, J = 7.2, 0.8 Hz, 1H), 6.91
(t, J = 8.4 Hz, 1H), 3.96 (s, 3H), 3.93 (s, 3H). ’C NMR (CDCls, 100 MHz): & (ppm) 193.7,
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163.7, 152.0, 149.5, 145.8, 136.3, 129.6, 127.8, 123.7, 120.2, 118.8, 118.7, 118.0, 111.4,
110.6, 56.2.

64  ((£)-3-(3-hydroxy-4-methoxyphenyl)-1-(2-hydroxyphenylprop-2-en-1-one).
'H NMR (CDCls, 400 MHz): & (ppm) 12.93 (s, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.87 (d, J =
15.2 Hz, 1H), 7.50 (d, J = 15.2 Hz, 1H), 7.48 (td, J = 7.8, 1.6 Hz, 1H), 7.25 (dd, J = 8.0, 1.2
Hz, 1H), 7.14 (s, 1H), 7.02 (d, J = 8.4 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 6.93 (t, J = 7.2 Hz,
1H), 6.04 (s, 1H), 3.97 (s, 3H). >C NMR (CDCls, 100 MHz): & (ppm) 193.8, 163.7, 148.9,
147.0, 146.0, 136.3, 129.7, 127.4, 123.8, 120.3, 118.9, 118.7, 117.7, 115.2, 110.5, 56.2.

65  ((F)-3-(benzold][1,3]dioxol-5-yl)-1-(2-hydroxyphenyl)prop-2-en-1-one). 'H
NMR (CDCls, 400 MHz): & (ppm) 12.92 (s, 1H), 7.91 (dd, J = 8.0, 0.8 Hz, 1H), 7.86 (d, J =
15.2 Hz, 1H), 7.51 (td, J = 8.0, 1.6 Hz, 1H), 7.50 (d, J = 15.2 Hz, 1H), 7.19 (d, J = 1.2 Hz,
1H), 7.16 (d, J = 8.0 Hz, 1H), 7.04 (d, J = 8.0 Hz, 1H), 6.95 (t, J = 8.0 Hz, 1H), 6.87 (d, J =
8.0 Hz, 1H), 6.05 (s, 2H). >C NMR (CDCls, 100 MHz): & (ppm) 193.6, 163.6, 150.3, 148.5,
1453, 136.2, 129.5, 129.1, 125.7, 120.1, 118.8, 118.6, 118.0, 108.8, 106.8, 101.8.

66 ((F)-3-(3,5-dimethoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one). 'H NMR
(CDCls, 400 MHz): O (ppm) 12.81 (s, 1H), 7.88 (d, J = 7.6 Hz, 1H), 7.79 (d, J = 15.6 Hz,
1H), 7.56 (d, J = 15.2 Hz, 1H), 7.47 (, J = 8.0 Hz, 1H), 7.01 (d, J = 8.4 Hz, 1H), 6.92 (t, J
= 7.6 Hz, 1H), 6.76 (s, 2H), 6.52 (s, 1H), 3.82 (s, 6H). °C NMR (CDCls, 100 MHz): & (ppm)
1937, 163.6, 161.2, 1455, 136.5, 136.4, 129.7, 120.6, 120.0, 118.9, 118.6, 106.7, 103.1,
55.5.

67 ((E)-3-(3,4-dimethoxyphenyl)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one). 'H
NMR (CDCls, 400 MHz): 8 (ppm) 7.74 (d, J = 15.6 Hz, 1H), 7.31 (d, J = 15.6 Hz, 1H), 7.25
(s, 2H), 7.24 (dd, J = 7.2, 1.6 Hz, 1H), 7.13 (d, J = 1.6 Hz, 1H), 6.89 (d, J = 8.0 Hz, 1H),
3.93 (s, 9H), 3.92 (s, 6H). >C NMR (CDCls, 100 MHz): & (ppm) 189.5, 153.2, 151.6, 149.4,
145.0, 142.6, 133.9, 128.0, 123.0, 120.0, 111.3, 110.7, 106.3, 61.0, 56.6, 56.2, 56.1.

68 ((F)-3-(benzold][1,3]dioxol-5-y1)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one).

'H NMR (CDCls, 400 MHz): & (ppm) 7.74 (d, J = 15.6 Hz, 1H), 7.32 (d, J = 15.6 Hz, 1H),
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7.26 (s, 2H), 7.17 (d, J = 0.8 Hz, 1H), 7.13 (dd, J = 8.0, 1.2 Hz, 1H), 6.85 (d, J = 8.0 Hz,
1H), 6.03 (s, 2H), 3.95 (s, 6H), 3.93 (s, 3H). *C NMR (CDCl;, 100 MHz): & (ppm) 189.2,
153.3, 150.0, 148.6, 144.7, 142.6, 133.8, 129.5, 125.3, 119.9, 108.8, 106.8, 106.2, 101.8,

61.1, 56.5.

2.5 Preparation of chalcones with disubstitution with 4-OH group on B-ring

2.5.1 Preparation of chloromethyl methyl ether (MOMCL)

In the synthesizing process, it can be seen that chalcones bearing hydroxy
group at position 2 or 4 on B-ring (58, 69 and 70) were usually achieved in low yield,
prolonging reaction time or even no product was observed (Figure 2.3). Therefore, in
these cases, protecting groups such as MOM was used to inactivate the hydroxy group.
The compounds with protecting groups were generally obtained in high yield so they
could be utilized as compounds for biological testing or deprotection was performed

to collect the first target chalcones in considerable yield.

OH O OH OH O OH O
O = O O l = l O ! = ! OH
OH OH
58 69 70

Figure 2.3 Chalcones with hydroxy substituents at position 2 or 4 on B-ring.

The first step is the preparation of protecting agent as MOM-CL (71) using the
method of Reggelin et al.>* Because of the severe toxicity and tumorgenicity of 71, the
reaction must be carried out in a well-ventilated hood. A 1000 mL, two-necked, round-
bottomed flask was charged with 140.6 ¢ (1.0 mol, 1 equiv) benzoyl chloride, 76.1 ¢
(1.0 mol, 1 equiv) dimethoxymethane and 5.0 ¢ (51.0 mmol) conc H,SO,. An Ar balloon
was connected to the condenser and the flask was flushed with Ar briefly and then
covered by a glass stopper. The mixture was stirred and refluxed in an oil bath at 60—
65°C. After 64 h the reaction mixture was allowed to cool to room temperature. The

reflux condenser was replaced by a distillation bridge equipped with a thermometer
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and a balloon filled with Ar. After flushing with Ar again, the solution was heated
stepwise up to 130°C to accumulate the product 71 in high yield (74%).
2.5.2 Preparation of benzaldehydes bearing protecting groups

The procedure for the synthesis of MOM-protected benzaldehydes was
consulted from Kim et al..>> A solution of 3,4-dihydroxybenzaldehyde (21.71 mmol)
and K,CO5 (217.20 mmol) in acetone (100 mL) was cooled to 0°C under Ar atmosphere,
and then MOM-CL (93.65 mmol) was added dropwise. The resulting mixture was stirred
at room temperature for 6-10 h. Then, the reaction mixture was diluted with water
(100 mL) and extracted with EtOAc (50 mL x 3). After that, the combined organic layer
was washed with water and brine, dried over anhydrous MgSO,4 and evaporated to
dryness to yield crude MOM-protected benzaldehyde which was purified by silica gel
column chromatography to give pure compounds 72 and 73 (Figure 2.4). For the case
of aldehyde as vanillin, the amount of K,COs;, MOM-Cl were divided in half when the
amount of vanillin was kept the same as 3,4-dihydroxybenzaldehyde since the vanillin

molecule has only one hydroxy group.

72. R? = OCHj3, R®= OCH,OCH,4

73. R? = R®= OCH,0CHj,4

Figure 2.4 Two benzaldehydes bearing protecting groups.

72 (3-methoxy-4-(methoxymethoxy)benzaldehyde). *H NMR (CDCls, 400 MHz):
8 (ppm) 9.5 (s, 1H), 7.12 (s, 1H), 7.11 (d, J = 8.8 Hz, 1H), 6.93 (d, J = 8.8 Hz, 1H), 5.01
(s, 2H), 3.61 (s, 3H), 3.21 (s, 3H). °C NMR (CDCL,, 100 MHz): & (ppm) 190.2, 151.4, 149.6,
130.6, 125.3, 114.4, 109.3, 94.4, 55.7, 55.2.

73 (3,4-bis(methoxymethoxy)benzaldehyde). "H NMR (CDCls, 400 MHZ): & (ppm)
9.80 (s, 1H), 7.62 (s, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.23 (d, J = 8.4 Hz, 1H), 5.27 (s, 2H),
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5.24 (s, 2H), 3.47 (s, 6H). ">C NMR (CDCls, 100 MHz): & (ppm) 190.8, 152.7, 147.5, 131.2,
126.3,116.0, 115.5, 95.4, 95.0, 56.4, 56.3.

2.5.3 Preparation of chalcones bearing protecting groups and removal of

protecting groups from chalcones

Also following the methodology from Kim et al, two MOM-protected
chalcones 74 and 75 and two deprotected chalcones 69 and 70 were prepared (Figure
2.5).>> 2'-hydroxyacetophenone (1 mmol) and 5% sodium aqueous NaOH (1.1 mmol,
0.5 mL) in EtOH (10 mL) were stirred at room temperature for 10 min. Then the
appropriate MOM-protected benzaldehyde (0.9 mmol) (72 and 73) was added. The
reaction mixture was stirred at room temperature for 1 - 2 h. After checking the
completion of the condensation reaction, HCl (10%) was added until pH 5 was
obtained. If the target products are MOM-protected chalcones 74 and 75, the reaction
mixture should be filtered and crystallized from MeOH in case of precipitation of
chalcones emerging or utilizing silica gel chromatography to purify the compounds. On
the other hand, 10% HCl (1 mL) was added more and the mixture was further stirred
for further 30 min at 60 °C to deprotect the MOM groups. And then the whole mixture
was diluted with water (20 mL) and its pH was adjusted to 5 with 1N aqueous NaOH
solution. After that, purifications were performed to achieve pure products 69 and 70.
Unfortunately, 75 could not be isolated because of its fast decomposition to 70.

Moreover, 74 is a new compound with the HR-MS data shown below.

OH O
RZ
SRS
R3
69. R?2 = OCHj3, R®= OH 74. R%2 = OCH,3, R®= OCH,0CHj4
70.R?=R%=OH 75. R? = R®= OCH,0OCH;,

Figure 2.5 Two chalcones bearing protecting groups and two deprotected chalcones.

69 ((F)-3-(4-hydroxy-3-methoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one).

'H NMR (CDCls, 400 MHz): & (ppm) 12.94 (s, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.87 (d, J =
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15.2 Hz, 1H), 7.50 (d, J = 14.4 Hz, 1H), 7.48 (t, J = 8.0 Hz, 1H), 7.25 (d, J = 8.0 Hz, 1H),
7.14 (s, 1H), 7.02 (d, J = 8.4 Hz, 1H), 6.97 (d, J = 8.4 Hz, 1H), 6.94 (t, J = 7.6 Hz, 1H), 6.06
(s, 1H), 3.97 (s, 3H). ">C NMR (CDCls, 100 MHz): & (ppm) 193.8, 163.7, 148.9, 147.0, 146.0,
136.3, 129.6, 127.4, 123.8, 120.3, 118.9, 118.7, 117.7, 115.1, 110.5, 56.2.

70 ((E)-3-(3,4-dihydroxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one). 'H NMR
(acetone-dy, 400 MHz): & (ppm) 13.08 (s, 1H), 8.43 (s, 2H), 8.22 (dd, J = 8.4, 1.6 Hz, 1H),
7.85(d, J = 15.2 Hz, 1H), 7.79 (d, J = 15.2 Hz, 1H), 7.53 (td, J = 8.4, 1.6 Hz, 1H), 7.40 (d,
J =2.0Hz, 1H), 7.27 (dd, J = 8.0, 2.0 Hz, 1H), 6.97 (td, J = 8.4, 1.2 Hz, 1H), 6.96 (dd, J =
8.4, 1.2 Hz, 1H), 6.93 (d, J = 8.0 Hz, 1H). >C NMR (Acetone-d,, 100 MHz): & (ppm) 194.8,
164.4, 149.6, 147.0, 146.4, 137.0, 131.1, 128.1, 1239, 121.0, 119.7, 118.9, 118.1, 116.5,

116.2.

74 ((E)-1-(2-hydroxyphenyl)-3-(3-methoxy-4-(methoxymethoxy)phenyl)prop-2-
en-1-one). 'H NMR (CDCls, 400 MHz): & (ppm) 12.91 (s, 1H), 7.93 (dd, J = 8.0, 1.2 Hz, 1H),
7.87(d, J = 15.6 Hz, 1H), 7.51 (d, J = 15.2 Hz, 1H), 7.49 (td, J = 7.8, 1.6 Hz, 1H), 7.50 (s,
1H), 7.32 (dd, J = 8.4, 2.0 Hz, 1H), 7.02 (dd, J = 8.0, 0.4 Hz, 1H), 6.95 (td, J = 8.0, 0.8 Hz,
1H), 6.94 (d, J = 8.4 Hz, 1H), 5.30 (s, 2H), 3.94 (s, 3H), 3.56 (s, 3H). °C NMR (CDCl;, 100
MHz): & (ppm) 193.8, 163.7, 152.6, 147.1, 145.6, 136.3, 129.8, 128.0, 125.0, 120.3, 118.9,
118.7, 118.3, 115.8, 111.9, 95.8, 56.5, 56.2. HR-MS (ESI) for C;gH;50sNa [M+Nal* requires
337.10519 found 337.10480.

2.6 Preparation of chalcones with 3,4-disubstitution on B-ring
2.6.1 Preparation of benzaldehydes with 3,4-disubstitution

The synthesis of benzaldehyde derivatives was performed following the
Matsuda et al. method.”® The stirred mixture of phenolic compounds (1 equiv) and
excess K,CO5 in acetone (2.5 mL for 1 mmol of acetophenone) was added slowly by
alkyl chloride (1.5 equiv for 1 hydroxy group). The reaction mixture was stirred at 80

°C for 24 h and then diluted with water and extracted with EtOAc. The organic layer
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was washed with brine, dried over Na,SO4 and concentrated by rotary evaporator. The
residue was purified by silica gel column chromatography to give the target compound.
Lastly, twelve benzaldehydes 76-87 with different substitutions at positions 3 and 4

are described below (Figure 2.6).

o}
RZ
H

R3
76.R2= OCH, R®=  &No ™ 82.R2=0CH; R®°= &g O g~
77.R2=0CHy, R = §Ng ™~ 83.R2=OCH; R%= &g OO
78.R?= OCH,3, R% = 5\0/\% 84.R3= OCHj,, R2 = f\o/\/
79. R? = OCHs, R® = ;\o% 85.R?=R%= f\o/\
80.R2= OCHy, R = &Sg > g 86.RZ=R%= o
81.R?= OCH,3, R® = ;5\0/\/\/0\ 87.R2=R3= e‘s\o/\f

Figure 2.6 Benzaldehydes with 3,4-disubstitution.

76 (4-ethoxy-3-methoxybenzaldehyde). 'H NMR (CDCls, 400 MHz): & (ppm) 9.75
(s, 1H), 7.34 (d, J = 8.4 Hz, 1H), 7.32 (s, 1H), 6.88 (d, J = 8.0 Hz, 1H), 4.10 (tetra, J = 6.4
Hz, 2H), 3.84 (s, 3H) 1.42 (t, J = 7.2 Hz, 3H). ’C NMR (CDCls, 100 MHz): & (ppm) 190.7,
153.9, 149.7, 129.9, 126.6, 111.3, 109.2, 64.5, 55.9, 14.5.

77 (3-methoxy-4-propoxybenzaldehyde). 'H NMR (CDCls, 400 MHz): & (ppm)
9.84 (s, 1H), 7.43 (dd, J = 8.0, 2.0 Hz, 1H), 7.40 (d, J = 1.6 Hz, 1H), 6.96 (d, J = 8.4 Hz,
1H), 4.06 (t, J = 6.8 Hz, 2H), 3.92 (s, 3H), 1.90 (sextet, J = 7.2 Hz, 2H) 1.06 (t, J = 7.6 Hz,
3H). °C NMR (CDCls, 100 MHz): & (ppm) 191.0, 154.4, 150.1, 130.1, 126.9, 111.6, 109.6,
70.8, 56.2, 22.4, 10.5.

78 (4-(allyloxy)-3-methoxybenzaldehyde). 'H NMR (CDCls, 400 MHz): & (ppm)
9.85 (s, 1H), 7.43 (d, J = 6.4 Hz, 1H), 7.42 (s, 1H), 6.98 (d, J = 8.8 Hz, 1H), 6.08 (ddt, J =
16.4,10.8, 5.2 Hz, 1H), 5.44 (d, J = 17.2 Hz, 1H), 5.34 (d, J = 10.4 Hz, 1H), 4.71(d, J = 5.6
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Hz, 2H) 3.94 (s, 3H). >C NMR (CDCls, 100 MHz): & (ppm) 191.0, 153.7, 132.4, 130.4, 126.7,
124.4,118.9, 112.2, 109.6, 70.0, 56.2.

79 (3-methoxy-4-((3-methylbut-2-en-1-yl)oxy)benzaldehyde). ‘H NMR (CDCls,
400 MHz): 8 (ppm) 9.80 (s, 1H), 7.39 (dd, J = 8.4, 2.0 Hz, 1H), 7.36 (d, J = 1.6 Hz, 1H),
6.93 (d, J = 8.4 Hz, 1H), 5.47 (tt, J = 6.8, 1.2 Hz, 1H), 4.63 (d, J = 6.8 Hz, 2H), 3.88 (s, 3H),
1.75 (s, 3H), 1.72 (s, 3H). °C NMR (CDCl;, 100 MHz): & (ppm) 190.9, 154.0, 150.0, 138.7,
130.0, 126.7, 119.0, 111.8, 109.3, 66.0, 56.0, 25.8, 18.3.

82  (3-methoxy-4-(2-(2-methoxyethoxy)ethoxy)benzaldehyde). 'H  NMR
(acetone-d,, 400 MHz): O (ppm) 9.81 (s, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.38 (s, 1H), 7.08
(d, J = 8.0 Hz, 1H), 4.21 (t, J = 4.6 Hz, 2H), 3.86 (s, 3H), 3.84 (t, J = 5.2 Hz, 2H), 3.64 (t, J
= 4.4 Hz, 2H), 3.48 (t, J = 4.8 Hz, 2H), 3.28 (s, 3H). ’C NMR (acetone-d,, 100 MHz): &
(ppm) 190.2, 153.2, 149.0, 129.5, 125.2, 111.3, 109.0, 70.9, 69.5, 68.3, 67.7, 57.2, 54.6.

83  (3-methoxy-4-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzaldehyde). 'H
NMR (acetone-dj, 400 MHz): & (ppm) 9.83 (s, 1H), 7.48 (dd, J = 8.0, 1.2 Hz, 1H), 7.39 (d,
J=1.6 Hz, 1H), 7.10 (d, J = 8.0 Hz, 1H), 4.22 (t, J = 4.4 Hz, 2H), 3.87 (s, 3H), 3.85 (t, J =
4.8 Hz, 2H), 3.66 (t, J = 4.8 Hz, 2H), 3.58 (t, J = 4.8 Hz, 2H), 3.56 (t, J = 5.0 Hz, 2H), 3.45
(t, J = 4.6 Hz, 2H), 3.26 (s, 3H). °C NMR (acetone-d;;, 100 MHz): & (ppm) 190.9, 154.2,
150.1, 130.6, 126.1, 112.4, 110.1, 72.0, 70.8, 70.5, 70.4, 69.4, 68.7, 58.2, 55.4.

84 (3-(allyloxy)-4-methoxybenzaldehyde). 'H NMR (CDCls, 400 MHz): & (ppm)
9.63 (s, 1H), 7.25 (dd, J = 8.4, 1.6 Hz, 1H), 7.20 (s, 1H), 6.78 (d, J = 8.4 Hz, 1H), 5.90 (ddt,
J=16.0,10.4, 5.2 Hz, 1H), 5.26 (d, J = 17.2 Hz, 1H), 5.12 (d, J = 10.4 Hz, 1H), 4.44 (d, J
= 4.8 Hz, 2H) 3.73 (s, 3H). °C NMR (CDCls, 100 MHz): & (ppm) 190.3, 154.5, 148.1, 132.3,

129.6, 126.2, 117.8, 110.7, 110.4, 69.2, 55.6.

85 (3,4-diethoxybenzaldehyde). "H NMR (CDCls, 400 MHz): & (ppm) 9.80 (s, 1H),
7.39 (d, J = 8.0 Hz, 1H), 7.38 (s, 1H), 6.93 (d, J = 8.4 Hz, 1H), 4.16 (tetra, J = 6.8 Hz, 2H),
4.13 (tetra, J = 6.8 Hz, 2H), 1.47 (t, J = 7.2 Hz, 3H), 1.45 (t, J = 7.2 Hz, 3H). 3C NMR
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(CDCls, 100 MHz): O (ppm) 191.0, 154.4, 149.2, 130.0, 126.6, 111.8, 111.0, 64.7, 64.6,

14.7, 14.6.

86 (3,4-dipropoxybenzaldehyde). 'H NMR (CDCls, 400 MHz): & (ppm) 9.81 (s, 1H),
7.40 (dd, J = 8.8, 1.6 Hz, 1H), 7.39 (s, 1H), 6.94 (d, J = 8.0 Hz, 1H), 4.03 (t, J = 6.8 Hz, 2H),
4.01 (t, J = 6.8 Hz, 2H), 1.87 (sextet, J = 7.2 Hz, 2H), 1.85 (sextet, J = 7.2 Hz, 2H), 1.05 (t,
J=7.2Hz, 3H), 1.04 (t, J = 7.2 Hz, 3H). >C NMR (CDCls, 100 MHz): & (ppm) 191.1, 154.8,
149.6, 130.0, 126.6, 112.0, 111.4, 70.7, 22.6, 10.5.

87 (3,4-bis(allyloxy)benzaldehyde). 'H NMR (CDCls, 400 MHZ): & (ppm) 9.60 (s,
1H), 7.19 (d, J = 8.0 Hz, 1H), 7.18 (s, 1H), 6.74 (d, J = 8.0 Hz, 1H), 5.85 (ddt, J = 16.0,
10.4, 5.2 Hz, 2H), 5.25 (d, J = 17.2 Hz, 2H), 5.09 (d, J = 9.6 Hz, 2H), 4.41 (d, J = 4.8 Hz,
4H). >C NMR (CDCls, 100 MH2): & (ppm) 190.1, 153.4, 148.3, 132.4, 132.1, 129.7, 125.8,
1174, 117.2, 112.0, 111.2, 69.1, 69.0.
2.6.2 Preparation of chalcones with 3,4-disubstitution on B-ring

Also following the procedure described in part 2.3, twelve aldehydes 76-87
above were performed aldol condensation with 2'-hydroxyacetophenone to achieve
twelve chalcones with 3,4-disubstitution on B-ring 88-99 (Figure 2.7). There are seven

no-reported compounds and their HR-MS results are presented below.

OH O
% R?

OAROU
88.R2= OCH, R%= < 0™ 94.R2= OCH; R3= &g ™~Ong”
89. R?= OCHg, R®= 5\0/\/ 95. R2= OCHj, R3= j\o/\/o\/\o/\/o\
90. R?= OCHjg, R®= 5\0/\/ 96. R®= OCHj, R?= 5\0/\/
91.R?= OCHj, R*= 5\0% 97.RZ=RP=  fo
92. R?= OCHj, R®= 5\0/\/\0/ 98.R?=R3%= 5\0/\/
93.R2=0CH, R*= & 0 O 99.R2=R3= S\ F

Figure 2.7 Chalcones with 3,4-disubstitution on B-ring.
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88 ((F)-3-(4-ethoxy-3-methoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one). *H
NMR (CDCls, 400 MHz): & (ppm) 12.92 (s, 1H), 7.93 (dd, J = 8.0, 1.6 Hz, 1H), 7.89 (d, J =
15.2 Hz, 1H), 7.52 (d, J = 15.6 Hz, 1H), 7.49 (td, J = 8.8, 1.6 Hz, 1H), 7.25 (dd, J = 8.4, 2.0
Hz, 1H), 7.18 (d, J = 1.6 Hz, 1H), 7.03 (d, J = 8.0 Hz, 1H), 6.94 (td, J = 8.0, 0.8 Hz, 1H),
6.91 (d, J = 8.4 Hz, 1H), 4.17 (tetra, J = 7.2 Hz, 2H), 3.96 (s, 3H), 1.50 (, J = 7.2 Hz, 3H).
C NMR (CDCls, 100 MHz): & (ppm) 193.8, 163.7, 151.5, 149.7, 145.9, 136.3, 129.7, 127.6,
123.7,120.3, 118.9, 118.8, 117.9, 112.5, 111.0, 64.6, 56.3, 14.8.

89 ((F)-1-(2-hydroxyphenyl)-3-(3-methoxy-4-propoxyphenyl)prop-2-en-1-one).
'H NMR (CDCls, 400 MHz): & (ppm) 12.96 (s, 1H), 7.91 (dd, J = 8.4, 1.6 Hz, 1H), 7.85 (d, J
= 15.2 Hz, 1H), 7.49 (d, J = 15.2 Hz, 1H), 7.45 (td, J = 8.4, 1.6 Hz, 1H), 7.21 (dd, J = 8.4,
2.0 Hz, 1H), 7.15 (d, J = 2.0 Hz, 1H), 7.00 (dd, J = 8.4, 0.8 Hz, 1H), 6.90 (td, J = 8.0, 0.8
Hz, 1H), 6.87 (d, J = 8.4 Hz, 1H), 4.00 (t, J = 6.8 Hz, 2H), 3.92 (s, 3H), 1.88 (sextet, J = 7.6
Hz, 2H), 1.04 (t, J = 7.6 Hz, 3H). °C NMR (CDCls, 100 MHz): & (ppm) 193.6, 163.6, 151.6,
149.7, 145.8, 136.1, 129.6, 127.4, 123.6, 120.1, 118.7, 118.6, 117.6, 112.5, 111.0, 70.5,
56.2, 22.4, 10.4. HR-MS (ESI) for CioH0OsNa [M+Nal™ requires 335.12593 found
335.12410.

90 ((E)-3-(4-(allyloxy)-3-methoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one).
'H NMR (CDCls, 400 MHz): & (ppm) 12.93 (s, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.85 (d, J =
15.6 Hz, 1H), 7.50 (d, J = 15.2 Hz, 1H), 7.47 (t, J = 8.0 Hz, 1H), 7.21 (d, J = 8.4 Hz, 1H),
7.16 (s, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.93 (d, J = 8.0 Hz, 1H), 6.90 (t, J = 8.0 Hz, 1H), 6.08
(ddt, J = 16, 10.8, 5.6 Hz, 1H), 5.42 (d, J = 16.8 Hz, 1H), 532 (d, J = 10.4 Hz, 1H), 4.65
(d, J = 5.6 Hz, 1H), 3.94 (s, 3H). >C NMR (CDCl;, 100 MHz): & (ppm) 193.6, 163.6, 151.0,
149.8, 145.7, 136.2, 132.8, 129.6, 127.9, 123.4, 120.2, 118.8, 118.6, 118.5, 118.0, 113.1,
111.0, 69.8, 56.2.

91 ((B)-1-(2-hydroxyphenyl)-3-(3-methoxy-4-((3-methylbut-2-en-1-
yloxy)phenyl)prop-2-en-1-one). 'H NMR (CDCls, 400 MHz): & (ppm) 12.93 (s, 1H), 7.93
(d,J=8.0Hz 1H), 7.88 (d, / = 15.2 Hz, 1H), 7.51 (d, J = 15.6 Hz, 1H), 7.48 (t, / = 7.2 Hz,
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1H), 7.24 (dd, J = 8.4, 1.6 Hz, 1H), 7.17 (s, 1H), 7.02 (d, J = 8.4 Hz, 1H), 6.94 (t, J = 8.0
Hz, 1H), 6.92 (d, J = 8.4 Hz, 1H), 5.52 (t, J = 6 Hz, 1H), 4.65 (d, J = 6.4 Hz, 2H), 3.95 (s,
3H), 1.79 (s, 3H), 1.76 (s, 3H). *C NMR (CDCl;, 100 MHz): & (ppm) 193.8, 163.7, 151.4,
149.9, 145.9, 138.4, 136.2, 129.7, 127.6, 123.6, 120.3, 119.5, 118.8, 118.7, 117.8, 112.9,
110.8, 66.0, 56.2, 25.9, 18.4.

92 ((E)-1-(2-hydroxyphenyl)-3-(3-methoxy-4-(3-methoxypropoxy)phenyl)prop-2-
en-1-one). 'H NMR (CDCls, 400 MHz): & (ppm) 12.95 (s, 1H), 7.90 (d, J = 7.6 Hz, 1H), 7.84
(d, J =152 Hz, 1H), 7.48 (d, J = 15.2 Hz, 1H), 7.44 (t, J = 7.2 Hz, 1H), 7.21 (d, J = 8.0 Hz,
1H), 7.14 (s, 1H), 6.98 (d, J = 8.4 Hz, 1H), 6.90 (d, J = 8.0 Hz, 1H), 6.89 (t, J = 6.8 Hz, 1H),
4.14 (t, J = 6.4 Hz, 2H), 3.91 (s, 3H), 3.55 (t, J = 6.0 Hz, 2H), 3.34 (s, 3H), 2.10 (p, J = 6.0
Hz, 2H). °C NMR (CDCl;, 100 MHz): & (ppm) 193.6, 163.6, 151.5, 149.7, 145.7, 136.1,
129.6, 127.6, 123.6, 120.2, 118.7, 118.6, 117.7, 112.7, 111.1, 69.1, 66.1, 58.7, 56.1, 29.5.

HR-MS (ESI) for CyoH,,0sNa [M+Nal* requires 365.13649 found 365.13620.

93 ((E)-1-(2-hydroxyphenyl)-3-(3-methoxy-4-(d-methoxybutoxy)phenyl)prop-2-
en-1-one). 'H NMR (CDCls, 400 MHz): O (ppm) 12.93 (s, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.86
(d, J =152 Hz, 1H), 7.50 (d, J = 15.6 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.23 (dd, J = 8.0,
1.6 Hz, 1H), 7.16 (s, 1H), 7.01 (d, J = 8.4 Hz, 1H), 6.92 (t, J = 7.2 Hz, 1H), 6.89 (d, J = 8.4
Hz, 1H), 4.09 (t, J = 6.4 Hz, 2H), 3.92 (s, 3H), 3.45 (t, J = 6.0 Hz, 2H), 3.34 (s, 3H), 1.93
(pentet, J = 6.8 Hz, 2H), 1.76 (pentet, J = 6.4 Hz, 2H). *C NMR (CDCl;, 100 MHz): & (ppm)
193.7, 163.6, 151.6, 149.8, 145.8, 136.2, 129.6, 127.6, 123.7, 120.2, 118.8, 118.7, 117.8,
112.7, 111.2, 72.4, 68.9, 58.6, 56.2, 26.2, 26.0. HR-MS (ESI) for Cy;H,,0OsNa [M+Na]
requires 379.15214 found 379.15150.

94 ((E)-1-(2-hydroxyphenyl)-3-(3-methoxy-4-(2-(2-
methoxyethoxy)ethoxy)phenylprop-2-en-1-one). '"H NMR (CDCls, 400 MHz): & (ppm)
1291 (s, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 15.6 Hz, 1H), 7.51 (d, J = 15.6 Hz, 1H),
7.49 (t, J = 8.8 Hz, 1H), 7.24 (d, J = 8.4 Hz, 1H), 7.16 (s, 1H), 7.02 (d, J = 8.4 Hz, 1H), 6.95

(d, J =8.0Hz 1H), 6.94 (t, J = 7.2 Hz, 1H), 4.25 (t, J = 4.8 Hz, 2H), 3.93 (s, 3H), 3.92 (t, J
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= 4.4 Hz, 2H), 3.73 (t, J = 4.4 Hz, 2H), 3.57 (t, J = 4.8 Hz, 2H), 3.39 (s, 3H). )C NMR (CDCl,,
100 MHz): & (ppm) 193.7, 163.7, 151.4, 149.9, 145.7, 136.3, 129.7, 128.1, 123.5, 120.3,
118.8, 118.7, 118.1, 113.4, 111.4, 72.1, 71.0, 69.7, 68.6, 59.2, 56.3. HR-MS (ESI) for

C,1Ho406Na [M+Na]* requires 395.14706 found 395.14650.

95 ((E)-1-(2-hydroxyphenyl)-3-(3-methoxy-4-(2-(2-(2-
methoxyethoxy)ethoxy)ethoxy) phenyl)prop-2-en-1-one). 'H NMR (CDCls, 400 MHz): &
(ppm) 12.91 (s, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.84 (d, J = 15.2 Hz, 1H), 7.49 (d, J = 14.8
Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 7.21 (d, J = 8.4 Hz, 1H), 7.14 (s, 1H), 6.99 (d, J = 8.0 Hz,
1H), 6.92 (d, J = 8.0 Hz, 1H), 6.91 (t, J = 7.6 Hz, 1H), 4.22 (t, J = 4.6 Hz, 2H), 3.91 (s, 3H),
3.89 (t, J = 4.8 Hz, 2H), 3.72 (t, J = 4.4 Hz, 2H), 3.66 (t, J = 4.8 Hz, 2H), 3.63 (t, J = 4.8
Hz, 2H), 3.52 (t, J = 4.8 Hz, 2H), 3.35 (s, 3H). "°C NMR (CDCls, 100 MHz): & (ppm) 193.6,
163.6, 151.3, 149.8, 145.7, 136.2, 129.6, 128.0, 123.4, 120.2, 118.8, 118.6, 118.0, 113.2,
111.2, 72.0, 70.9, 70.7, 70.6, 69.5, 68.5, 59.0, 56.1. HR-MS (ESI) for C,5H,50;Na [M+Na]*

requires 439.17327 found 439.17360.

96 ((E)-3-(3-(allyloxy)-4-methoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one).
'H NMR (CDCls, 400 MHz): & (ppm) 12.92 (s, 1H), 7.91 (dd, J = 8.0, 1.6 Hz, 1H), 7.86 (d, J
= 15.2 Hz, 1H), 7.49 (d, J = 15.2 Hz, 1H), 7.48 (t, J = 8.8 Hz, 1H), 7.27 (dd, J = 8.0, 1.6 Hz,
1H), 7.19 (s, 1H), 7.02 (d, J = 8.4 Hz, 1H), 6.93 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.0 Hz, 1H),
6.10 (m, 1H), 5.46 (d, J = 17.2 Hz, 1H), 5.34 (d, J = 10.4 Hz, 1H), 4.68 (d, J = 5.6 Hz, 1H),
3.92 (s, 3H). ">C NMR (CDCls, 100 MHz): 8 (ppm) 193.7, 163.7, 152.5, 148.4, 145.7, 136.2,
133.1,129.6, 127.7, 123.8, 120.2, 118.8, 118.7, 118.4, 118.0, 113.1, 111.7, 70.2, 56.2.

97 ((F)-3-(3,4-diethoxyphenyl)-1-(2-hydroxyphenylprop-2-en-1-one). 'H NMR
(CDCls, 400 MH2): & (ppm) 12.93 (s, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 15.2 Hz,
1H), 7.50 (d, J = 15.2 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.25 (m, 1H), 7.20 (s, 1H), 7.03 (d,
J=8.4Hz, 1H), 6.94 (t, J = 7.6 Hz, 1H), 6.89 (d, J = 8.4 Hz, 1H), 4.17 (g, J = 6.8 Hz, 2H),
4.16 (g, J = 6.8 Hz, 2H), 1.50 (t, J = 6.8 Hz, 3H), 1.49 (t, J = 7.2 Hz, 3H). >*C NMR (CDCls,
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100 MHz): & (ppm) 193.8, 163.7, 154.4, 152.0, 146.0, 136.3, 129.7, 127.7, 123.8, 120.4,
118.9, 118.8, 117.8, 113.1, 113.0, 65.1, 64.7, 15.0, 14.8.

98 ((F)-3-(3,4-dipropoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one). 'H NMR
(CDCls, 400 MHZ): & (ppm) 12.97 (s, 1H), 7.92 (dd, J = 8.0, 1.2 Hz, 1H), 7.86 (d, J = 15.2
Hz, 1H), 7.49 (d, J = 15.2 Hz, 1H), 7.47 (t, J = 8.4 Hz, 1H), 7.22 (dd, J = 8.0, 1.2 Hz, 1H),
7.19 (s, 1H), 7.01 (d, J = 8.4 Hz, 1H), 6.93 (t, J = 7.6 Hz, 1H), 6.89 (d, J = 8.0 Hz, 1H), 4.03
(t, J = 6.8 Hz, 2H), 4.01 (t, J = 6.8 Hz, 2H), 1.88 (sextet, J = 7.0 Hz, 2H), 1.87 (sextet, J =
7.2 Hz, 2H), 1.08 (t, J = 7.6 Hz, 3H), 1.06 (t, J = 7.6 Hz, 3H). >C NMR (CDCls, 100 MHz): &
(ppm) 193.7, 163.6, 152.3, 149.4, 145.9, 136.1, 129.6, 127.6, 123.8, 120.2, 118.8, 118.6,
117.7,113.4,113.2,71.1, 70.6, 22.8, 22.6, 10.6, 10.5. HR-MS (ESI) for C,;H,,0O4Na [M+Na]*
requires 363.15723 found 363.15710.

99 ((F)-3-(3,4-bis(allyloxy)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one). 'H NMR
(CDCls, 400 MH2): & (ppm) 12.91 (s, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 15.2 Hz,
1H), 7.49 (d, J = 15.6 Hz, 1H), 7.48 (t, J = 8.8 Hz, 1H), 7.25 (dd, J = 9.2, 2.4 Hz, 1H), 7.21
(s, 1H), 7.02 (d, J = 8.4 Hz, 1H), 6.94 (t, J = 8.4 Hz, 1H), 6.92 (d, J = 8.4 Hz, 1H), 6.10 (m,
2H), 5.47 (d, J = 17.2 Hz, 1H), 5.45 (d, J = 17.2 Hz, 1H), 5.33 (d, J = 10.8 Hz, 1H), 5.32 (d,
J = 10.4 Hz, 1H), 4.68 (d, J = 4.4 Hz, 2H), 4.67 (d, J = 5.2 Hz, 2H). *C NMR (CDCls, 100
MHz): & (ppm) 193.7, 163.7, 151.6, 148.8, 145.7, 136.3, 133.3, 132.9, 129.6, 128.0, 123.8,
120.3, 118.9, 1188, 118.2, 118.1, 118.0, 113.8, 113.7, 70.4, 69.9. HR-MS (ESI) for

Cy1Hy004Na [M+Na]" requires 359.12593 found 359.12590.

2.7 Preparation of chalcones with 2,4,5-trisubstitution on B-ring

2.7.1 Preparation of 2'-hydroxychalcones with 2,4,5-trisubstitution on B-ring
Following the procedure illustrated in part 2.5.1, two benzaldehyde derivatives

bearing 2,4,5-trisubstitution were attained (100 and 101) (Figure 2.8).
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R4
H
R RS

100.RT=R3=R*= §~g
101.R' =R =R = $Sg™~F

Figure 2.8 Benzaldehydes with 2,4,5-trisubstitution.

100 (2,4,5-triethoxybenzaldehyde). *H NMR (CDCls, 400 MHz): & (ppm) 10.32 (s,
1H), 7.32 (s, 1H), 6.47 (s, 1H), 4.15 (q, J = 7.2 Hz, 2H), 4.11 (g, J = 6.8 Hz, 2H), 4.08 (q, J
= 6.8 Hz, 2H), 1.50 (t, J = 7.2 Hz, 3H), 1.45 (t, / = 6.8 Hz, 3H), 1.42 (t, J = 7.2 Hz, 3H). °C
NMR (CDCls, 100 MHz): O (ppm) 188.4, 158.0, 153.2, 138.9, 111.3, 110.0, 98.5, 65.2, 65.1,
64.9, 14.9, 14.7.

101 (2,4,5-tris(allyloxy)benzaldehyde). 'H NMR (CDCls, 400 MHZ): & (ppm) 10.30
(s, 1H), 7.30 (s, 1H), 6.48 (s, 1H), 6.02 (m, 3H), 5.41 (dd, J = 17.2, 1.2 Hz, 1H), 5.39 (dd, J
= 17.2, 1.2 Hz, 1H), 5.38 (dd, J = 17.2, 1.2 Hz, 1H), 5.30 (dd, J = 10.4, 1.2 Hz, 1H), 5.29
(dd, J = 10.4, 1.2 Hz, 1H), 5.24 (dd, J = 10.4, 1.2 Hz, 1H), 4.63 (d, J = 5.2 Hz, 2H), 4.56 (d,
J=5.2Hz, 2H), 4.53 (d, J = 5.2 Hz, 2H). *C NMR (CDCl;, 100 MHz): & (ppm) 187.9, 157.6,
155.3,143.0, 133.1, 132.6, 132.4, 118.3, 118.2, 118.1, 117.9, 112.0, 99.5, 70.3, 70.2, 69.9.

Thereafter following the procedure described in part 2.3, two benzaldehydes
100 and 101 were carried out Claisen-Schmidt reaction with 2'-hydroxyacetophenone
to achieve two chalcones with 2,4,5-trisubstitution on B-ring 102 and 103 (Figure 2.9).

Both chalcones are new compounds with the HR-MS results below.

OH O R’

=
ARG
R4

102.R"=R3=R*= &g
103.R1=R3=R= g ™F

Figure 2.9 2'-Hydroxychalcones with 2,4,5-trisubstitution on B-ring.
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102 ((F)-1-(2-hydroxyphenyl)-3-(2,4,5-triethoxyphenyl)prop-2-en-1-one). 'H NMR
(CDCls, 400 MHz): & (ppm) 13.10 (s, 1H), 8.16 (d, J = 15.6 Hz, 1H), 7.91 (d, J = 8.0 Hz,
1H), 7.70 (d, J = 15.6 Hz, 1H), 7.47 (td, J = 7.6, 1.2 Hz, 1H), 7.16 (s, 1H), 7.02 (d, J = 8.4
Hz, 1H), 6.93 (t, J = 7.6 Hz, 1H), 6.51 (s, 1H), 4.13 (m, 6H), 1.53 (t, J = 7.2 Hz, 3H), 1.49 (t,
J = 7.2 Hz, 3H), 1.45 (t, J = 7.2 Hz, 3H). >C NMR (CDCls, 100 MHz): & (ppm) 194.4, 163.7,
155.0, 151.4, 141.5, 138.6, 135.9, 129.6, 120.2, 118.8, 118.7, 118.3, 116.0, 109.4, 99.4,
66.1, 65.1, 64.9, 15.2, 15.1, 14.9. HR-MS (ESI) for C,3H,4,0sNa [M+Na]" requires 379.15214
found 379.1529.

103 ((F)-1-(2-hydroxyphenyl)-3-(2,4,5-tris(allyloxy)phenyl)prop-2-en-1-one). 'H
NMR (DMSO-dj, 400 MHz): & (ppm) 12.87 (s, 1H), 8.24 (d, J = 8.0 Hz, 1H), 8.20 (d, J =
15.6 Hz, 1H), 7.87 (d, J = 15.2 Hz, 1H), 7.61 (s, 1H), 7.55 (t, J = 8.0 Hz, 1H), 7.00 (t, J =
7.6 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 6.78 (s, 1H), 6.09 (m, 3H), 5.44 (d, J = 17.2 Hz, 3H),
5.32(d, J = 10.4 Hz, 1H), 5.30 (d, J = 11.2 Hz, 1H), 5.27 (d, J = 10.8 Hz, 1H), 4.68 (d, J =
4.8 Hz, 4H), 4.62 (d, J = 5.2 Hz, 2H). >C NMR (DMSO-d;, 100 MHz): & (ppm) 193.6, 162.2,
153.6, 152.6, 142.2, 139.5, 136.0, 134.0, 133.4, 133.2, 130.5, 120.5, 118.9, 118.1, 118.0,
117.8, 117.7, 117.4, 114.9, 113.7, 100.2, 70.0, 69.6, 69.1. HR-MS (ESI) for CyqH,4OsNa
[M+Na]" requires 415.15214 found 415.14970.
2.7.2 Preparation of chalcones with 2,4,5-trimethoxy substituents on B-ring

The procedure displayed in part 2.3 continues to apply for preparing eighteen
chalcones 48, 104-120 with 2,4,5-trimethoxybenzaldehydes (Figure 2.10). The 'H and
BC-NMR spectra of compound 107 have not received so this information is not
shown.There are three new compounds prepared such as 113, 114 and 119 with the

HR-MS results below.
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R" O ~o
L0
R? RS o~
R O
48.R"=0OH,R?=R¥=R¥=R%=H 110.R" =CF3; R?=R¥=R¥=R%=H 117.R" =R% = OCH,, RZ=R¥=R%= H
104.R?=OH,R"=R¥=R¥=R%=H 111.R" = OH, R¥ = OCH;, R¥ = R¥=R¥=H 118.R" = OH, R¥ = R% = OCH,, R? = R¥:
105.R¥ = OH,R"=R2=R¥=R% = H 112.R" = OH, R¥ = OCH3, R*=R¥=R*¥=H 119.R" = OH, R? = R¥ = Br, R¥=R¥ = H
. e w s . . N OH
106. R" = OCH;, R*=R¥=R¥*=R%=H 113.R"=0H,R¥ =Br,R¥=R*=R%=H 120. 5
107.R? = OCH,, R"=R¥=R¥=R% = H 114, R"=0OH,R* =Br,R?=R¥=R%=H
108. R¥ = OCH3, R"=R?=R*=R%=H 115.R"=R%¥ = OCH;, R®?=R¥=R%=H

Figure 2.10 Chalcones with 2,4,5-trimethoxy on B-ring.

48  ((E)-1-(2-hydroxyphenyl)-3-(2,4,5-trimethoxyphenylprop-2-en-1-one).  'H
NMR (CDCls, 400 MHz): & (ppm) 13.07 (s, 1H), 8.20 (d, J = 15.6 Hz, 1H), 7.92 (dd, J = 8.0,
1.2 Hz, 1H), 7.61 (d, J = 15.2 Hz, 1H), 7.46 (td, J = 8.4, 1.2 Hz, 1H), 7.12 (s, 1H), 7.00 (dd,
J =80, 0.8 Hz, 1H), 6.92 (t, J = 8.0, 0.8 Hz, 1H), 6.52 (s, 1H), 3.95 (s, 3H), 3.92 (s, 3H),
3.91 (s, 3H). °C NMR (CDCls, 100 MHz): & (ppm) 194.2, 163.6, 155.3, 153.2, 143.5, 141.0,
136.0, 129.7, 120.4, 118.7, 118.6, 118.0, 115.4, 112.1, 97.0, 56.8, 56.5, 56.2.

104  ((E)-1-(3-hydroxyphenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one). 'H
NMR (acetone-dy, 400 MHz): O (ppm) 8.66 (s, 1H), 8.14 (d, J = 15.6 Hz, 1H), 7.66 (d, J =
15.6 Hz, 1H), 7.58 (d, J = 7.6 Hz, 1H), 7.52 (t, J = 2.0 Hz, 1H), 7.46 (s, 1H), 7.36 (t, J = 7.6
Hz, 1H), 7.08 (dd, J = 8.0, 2.4 Hz, 1H), 6.78 (s, 1H), 3.94 (s, 3H), 3.92 (s, 3H), 3.85 (s, 3H).
13C NMR (acetone-d,, 100 MHz): 8 (ppm) 190.1, 158.7, 155.8, 154.4, 144.8, 141.4, 139.8,

130.6, 120.6, 120.4, 120.3, 116.2, 115.7, 112.8, 98.5, 57.1, 56.9, 56.4.

105 ((E)-1-(d-hydroxyphenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one). 'H
NMR (acetone-dy, 400 MHz): O (ppm) 9.37 (s, 1H), 8.11 (d, J = 15.6 Hz, 1H), 8.03 (d, J =
8.8 Hz, 2H), 7.72 (d, J = 15.6 Hz, 1H), 7.45 (s, 1H), 6.94 (d, J = 8.8 Hz, 2H), 6.78 (s, 1H),

3.94 (s, 3H), 3.91 (s, 3H), 3.84 (s, 3H). "*C NMR (acetone-d,, 100 MHz): O (ppm) 188.3,
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162.4,155.4,154.0, 144.6, 142.7, 138.6, 131.5, 120.0, 116.2, 116.0, 112.6, 98.4, 57.0, 56.7,
56.2.

106 ((£)-1-(2-methoxyphenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one). 'H
NMR (CDCls, 400 MHz): & (ppm) 7.86 (d, J = 16.0 Hz, 1H), 7.51 (d, J = 7.6 Hz, 1H), 7.37
(t, J = 7.6 Hz, 1H), 7.20 (d, J = 16.0 Hz, 1H), 7.03 (s, 1H), 6.96 (t, J = 7.2 Hz, 1H), 6.92 (d,
J = 8.8 Hz, 1H), 6.44 (s, 1H), 3.85 (s, 3H), 3.80 (s, 6H), 3.78 (s, 3H). ">C NMR (CDCl;, 100
MHz): & (ppm) 193.4, 157.7, 154.4, 152.4, 143.2, 138.8, 132.2, 129.9, 129.8, 125.0, 120.5,
1155, 111.6, 111.1, 96.9, 56.4, 56.2, 55.9, 55.6.

108 ((£)-1-(4-methoxyphenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one). 'H
NMR (CDCl,, 400 MH2): & (ppm) 8.03 (d, J = 15.6 Hz, 1H), 7.98 (d, J = 8.8 Hz, 2H), 7.44
(d, J = 15.6 Hz, 1H), 7.09 (s, 1H), 6.92 (d, J = 8.8 Hz, 2H), 6.48 (s, 1H), 3.89 (s, 3H), 3.85
(s, 3H), 3.84 (s, 3H), 3.82 (s, 3H). '>C NMR (CDCls, 100 MHz): & (ppm) 189.3, 163.1, 154.6,
152.4,143.3, 139.3, 131.7, 130.7, 120.1, 115.8, 113.7, 111.7, 97.1, 56.6, 56.4, 56.1, 55.4.

109 ((F)-1-(2-aminophenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one). 'H
NMR (acetone-d,, 400 MHz): & (ppm) 8.10 (d, J = 15.6 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H),
7.78 (d, J = 15.2 Hz, 1H), 7.46 (s, 1H), 7.25 (t, J = 8.4 Hz, 1H), 7.05 (s, 2H), 6.82 (d, J =
8.4 Hz, 1H), 6.78 (s, 1H), 6.60 (t, J = 8.0 Hz, 1H), 3.94 (s, 3H), 3.91 (s, 3H), 3.84 (s, 3H).
C NMR (acetone-dj, 100 MHz): & (ppm) 192.2, 155.4, 154.0, 152.9, 144.8, 138.2,
134.6, 131.9, 121.4, 119.9, 118.0, 116.6, 115.8, 112.8, 98.6, 57.1, 56.9, 56.4.

110 ((E)-1-(2-(trifluoromethylphenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-
one). 'H NMR (CDCls, 400 MHz): & (ppm) 7.75 (d, J = 7.6 Hz, 1H), 7.62 (, J = 7.2 Hz, 1H),
7.61(d, J = 16.4 Hz, 1H), 7.57 (t, J = 7.6 Hz, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.03 (s, 1H),
6.99 (d, J = 16.0 Hz, 1H), 6.47 (s, 1H), 3.93 (s, 3H), 3.86 (s, 3H), 3.81 (s, 3H). >C NMR
(CDCls, 100 MHz): & (ppm) 195.8, 154.9, 153.4, 143.7, 143.0, 131.7, 129.7, 128.4, 128.1
(g, J = 32.3 Hz), 126.9, 126.8, 125.3, 124.9, 115.0, 111.2, 97.0, 56.6, 56.5, 56.2.

111 ((F)-1-(2-hydroxy-4-methoxyphenyl)-3-(2,4,5-trimethoxyphenylprop-2-en-

1-one). 'H NMR (CDCls, 400 MHz): & (ppm) 13.68 (s, 1H), 8.14 (d, J = 15.6 Hz, 1H), 7.80



43

(d, J = 8.8 Hz, 1H), 7.50 (d, J = 15.2 Hz, 1H), 7.09 (s, 1H), 6.50 (s, 1H), 6.44 (dd, J = 10.4,
2.4 Hz, 1H), 6.43 (s, 1H), 3.92 (s, 3H), 3.90 (s, 3H), 3.89 (s, 3H), 3.82 (s, 3H). >C NMR
(CDCls, 100 MHz): & (ppm) 192.6, 166.8, 166.0, 155.1, 153.0, 143.5, 140.0, 131.3, 118.2,
115.6, 114.5, 112.0, 107.5, 101.2, 97.0, 56.7, 56.4, 56.1, 55.6.

112 ((E)-1-(2-hydroxy-6-methoxyphenyl)-3-(2,4,5-trimethoxyphenylprop-2-en-
1-one). 'H NMR (CDCls, 400 MHz): & (ppm) 13.34 (s, 1H), 8.14 (d, J = 16.0 Hz, 1H), 7.81
(d, J = 15.6 Hz, 1H), 7.32 (t, J = 8.4 Hz, 1H), 7.10 (s, 1H), 6.59 (d, J = 8.0 Hz, 1H), 6.51 (s,
1H), 6.41 (d, J = 8.0 Hz, 1H), 3.93 (s, 3H), 3.92 (s, 3H), 3.89 (s, 3H), 3.87 (s, 3H). °C NMR
(CDCls, 100 MHZ): & (ppm) 194.6, 164.9, 161.0, 154.9, 152.7, 143.4, 138.7, 135.9, 135.4,
1255, 116.2, 111.8, 111.1, 101.7, 97.2, 56.7, 56.5, 56.2, 55.9.

113 ((E)-1-(d-bromo-2-hydroxyphenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-
one). 'H NMR (CDCls, 400 MHz): & (ppm) 13.20 (s, 1H), 8.17 (d, J = 15.6 Hz, 1H), 7.72 (d,
J=88Hz 1H), 7.49 (d, J = 15.6 Hz, 1H), 7.14 (d, J = 1.6 Hz, 1H), 7.07 (s, 1H), 7.00 (dd,
J = 8.8, 2.0 Hz, 1H), 6.48 (s, 1H), 3.91 (s, 3H), 3.89 (s, 3H), 3.86 (s, 3H). °C NMR (CDCls,
100 MHz): O (ppm) 193.5, 164.1, 155.4, 153.4, 143.4, 141.6, 130.6, 130.1, 122.1, 121.6,
119.2, 117.4, 115.1, 112.1, 96.8, 56.7, 56.4, 56.2. HR-MS (ESI) for C,sH/BrOsNa [M+Na]*

requires 415.01571 found 415.01520.

114 ((E)-1-(5-bromo-2-hydroxyphenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-
one). 'H NMR (CDCls, 400 MHz): & (ppm) 13.01 (s, 1H), 8.23 (d, J = 15.2 Hz, 1H), 7.99 (d,
J =24 Hz, 1H), 7.52 (dd, J = 8.8, 2 Hz, 1H), 7.48 (d, J = 15.2 Hz, 1H), 7.12 (s, 1H), 6.90
(d, J = 8.8 Hz, 1H), 6.52 (s, 1H), 3.95 (s, 3H), 3.93 (s, 3H), 3.92 (s, 3H). °C NMR (CDCls,
100 MHz): & (ppm) 193.1, 162.6, 155.6, 153.6, 143.6, 142.1, 138.5, 131.9, 121.7, 120.6,
117.2, 115.2, 112.1, 110.3, 96.9, 56.9, 56.5, 56.2. HR-MS (ESI) for CygH7BrOsNa [M+Na]*
requires 415.01571 found 415.01670.

115 (()-1-(2,4-dimethoxyphenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one).
'H NMR (CDCls, 400 MHz): & (ppm) 7.87 (d, J = 15.6 Hz, 1H), 7.60 (d, J = 8.4 Hz, 1H),

7.32(d, J = 15.6 Hz, 1H), 6.99 (s, 1H), 6.42 (dd, J = 8.4, 2.0 Hz, 1H), 6.39 (s, 1H), 6.36 (d,
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J = 2.4 Hz, 1H), 3.79 (s, 3H), 3.76 (s, 3H), 3.75 (s, 3H), 3.74 (s, 3H), 3.71 (s, 3H). °C NMR
(CDCls, 100 MHz): & (ppm) 190.6, 163.5, 159.9, 154.1, 151.9, 143.0, 137.2, 132.2, 125.0,
122.4,115.6, 111.0, 105.0, 98.4, 96.8, 56.2, 56.0, 55.8, 55.4, 55.2.

116 ((E)-1-(2,5-dimethoxyphenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one).
'H NMR (CDCls, 400 MHz): & (ppm) 7.87 (d, J = 16.0 Hz, 1H), 7.23 (d, J = 16.0 Hz, 1H),
7.10 (d, J = 2.8 Hz, 1H), 7.04 (s, 1H), 6.93 (dd, J = 9.2, 3.2 Hz, 1H), 6.87 (dd, J = 9.2, 2.4
Hz, 1H), 6.43 (s, 1H), 3.84 (s, 3H), 3.79 (s, 3H), 3.77 (s, 3H), 3.76 (s, 3H), 3.71 (s, 3H). **C
NMR (CDCls, 100 MHz): & (ppm) 192.8, 154.4, 153.4, 152.4, 152.1, 143.2, 138.8, 130.2,
124.8,118.1, 115.4, 114.4, 113.3, 111.1, 96.9, 56.4, 56.3, 56.2, 55.9, 55.6.

117 ((E)-1-(2,6-dimethoxyphenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one).
'H NMR (CDCls, 400 MHz): & (ppm) 7.60 (d, J = 16.4 Hz, 1H), 7.27 (t, J = 8.4 Hz, 1H), 7.01
(s, 1H), 6.87 (d, J = 16.4 Hz, 1H), 6.58 (d, J = 8.4 Hz, 2H), 6.44 (s, 1H), 3.88 (s, 3H), 3.82
(s, 3H), 3.76 (s, 3H), 3.74 (s, 3H). '>C NMR (CDCls, 100 MHz): & (ppm) 195.4, 157.5, 154.2,
1525, 143.4, 140.4, 130.4, 126.8, 119.1, 115.4, 111.0, 104.2, 97.1, 56.5, 56.1, 56.0.

118 ((E)-1-(2-hydroxy-4,6-dimethoxyphenyl)-3-(2,4,5-trimethoxyphenyl)prop-2-
en-1-one). 'H NMR (CDCls, 400 MHz): & (ppm) 8.08 (d, J = 15.6 Hz, 1H), 7.83 (d, J = 15.6
Hz, 1H), 7.08 (s, 1H), 6.48 (s, 1H), 6.06 (d, J = 2.0 Hz, 1H), 5.92 (d, J = 2.0 Hz, 1H), 3.90
(s, 3H), 3.86 (s, 6H), 3.85 (s, 3H), 3.79 (s, 3H). °C NMR (CDCls, 100 MHz): & (ppm) 192.8,
168.4,165.9, 162.5, 154.6, 152.4, 143.3, 138.0, 125.4, 116.3, 111.7, 106.5, 97.1, 93.9, 91.2,
56.6, 56.4, 56.1, 55.8, 55.6.

119 ((B)-1-(3,5-dibromo-2-hydroxyphenyl)-3-(2,4,5-trimethoxyphenyprop-2-en-
1-one). 'H NMR (acetone-d,, 400 MHz): & (ppm) 13.88 (s, 1H), 8.45 (d, J = 2.0 Hz, 1H),
8.26 (d, J = 15.2 Hz, 1H), 8.04 (d, J = 2.0 Hz, 1H), 7.79 (d, J = 15.6 Hz, 1H), 7.58 (s, 1H),
6.71 (s, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 3.80 (s, 3H). *C NMR (acetone-d,, 100 MHz): &
(ppm) 192.1, 158.0, 155.1, 154.2, 143.0, 141.2, 140.0, 131.6, 121.9, 115.9, 113.6, 112.1,
111.2, 109.8, 97.0, 56.4, 56.2, 55.6. HR-MS (ESI) for CigH;¢Br,OsNa [M+Nal™ requires
492.92622 found 492.93560.
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120 ((E)-1-(2-hydroxynaphthalen-1-yl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-
one). "H NMR (acetone-dy, 400 MHz): O (ppm) 8.44 (d, J = 7.6 Hz, 1H), 8.41 (d, J = 15.2
Hz, 1H), 8.13 (d, J = 9.2 Hz, 1H), 7.98 (d, J = 15.6 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.69
(td, J = 6.8, 0.8 Hz, 1H), 7.58 (t, J = 8.4 Hz, 1H), 7.57 (s, 1H), 7.39 (d, J = 8.8 Hz, 1H), 6.82
(s, 1H), 4.00 (s, 3H), 3.95 (s, 3H), 3.87 (s, 3H). °C NMR (acetone-ds, 100 MHz): & (ppm)
194.8, 164.9, 156.4, 155.2, 144.9, 141.4, 138.4, 131.0, 128.5, 126.8, 126.4, 125.6, 124.9,
119.0, 118.3, 115.9, 114.6, 113.1, 98.4, 57.2, 57.0, 56.5.

2.8 Preparation of dihydrochalcones.

Two chalcones 48 and 65 were hydrogenated following the methodology of
Krohn et al. to broaden the scope of chalcone derivatives with various degrees of

saturation (Figure 2.11).°

The appropriate amount of chalcone 48 or 65 and Pd/C
powder 5% mol (compared to molarity of chalcones) were charged in a flask with
MeOH. The plastic stopper attached by hydrogen gas balloon was used and the
reaction was monitored by TLC. When products appear markedly, the palladium was
filtered off by celite powder and the solvent was evaporated to dryness to achieve

some compounds 121-124. Three chalcones 121-123 are new substances reported by

HR-MS information below.

OH OH

OH O ~o o OH o OH O
J 70 J 7O J O °>
O/ O/ O/ (6]
O SN SN
121 122 123 124

Figure 2.11 Hydrogenated chalcones.

121 (1-(2-hydroxyphenyl)-3-(2,4,5-trimethoxyphenyl)propan-1-one). 'H NMR
(CDCls, 400 MHz): & (ppm) 12.38 (s, 1H), 7.77 (dd, J = 8.0, 0.8 Hz, 1H), 7.45 (td, J = 8.0,
1.2 Hz, 1H), 6.98 (d, J = 8.0 Hz, 1H), 6.86 (t, J = 7.6 Hz, 1H), 6.75 (s, 1H), 6.52 (s, 1H), 3.88
(s, 3H), 3.82 (s, 3H), 3.80 (s, 3H), 3.24 (t, J = 8.0 Hz, 2H), 2.98 (t, J = 8.0 Hz, 2H). °*C NMR
(CDCls, 100 MHz): & (ppm) 206.6, 162.6, 151.8, 148.4, 143.1, 136.3, 130.2, 120.5, 119.6,



a6

118.9, 118.6, 114.8, 97.2, 56.9, 56.5, 56.2, 39.2, 25.8. HR-MS (ES) for C15H,00sNa [M+Na]*
requires 339.12084 found 339.1204.

122 (2-(1-hydroxy-3-(2,4,5-trimethoxyphenylpropylphenol). 'H NMR (CDCl,,
400 MHz): 8 (ppm) 8.30 (s, 1H), 7.13 (td, J = 8.4, 1.6 Hz, 1H), 6.86 (m, 2H), 6.78 (t, J =
7.2 Hz, 1H), 6.70 (s, 1H), 6.55 (s, 1H), 4.67 (dd, J = 10.0, 4.0 Hz, 1H), 3.88 (s, 3H), 3.85 (s,
3H), 3.83 (s, 3H), 2.85 (m, 1H), 2.67 (m, 1H), 2.20 (m, 1H), 1.94 (m, 1H). C NMR (CDCls,
100 MHz): & (ppm) 155.9, 151.3, 148.2, 143.7, 128.7, 127.3, 127.0, 120.8, 119.6, 117.2,
114.4,98.2, 74.6, 56.8, 56.7, 56.4, 38.3, 25.4. HR-MS (ESI) for C;gH,,05Na [M+Na]* requires
341.13649 found 341.1359.

123 (2-(3-(2,4,5-trimethoxyphenylpropyl)phenol). 'H NMR (DMSO-d;, 400 MHz):
O (ppm) 9.24 (s, 1H), 7.03 (dd, J = 7.6, 0.8 Hz, 1H), 6.96 (td, J = 7.6, 1.2 Hz, 1H), 6.76 (d,
J=8.0Hz, 1H), 6.74 (s, 1H), 6.69 (t, J = 7.6 Hz, 1H), 6.62 (s, 1H), 3.75 (s, 3H), 3.73 (s, 3H),
3.67 (s, 3H), 2.51 (m, 4H), 1.74 (p, J = 8.0 Hz, 2H). *C NMR (DMSO-d;, 100 MHz): & (ppm)
155.1,151.2,147.6, 1425, 129.6, 128.3, 126.6, 121.6, 118.8, 114.8, 114.7, 98.7, 56.4, 56.2,
55.9, 29.9, 29.5, 29.0. HR-MS (ESI) for CigH,,O4Na [M+Na]® requires 325.14158 found
325.1395.

124 (3-(benzold][1,3]dioxol-5-yl)-1-(2-hydroxyphenylpropan-1-one). 'H NMR
(CDCls, 400 MHz): & (ppm) 12.31 (s, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H),
6.98 (d, J = 8.4 Hz, 1H), 6.88 (t, J = 7.6 Hz, 1H), 6.74 (d, J = 7.2 Hz, 1H), 6.73 (s, 1H), 6.69
(d, J = 8.0 Hz, 1H), 5.91 (s, 2H), 3.26 (t, J = 7.6 Hz, 2H), 2.98 (t, J = 7.6 Hz, 2H). °C NMR
(CDCls, 100 MHz): & (ppm) 205.4, 162.5, 147.8, 146.0, 136.3, 134.5, 129.8, 121.2, 119.3,
118.9, 118.6, 108.9, 108.3, 100.9, 40.2, 29.8.

2.9 AMPK activation activity assessment
The experiments were conducted under the collaboration with Associate
Professor Dr. Chatchai Muanprasat, Department of Physiology, Faculty of Science,

Mahidol University.
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2.9.1 Potency and ECs,

In this study, potency is calculated by the fold alteration of AMPK
phosphorylation between podocyte cells inoculated with chalcones at 10 uM and a
control sample treated with DMSO medium only. The fold change of AMPK protein
expression from Western blot analysis is calculated from the band intensity of
pAMPK/total AMPK. A compound can possess high potency if a considerable fold
change is measured which means that the increase in AMPK phosphorylation intensity
was observed or that compound activates AMPK. The ECs, is the concentration of a
drug that gives half-maximal response. The fold modifications of AMPK protein
expression of podocyte cells treated at each chalcone concentration (1, 5, 10, 50, 100
uM) compared to control cells were applied to Hill’s equation to obtain the ECs,value.
2.9.2 Assessment procedure

Podocyte cells were cultured following the procedure described by Saleem et
al.”® Firstly, they were cultured at 33°C for 24 h to allow cell proliferation, then the
cells were transferred to 37°C culture for 14 days to activate cell differentiation into
fully mature podocyte. Thereafter, chalcones were treated at a concentration of 10
UM for 24h in mature podocyte cells. Subsequently, the cells were monitored under
a microscope to check if chalcones were toxic to the cells. If the morphology changed
in the abnormal way, it would mean that that chalcone was poisonous to the podocyte
cells. Then, cells were extracted for protein collection and AMPK protein expression
was measured by Western blot analysis using antibodies. After that, any compounds
which could induce at least 5-fold change in AMPK phosphorylation compared to the
control samples were chosen. The next step was to evaluate the concentration-
response relationship and calculate ECs, of each active compound. The most potent
compound was the one with the highest potency and the least toxicity. The general
procedure for the evaluation of AMPK activation activity of chalcone compounds is

displayed in Figure 2.12.
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CHAPTER IlI
RESULTS AND DISCUSSION

The synthesis of target chalcones could be achieved in moderate to good
yields. Structural elucidation of all compounds was carried out by 'H and >C-NMR; in
addition, HR-MS was collected for new compounds. Furthermore, the structure-activity
relationship was investigated according to the potency of chalcones to find some
active candidates compared to the reported chalcone 48 as AMPK activator.
Thereafter, concentration-response relationship and ECs, calculation of each active
compound were analyzed to recognize the most promising chalcone for in vivo

experiment.

3.1 Synthesis and evaluation of chalcones with monosubstitution on B-ring

3.1.1 Synthesis and structural elucidation

Following the procedure of Srinivasan et al., nine chalcones with A-ring fixed
as 2'-hydroxy or 3'.4'5'-trimethoxyacetophenone (25 and 49-56) were prepared
(Figure 3.1). As mentioned above, 2'-hydroxy substituent had some advantages to
boost AMPK activation activity, thus this type of A-ring was fixed. In addition, A-ring as
3',4" 5'-trimethoxyacetophenone was reported to be used to prepare chalcones
possessing cytotoxicity and anti-inflammatory activity.* >® B-ring of chalcones possessed
only one substituent such as OH or OCHjs at either of three positions (ortho, meta, and
para). All products were obtained as yellow or red crystal with moderate yields (52-
69%) as shown in Table 3.1. Only three chalcones (52-54) were attained by
crystallization in MeOH due to their precipitation after acidified by 10% HCL. The other
compounds were purified by column chromatography. Chalcones with B-ring bearing
OCH; group (52-54) instead of OH (25, 49-51, 55 and 56) were achieved in higher yield
because the OH group can be deprotonated under basic conditions leading to

resonance system formed between negative charge on oxygen atom and carbonyl
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R" O R'" © NaOH R" O R

RZ R? H 3 equiv RZ >z R?
: ———— I 7 (e
R R EtOH, rt, 12h R¥ R3
R¥ R¥
25, 49-56
1 equiv 1 equiv

49.R"=0H,R?=R¥=R¥=H,R?=R3=H,R"=OH 54.R"=0OH, R?=R¥=R*=H,R"=R?=H, R®= OCH,3
50.R"=0OH,R?=R¥=R¥=H,R"=R3=H, R>= OH 55.R"=H, R¥ =R¥=R*=0CH;, R?=R%=H, R'= OH
51.R"=OH,R?=R¥=R%=H, R'=R2=H, R®= OH 25.R"=H, R?=R%¥=R%=0CH3, R'=R%=H, R?= OH
52.R"=0H,R¥=R¥=R*=H,R?=R%=H, R'= OCH,4 56.R"=H, R?=R¥=R*=0CH;, R"=R?=H, R®= OH

53.R"=0H,R?=R¥=R*=H,R"'=R®=H, R2= OCHj,4

Figure 3.1 Synthesis of chalcones with monosubstitution on B-ring.

group of aldehyde molecules. Due to electron donation from minor oxygen atom, the
carbon atom of carbonyl component would have less positive property, resulting in
being less active. All synthetic chalcones are known compounds.

The structural identification of these compounds was conducted by 'H and *C
NMR analysis. The important signals of chalcones are two doublets with high value of
J coupling constant (15 — 17 Hz) derived from two protons of a,B-unsaturated ketone
(-CH=CH-C=0). They are much downfield because of conjugation between alkene and

ketone groups pulling most electrons toward ketone functional group (Figure 3.2).

Figure 3.2 Resonance system of a,B-unsaturated ketone.

The 'H and C-NMR spectral assignments of 25 and 49-56 are presented in
Tables 3.2-3.4. Most of the signals in 'H and ">C-NMR spectra associating to couples of
49 and 52, 50 and 53 or 51 and 54 were similar to each other, respectively as they
replaced OH to OCHj; group on B-ring. All of six compounds (49-54) have alike chemical

shifts of peaks derived from proton and carbon on A-ring and a tertiary carbon of
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Table 3.1 Yields and characteristics of chalcones (25, 49-56).

Chalcones Appearance Yield (%) Remarks
49 Yellow crystal 55 known
50 Yellow crystal 53 known
51 Yellow crystal 52 known
52 Yellow crystal 69 known
53 Yellow crystal 68 known
54 Yellow crystal 65 known
55 Red crystal 53 known
25 Yellow crystal 55 known
56 Yellow crystal 60 known

carbonyl group. Sometimes the signals of proton and carbon belonging to a,B-
unsaturated ketone were likely fluctuating among them due to the different intensity
of the resonance effect of electron-donating eroup on B-ring. Lastly, the peaks of
proton and carbon on B-ring would be varied among three couples such as 49 and 52,
50 and 53 along with 51 and 54 owing to the particular position of substituents on B-

ring such as positions 2, 3 and 4.

The spectra data of three derivatives 25, 55 and 56 with A-ring as 3',4'5'-
trimethoxyacetopheone were distinct from six above derivatives.
3.1.2 Biological activity evaluation

After podocyte cells differentiate into mature cells and are ready for
subculturing, they were treated by nine chalcones at 10 uM for 24 h. The outcomes
of biological activity from nine chalcones are shown in Figure 3.3. Regarding 2'-
hydroxychalcone (49-54), it is clear that OCH; group at 3 or 4-positions on B-ring would
boost the AMPK activation activity better than OH group at the same position. For
example, changing from 3-OH (50) to 3-OCHs (53) enhanced the potency from 1.73 to
4.85. Similarly, the potency calculated as 0.65 in 51 bearing 4-OH group altered to



Table 3.2 Tentative NMR chemical shift assignment of chalcones 49-51.

52

49 R"' = 2-OH 50.R' = 3-OH 51.R' = 4-OH
49 (acetone-dy) 50 (CDCL,) 51 (acetone-dy)
Position
6H &6C 6H 6C 6H 6C
1’ . 122.5 — 120.2 - 120.8
2 - 164.2 - 163.7 - 164.3
7.03,d 7.04,d
3’ 118.7 118.8 6.96, m 118.7
J=80Hz J=80Hz
7.55, td 751, t 7.54, td
4’ 136.9 136.6 136.8
J=84,16Hz J=8.0Hz J=84,16Hz
6.99, t 7.31,t
5 120.7 119.1 6.96, m 119.5
J=T72Hz J=176Hz
8.19, dd 792, d 8.23, dd
6 133.0 129.8 130.9
J=80,12Hz J=8.0Hz J=84,16Hz
1 - 120.8 - 136.4 - 127.1
7.77,d
2 - 158.2 7.14, s 120.8 131.9
J=88Hz
6.92,d
3 117.0 - 156.2 6.96, m 116.7
J=T72Hz
7.31, td 6.92,d
4 130.9 115.0 - 161.3
J=84,16Hz J=T7.6Hz
6.97, t 6.95, t
5 119.5 130.4 6.96, m 116.7
J=6.4Hz J=T76Hz
7.85, dd 7.24,d 7.77,d
6 130.1 121.7 131.9
J=176,12Hz J=T7.6Hz J=8.8Hz
7 - 195.1 - 193.9 - 194.7
8.07,d 7.63,d 7.85,d
8 120.5 118.2 117.8
J =156 Hz J =156 Hz J=152Hz
8.33,d 7.86,d 791,d
9 141.8 145.2 146.5
J =156 Hz J =156 Hz J =156 Hz
2'-OH 13.03, s - 12.79, s - 13.08, s -
OH 9.51, s - - - 9.27,s -




Table 3.3 Tentative NMR chemical shift assignment of chalcones 52-54.

52.R' = 2-OCHj,

53. R" = 3-OCHj,4

53

54. R' = 4-OCH,4

52 (CDCL,) 53 (CDCL,) 54 (CDCL,)
Position
6H 8C S8H é6C 6H 6C
1’ - 120.4 - 120.0 - 120.3
2! - 163.7 - 163.6 - 163.7
7.03,d 7.06, d 7.02,d
3’ 118.7 118.6 118.7
J=8.4Hz J=84Hz J=8.4Hz
7.49, td 7.53, td 7.48, td
4 136.2 136.4 136.2
J=84,12Hz J=8.0,12Hz J=8.4,16Hz
7.02,t 6.97, t 6.94, t
5 121.0 121.3 118.9
J=8.0Hz J=T76Hz J=T6Hz
7.92,dd 794, d 791, dd
6 132.3 130.0 129.6
J=8.0,12Hz J=8.4Hz J=80,12Hz
1 - 123.8 - 136.0 - 127.5
7.62,d
2 - 159.2 7.19, s 113.8 130.6
J=8.0Hz
6.96, d 6.95, d
3 111.5 - 160.0 114.6
J=8.0Hz J=88Hz
7.40, td 7.01, dd
4 129.8 116.6 162.2
J=84,12Hz J=84,20Hz
6.94, t 7.38,t 6.95, d
5 118.9 129.7 114.6
J=76Hz J=T76Hz J=8.8Hz
7.65, dd 7.29,d 7.62,d
6 129.7 120.5 130.6
J=17.6,08Hz J=T72Hz J=8.0Hz
7 - 194.5 - 193.7 - 193.8
7.78,d 7.66,d 7.53,d
8 120.9 118.8 117.8
J=15.6 Hz J =156 Hz J=152Hz
8.23, d 791, d 7.90, d
9 141.3 145.4 145.5
J=156Hz J=16.0Hz J=156Hz
2'-OH 1295, s - - 1295, s -
CH,4 394, s 55.7 3.89, s 55.4 3.86, s 55.6




Table 3.4 Tentative NMR chemical shift assisnment of chalcones 25, 55 and 56.

55. R'=2-OH

25. R'=3-OH

56. R' = 4-OH

54

55 (CDCly) 25 (DMSO-dy) 56 (DMSO-d,)
Position 6H 6C &H é6C 6H é6C
1’ - 133.7 - 133.0 - 133.4
2! 7.29,s 106.6 742, s 106.2 7.39, s 106.0
3’ - 153.2 - 152.9 - 152.9
4’ - 142.6 - 142.0 - 141.8
5 - 153.2 - 152.9 - 152.9
6’ 7.29,s 106.6 7.42,s 106.2 7.39, s 106.0
1 - 122.3 - 136.0 - 125.9
7.75,d
2 - 156.5 7.26, m 120.0 131.1
J=8.4Hz
6.96, d 6.84, d
3 120.7 - 157.7 115.8
J=8.4Hz J=84Hz
7.25,t 6.88, dd
4 129.5 115.3 - 160.1
J=8.0,16Hz J=176,16Hz
6.92, t 6.84, d
5 122.5 7.26, m 129.8 115.8
J=8.0Hz J=8.4Hz
7.58, dd 732, d 7.75,d
6 132.0 121.8 131.1
J=8.0,12Hz J=76Hz J=8.4Hz
7 - 191.3 - 187.9 - 187.8
7.64,d 7.65,d 7.68,d
8 116.8 117.7 118.4
J=16.0 Hz J=152Hz J=152Hz
8.20,d 7.85,d 7.73,d
9 141.6 1441 144.3
J=16.0 Hz J=15.6 Hz J=148 Hz
OH 772, s - 9.64, s - 10.10, s -
3.93,3.91 61.1, 3.90, 3.76 60.1, 3.89, 3.76 60.2,
CH,
S 56.5 S 56.2 S 56.2
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Figure 3.3 Biological evaluation of chalcones with monosubstitution on B-ring.

2.80 in 54 bearing 4-OCH,. Nonetheless, with respect to 2-position on B-ring,
methylation of 49 to 52 seemed to reduce by half of potency, their potencies as 0.50
and 1.12, respectively. In addition, substituents at 3-position on B-ring caused 2'-
hydroxychalcone to be more active than at 2- or 4-positions, regardless of types of
substituents. In case of 3',4',5'-trimethoxychalcone, the OH at 3-position on B-ring
made 25 toxic to the cells, so it did not further monitor. Moreover, with regard to OH
at 2- or 4-positions on B-ing, replacing A-ring from 2'-hydroxy- to 3',4'5'-
trimethoxyacetophenone led to a 1.5- and 5-fold increase in potency, respectively.
The potencies of 3',4",5'-trimethoxyacetophenone with 2- and 4-OH on B-ring (55 and
56) were 1.60 and 3.25, respectively. Overall, 53 was the most potent candidate with
the potency of 4.85 which was around 1.5 times as much as the second potent 56. It
can be seen that OCH; group at 3-position on B-ring might keep an important role in
the potency of chalcones. Besides, 3',4,5'-trimethoxychalcones exhibited their
competitive activity compared to 2'-hydroxychalcones; therefore, a series of chalcone
derivatives with A-ring maintained as 2'-hydroxy- or 3',4",5'-trimethoxyacetophenones
and B-ring bearing two OCH; groups, methylenedioxy or one OH along with one OCH;

group were prepared to continue finding for other better candidates.
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Table 3.5 Theory about the crucial function of the 3-methoxy group for AMPK

activation activity of chalcone derivatives.

Chalcones without 3- 3,5-
Chalcones with 3- or 5-OCH; group
or 5-OCHj; group Dimethoxychalcone
OH O ~o OH 0O ~o OH ©O 0\ OH O
0 ., UTOQOT oTU oo
60 57 59 66 o
OH O ~o OH ©O OH O
= Z SN = o]
o 0 T, U0
o (¢} o]
63 65
62
OH 0O
> o
0

From the assumption that the structure containing 3-OCH; group on B-ring
might be required as AMPK activators, some compounds with dimethoxy groups fixed
at 3-position along with any other positions on B-ring were prepared to confirm this
hypothesis (Table 3.5). Because of the symmetry of the phenyl ring, 3- and 5-positions
are the same as long as methoxy substituent was at meta-position to the a,f-
unsaturated ketone. This can be seen from Table 3.5 that 66 should be the most
potent one among these eight compounds according to the hypothesis “3-methoxy is
the best” due to bearing 3,5-dimethoxy group. Subsequently, the next five chalcones
(57, 59, 61, 63 and 65) revealed moderate potency thanks to one OCH- group lying at
3- or 5-position. Eventually, two last chalcones (60 and 62) were assumed to bear

weak biological activity owing to no OCHs group settling at 3- or 5-position.
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3.2 Synthesis and evaluation of chalcones with disubstitution (OH, OCH; and
OCH,0) on B-ring.
3.2.1 Synthesis and structural elucidation
Twelve chalcones with  A-ring fixed as 2-hydroxy or 3'4'5'-
trimethoxyacetophenone (57-68) were synthesized by Claisen-Schmidt reaction
(Figure 3.4). A variety of benzaldehydes with disubstitution such as OH, OCH; or
methylenedioxy were used to condense with two types of acetophenone to furnish
chalcones in moderate yield (52-82%) except for 58 (15%). Almost compounds were
purified by crystallization in MeOH to achieve the products as yellow or white crystals

except for 58, 59 and 62 which were purified by column chromatography (Table 3.6).

OH O R" 0O NaOH OH O R

R? H 3 equiv P R?
N < @ @
R® R® EtOH, rt, 12h R® R®
R* R4
57-66
1 equiv 1 equiv
57.R'=R?=OCH3 R®=R*=R%=H 60. R'=R®= OCH3, R2=R*=R%=H 64.R?=OH, R®= OCH3, R'=R*=R%=H

58.R'= OH, R?= OCH3, R*=R*=R°=H 61.R'=R*= OCH;, R?=R®=R%=H 65. j\c[o
0™\ o

59. & e} 62.R'=R%=0OCHz, R?=R®=R*=H
66.R?=R*= OCH3, R'=R3=R%=H

63.R2=R%= OCH3, R'=R*=R%=H

0 o NaOH o

_0 sz@*H 3 equiv _0 = R?
o R3 EtOH, rt, 12h o R3
X . 67, 68

1 equiv 1 equiv

67.R2=R%= OCH, 68. j\@%
o

Figure 3.4 Synthesis of chalcones with disubstitution including hydroxy, methoxy and

methylenedioxy on B-ring.
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Table 3.6 Yields and characteristics of chalcones 57-68.

Chalcones Appearance Yield (%) Remarks
57 Yellow crystal 52 known
58 Yellow crystal 15 known
59 Yellow crystal 62 new
60 Yellow crystal 66 known
61 Yellow crystal 68 known
62 Yellow crystal 58 known
63 Yellow crystal 78 known
64 Yellow crystal 62 known
65 Yellow crystal 82 known
66 Yellow crystal 70 known
67 White crystal 69 known
68 White crystal 67 known

The structural identification of these compounds was conducted by 'H and *>C
NMR analysis, as shown in Tables 3.7-3.10. Ten chalcones (57-66) bear a resemblance
in the peaks of 'M and '»C NMR on A-ring because of derivation from 2'-
hydroxyacetophenone together. Three compounds (57-59) bearing two substituents at
2,3-position on B-ring have similar 'H and ">C NMR signals together. The same case was
also applied for three chalcones (63-65) possessing two substituents at 3,4-position on
B-ring. The 'H and *C NMR signals on B-ring of 60-62 and 66 were varied according to
different positions of dimethoxy groups. Besides, the NMR signals on A-ring of 67 and
68 were distinct to the other ten chalcones due to the generation from 3'4'5'-
trimethoxyacetophenone but their NMR signals on B-ring were relatively similar to
those of chalcones (63-65) owing to carrying two substituents at 3,4-position on B-ring.
In addition, 59 is a new compound and its structure was confirmed by HR-MS (ESI) for

CyH1204Na [M+Na]* required 291.06333 while the result was found as 291.06270.



Table 3.7 Tentative NMR chemical shift assignment of chalcones 57-59.

OH O R' 57.R' = R? = OCHj4 58. R' = OH, R? = OCHj,4
2' P 2 2
4' 6'7 8 6 4 59. ;\é}\o
Position 57 (CDCL,) 58 (CDCL,) 59 (CDCL,)
6H &6C 6H 6C 6H 6C
1’ - 120.2 - 119.9 - 120.2
2 - 163.7 - 163.7 - 163.8
, 7.01,d 118.6 7.20, dd 118.7 6.88, d 118.7
> J=84Hz J=68,16Hz J=44Hz
, 7.48, t 136.3 7.49, t 136.3 7.49, td 136.5
‘ J=80Hz J=T7.6Hz J=712,12Hz
, 7.09, t 118.9 6.94, t 118.9 7.01, m 119.0
> J=80Hz J=7T7.6Hz
, 7.90,d 129.8 7.94,d 130.0 7.90, dd 129.9
6 J=80Hz J=T76Hz J=6.8,16Hz
1 - 128.8 - 129.7 - 117.9
2 - 149.3 - 146.3 - 147.0
3 - 153.3 = 147.1 - 148.2
4 6.97,d 114.8 6.90, d 112.5 6.88,d 110.5
J=80Hz J=80Hz J=44Hz
5 6.92, t 124.3 691, t 122.4 6.94, t 123.8
J=80Hz J=80Hz J=76,08Hz
6 7.27,d 121.7 7.02,d 121.8 701, m 123.1
J=T16Hz J=84Hz
7 - 194.2 - 194.6 - 194.2
8 7.73,d 120.0 792,d 120.0 7.81,d 122.2
J =156 Hz J=152Hz J=152Hz
9 8.20,d 140.5 8.14,d 141.0 7.89,d 140.1,
J =156 Hz J =156 Hz J=16.0Hz
2'-OH 12.88, s - 1294, s - 12.86, s -
OH - - 6.40, s - - -
CH, 3.90, 3.88 61.4, 3.94 56.4 6.14 101.8
/methylene S 56.0 S S

59



Table 3.8 Tentative NMR chemical shift assignment of chalcones 60-62 and 66.

60. R"=R%=0CH;, R2=R*=R%=H

62. R'=R%=0CH;, R?=R3=R*=H

60

61.R"=R*=0CH;, R2=R3=R*=H

66. R?=R*=0CH;, R'=R3=R%=H

60 (CDCL,) 61 (CDCL,) 62 (CDCL,) 66 (CDCL,)
Position
&H éC 6H &C 6H &6C 6H é6C
1’ - 120.4 - 120.3 - 120.7 - 120.0
2 - 163.7 - 163.7 - 163.7 - 163.6
7.00, d 7.02,d 7.01, dd 7.01,d
3’ 118.5 118.7 118.6 118.6
J=8.4Hz J=8.4Hz J=8.4,08Hz J=8.4Hz
7.46,t 7.49,t 7.47, td 7.47,t
4 135.9 136.3 135.9 136.4
J=84Hz J=8.0Hz J=8.4,16Hz J=8.0Hz
6.91,t 6.90, t 6.93, td 6.92, t
5 118.7 118.9 118.7 118.9
J=8.0Hz J=8.0Hz J=8.4,12Hz J=T76Hz
7.90,d 792, d 7.91, dd 7.88,d
6 129.7 129.8 129.9 129.7
J=8.0Hz J=8.0Hz J=8.0,12Hz J=T76Hz
1 - 117.0 - 124.4 - 112.9 - 136.5
2 - 160.8 - 153.7 - 160.8 6.76, s 106.7
6.46, d 6.60, d
3 98.6 6.96, m 121.2 104.0 - 161.2
J=20Hz J=84Hz
732, t
q - 163.6 6.96, m 114.4 132.2 6.52, s 103.1
J=8.4Hz
6.53, dd 6.60, d
5 105.8 - 153.8 104.0 - 161.2
J=84,20Hz J=8.4Hz
7.56,d
6 131.5 717, s 112.7 - 160.8 6.76, s 106.7
J=88Hz
7 - 194.3 - 194.4 - 195.6 - 193.7
7.67,d 7.74,d 8.15,d 7.56,d
8 118.2 117.8 122.9 120.6
J=152Hz J =156 Hz J=15.6 Hz J=152Hz
8.16, d 8.19, d 8.40, d 7.79, d
9 1414 141.0 136.6 1455
J =156 Hz J =156 Hz J =156 Hz J=15.6 Hz
2'-OH 13.11, s - 1292, s - 13.12, s - 1281, s -
3.90, 3.84 55.7, 3.89, 3.83 56.3, 3.94 3.82
CH, 56.1 555
S 55.6 S 56.0 S S




Table 3.9 Tentative NMR chemical shift assignment of chalcones 63-65.

2,0H o 9 2 o 63.R' = R2= OCH, 64.R' OH, R2 = OCH,
.
4 6 6 T R 65 & 0
T
Position 63 (CDCL,) 64 (CDCLy) 65 (CDCLy)
6H 6C 6H 6C 6H 6C
1’ - 120.2 - 120.3 - 120.1
2' - 163.7 - 163.7 - 163.6
, 6.94, dd 118.7 7.02,d 118.7 7.04,d 118.6
> J=72,08Hz J=84Hz J=80Hz
, 7.48, td 136.3 7.48, td 136.3 751, td 136.2
‘ J=72,16Hz J=78,16Hz J=80,16Hz
, 6.91, t 118.8, 6.93, t 118.9 6.95, t 118.8
> J=8.4Hz J=T712Hz J=80Hz
, 7.92,dd 129.6 792, d 129.7 791, dd 129.5
6 J=8.0,0.8Hz J=80Hz J=8.0,08Hz
1 - 127.8 - 127.4 - 129.1
2 7.16,d 110.6 7.14,s 115.2 7.19,d 106.8
J=16Hz J=12Hz
3 - 152.0 = 147.0 - 150.3
q - 149.5 - 148.9 - 148.5
5 7.01,d 111.4 7.25, dd 110.5 6.87, d 108.8,
J=8.4Hz J=8.0,12Hz J=80Hz
6 7.26, dd 123.7 6.97, d 123.8 7.16,d 125.7
J=84,16Hz J=84Hz J=80Hz
7 - 193.7 - 193.8 - 193.6
8 751,d 118.0 7.50, d 117.7 7.50,d 118.0
J =152 Hz J=152Hz J=152Hz
9 7.87,d 145.8 7.87,d 146.0 7.86,d 145.3
J=15.6 Hz J=152Hz J=152Hz
2'-OH 1292, s - 12.93, s 1292, s -
OH - - 6.04, s - - -
CH,/ 3.96, 3.93 56.2 397, s 56.2 6.05, s 101.8
methylene s

61



Table 3.10 Tentative NMR chemical shift assignment of chalcones 67 and 68.

| 2 9 o
o P 2 Rt
JTT )
6" 6 2
; e
O\

67.R"=R?=0CHj,4

68. j o
T
(o]
67 (CDCL;) 68 (CDCL;)
Position
6H 6C 6H 6C
1’ - 133.9 - 133.8
2' 7.25, s 106.3 7.26, s 106.2
3’ - 153.2 - 153.3
q' - 142.6 - 142.6
5 . 153.2 - 153.3
6 7.25, s 106.3 7.26, s 106.2
1 - 128.0 - 129.5
7.13,d 7.17,d
2 110.7 106.8
J=16Hz J=0.8Hz
3 - 151.6 - 150.0
4 - 149.4 - 148.6
6.89, d 6.85, d
5 111.3 108.8
J=80Hz J=8.0Hz
7.24, dd 7.13, dd
6 123.0 125.3
J =72 1.6Hz J =80, 1.2 Hz
7 - 189.5 - 189.2
7.31,d 7.32,d
8 120.0 119.9
J=15.6 Hz J =156 Hz
7.74, d 7.74, d
9 145.0 144.7
J=15.6 Hz J=15.6 Hz
CHy/ 61.0, 56.6, | 6.03,3.95,3.93, | 101.8, 61.1,
3.93,3.92 s
methylene 56.2, 56.1 S 56.5

62
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OH O
MOM-CI (2.5 equiv)
| (0] | [e] OH O OH O
oj@)kH K,COg, t o i y  NaOH 1 equi _ oo HCI 10% — O o
0
HO scettone, ShO c MOMO EtOH, rt, 12h OMOM 30 min, 60°C OH
, atmosphere
1 equiv 12 hours 6 ™ *
OH O
o MOM-CI (5 equiv) o OH O OH O
HOD)‘\H K,COg, 1t MoMoD)kH NaOH 1 equiv _ OMOM HCI 10% P OH
e — —— U TU, mw U T
o
HO Acetone, 80°C MOMO EtOH, rt, 12h OMOM 30 min, 60°C OH
N, atmosphere 73 75 70

1 equiv 12 hours

Figure 3.5 Synthesis of disubstituted chalcones with 4-OH on B-ring.

Table 3.11 The yields and characteristics of products 69, 70, 72-74.

Products Appearance Yield (%) Remarks
72 Yellow liquid 92 -
73 Yellow liquid 95 -
74 Yellow crystal 70 new
69 Yellow crystal 96 known
70 Orange crystal 66 known

Because of the disadvantage of the direct preparation of 4-OH substituent, 69
and 70 were prepared via three steps covering the participation of protecting group
(Chloromethyl methyl ether) (Figure 3.5). After preparing the protecting agent - MOMCL
in high yield (74%), it was used to convert sensitive OH groups in benzaldehydes into
less sensitive ether functional group in quantitative yield using the ratio between
MOMCL and one OH group approximately 3 — 1 or more. These benzaldehydes were
proceeded to react with 2'-hydroxyacetophenone to furnish chalcones 74 and 75. 74
was obtained by column chromatography with 70% yield while 75 was not stable after
acidified with 10% HCl leading to 70. Chalcone 70 was purified by column
chromatography with the yield of 66%. If 74 was used, the decomposition would
accomplish 69, the deprotection of MOM group by stirred 74 in 10% HCl at 60 °C for

15 min was carried out. Then, 69 was achieved in higher yield nearly 96% by
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crystallization in MeOH. The yield and characterization of products in each step are

illustrated in Table 3.11.

The structural identification of 69, 70 and 72-74 was conducted by ‘H and *C
NMR analysis, as shown in Table 3.12. Benzaldehyde bearing MOM 72 and chalcone
74 derived from 72 had a resemblance in the NMR signals on benzaldehyde ring part.
Furthermore, the most similarity in *H and "*C NMR between chalcones 69 and 74 was
observed owing to their structural differentiation only from MOM. Unfortunately, 75
was not isolated to achieve NMR data; therefore, it is quite hard to compare 'H and
BC NMR between benzaldehyde 73 bearing MOM group and MOM-deprotected
chalcone 70, yet they still resemble together in the NMR signals on B-ring except MOM
peaks not seen in chalcone 70. The structural confirmation of the new compound 74
was indicated in HR-MS results. The exact mass of CigHigOsNa [M+Na]* requires

337.10519 and the outcome was shown as 337.10480.

3.2.2 Biological activity evaluation

Ten compounds (57, 60, 61, 63-68, 70) among fourteen have already been
assessed for AMPK activation activity (Figure 3.6). Because this part includes analyses
for disubstituted chalcones containing only OH, OCH; and methylenedioxy groups, 74
bearing MOM would be analyzed in the next part. From the graph, three compounds
(63, 65 and 70) with the potencies of 9.16, 8.90 and 5.10, respectively were the most
active compounds even more potent than 53 with potency as 4.58. Regarding
chalcones bearing dimethoxy substituents on B-ring, five compounds have already
been screened for biological activity except 62. 57 was found to be toxic to the cell
so AMPK activation activity was not tested further. Three chalcones 60, 61 and 66
carrying 2,4-dimethoxy, 2,5-dimethoxy and 3,5-dimethoxy substituents on B-ring
exhibited low abilities to activate AMPK compared to 53 with potencies as 2.15, 1.81
and 2.69, respectively. Interestingly, 3,4-dimethoxy substituents on B-ring mediated 63
a dramatic potential with a value as 9.16 which was approximately twice as much as

that of 53. From this outcome, it can be seen that the hypothesis relating to chalcone
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Table 3.12 Tentative NMR chemical shift assignment of chalcones 69, 70, 72-74.

7)ﬁ R
6 4 R2

72. R'= OCH3, R?> = OMOM

73. R'= OMOM, RZ= OMOM

OH O

h 9
2 P 2 g
L7 U
6 6 4R2

69. R" = OCH3, R? = OH

70.R'=R2=0OH

74.R" = OCHj3, R? = OMOM

72 (CDCly) 74 (CDCly) 69 (CDCly) 73 (CDCly) 70 (acetone-dy)
Position
&H é6C 6H é6C &H é6C &H &6C &H &6C
1’ - - - 120.3 - 120.3 - - - 121.0
2' - - - 163.7 - 163.7 - - - 164.4
6.94,d 6.97,d 6.96, dd
3’ - - 118.7 118.7 - - 118.9
J=84Hz J=8.4Hz J=8.4,12Hz
7.49, td 7.48,t 7.53, td
4 - - 136.3 136.3 - - 137.0
J=178,16Hz J=8.0Hz J=284,1.6Hz
6.95, td 6.94, t 6.97, td
5 - - 118.9 118.9 - - 119.7
J=28.0,0.8Hz J=T6Hz J=84,12Hz
7.93, dd 792, d 8.22,dd
6 - - 129.8 129.6 - - 131.1
J=80,12Hz J=T7.6Hz J=84,16Hz
1 - 130.6 - 128.0 - 127.4 - 131.2 - 128.1
7.40,d
2 7.12,s 114.4 7.50, s 115.8 7.14, s 110.5 7.62,s 115.5 116.2
J=20Hz
148.9
3 - 149.6 - 147.1 - - 147.5 - 146.4
147.0
q - 151.4 - 152.6 - - 152.7 - 149.6
6.93,d 7.02,dd 7.02,d 7.23,d 7.27,dd
5 109.3 111.9 115.1 116.0 116.5
J=88Hz J=28.0,04Hz J=8.4Hz J=84Hz J=28.0,20Hz
7.11,d 7.32, dd 7.25,d 7.45,d 6.93,d
6 125.3 125.0 123.8 126.3 123.9
J=88Hz J=84,20Hz J=8.0Hz J=80Hz J=80Hz
7 9.54, s 190.2 - 193.8 - 193.8 9.80, s 190.8 - 194.8
7.51,d 7.50, d 7.79,d
8 - - 118.3 117.7 - - 118.1
J=152Hz J=144Hz J=152Hz
7.87,d 7.87,d 7.85,d
9 - - 145.6 146.0 - - 147.0
J =156 Hz J=152Hz J=152Hz
2'-OH - - 1291, s - 1294, s - - - 13.08, s -
OH - - - 6.06, s - - - 8.43, s -
5.01 5.30 5.27,5.24 954,
CH, 94.4 95.8 - - - -
S S S 95.0
361, 3.21 55.7, 3.94, 3.56 56.5, 3.47 56.4,
CH, 397, s 56.2 - -
S 55.2 S 56.2 S 56.3
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Figure 3.6 Biological evaluation of disubstituted chalcones with OH, OCH; and

methylenedioxy on B-ring.

with 3-methoxy group being the potent one seemed to be not totally suitable; for
example, 66 bearing 3,5-dimethoxy displayed the potency higher than 60 and 61 with
no 3- or 5-OCH; and 5-OCH; substituents, respectively which correlated with the
hypothesis, but 66 was less active than 63 carrying 3-OCH; around 3.4 times. Therefore,
it was considered that 3-OCH5; on B-ring should be the vital factor for improving the
AMPK activation activity. The sufficient issue that made 63 distinct from the other three
chalcones was 3,4-dimethoxy group on B-ring of 63 more compact than 2,4-, 2,5- and
3,5-dimethoxy. Thanks to compact B-ring, 63 may easily rotate B-ring around its
symmetric axis, which was likely convenient for the interaction with AMPK kinase of 63
compared to the other three compounds with steric structure on B-ring. Ultimately,
3,4-disubstitution on B-ring seemed to play a radical role to boost the AMPK activation
activity of chalcone derivatives compared to disubstitution at the other position. Thus,
three  compounds possessing  3,4-disubstitution covering OCH;, OH and
methylenedioxy such as 64, 65 and 70 were evaluated thereafter. The results showed
that two compounds 64 and 70 had potencies approximate with 53, (4.03 and 5.10,
respectively). However, 65 demonstrated a dominated AMPK activation with potency

as 8.90, which was comparable to chalcone 63. Moreover, 3',4’ 5'-trimethoxychalcones
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with 3,4-disubstitution on B-ring such as 67 and 68 were also utilized to evaluate their
activity. They bear the same B-ring with 63 and 65 but low activities with potencies as
2.45 and 1.40 respectively were observed, which underlied that A-ring as 3',4",5'"-
trimethoxyacetophenone might not be a suitable component to improve AMPK
activation activity of chalcone derivatives. Finally, 63 and 65 were chosen as promising
compounds for activating AMPK and it was found that 3,4-position on B-ring of 2'-
hydroxychalcones could be potent places to settle substituents in order to develop
activities of chalcones compared to the other position couples. Therefore, a series of
chalcone derivatives were prepared with A-ring as 2'-hydroxyacetophenone while B-
ring bore a diverse variety of substituents at 3,4-position to compare with 63 and 65

possessing dimethoxy and methylenedioxy substituents.

3.3 Synthesis of chalcones with 3,4-disubstitution on B-ring

3.3.1 Synthesis and structural elucidation

Firstly, vanillin, isovanillin and 3,4-dihydroxybenzaldehyde were alkylated
following the method addressed by Matsuda et al. to furnish twelve benzaldehyde
derivatives (76-87) with various groups at 3,4-position on phenyl ring.® Twelve
chalcones with 3,4-disubstitution on B-ring (88-99) were synthesized from these
benzaldehyde  derivatives  (76-87) by aldol  condensation — with  2'-
hydroxyacetophenone (Figure 3.7). The yield and appearance of these chalcones were
described in Table 3.13. Most benzaldehyde products were obtained in moderate to

good vyields.

The structural determination of twenty-four benzaldehyde derivatives and
chalcones were elucidated by 'H and *C NMR analysis as shown in Tables 3.14-3.19.
Fach table shows the 'H and >C NMR signals of benzaldehyde derivatives and their
corresponding chalcones. The signals of benzaldehyde products resemble the ones
on B-ring of their corresponding chalcones. All chalcones had the same signals of those

in A-ring of 2'-hydroxyacetophenone. The differences of signals on B-ring only came
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from various substituents connected at 3,4-position but the ones on B-ring bear a
resemblance to one another because of substituents being fixed at 3,4-position. There
are seven new compounds (89, 92-95, 98, 99) and their molecular weights were

confirmed by HR-MS. The results of MS are presented in Table 3.13.

K,COj3 excess
_

Acetone, 80°C

o (o}
O
/ : : )kH HO: : JLH . K,COj3 excess R/O: i AH
RBr
R.
O HO R\O

_ >
Acetone, 80°C

24 hours 24 hours
1 equiv 1.5 equiv 1 equiv 3 equiv
o
OH O ) NaOH OH O )
R H 3 equiv Z R
+ L o
R EtOH, rt, 12h R3
76-87 88-99
1 equiv 1 equiv

76/88. R2= OCHz, R3= £°07

77/89. R2= OCH3, R?= $50" "
78/90. R2= OCHg, R¥= S50 ~F
79/91. R2 = OCHg, R3 = 5\0“)\
80/92. R2= OCH, R3= N0 "0~

81/93. R2= OCH; R= S~ O~

82/94. R2= OCH; R=  ¢5g O~

83/95. R2= OCH,, R3=  &~0 OO
84/96. R3= OCH, R2= &30

85/97. R2=R®= o

86/98. R?=R?= &g~

87/99. R2=R3=  f~o~\F

Figure 3.7 Synthesis of di-substituted benzaldehydes and chalcones with 3,4-

disubstitution on B-ring.

3.3.2 Biological activity evaluation

There are eleven chalcones with AMPK activation potency results except 97
(Figure 3.8). The results were illustrated by the bar chart including the potency of 74
bearing MOM and 63 for comparison. A variety of alkyl substituents were connected

to OH groups of vanillin, isovanillin and 3,4-dihydroxybenzaldehyde to modify the
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Table 3.13 Yields, characteristics and HR-MS (ESI) outcomes of products 82-105.

Benzaldehydes/  Appearance Yield Remarks Exact HR-MS
Chalcones (%) Mass (ESI)
76 White liquid 80 - - -
T7 White liquid 85 - - -
78 Brown liquid 86 - - -
79 Brown liquid 88 - - -
80 Brown liquid 78 - - -
81 Brown liquid 85 - - -
82 Brown liquid 82 - - -
83 Brown liquid 76 - - -
84 Brown liquid 78 - - -
85 Brown liquid 89 - - -
86 Brown liquid 91 - - -
87 Brown liquid 87 - - -
88 Yellow crystal 64 known - -
89 Yellow crystal 75 new 335.12593  335.12410
90 Yellow crystal 78 known - -
91 Yellow crystal 61 known - -
92 Yellow crystal 74 new 365.13649  365.13620
93 Yellow crystal 65 new 379.15214  379.15150
94 Yellow liquid 79 new 395.14706  395.14650
95 Yellow liquid 54 new 439.17327  439.17360
96 Yellow crystal 67 known - -
97 Yellow crystal 51 known - -
98 Yellow crystal 80 new 363.15723  363.15710
99 Yellow crystal 69 new 359.12593  359.12590
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Table 3.14 NMR chemical shift assignment of benzaldehydes and chalcones 76, 77,

2
(0]
~
o
3
R4

88 and 89.

(0]

76.R® = f;\o/\

77.R% = f\o/\/

OH O

. 9
2 P 2o
oy O
4 J 6 R3

~

88.R3 = ;\O/\

89.RP= S\ g~

6 4
76 (CDCls) 88 (CDCls) 77 (CDCL) 89 (CDCL,)
Position
&H &6C &H é6C 6H 86C &H &6C
1’ - - - 120.3 - - - 120.1
2 - - - 163.7 - - - 163.6
6.91,d 7.00, dd
3 - - 118.8 - - 118.6
J=84Hz J=8.4,08Hz
7.49, td 7.45, td
4 - - 136.3 - - 136.
J=88,16Hz J=84,16Hz
6.94, td 6.90, td
5 - - 118.9 - - 118.7
J=28.0,0.8Hz J=8.0,08Hz
7.93,dd 791, dd
6 - - 129.7 - - 129.6
J=8.0,16Hz J=8.4,16Hz
1 - 129.9 - 127.6 - 130.1 - 127.4
7.18,d 7.40,d 7.15,d
2 732, s 109.2 111.0 109.6 111.0
J=16Hz J=1.6Hz J=20Hz
3 - 149.7 - 151.5 - 150.1 - 151.6
q - 153.9 - 149.7 - 154.4 - 149.7
6.88, d 7.25, dd 6.96, d 7.21,dd
5 111.3 112.5 111.6 112.5
J=80Hz J=84,20Hz J=84Hz J=84,20Hz
7.34,d 7.03,d 7.43,dd 6.87,d
6 126.6 123.7 126.9 123.6
J=84Hz J=80Hz J=28.0,20Hz J=84Hz
7 9.75, s 190.7 - 193.8 9.84, s 191.0 - 193.6
752,d 7.49,d
8 - - 117.9 - - 117.6
J=15.6 Hz J=152Hz
7.89,d 7.85,d
9 - - 145.9 - - 145.8
J=15.2Hz J=152Hz
2'-OH - - 1292, s - - - 12.96, s -
4.06, t 4.00, t
4.10, g 417, g J=68Hz 70.8, J=68Hz 70.5,
CH, 64.5 64.6
J=6.4Hz J=T72Hz 1.90, sext 22.4 1.88, sext 224
J=T72Hz J=T76Hz
3.84, s 3.96, s 392, s 392, s
55.9, 56.3, 56.2, 56.2,
CHs, 1.42,t 1.50, t 1.06, t 1.04, t
14.5 14.8 10.5 10.4
J=T72Hz J=T72Hz J=T76Hz J=T76Hz
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Table 3.15 NMR chemical shift assisnment of benzaldehydes and chalcones 85, 86,

97 and 98.
o2 2 @ 85.R2=R3 = 5\0/\ 2.0"' 9 /9 2 o 97.R?=R3= 5\0/\
7" (7 O
R 6 86.RZ=R= g~ 4 6 6 IR BR=R= S
85 (CDCls) 97 (CDCL3) 86 (CDCls) 98 (CDCls)
Position
6H 6C 6H é6C 6H 8C 8H é6C
1’ - - 120.4 - - - 120.2
2' - - 163.7 - - - 163.6
7.01,d
3’ - - 7.25, m 118.8 - - 118.6
J=8.4Hz
7.49,t 747, t
4 - - 136.3 - - 136.1
J=80Hz J=8.4Hz
6.94, t 6.93, t
5 - - 118.9 - - 118.8
J=T76Hz J=T76Hz
7.93,d 7.92,dd
6 - - 129.7 - - 129.6
J=80Hz J=80,12Hz
1 - 130.0 127.7 - 130.0 - 127.6
2 7.38, s 111.0 7.20, s 113.0 7.39, s 111.4 7.19,s 113.2
3 - 149.2 152.0 - 149.6 - 149.4
q - 154.4 154.4 - 154.8 - 152.3
6.93,d 6.89, d 6.94, d 7.22,dd
5 111.8 113.1 112.0 113.4
J=8.4Hz J=8.4Hz J=8.0Hz J=80,12Hz
7.39,d 7.03,d 7.40, dd 6.89,d
6 126.6 123.8 126.6 123.8
J=80Hz J=8.4Hz J=88,16Hz J=80Hz
7 9.80, s 191.0 193.8 9.81, s 191.1 - 193.7
7.50,d 7.49,d
8 - - 117.8 - - 117.7
J=152Hz J=152Hz
7.88,d 7.86,d
9 - - 146.0 - - 1459
J=152Hz J=152Hz
2'-OH - - 1293, s - - 1297, s -
4.16, q 4.17, q 4.03,t,/=68Hz 4.03,t,/=6.8Hz T1.1,
J=68Hz 64.7, J=68Hz 65.1, 4.01,t,J=68Hz 70.7, 4.01,t,/=68Hz 70.6,
CH,
4.13, q 64.6 4.16, q 64.7 1.87, sext, J = 7.2 Hz 22.6 1.88, sext, J=7.0Hz | 22.8,
J=68Hz J=68Hz 1.85, sext, /= 7.2 Hz 1.87,sext, J=7.2Hz | 22.6
1.47,t 1.50, t 1.05, t 1.08, t
J=T72Hz 14.7, J=68Hz 15.0, J=T72Hz J=T76Hz 10.6,
CH;, 10.5
1.45,t 14.6 1.49, t 14.8 1.04, t 1.06, t 10.5
J=T72Hz J=T72Hz J=T72Hz J=T76Hz




90 and 91.

2 (o]
O
-
Ty
3
R4

6

78. R3 = ;\O/\/

79.R3 = f\o/\/k

OH O

9
2 N 2 o
"ONRS
6 6 4R3
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Table 3.16 NMR chemical shift assignment of benzaldehydes and chalcones 78, 79,

90. R3 = ;é\o/\/

91.R3= fxo/\)\

78 (CDCLl,) 90 (CDCly) 79 (CDCly) 91 (CDCl3)
Position
6H &6C 6H 86C &H 86C &H 8C
1 - - - 120.2 - - - 120.3
2 - - - 163.6 - - - 163.7
3 - - 6.93,d,/=8.0Hz 118.6 - - 6.92,d,/=84Hz | 118.7
4 - - 7.47,t,J=8.0Hz 136.2 - - 7.48,t,J=72Hz | 136.2
5 - - 6.90,t,J = 8.0 Hz 118.8 - - 6.94,t,J=80Hz | 1188
6 - - 791,d,/=8.0Hz 129.6 - - 793,d,/=80Hz | 129.7
1 - 124.4 - 127.9 - 130.0 - 127.6
7.36,d
2 742, s 109.6 7.16,s 111.0 109.3 717, s 110.8
J=16Hz
3 - 130.4 - 151.0 - 138.7 - 1514
q - 153.7 - 149.8 - 154.0 - 149.9
6.98,d 7.00,d 6.93,d 7.24, dd
5 112.2 113.1 111.8 112.9
J=88Hz J=8.4Hz J=84Hz J=84,16Hz
7.43,d 7.21,d 7.39, dd 7.02,d
6 126.7 123.4 126.7 123.6
J=6.4Hz J=84Hz J=84,20Hz J=84Hz
7 9.85, s 191.0 - 193.6 9.80, s 190.9 - 193.8
7.50,d 751,d
8 - - 118.0 - - 117.8
J=152Hz J =156 Hz
7.85,d 7.88,d
9 - - 145.7 - - 1459
J=15.6 Hz J=152Hz
2'-OH - - 12.93, s - - - 12.93, s -
C tert - - - - - 150.0 - 138.4
6.08, ddt 6.08, ddt 5.47, tt 5.52,t
CH 132.4 132.8 119.0 119.5
J=164,10.8,5.2Hz J=16,10.8, 5.6 Hz J=6.38,12Hz J=6Hz
5.44,d, =172 Hz 5.42,d,J=16.8 Hz
118.9, 118.5, 4.63,d 4.65, d
CH, 5.34,d,J=10.4 Hz 5.32,d,J=10.4 Hz 66.0 66.0
70.0 69.8 J=68Hz J=6.4Hz
4.71,d, /=56 Hz 4.65,d, ) =5.6Hz
56.0, 56.2,
3.88, 1.75, 1.72,
CHs, 394, s 56.2 3.94, s 56.2 25.8, 3.95, 1.79, 1.76, s 259,
s
18.3 18.4
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Table 3.17 NMR chemical shift assignment of benzaldehydes and chalcones 84, 87,
96 and 99.

OH O

ez 2 0 84 R9=0CH, R?= ¢ g ~F
S0
RY, 87.R?=R’= 5\0/\/

6

N o F

> 2 2 96. R® = OCHj, R2 = ;io/\/
7
4' 8 O 99 2 3
6 7 Rs _R2=R3=

84 (CDCL,) 96 (CDCls) 87 (CDCL,) 99 (CDCL,)
Position
6H 6C 6H &6C 6H 6C 8H 86C
1 - - - 120.2 - - - 120.3
2 - - - 163.7 - - - 163.7
6.91,d 7.25,dd
3 - - 118.7 - - 118.8
J=8.0Hz J=9.2,24Hz
4 - - 7.48,t,/=88Hz 136.2 - - 7.48,t,J =88 Hz 136.3
5 - - 6.93,t, ) =7.6 Hz 118.8 - - 6.94,t, ) = 8.4 Hz 118.9
791, dd 791,d
6 - - 129.6 - - 129.6
J=80,16Hz J=80Hz
1 - 129.6 - 127.7 - 129.7 - 128.0
2 7.20, s 110.4 7.19,s 111.7 7.18, s 111.2 7.21,s 113.7
3 - 154.5 - 1525 - 148.3 - 151.6
q - 148.1 - 148.4 - 153.4 - 148.8
6.78,d 7.27,dd 6.74,d 6.92,d
5 110.7 113.1 112.0 113.8
J=8.4Hz J=8.0,16Hz J=80Hz J=8.4Hz
7.25,dd 7.02,d 7.19,d 7.02,d
6 126.2 123.8 125.8 123.8
J=84,16Hz J=8.4Hz J=80Hz J=84Hz
7 9.63, s 190.3 - 193.7 9.60, s 190.1 - 193.7
7.49,d 7.49,d
8 - - 118.0 - - 118.2
V= 52452 J =156 Hz
7.86,d 7.86,d
9 - - 145.7 - - 145.7
J=152Hz J=152Hz
2'-OH - - 1292, s - - 1291, s
5.90, ddt 5.85, ddt 132.4, 133.3,
CH 132.3 6.10, m 133.1 6.10, m
J=16.0,10.4,5.2 Hz J=16.0,104,52Hz | 132.1 132.9
5.47,d,J =172 Hz
1174, | 5.45,d,J=172Hz | 118.1,
5.26,d,J =172 Hz 5.46,d, /=172 Hz 5.25,d,/ =172 Hz
117.8, 118.4, 117.2, | 5.33,d,/=108Hz | 118.0,
CH, 5.12,d,J=10.4 Hz 5.34,d,J =104 Hz 5.09,d,/=9.6Hz
69.2 70.2 69.1, 5.32,d,J=10.4 Hz 70.4,
444,d,J=48Hz 4.68,d,/=56Hz 441,d,/=48Hz
69.0 4.68,d,/=44Hz 69.9
4.67,d,J=52Hz
CHs, 3.73, s 55.6 392, s 56.2 - - - -
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Table 3.18 NMR chemical shift assisnment of benzaldehydes and chalcones 82, 83,

94 and 95.
82.R3 = t?S\O/\/O\/\O/ )
83.R3 = 5\0/\/0\/\0/\/0\ 4

OH O

o 2 o
e
6 6 4R3

9

94. R3 = f\o/\/o\/\o/

95 R3= 5‘5\0/\/0\/\0/\/0\

82 (acetone-dy) 94 (CDCly) 83 (acetone-dy) 95 (CDCly)
Position
6H &6C 6H &6C 6H &6C 6H &6C
1 - - - 120.3 - - - 120.2
2 - - - 163.7 - - - 163.6
3 - - 6.95,d,/=80Hz | 1187 - - 6.92,d,/=80Hz | 1186
4 - - 7.49,t,J=88Hz | 136.3 - - 7.46,t,)J=7.6Hz | 136.2
5 - - 694,t,J=72Hz 118.8 - - 691,t,J=76Hz | 1188
6 - - 7.93,d,J=80Hz | 129.7 - - 791,d,/=80Hz | 129.6
1 - 129.5 f 128.1 - 130.6 - 128.0
2 7.38, s 109.0 7.16,s 1114 7.39,d,/=16Hz 110.1 7.14,s 111.2
3 - 149.0 - 151.4 - 150.1 - 151.3
4 - 153.2 - 149.9 - 154.2 - 149.8
7.08,d 7.02,d 7.10,d 6.99, d
5 111.3 113.4 112.4 113.2
J=80Hz J=84Hz J=80Hz J=80Hz
7.47,d 7.24,d 7.48, dd 7.21,d
6 125.2 123.5 126.1 123.4
J=T7.6Hz J=8.4Hz J=8.0,12Hz J=84Hz
7 9.81,s 190.2 = 193.7 9.83, s 190.9 - 193.6
7.51,d 7.49,d
8 - - 118.1 - - 118.0
J=15.6 Hz J =148 Hz
7.87,d 7.84,d
9 - - 145.7 - - 145.7
J=156Hz J=152Hz
2'-OH - - 1291, s - - - 1291, s
4.22,t,J =44 Hz 72.0, 4.22,t,J=4.6 Hz 72.0,
4.21,t,J=4.6 Hz 70.9, 4.25,t, ) =48 Hz 72.1, 3.85,t,J=48Hz 70.8, | 3.89,t,J=48Hz | 70.9,
3.84,t,J=52Hz 69.5, 392,t, /=44 Hz 71.0, 3.66,t, /=48 Hz 70.5, 3.72,t,J =44 Hz 70.7,
CH
2 364,t,)J=44Hz 68.3, 373,t,J=44Hz 69.7, 358,t,/=48Hz 704, | 3.66,t,J=48Hz | 70.6,
3.48,t, /=48 Hz 67.7 357,t, /=48 Hz 68.6, 3.56,t,/=50Hz 69.4, 3.63,t, /=48 Hz 69.5,
3.45,t,J=4.6 Hz 68.7 352,t,J=48Hz | 68.5
57.2, 59.2, 58.2, 59.0,
CH; 3.86, 3.28, s 3.93,3.39, s 3.87,3.26, s 391, 3.35,s
54.6 56.3 554 56.1




Table 3.19 NMR chemical shift assignment of chalcones 92 and 93.

OH O

¢ 9
2 N 2 o
L7 1O
6 6 7,

R3 93.R3 = ;\O/\/\/O\

~

92. R3 = ;\o/\/\o/

75

92 (CDCly) 93 (CDCl,;)
Position
6H 6C 6H 6C
1’ - 120.2 - 120.2
2 - 163.6 - 163.6
3/ 6.90, d, J = 8.0 Hz 1186 | 7.23,dd, /= 8.0, 1.6 Hz 118.7
q' 7.44,t, ) =7.2Hz 136.1 7.47,t,J=7.6Hz 136.2
5 6.89,t, J = 6.8 Hz 118.7 6.92,t, ) = 7.2 Hz 118.8
6 7.90,d, J = 7.6 Hz 129.6 7.92,d, ) =7.6Hz 129.6
1 - 127.6 - 127.6
2 7.14, s 111.1 7.16, s 111.2
3 - 151.5 - 151.6
il - 149.7 - 149.8
5 6.98,d, J = 8.4 Hz 112.7 6.89,d, J = 8.4 Hz 112.7
6 7.21,d, J = 8.0 Hz 123.6 7.01,d, J = 8.4 Hz 123.7
7 - 193.6 - 193.7
8 7.48,d, J =152 Hz 117.7 7.50,d, J = 15.6 Hz 117.8
9 7.84,d, /=152 Hz 145.7 7.86,d, J =152 Hz 145.8
2'-OH 12.95, s 12.93, s

4.09,t, J = 6.4 Hz
4.14,t, J = 6.4 Hz, 72.4,

69.1, 3.45,t, J = 6.0 Hz
CH, 3.55,t, J = 6.0 Hz 68.9,

66.1, 29.5 1.93,p,J = 6.8 Hz

210, p, J = 6.0 Hz 26.2, 26.0
1.76,p, J = 6.4 Hz
CH,4 391, 3.34, s 58.7, 56.1 3.92,3.34, s 58.6, 56.2
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Figure 3.8 Biological evaluation of chalcones with 3,4-disubstitution on B-ring.

structures of chalcones. The effect of the substituents was exclusively evaluated at
3,4-position on B-ring in order to find other compounds more potent than 63 and 65.
If chalcones were derived from vanillin derivatives (74, 88-95), the OCH; group at 3-
position will remain and different substituents will extend the OH group at 4-position.
In the case that the chalcone was derived from isovanillin derivatives (96), 4-position
will be maintained with OCH3; group while allylsubstituent linked to the OH group at
3-position  will be evaluated. Regarding chalcones prepared from 3,4-
dihydroxybenzaldehyde derivatives (98, 99), both substituents at 3,4-position will be
varied. Firstly, from biological outcomes of chalcones derived from vanillin derivatives
(74, 88-95), MOM and ethyl groups seemed to be the most potent substituents to
produce 74 and 88 with the potencies of 5.60 and 4.93, respectively. These two
compounds were the best candidates in eleven compounds as well; nevertheless,
their potencies were only around two-third to that of 63. In addition, 89 along with 94

bearing propyl and 2-(2-methoxyethoxy)ethyl substituents exhibited lower potencies
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of 3.62 and 2.86, respectively. Moreover, the other molecules synthesized from vanillin
derivatives (90-93, 95) were recognized to have potencies lower than 2. As a result, it
could be realized that shorter saturated carbon chains should be powerful connectors
for improving AMPK activation activity of chalcones more than longer saturated carbon
chains; for instance, the potency of 63 was higher than that of 88 and the potency of
88 was better than that of 89 while 63, 88 and 89 possessed methyl, ethyl and propyl
groups, respectively. However, unsaturated carbon chains such as allyl and prenyl
seemed to lessen biological activity of chalcones (90, 91). Besides, saturated carbon
chains containing oxygen atoms were also a good choice; for example, 74 and 94
bearing MOM and 2-(2-methoxyethoxy)ethyl respectively displayed quite noticeable
potencies. There were some fluctuations in potencies among chalcones carrying
substituents including oxygen atoms and they were rationalized by the assumption in
Table 3.20. It can be noticed that the higher the ratios of a number of carbon and
oxygen atoms of substituents, the less potency of chalcones. Because the ratio of a
number of carbon and oxygen atoms in a molecule has a close linkage to the water-
solubility and hydrogen bonding formation of that molecule; therefore, these factors
may take responsibility for the differences among chalcones having substituents
comprising oxygen atoms (74, 92-95). On the other hand, with respect to chalcones
derived from 3,4-dihydroxybenzaldehyde and isovanillin derivatives, three chalcones
with allyl substituents (90, 96 and 99) could be used to compare one another. It was
found that 99 prepared from 3,4-dihydroxybenzaldehyde derivatives was more potent
than 96 synthesized from isovanillin derivatives whilst 96 was better than 90 derived
from vanillin derivatives with potencies such as 2.97, 1.91 and 1.43, respectively.
Nonetheless, in the case of propyl substituent, 89 prepared from vanillin derivatives
was more powerful than 98 synthesized from 3,4-dihydroxybenzaldehyde derivatives.
Thus, more tested compounds obtained from isovanillin and 3,4-
dihydroxybenzaldehyde derivatives were required to confirm the trend in the

biological activity of chalcones with 3,4-disubstitution on B-ring.
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Table 3.20 Relationship between the ratio of a number of carbon and oxygen atoms

of substituents and compound potency.

The ratio of a number
Compound Substituent of carbon and oxygen  Potency

atoms of substituents

74 S0 o7 1 5.6
92 PP 2 1.38
93 PEPNGIRS N 2.5 1.22
94 g, 1.67 2.86
95 o OO 1.75 1.83

3.4 Synthesis of chalcones with 2,4,5-trisubstitution on B-ring

3.4.1 Synthesis and structural elucidation

As mentioned above, 48 was recognized to be the most promising candidate
for inhibiting CFTR via AMPK activation.”® Therefore, 48 was a skeletal model of
chalcones with 2,4,5-trisubstitution on B-ring activating AMPK. Therefore, 48 was
chosen as the potent former structure and then some structural modifications were
performed to ameliorate its AMPK activation activity. Two separate routes were applied
to form two different series.

In the first route, 2,4,5-trihydroxybenzaldehyde was used to carry out SN,
reaction with two alkyl halides to achieve two benzaldehyde derivatives (100, 101) in
high yield (more than 85%). Some by-products were also observed when substitution
reaction only occurred on one or two OH groups; therefore, the ratio of the amount
between alkyl halide and 2,4,5-trihydroxybenzaldehyde should be 4 or 5 instead of 3
in order to obtain trisubstituted products in high yield (85 and 87%). 100 and 101 then

followed by aldol condensation with 2'-hydroxyacetophenone to furnish 102 and 103
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Table 3.21 Yields and characteristics of products 106-109.

Products Appearance Yield (%) Remarks
100 White crystal 85 -
101 White crystal 87 -
102 Yellow crystal 76 new
103 Yellow crystal 85 new

OH O R' O
/<>/\LH K,CO3 excess @AH
+ RBr ——
HO Acetone, 80°C R®
OH 24 hours R*
1 equiv 5 equiv 100.R'=R3=R%= ‘%7_/0\/

101. R =R*=R' = O

NaOH OH O R’
H 3 equiv =
! —= . W
R® EtOH, rt, 12h R
R4

100, 101

102.R'=R3*=R*= 7{0\/
1 equiv 1 equiv

103.R'=R3=R*= z&/o\/\

Figure 3.9 Synthesis of tri-substituted benzaldehydes and 2'-hydroxychalcones with
2,4,5-trisubstitution on B-ring.

(Figure 3.9). Both chalcones were obtained in good yield (76 and 85%). 100, 101 and
102 were isolated by column chromatography while 103 was precipitated after
acidified by 10% HCl, then purified by crystallization in MeOH. The yield and

appearance of these benzaldehydes and chalcones are illustrated in Table 3.21.

The structural identification of four benzaldehyde derivatives and chalcones
were operated by 'H and >C NMR analysis, as presented in Table 3.22. The 'H and *C
NMR signals of two benzaldehydes were similar to those on the B-ring of two

corresponding chalcones. Both chalcones are new compounds. The exact masses of
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Table 3.22 NMR chemical shift assignment of benzaldehydes and chalcones 100-

103.
;
Rz 100.R'=R3=R*= é’s\o/\ 102.R'=R3=R*= éio/\
4 7"
R3 6 101.R1=RO =R = S~ F 103.R'=RI=R' = S~ P
R4
100 (CDCly) 102 (CDCl,) 101 (CDCLl,) 103 (DMSO-dy)
Position
6H é6C 6H &6C 6H &6C 6H é6C
1 - - - 120.2 - - 120.5
2 - - - 163.7 - - 162.2
3 - - 7.02,d,/=84Hz 118.7 - - 6.98,d,/=8.4Hz 118.1
7.47, td
4 - - 135.9 - - 7.55,t,/=8.0Hz 136.0
J=176,12Hz
5 - - 6.93,t,J=7.6 Hz 118.8 - - 7.00,t,/=7.6Hz 118.9
6 - - 791,d,/=80Hz | 129.6 - - 8.24,d,J=8.0Hz 130.5
1 - 110.0 - 109.4 - 118.2 114.9
2 - 158.0 - 155.0 - 157.6 153.6
3 6.47, s 98.5 6.51, s 99.4 6.48, s 99.5 6.78, s 100.2
q - 153.2 - 151.4 - 155.3 152.6
5 - 138.9 - 138.6 - 143.0 142.2
6 732, s 111.3 7.16, s 116.0 7.30, s 112.0 7.61,s 113.7
7 10.32, s 188.4 - 194.4 10.30, s 187.9 193.6
8 - - 7.70,d,J=156Hz | 1183 - - 7.87,d,J=152Hz 118.0
9 - - 8.16,d,J=15.6 Hz | 1415 - - 8.20,d,J =156 Hz 139.5
2'-OH - - 13.10, s - - 12.87, s
133.1, 134.0,
CH - - - 6.02 (m 132.6, 6.09, m 133.4,
132.4 133.2
5.41,dd, J=17.2, 1.2 Hz
539,dd,/=172,1.2Hz
118.3, | 5.44,d,J=172Hz 117.8,
5.38,dd, J=17.2, 1.2 Hz
118.1, | 5.32,d,/ =104 Hz 117.7,
4.15,9,J=72Hz | 652, 66.1, 5.30,dd, J =104, 1.2 Hz
117.9 5.30,d,J =112 Hz 117.4,
CH, 4.11,qJ =68 Hz 65.1, 4.13, m 65.1, 5.29,dd, J =104, 1.2 Hz
70.3, 527,d,J=10.8 Hz 70.0,
4.08, 9,/ =68Hz 64.9 64.9, 5.24,dd, J =104, 1.2 Hz
70.2, 4.68 (d,J=48Hz 69.6,
4.63,d,J=52Hz
69.9 4.62(d, J=52Hz 69.1
4.56,d,J=52Hz
453,d,/=52Hz
1.50,t,J =72 Hz 153, t,J=72Hz 15.2,
14.9,
CH; 1.45,t, /=68 Hz 1.49,t, J=72Hz 15.1,
14.7
1.42,t,)=7.2Hz 1.45t,J=72Hz 14.9




81

102 and 103 required 379.15214 and415.15214 while their HR-MS (ESI) results were

calculated as 379.15290 and 415.152140, respectively.

The second route is that B-ring remained as 2,4,5-trimethoxybenzaldehyde and
substituents on A-ring were altered. There are eighteen chalcones obtained by Claisen-
Schmidt reaction (Figure 3.10). The yield and appearance of these benzaldehydes and
chalcones are illustrated in Table 3.23. The yields of these reactions were varied from

34 to 98%. Almost compounds were obtained by crystallization in MeOH.

R" O o o "
> NaOH ” RO ®
R . H 3 equiv R O Z O
) =
RY RY o~ EtOH, rt, 12h RY R o~
4 '

R O R* O
48.R"=0H,R?=R¥=R¥=R%=H 110. R" = CF;,R¥=R¥=R¥=R5 =H 117.R"=R%¥ = OCH;, R¥=R¥=R¥=H
104.R? =0OH,R"=R¥=R*=R%=H 111.R" = OH, R¥ = OCH3, R*=R¥=R¥=H 118.R" = OH, R¥=R% = OCH3, R¥*=R¥=H
105.R¥ = OH,R"=R?=R¥=R%=H 112. R" = OH, R¥ = OCH;, R =R¥=R¥=H 119.R" = OH,R¥=R*=Br,R¥=R%=H

. e e ! " = N OH
106. R" = OCH3;, RZ=R¥=R%¥=R% =H 113.R"=0OH,R¥=Br,R¥=R*=R%=H 120. 5
107.R? = OCH,, R"=R¥=R*=R5 = H 114.R" = OH, R*=Br,R¥*=R¥=R%=H *
108. R¥ = OCHg, R"=R?=R*=R%=H 115. R" =R%¥ = OCH;, R¥=R*=R%=H
109.R" = NH,, RZ =R¥=R¥=R% = H 116. R" = R* = OCH;, R¥=R¥=R%=H

Figure 3.10 Synthesis of chalcones with 2,4,5-trimethoxy on B-ring.

The structural identification of eighteen chalcones was operated by 'H and °C
NMR analysis, as described in Tables 3.24-3.29; nonetheless, the NMR data of 107 has
not been collected. All products bear a resemblance in the signals of B-ring as 2,4,5-
trimethoxybenzaldehyde. They were only differentiated by the peaks in distinct A-
rings. Three chalcones 113, 114 and 119 are new compounds. The exact masses of
113, 114 and 119 required 415.01571, 415.01571 and 492.92622 while their HR-MS (ESI)

results were calculated as 415.01520, 415.01670 and 492.93560, respectively.



Table 3.23 Yields and characteristics of products 48, 104-120.

Products Appearance Yield (%) Remarks
48 Orange crystal 79 known
104 Yellow crystal 45 known
105 Yellow crystal 68 known
106 Yellow crystal 80 known
107 Yellow crystal a2 known
108 Yellow crystal 76 known
109 Yellow crystal 41 known
110 Yellow crystal 86 known
111 Red crystal 61 known
112 Orange crystal 56 known
113 Yellow crystal 98 new
114 Orange crystal 45 New
115 Yellow crystal 81 known
116 Yellow crystal 75 known
117 Yellow crystal 7 known
118 Yellow crystal 61 known
119 Red crystal 80 new
120 Red crystal 34 known

3.4.2 Biological activity evaluation

82

There are eleven chalcones (48, 103-105, 108-110, 113, 114, 118 and 120)

with 2,4,5-trisubstitution on B-ring reported about AMPK activation activity as presented

in Figure 3.11 among twenty synthesized compounds. 109 and 110 changed the

morphologies of podocyte cells so they were assessed to be toxic to the cells. Besides,

the other candidates mostly expressed quite similar potencies to one another

including 48 (potency of 4.97) but the most potent one (103) still had its potency two-



Table 3.24 NMR chemical shift assignment of chalcones 48, 104 and 105.

48 R" = 2'-OH

104. R" = 3'-OH

83

105. R" = 4'-OH

48 (CDCly) 104 (acetone-dy) 105 (acetone-dy)
Position
6H &C 8H &C 6H 6C
1’ - 120.4 - 141.4 - 142.7
7.52,t 8.03, d
2' - 163.6 120.4 131.5
J=20Hz J=88Hz
7.00, dd 6.94, d
3’ 118.6 < 158.7 116.0
J=8.0,08 Hz J=88Hz
7.46, td 7.08, dd
4’ 136.0 120.3 - 162.4
J=84,12Hz J=28.0,24Hz
6.92, t 7.36, t 6.94, d
5 118.7 130.6 116.0
J=28.0,08Hz J=76Hz J=88Hz
7.92,dd 7.58,d 8.03, d
6 129.7 120.6 131.5
J=8.0,12Hz J=T7.6Hz J=88Hz
1 - 1154 - 116.2 - 116.2
2 - 143.5 - 144.8 - 144.6
3 6.52, s 97.0 6.78, s 98.5 6.78, s 98.4
4 - 155.3 - 155.8 - 155.4
5 - 153.2 - 154.4 - 154.0
6 7.12,s 112.1 7.46, s 112.8 7.45,s 112.6
7 - 194.2 - 190.1 - 188.3
7.61,d 7.66,d 7.72,d
8 118.0 115.7 120.0
J=152Hz J=156Hz J =156 Hz
8.20,d 8.14, d 8.11,d
9 141.0 139.8 138.6
J =156 Hz J=156Hz J=156Hz
OH 13.07, s - 8.66, s - 9.37, s -
3.95,3.92, 56.8, 56.5, 3.94,3.92, 57.1, 3.94,3.91, 57.0,
CH
’ 391, s 56.2 3.85, s 56.9, 56.4 3.84, s 56.7, 56.2




Table 3.25 NMR chemical shift assignment of chalcones 106, 108-110.

106. R" = 2-OCHj,4

109. R" = 2'-NH,

84

108. R" = 4-OCHj,

110. R" = 2'-CF3

106 (CDCLy)

108 (CDCL;)

109 (acetone-dy)

110 (CDCly)

Position
6H é6C 6H 86C 6H &C &H 8C
1’ - 129.8 - 131.7 - 119.9 - 125.3
7.98,d
2' - 157.7 130.7 - 155.4 - 126.8
J=88Hz
6.92,d 6.92,d 6.82,d 7.47,d
3’ 111.1 113.7 115.8 126.9
J=88Hz J=88Hz J=8.4Hz J=T76Hz
7.37,t 7.25,t 7.62,t
q 132.2 - 163.1 134.6 131.7
J=76Hz J=8.4Hz J=T72Hz
6.96, t 6.92,d 6.60, t 757, t
5 125.0 113.7 118.0 129.7
J=72Hz J=88Hz J=8.0Hz J=T76Hz
7.51,d 7.98,d 7.99,d 7.75,d
6 129.9 130.7 131.9 128.4
J=T76Hz J=88Hz J=80Hz J=T76Hz
1 - 1155 - 115.8 - 116.6 - 115.0
2 - 143.2 - 143.3 - 144.8 - 143.7
3 6.44, s 96.9 6.48, s 97.1 6.78, s 98.6 6.47, s 97.0
q - 154.4 - 154.6 - 154.0 - 154.9
5 - 1524 - 152.4 - 1529 - 153.4
6 7.03, s 111.6 7.09, s 111.7 7.46, s 112.8 7.03, s 111.2
7 - 193.4 - 189.3 - 192.2 - 195.8
7.20,d 744, d 7.78,d 6.99, d
8 120.5 120.1 1214 124.9
J=16.0Hz J=15.6 Hz J=152Hz J=16.0 Hz
7.86,d 8.03,d 8.10,d 761,d
9 138.8 139.3 138.2 143.0
J=16.0Hz J=15.6 Hz J =156 Hz J=16.4 Hz
NH, 7.05, s - - -
128.1, g
CF, - - _
J=323Hz
3.85, 3.80, 56.4, 56.2, 3.89, 3.85, 56.6, 56.4, 3.94, 391, 57.1, 56.9, 3.93, 3.86, 56.6, 56.5,
CH
: 3.78, s 55.9,55.6 | 3.84,3.82,s | 56.1,55.4 3.84, s 56.4 3.81,s 56.2




Table 3.26 NMR chemical shift assignment of chalcones 111, 112 and 118.

85

111. R% = OCHj, R¥ = H 112. R¥ =H, R% = OCH;4
118. R% = R% = OCH;
111 (CDCL,) 112 (CDCL,) 118 (CDCL,)
Position
6H 6C 6H 6C 6H 6C
1 - 1156 - 1359 - 106.5
2' - 166.0 A 161.0 - 162.5
6.59, d 5.92, d
3! 6.50, s 101.2 111.1 93.9
J=80Hz J=20Hz
7.32,t
a4’ - 166.8 1354 - 168.4
J=8.4Hz
6.44, dd 6.41, d 6.06, d
5! 1075 1017 91.2
J=104,24Hz J =80 Hz J=20Hz
7.80, d
6' 131.3 2 164.9 - 165.9
J=88Hz
1 - 114.5 - 116.2 - 116.3
2 - 143.5 - 1434 - 1433
3 6.43, s 97.0 6.51,s 97.2 6.48, s 97.1
4 - 155.1 = 154.9 - 154.6
5 - 153.0 - 152.7 - 152.4
6 7.09, s 112.0 7.10, s 111.8 7.08, s 111.7
7 - 192.6 - 194.6 - 192.8
7.50, d 7.81,d 7.83,d
8 1182 1255 125.4
J=152Hz J =156 Hz J =156 Hz
8.14, d 8.14, d 8.08, d
9 140.0 1387 138.0
J =156 Hz J =160 Hz J =156 Hz
2'-OH 13.68, s - 13.34, s - - -
56.7, 56.7, 56.6, 56.4,
3.92, 3.90, 3.89, 3.93,3.92, 3.90, 3.86,
CH,4 56.4, 56.5, 56.1, 55.8,
3.82,s 3.89,3.87, s 3.85,3.79, s
56.1, 55.6 56.2, 55.9 55.6



Table 3.27 NMR chemical shift assignment of chalcones 113, 114 and 119.

113.R?=H,R%=Br,R*=H

119.R? =R*=Br,R¥ =H

86

114.R¥=H,R¥=H,R"=Br

113 (CDCL,) 114 (CDCL,) 119 (acetone-d,)
Position
6H 8C 6H 8C 6H 6C
1’ - 130.1 - 121.7 - 121.9
2 - 164.1 - 162.6 - 158.0
7.14,d 6.90, d
3! 121.6 120.6 - 109.8
J=16Hz J=88Hz
7.52, dd 8.45,d
4’ - 119.2 138.5 140.0,
J=8.8,2Hz J=20Hz
7.00, dd
5 122.1 = 110.3 - 112.1
J=8.8,20Hz
7.72,d 7.99,d 8.04, d
6' 130.6 131.9 131.6
J=88Hz J=24Hz J=20Hz
1 - 115.1 2 115.2 - 113.6
2 - 143.4 2 143.6 - 143.0
3 6.48, s 96.8 6.52, s 96.9 6.71, s 97.0
4 - 155.4 = 155.6 - 155.1
5 - 153.4 - 153.6 - 154.2
6 7.07,s 1121 7.12,s 1121 7.58, s 111.2
7 - 193.5 = 193.1 - 192.1
7.49,d 7.48,d 7.79,d
8 1174 117.2 1159
J =156 Hz J=152Hz J =156 Hz
8.17,d 8.23,d 8.26,d
9 141.6 142.1 141.2
J =156 Hz J=152Hz J=152Hz
2'-OH 13.20, s - 13.01, s - 13.88, s -
3.91, 3.89, 56.7, 3.95, 3.93, 56.9, 3.88, 3.86, 56.4,
CH
’ 3.86, s 56.4,56.2 392, s 56.5, 56.2 3.80, s 56.2,55.6




Table 3.29 NMR chemical shift assignment of chalcones 115-117.

115. R®¥ = OCH3, R* =H,R%¥ =H

117.R¥ =H, R* = H, R¥ = OCH;,4
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116. R¥ = H, R* = OCHj3, R®

115 (CDCL,)

116 (CDCL,)

117 (CDCLy)

Position
6H é6C 6H &C 6H é6C
1’ - 122.4 - 130.2 - 119.1
2' - 159.9 - 152.1 - 157.5
6.36, d 6.87,dd 6.58,d
3’ 98.4 111.1 104.2
J=24Hz J=9224Hz J=84Hz
6.93, dd 7.27,t
a4 - 163.5 124.8 130.4
J =92 32Hz J=84Hz
6.42, dd 6.58, d
5 105.0 & 152.4 104.2
J=84,20Hz J=8.4Hz
7.60, d 7.10,d
6 132.2 114.4 - 157.5
J=8.4Hz J=28Hz
1 - 115.6 5 1154 - 1154
2 - 143.0 3 143.2 - 143.4
3 6.39, s 96.8 6.43, s 96.9 6.44, s 97.1
4 - 154.1 - 154.4, - 154.2
5 - 151.9 - 153.4 - 152.5
6 6.99, s 111.0 7.04, s 1133 7.01,s 111.0
7 - 190.6 L 192.8 - 195.4
7.32,d 7.23,d 6.87,d
8 125.0 118.1 126.8
J=156Hz J=16.0 Hz J=16.4Hz
787,d 787,d 7.60, d
9 137.2 138.8 140.4
J=15.6Hz J=16.0Hz J=16.4Hz
3.79, 3.76, 56.2, 56.0, 3.84, 3.79, 56.4, 56.3, 56.5,
3.88, 3.82,
CH, 3.75, 3.74, 55.8, 55.4, 3.77, 3.76, 56.2, 55.9, 56.1,
3.76,3.74, s
3.71,s 55.2 371, s 55.6 56.0




Table 3.30 NMR chemical shift assignment of chalcone 120.

126

120 (acetone-dy)
Position
6H 6C
1’ - 115.9
2 - 164.9
3’ 7.39,d,J=88Hz 118.3
4’ 7.88,d,J=8.0Hz 131.0
5 8.13,d,/=9.2 Hz 125.6
6 7.58,t,/=8.4Hz 119.0
7 7.69,td, J = 6.8, 0.8 Hz 128.5
8’ 8.44,d, /=76 Hz 124.9
9' - 138.4
10’ - 126.4
1 - 114.6
2 - 144.9
3 6.82, s 98.4
q - 156.4
5 - 155.2
6 7.57,s 113.1
7 - 194.8
8 7.98,d,J=15.6Hz 126.8
9 8.41,d,/=152Hz 1414
CH; 4.00, 3.95, 3.87, s 57.2,57.0, 56.5

88



89

10.00 9.16
9.00
8.00
7.0 6.13 6.05
9 600 497 500 5.04 4.97
3 5.00
5 3.90
T 4.00
2.80

3.00
500 1.65
1.00 I
0.00
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Compounds

Figure 3.11 Biological evaluation of chalcones with 2,4,5-trisubstitution on B-ring.

third as much as chalcone 63. In the first route, only 103 with allyloxy group at 2,4,5-
position exhibited potency result so far and it showed the highest quality compared
to the other candidates in the second route with potency of 6.13 and definitely it
would dominate the reported chalcone 48 for AMPK activity which paved the way for
further synthesized compounds with various substituents at 2,4,5-position. On the
other hand, in the second route, it could be seen among three compounds 48, 104and
105 with potency of 4.97, 2.80 and 3.90, respectively that monohydroxy group on A-
ring should settle at 2'-position to achieve the highest potency for activating AMPK
compared to 3'-or 4'-position. Differentiation the potency between 105 (5.00) and 108
(3.90) suggested that OCH; group seem to be more active than OH at 4'-position which
may imply that 106 bearing OCHs group at 2'-position was likely to exceed 48 in
potency. From this idea, the other chalcones 115-117 carrying dimethoxy substituents
at 2',4'-, 2" 5'- and 2',6', respectively were synthesized to confirm the effect of OCHs
group on A-ring compared to OH group. 118 was prepared to compare with 48 since it
contained two more OCH; groups at 4',6'-position along with OH group at 2'-position
the same as 48. The potency of 118 (5.04) was quite similar to that of 48. Two OCHs
groups at 4',6'-position had no advantage on biological activity of 118; thus, two

compounds 111 and 112 with 4'- and 6'-OCH,,respectively along with 2'-OH on A-ring
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were prepared to collect more data about structure-activity relationship. In addition,
two chalcones 113 and 114 bearing 2'-OH group along with 4'-Br and 5'-Br, respectively
were synthesized to differentiate with 48. 114 with 5'-Br had comparable potency with
48, which was 4.97, this result reflected that 5’-Br substituent could not enhance
chalcone having impressive biological outcome. Surprisingly, 4'-Br substituent lessened
the potency of 113 to just one third as much as that of 48 (1.65). Therefore, 119 with
2'-OH and 3',5'-dibromo on A-ring evading 4'-Br substitution was prepared to evaluate
biological activity in case of dihalogene chalcone. Interestingly, 120 with A-ring as
naphthalene derivatives was observed with comparable potency (6.05) to the highest
one (103) which proposed an appealing direction for chalcones possessing
polycyclicaromatic component. Finally, from these results, the synthesis of more
chalcones was necessary to search for good candidates that exceed 48 in potency

similar to chalcones 63 and 65.

3.5 Synthesis of dihydrochalcones

3.5.1 Synthesis and structural elucidation

Hydrogenation reaction was carried out for two potent chalcones 48 and 65 to
furnish dihydrochalcones as the target products (Figure 3.12). The reactions are
monitored by TLC to determine the process of product formation. In case of 48, after
3 h, there are two products obtained in the mixture containing 121 and 122. If the
mixture was handled to work-up, these two products would be achieved by column
chromatography in moderate yield as presented in Table 3.30. If the reaction was
prolonged for 2 days, TLC plate appeared only one spot of 123 with the yield nearly
100% and purification was not necessary. On the other hand, 65 was applied under
the same conditions to prepare 124 in excellent yield (98%) although the reaction was
extended in one and a half day. Only one spot of 124 was observed; therefore,

purification was not required.
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Figure 3.12 Synthesis of dihydrochalcones.

Table 3.31 Yields, characteristics and HR-MS (ESI) results of products 48, 121-124.

Products Appearance Yield Remarks  Exact mass HR-MS
(%) (ESD
121 White crystal 53 new 339.12084 339.1204
122 Oil 40 new 341.13649 341.1359
123 White crystal 98 new 325.14158 325.1395
124 White crystal 98 known - -

The structural identification of four compounds was operated by 'H and *C NMR
analysis, as shown in Table 3.31. The 'H and *C NMR signals of 121-123 resemble to
those of 48 except for the signals designated for the peaks of a,B-unsaturated ketone
linker. 124 was also similar to 65 in the 'H and C NMR signals excluding the
disappearance of the signals of alkene functional group in 124. 121-123 are new
compounds and the exact masses along with HR-MS (ESI) results are presented in

Table 3.30.

3.5.2 Biological activity evaluation

The AMPK activation activity results of dihydrochalcones are shown in Figure
3.13. Firstly, four-column of 48 derivatives with different saturation degree
demonstrated that the single carbonyl group made 121 dominated in AMPK activation

activity than conjugation enone system with the potency of 121 as 9.07 comparable



Table 3.32 NMR chemical shift assignment of chalcones 127-130.
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~
OH 0 4 7O 9 2
2 2
7 O,
(7
6 6 4 (0]
127 128 130
127 (CDCly) 128 (CDCl3) 129 (DMSO-dy) 130 (CDCl3)
Position
6H 8C 8H 8C 6H 8C 6H é6C
1 - 120.5 - 127.3 - 128.3 - 134.5
2 - 162.6 - 155.9 - 155.1 - 162.5
6.98, d 6.76, d 6.74,d
3 118.6 6.86, m 117.2 114.8 118.6
J=80Hz J=80Hz J=T72Hz
7.45, td 7.13, td 6.96, td 7.45,t
4 136.3 128.7 126.6 136.3
J=8.0,12Hz J=84,16Hz J=76,12Hz J=T76Hz
6.86, t 6.78, t 6.69, t 6.88, t
5 118.9 119.6 118.8 118.9
J=T76Hz J=T72Hz J=T6Hz J=T76Hz
7.77,dd 7.03, dd 7.72,d
6 130.2 6.86, m 127.0 129.6 129.8
J=8.0,08Hz J=76,08Hz J=80Hz
1 - 119.6 - 120.8 - 121.6 - 119.3
2 - 143.1 - 143.7 - 142.5 6.73, s 108.3
3 6.52, s 97.2 6.55, s 98.2 6.62, s 98.7 - 147.8
q - 151.8 - 151.3 - 151.2 - 146.0
6.69, d
5 - 148.4 - 148.2 - 147.6 108.9
J=80Hz
6.98, d
6 6.75, s 114.8 6.70, s 114.4 6.74, s 114.7 121.2
J=8.4Hz
4.67, dd
7 - 206.6 74.6 251, m 29.9 - 205.4
J=10.0,4.0Hz
3.24,t 1.74, pentet 3.26, t
8 39.2 2.85,2.67, m 38.3 29.0 40.2
J=80Hz J=80Hz J=T76Hz
298, t 298, t
9 25.8 2.20,1.94, m 25.4 251, m 29.5 29.8
J=80Hz J=T76Hz
2'-OH 12.38, s - 8.30, s - 9.24, s - 12.31, s -
56.9, 56.8, 56.4,
CH; 3.88, 3.82, 3.88, 3.85, 3.75, 3.73,
56.5, 56.7, 56.2, 591, s 100.9
/methylene 3.80, s 3.83, s 3.67,s
56.2 56.4 55.9
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Figure 3.13 Biological evaluation of hydrogenated chalcones.

to that of the most potent 63 so far. Moreover, reducing of carbonyl group of 121 to
OH group still encouraged 122 to overwhelm 48  with the potency of 7.82.
Nevertheless, the highest degree of saturation of 48 decreased significantly potency of
123 (1.6). As a result, if the alkene group was reduced and carbonyl group was
hydrogenated to OH group, they still boost the biological activity of products
compared to parent chalcone but the compound bearing saturated carbon chain
seemed to be inactive in AMPK activity. From this consideration, the potent chalcone
65 was used to confirm the results by hydrogenation reaction. But surprisingly,
dihydrochalcone 124 was found to be incapable to activate AMPK with the potency
as 1.1. Therefore, this kind of compounds required to assess more candidates to

confirm the trend of AMPK activation activity.

3.6 Concentration-response relationship and ECs, calculation
According to the AMPK activation activity results from forty-six compounds,
there were eleven candidates possessing potency higher than 48, as listed in Figures

3.14 and 3.15. Seven compounds (70, 74, 103, 108, 114, 118 and 120) possessed
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Figure 3.14 Biological activity results of active compounds.
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Figure 3.15 Structure of active compounds.

potency around 1.00 to 1.23 times as much as that of 48. Four compounds (63, 65,
121 and 122) exclusively exhibited more powerful potency than 48 with the fold
change such as 1.84, 1.79, 1.82 and 1.57, respectively. However, 122 was found to be
toxic to the podocyte cells when it was treated in a prolonged time as 14 days under
diabetic condition. Therefore, only three chalcones along with 48 were processed to
calculate the concentration-response relationship and achieved ECs, values in Figure

3.16. The fold changes of phosphorylation of AMPK between the podocyte samples
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Figure 3.16 Concentration - response relationship and ECs, calculation.

Inoculated at each concentration 0,1, 5, 10, 50, 100 uM of chalcones and the control
podocyte sample treated with DMSO were fitted into Hill's equation. Then, resulted
Hill's curve could estimate the ECs, relying on the data at all concentrations. From the
ECso results, it could be seen that the increasing trend of ECs values was following the
order of compounds that 121, 48, 65 and 63 with values such as 2.30, 2.84, 4.67 and
4.81 respectively. Therefore, 121 was the most active one with the lowest ECsy value
which meant that it exhibited half of maximal response at the lowest concentration
compared to the other chalcones. These concentration-response relationship results
were obtained from two separate experiments and they were averaged to achieve the

final outcome. Therefore, it was required to perform more repeated experiments to
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confirm the ECs, results. After that the cytotoxic effect evaluation of these four active
compounds will be performed using MTT assay in podocyte cells. Ultimately, the

compounds with the lowest ECyyand cytotoxicity will be used for further research.
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CHAPTER 4
CONCLUSIONS

Sixty chalcones were synthesized by Claisen-Schmidt reaction from various
types of acetophenone and benzaldehyde derivatives in moderate to high yield. The
substituents on B-ring were evaluated as mono-, di- and trisubstitution while those on
A-ring as 2'-hydroxy, 3',4" 5"-trimethoxy and different types of groups were assessed.
Furthermore, chalcones with different degrees of saturation in a,-unsaturated ketone
connectors were prepared. All of prepared chalcones were tested and compared their
AMPK phosphorylation potency with that of 48 — a reported AMPK activator.

Among synthesized chalcones, forty-six candidates were exclusively achieved
AMPK activation activity. Regarding monosubstitution on B-ring, 2'-hydroxychalcone
with 3-OCH; was found as the most potent one. Therefore, in case of disubstitution, a
broad variety of chalcone bearing dimethoxy at various positions couples on B-ring was
tested, but only dimethoxy or methylenedioxy at 3,4-position were found as the
privilege structure to develop the activity of chalcones such as 63 and 65. Moreover,
a series of chalcone derivatives with various substituents at 3,4-position was assessed
but they could not exceed the potency of 63 and 65. Trisubstitution was investigated
only for 2,4,5-position based on the structure of reported AMPK activator 48 and there
were two routes to apply. The first route was recognized that 103 with 2,4,5-trialkoxy
group was more potent than 48 with 2,4,5-trimethoxy group. In the second route, a
number of chalcones with B-ring fixed as 2,4,5-trimethoxy group and varied
substituents on A-ring were evaluated. There were also some candidates slightly more
potent than 48. But overall, all chalcones in two routes did not possess an impressive
potency compared to 63 and 65. Lastly, four dihydrochalcones were synthesized and
their biological outcomes presented that the potency soars by nearly two folds when
48 was reduced to 121 after that rising degree of saturation ensured the decrease of
potency which plummeted in chalcone bearing entirely saturated carbon chain linker.

However, 121 and 122 were found to possess the potency comparable to 63 and 65.
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Interestingly, 124 having the same saturation degree with 121 showed the low potency
for AMPK phosphorylation.

The ECs, calculation of four active compounds (48, 63, 65 and 121) ensued to
obtain the concentration-response relationship. Dihydrochalcone 121 was the most
active candidate with the lowest ECs value as 2.30 uM which was more potent than
reported AMPK activator 48 (ECs, 2.84 uM). These concentration-response relationship

experiments were required to repeat to achieve trusty ECs, values.

OH O o OH O o OH O OH O
OO OO O O
o~ o~ o~ 0
O\ O\
48 121 63 65

Suggestion for future work

MTT assay should be carried out subsequently to test the toxicity of chalcones
in order to select the most potent one with the lowest ECs, value and cytotoxic effect.
Then the AMPK activation mechanism should be investigated using the potent
chalcones. After that, potent candidate should be applied to assess the impact on
insulin resistance disorder and lipotoxicity-induced podocyte dysfunction in in-vitro
model. Finally, the function of the active compounds should be tested on db/db

diabetic mouse in in vivo model.
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Figure A.74 The >C NMR spectrum (CDCl;, 100 MHz) of 88.
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176

Intens. +MS, 0.17-0.21min #10-12)
x104 |
439.1736
8_
6 OH ©
CroC
O/\/O\/\O/\/O\
4
2_
337.1618 9403322
0 b Ll b
200 400 600 800 1000 1200 1400 miz
Figure A.153 The HR-ESI-MS of 95.
Intens._| +MS, 0.24-0.29min #(14-17)
x104]
| 363.1571
4
] OH O
) 7033238 O = O O
O/\/
2_
1_
] 1043.4903
448.1338
0 A L L. Loul | i i L Y ke "
200 400 600 800 1000 1200 1400 miz
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Figure A.160 The HR-ESI-MS of 119.
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