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ไมมีการควบคุม วิธีดังกลาวอาจจะไมสามารถปองกันการลืมบนงานที่มีความซับซอนและความยาวมาก เนื่องจาก
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งานวิจัยนี้ใชโมเดลภาษาสองตัว ซึ่งแตละตัวจะชำนาญในแตละสวนของอินพุต เพื่อสรางตัวอยางเทียมที่มีคุณ-
ภาพอยางสมเหตุสมผล สอง งานวิจัยนี้ใชอะแดปเตอรโมดูล (Adapter module) เพื่อลดปริมาณพารามิเตอร
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งาน นอกจากนี้ งานวิจัยนี้ยังเผยขอมูลเชิงลึกที่มีประโยชนตอการสรางวิธีการทบทวนตัวอยางเทียมที่มีประ
สิทธิภาพสูงยิ่งกวาในอนาคตได
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Chapter 1

Introduction

Machine Learning (ML) is becoming one of the most important parts of human life.
Although it is widespread and successful in a wide range of applications, ML still
lacks one crucial aspect that exists in biological intelligence, the ability to continually
learn and accumulate knowledge. Currently, ML models largely learn in isolated
environments, where the data distribution is assumed to be stationary. In the real
world, however, this does not hold true. A phenomenon known as concept drift
is ingrained within every stream of data. With the advent of deep learning and
the ever-growing amount of data, the problem of lifelong learning (LL) is becoming
even more critical, as it is currently not possible for an ML model to adapt to new
information and effectively retain previously learned knowledge at the same time.

Lifelong learning, first introduced in Ring (1994), aims to create a learner that is
able to effectively reuse learned knowledge to aid in the process of learning new tasks
while preventing a problem known as catastrophic forgetting (CF) or catastrophic
interference (McCloskey and Cohen 1989) altogether. Naively retraining a model
from scratch every time a new task is received is costly and time-consuming. This
naive approach is also limited by capacity saturation (Sodhani, Chandar, and Bengio
2020; Aljundi, Chakravarty, and Tuytelaars 2017). Concretely, a parametric model
eventually will reach a point where no more knowledge can be stored inside its
parameters. At this point, either some knowledge has to be selectively forgotten or
the model’s capacity has to be expanded, both of which has their own downside. This
constraint is known as the stability-plasticity dilemma. Particularly, the balance
between the model’s stability (the ability to retain previously learned knowledge)
and plasticity (the ability to adapt to new knowledge) has to be struck. Although
numerous methods have been proposed to address the long-standing problem of CF,
most of them are in the computer vision or robotics domains. Researches in the
NLP domain is still nascent. The differences are reflected in the small number of
proposed methods and the evaluation benchmarks (Greco et al. 2019).

One of the more recent lifelong language learning (LLL) approach is LAMOL

1



High-Quality Pseudo Samples
Correct Format [MOVIE] this movie is good [SEP] what is the sentiment of this review? [ANS] Negative

The sample has three parts in the right order (context, question, answer) with the
correct special tokens.

Informative [SCIFACT] The Drosophila lymph gland is a haematopoietic organ in which ...

The sample is coherent and meaningful.

Correct Task [SCIFACT] The present study was conducted by ...

Given a task-specific token, a sample is generated accordingly.

Correct Answer [MOVIE] this movie is good [SEP] what is the sentiment of this review? [ANS] Positive

The answer of the sample corresponds with the context and the question.

Low-Quality Pseudo Samples
Wrong Format [MOVIE] this movie is good [ANS] Negative

The format is incorrect due to the missing question part.

Uninformative [SCIFACT] of the [SEP] function of a function of the function of an element of a function
of ...

The generated context is uninformative and incomprehensible.

Wrong Task [MOVIE] The present study was conducted by ...

The generated context seems to be from the SciFact task, contradicting the task token
[MOVIE].

Wrong Answer [MOVIE] this movie is good [SEP] what is the sentiment of this review? [ANS] Negative

The answer of the sample is incorrect according to the context and the question.

Table 1.1: Top: The depiction of ideal characteristics of pseudo samples with
explanations below the samples. Bottom: The depiction of various undesirable
characteristics of pseudo samples with explanations below the samples. [SEP] and
[ANS] are special tokens indicating the structure of the samples, while [MOVIE] and
[SCIFACT] are task-specific tokens telling the language model to generate pseudo
samples of the corresponding tasks.

(Sun, Ho, and Lee 2020). It has been shown to effectively prevent catastrophic
forgetting by generating examples (called pseudo samples) from previous tasks to
be replayed when training on a new task. However, the pseudo sample generation
process is not perfect. When trained on datasets with long texts, LAMOL strug-
gles to properly capture the QA structure of input examples, which leads to various
undesirable characteristics of the generated pseudo samples, namely: wrong format,
uninformative, wrong task, and wrong answer. This is depicted in Table 1.1 (bot-
tom) and will be explained in Section 2.7. As a result, LAMOL cannot effectively
prevent CF in this situation.

We believe that overcoming the catastrophic forgetting problem will allow ma-
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chine learning algorithms to accumulate knowledge, eventually allowing for a wider
range of applications and use cases. For instance, a conversation agent needs to
continually interact with users. It is inevitable that the information it possesses will
be outdated. In order to keep the agent relevant, its database has to be manually
updated which may be expensive. Therefore, it is crucial for every algorithm to
possess the ability to adapt its knowledge to the ever-growing volume of data.

As a preliminary study into the lifelong learning settings and its intricacies, we
developed the Rational LAMOL framework, described in Appendix A, as a joint
research project with a fellow graduate student. However, as it is required by the
curriculum that a thesis must be an independent work, we instead decided to sepa-
rately tackle the problem of LL from other perspectives. Motivated by the problem
of low quality pseudo samples discovered during the development of the Rational
LAMOL framework, in this thesis, we aim to develop new algorithms that can be
applied in complement with an existing method to further alleviate Catastrophic
Forgetting. Particularly, this research approaches the LL problem by trying to
improve the process of pseudo samples generation by introducing a new separate
framework that rationally utilizes the input structure. With an additional LM, we
decompose LAMOL’s learning objective into two subtasks and apply each LM to
solve each subtask. Consequently, this training paradigm allows the pseudo sam-
ple generation process to be more controllable and in turn increases the quality of
the generated pseudo samples. Additionally, to lower the resource requirements im-
posed by the added LM, we apply adapter modules (Houlsby et al. 2019) to imitate
the function of the second LM. Finally, we also propose leveraging the input’s ra-
tional structure to enhance pseudo sample quality with a semi-supervised learning
technique (i.e., temporal ensembling) and by detecting and reducing the number of
uninformative pseudo samples.

1.1 Objectives

• To present a new LLL framework that is able to prevent catastrophic forgetting
more effectively.

• To improve the quality of generated pseudo samples with a semi-supervised
learning technique (i.e., temporal ensembling) and by detecting and reducing
the number of uninformative pseudo samples.

3



1.2 Contributions
• Creating an LLL framework that is capable of learning diverse tasks even with

long text while suffering less catastrophic forgetting compared to an existing
method.

• Utilizing adapter modules to reduce parameters and computation requirements
of our new scheme.

• Further improving pseudo samples quality using a semi-supervised learning
technique and re-generation strategy.

• Analyzing pseudo samples and providing insights of the effects of pseudo sam-
ples on the final lifelong learning performance.

1.3 Scope
Following tasks will be undertaken as a part of the proposed research :

• Design a new framework that is capable of generating high quality pseudo
samples.

• Demonstrate efficiency improvement from our new framework by utilizing
adapter modules.

• Evaluate our proposed algorithms on multiple text classification datasets and
a question answering dataset up to a sequence of five tasks long, against
LAMOL, a strong lifelong learner baseline.

• Improve the quality of different pseudo samples characteristics using a semi-
supervised learning technique.

• Provide insights from our pseudo sample analysis that could pave way for
better pseudo-rehearsal LLL methods.

4



Chapter 2

Background & Related Work

In this section, background and work related to this research are presented. Sec-
tion 2.1 to Section 2.4 gradually introduces the attention mechanism to GPT2 (Rad-
ford et al. 2019b), the language model used in our framework. Section 2.5 intro-
duces catastrophic forgetting which Lifelong learning, described in Section 2.6 aims
to solve. We also introduce LAMOL (Sun, Ho, and Lee 2020) upon which we build
our frameworks in Section 2.7. Finally, we briefly summarize the adapter modules, a
component that is used to reduce the computational requirements of our framework,
in Section 3.1.1.

2.1 Attention
Prior to the introduction of the first attention model (Bahdanau, Cho, and Ben-
gio 2016), sequential models such as recurrent neural networks (RNN), long short-
term memory (LSTM) (Hochreiter and Schmidhuber 1997) and gated recurrent
units (GRU) (Chung et al. 2014) long dominated the field of sequence transduc-
tion (Sutskever, Vinyals, and Le 2014; Bahdanau, Cho, and Bengio 2016; Cho et al.
2014). RNNs have been shown to be unable to memorize long sequences (Bengio,
Frasconi, and Simard 1993), which leads to loss of information. Although LSTM
is proposed to improve RNN in capturing long-range dependencies, its sequential
nature prohibits parallelization. Moreover, there is no way for LSTMs to selectively
focus on important parts of the input.

The attention mechanism was realized to help memorize long source sentences.
Rather than using a single output from the last hidden state as in RNNs, it creates
shortcuts between each input. The weights of these shortcuts connections allow
the model to ‘see’ all parts of input at the same time. An attention function can
be described as mapping a query and a set of key-value pairs to an output, where
the query, keys, values, and output are all vectors. The output is computed as a
weighted sum of the values, where the weight assigned to each value is computed
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Figure 2.1: Scaled Dot-Product Attention

Figure 2.2: Multi-Head Attention

by a compatibility function of the query with the corresponding key which can be
expressed as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.1)

Multi-headed Attention This attention function is performed in parallel by lin-
early projecting the queries, keys and values h times with different, learned linear
projections in the multi-head attention. These projections are then applied with the
attention function in parallel and then concatenated and then projected as shown
in Figure 2.2. The information from different representation subspaces at different
positions could be now attended to from the multi-head attention model, in com-
parison with the averaging of the single attention head. In the original paper of
Vaswani et al. (2017), they employed h = 8 parallel attention heads.
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2.2 Transformers
Most attempts at solving sequence transduction problems use an encoder-decoder
structure where the encoder maps an input sequence into a representation. This
representation is then used by the decoder to generate an output sequence. At each
step the model is auto-regressive (Graves 2013), consuming the previously generated
symbols as additional input when generating the next.

The Transformer also follows this overall architecture using only stacked self-
attention and fully connected layers for both the encoder and decoder, which are
described as followings:

Position-wise Feed-Forward Networks After transforming an input into rep-
resentations, before passing it to the next layer, it needs to be reshaped back into
a compatible shape beforehand. Therefore, each of the layers contains a fully con-
nected feed-forward network which consists of two linear transformations with a
ReLU activation in between.

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.2)

While the linear transformations are the same across different positions, they use
different parameters from layer to layer. The dimensionality of input and output is
dmodel = 512, and the inner-layer has dimensionality dff = 2048.

Positional Encoding Since there is no recurrence nor convolution in the Trans-
formers, the sequential information cannot be exploited by the model. To prevent
this, at the bottoms of the encoder and decoder stacks, “positional encodings” are
added to the input embeddings. In the work of (Vaswani et al. 2017), sine and cosine
functions of different frequencies are used in hopes that the model would be able
to attend by relative positions and may be able to extrapolate to sequences longer
that it encountered during training.

2.3 Generative Pre-trained Transformer (OpenAI
GPT)

With the aim of utilizing the abundant unlabelled text corpus, OpenAI GPT (Rad-
ford et al. 2018) explores a two-stage approach of language understanding tasks
using unsupervised pretraining and supervised finetuning. The goal is to learn a
representation that can be universally transferred with little adaptation to a wide
range of tasks. The language model architecture used in the paper is based on a
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stack of Transformers decoder which, in the pretraining stage, is trained on a large
corpus using a standard language modelling objective. Finally, the model is adapted
to the tasks at hand in the finetuning stage where another task-specific linear layer
is appended to the last Transformer block. The model is then optimized on both the
task-specific loss and an auxiliary language modelling loss. The rationales behind
the optimization on the combination of the losses are improved generalization and
accelerated convergence of the model.

2.4 OpenAI GPT-2
Following the success of leveraging pretraining and the trend of growing model
parameters, GPT-2 (Radford et al. 2019b) is an improved version of OpenAI GPT.
The model mostly follows the details of the OpenAI GPT model (Radford et al.
2018) with a few modifications, namely:

• Layer normalization (Ba et al., 2016) was moved to the input of each sub-block,
similar to a pre-activation residual network (He et al., 2016).

• An additional layer normalization was added after the final self-attention block.

• A modified initialization which accounts for the accumulation on the residual
path with model depth is used.

• Scale the weights of residual layers at initialization by a factor of 1/
√
N where

N is the number of residual layers.

• The vocabulary is expanded to 50,257. The context size is increased from 512
to 1024 tokens and a larger batchsize of 512 is used.

GPT-2 is trained on a large corpus of 40 GB of internet-scraped text. It shows
strong performance on a wide range of tasks in zero-shot settings.

2.5 Catastrophic Forgetting
The abrupt forgetting of a previously learned knowledge upon learning new informa-
tion was first discovered by McCloskey and Cohen (1989) in which this phenomenon
was coined Catastrophic Forgetting (CF). This is illustrated in Figure 2.3. Given
a neural network parameterized as θ, when training commences on task A, the pa-
rameters are optimized towards the lowest point of the loss landscape of task A.
However, when it is sequentially trained on task B, the parameters are then dis-
placed towards the lowest point of task B’s loss landscape. Since these two tasks
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Figure 2.3: A depiction of Catastrophic Forgetting.

have different global minima, the model is no longer able to perform well on task A.
Metaphorically, the model “forgets” the knowledge it has learnt on task A.

Neural network weights change when acquiring new tasks. Too large of a change
disrupts previously learned knowledge. On the other hand, keeping the weights
stable prohibits the network’s ability to learn new tasks. This is called the stability-
plasticity dilemma (Abraham and Robins 2005). Multiple methods have been pro-
posed in an attempt to solve this problem, which can be grouped into two ap-
proaches:

The first strategy is to uncouple the new and old representations. This can be
accomplished through the use of distributed models, regularization, and ensembling.

The second is to prevent learnt knowledge from being forgotten by simultaneously
training on both the new tasks and data from the old tasks. However, this approach
still is not as effective as simply retraining a model from scratch on both the new
tasks and the old tasks.

Even though much effort has been put into combating the CF problem, it persists,
hindering the development of an intelligence system that is capable of learning new
tasks over the course of its lifetime.

2.6 Lifelong Learning

A machine learning paradigm whose objective is to learn from a continuous stream of
data, where the number of tasks may be potentially infinite while reusing previously
learned knowledge to improve generalization for previous tasks was first introduced
in Ring (1994) as Lifelong learning (LL). In this setting, the newly acquired infor-
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Property Definition
Knowledge retention The model is not prone to catastrophic forgetting.
Forward transfer The model learns a new task while reusing knowledge

acquired from previous tasks.
Backward transfer The model achieves improved performance on previous

tasks after learning a new task.
On-line learning The model learns from a continuous data stream.

No task boundaries The model learns without requiring neither clear task
nor data boundaries.

Fixed model capacity Memory size is constant regardless of the number of
tasks and the length of a data stream.

Table 2.1: Desiderata of lifelong learning.

mation should not interfere occur with learned knowledge. More formally: the goal
is to sequentially learn a model f : X × T → Y from a large number of tasks τ .
The model is trained on examples (xi, yi), such that: xi ∈ Xti is an input feature
vector, yi ∈ Yti is a target vector (e.g. a class label), and ti ∈ T denotes a task
descriptor (in the simplest case ti = i) where i ∈ Z. The objective is to maximize
the function f (parameterized by θ ∈ R) at the task Ti, while minimizing CF for
tasks Ti, ..., Ti−1. Although the above-mentioned definitions of LL may seem fairly
general, there are certain desired properties, which are summarized in Table 2.1.

In practice, however, current LL systems mostly relax more than one of the
requirements listed in Table 2.1. Most methods still learn in an offline manner,
where models are trained using batches of data shuffled in such a way as to sat-
isfy the independent and identically distributed (i.i.d.) assumption. Consequently,
many models are trained solely in a supervised fashion with large labelled datasets,
and thus they are not exposed to more challenging situations involving few-shot
or self-supervised learning. Additionally, existing approaches often fail to restrict
themselves to making a single pass over the data, and this entails longer learning
times. Moreover, the number of tasks as well as their identity are frequently known.

2.6.1 Approaches to lifelong learning

Multiple approaches have been proposed to tackle the long-standing challenge of
LL. In this section, we will summarise the main idea of each approach and introduce
the most prominent methods for each approach.

Architectural methods introduce task-specific parameters in order to accommo-
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date incoming new knowledge while previous task parameters are typically kept
fixed or masked out.

Progressive Neural Network (PNN) (Rusu et al. 2016) adds capacity to the exist-
ing network by adding a new sub-network, referred to as “column”. Given a new task
T + 1 and a trained network θT , PNN augments a new sub-network to the existing
network θT and trains only the lateral connections between the added network θT+1

and the original network while keeping θT frozen. Although PNN can retain perfect
memory of past tasks, the model complexity rapidly increases with incoming tasks.

Wen, Tran, and Ba (2020) introduce BatchEnsemble to reduce the increasing
complexity of PNN by training only fast weights. For an ensemble of n models,
each model W̄i is responsible for each task T in the LL setting and owns a tuple of
trainable vectors ri and si. BatchEnsemble generates W̄i by multiplying the “fast
weights” ri and si with a shared weight W :

W̄i = W · risTi (2.3)

During training on the first task T , BatchEnsemble optimizes both shared weights
W and fast weights rT and sT . For later tasks T + 1, only fast weights rT+1 and
sT+1 are trained. During testing, the predictions are obtained by averaging the
predictions of the members. BatchEnsemble is able to achieve similar performance
with PNN while reducing the parameter count by almost four times. However, by
training the shared weights on the first task, this method only works if the knowl-
edge from the first task is transferable to subsequent tasks.

Regularization methods rely on an additional regularization term that is typi-
cally designed with inspiration from theoretical neuroscience models to aid knowl-
edge consolidation when learning new tasks. This group of methods utilizes a single
model with a fixed capacity. As a result, new knowledge may eventually overwrite
knowledge from old tasks.

Elastic Weight Consolidation (Kirkpatrick et al. 2017a) reduces forgetting by
regularizing the loss in such a way that changes to parameters important to previous
tasks become smaller. For each parameter θ, its relevance with respect to a specific
training dataset D can be modelled as a posterior distribution p(θ|D). Therefore,
in the context of two distinct tasks T and T-1 with two training datasets DT and
DT−1 , respectively, the posterior probability of the parameters can be calculated as:
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logp(θ|D) = logp(DT |θ) + logp(θ|DT−1)− logp(DT ) (2.4)

where logp(θ|DT−1) is hypothesised to contain all the information about param-
eter importance of task T − 1. Nevertheless, the true posterior probability can only
be approximated using a Gaussian distribution with mean given by the parameters
θ∗T−1 and a diagonal precision given by the diagonal of the Fisher information matrix
F (MacKay 1992). Given the approximation, the loss function is described as:

L(θ) = LT (θ) +
∑
i

λ

2
Fi(θi + θ∗T−1)

2 (2.5)

where LT (θ) is the loss on task T and θ is the importance of the old task com-
pared with the new task.

In a similar vein, Aljundi et al. (2017) introduced Memory Aware Synapses
(MAS) which computes parameter importance during training in an online man-
ner. For each training sample, MAS accumulates the importance of a particular
parameter by measuring the change in predicted output when applying a small per-
turbation to the parameter. Specifically, given a mapping function F which maps
the input X to output Y and a small perturbation δij, the parameter sensitivity can
be approximated by:

F(X; θ + δ)− F(X; θ) ≈
∑
ij

gij(X)δij (2.6)

where gij(X) refers to the gradient of the mapping function F with respect to
the parameter θij on some input X. The parameter importance Ωij can be obtained
by accumulating gij(Xk) for k ∈ D where D is a training dataset. Finally, the loss
function can be described as:

L(θ) = LT (θ) + λ
∑
ij

Ωij(θij + θ∗ij)
2 (2.7)

where λ is a hyperparameter for the regularization and θ∗ij are the parameters of the
network from the previous task.

Rehearsal-based methods keep a subset of training examples from previously
learned tasks in order to be replayed when encountering a new task. One of the most
well-known methods for incremental class learning is the iCaRL model, proposed
by Rebuffi et al. (2017). iCaRL is a classifier that is able to incrementally learn
novel classes. By keeping a small subset of “exemplar” images for each class it has
seen. This exemplar set of images are utilized for rehearsal and used as prototypes
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for classification, similar to a nearest-class-mean classifier. iCaRL achieved good
performance on multiple class-increment tasks up to 1,000 classes.

The downside of the rehearsal-based methods approach is the amount of storage
and computing requirement grow proportionally to the number of tasks. A subgroup
of this method coined pseudo-rehearsal methods instead utilize the generative ca-
pability of the models to emulate the distribution of previous task samples. This
partially solves the problem of storage requirement, although generated samples are
usually not as expressive as real samples. One notable approach is DGR, or Deep
Generative Replay (Shin et al. 2017), a framework based on Generative Adversar-
ial Networks (Goodfellow et al. 2014). DGR is inspired by the Complementary
Learning Systems (CLS) theory that suggests that the dual memory systems of the
hippocampus and the neocortex work interdependently. The hippocampus is re-
sponsible for short-term memory which is consolidated in the neocortex. Using the
same idea, DGR utilizes a GAN to reconstruct data from previous tasks which are
used for rehearsing itself and the classifier when training on the next task. DGR
managed to achieve comparable performance with rehearsing with real examples.

In the context of LLL, rehearsal-based approaches such as LAMOL (Sun, Ho,
and Lee 2020) have been shown to be the most promising group of methods, out-
performing notable methods of other approaches such as EWC (Kirkpatrick et al.
2017b) and MAS (Aljundi et al. 2017) on various NLP tasks (Sun, Ho, and Lee
2020; Wang et al. 2020; Han et al. 2020; Sprechmann et al. 2018; Sun et al. 2020).
Similarly, pseudo-rehearsal methods have been receiving more attention with the
advancement of language models (Merity, Keskar, and Socher 2017; Radford et al.
2019c). Complex data distributions can be modelled more accurately, leading to
the increasing quality of generated data. This in turn improves the performance of
pseudo-rehearsal methods. However, in most cases, replaying real data still outper-
forms synthetic data replay. This is due to the sub-optimal quality of the pseudo
data. Multiple works have been proposed in order to address the problem in the
computer vision domain. Here, we briefly summarize a few notable works.

Solinas. et al. (2021) proposed storing a small amount of real data as seeds for
generating pseudo data via an autoencoder using re-injection sampling procedure
(Ans and Rousset 1997). The procedure was originally devised to generate pseudo
samples that capture the knowledge of artificial neural networks. Each time a pseudo
sample is re-injected into the autoencoder, it is displaced slightly toward the area
of high densities in the training distribution (Bengio et al. 2013). This procedure is
illustrated in Figure 2.4. They were able to outperform strong rehearsal-approach
baselines such as experience replay (Chaudhry et al. 2019).
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Figure 2.4: The re-injection sampling procedure, where x0 refers to a real example.
Given t = 0, 1, 2, ..., the model constructs xt+1 and predicts yt when it receives xt.
This procedure is repeated for k times. Finally all the constructed pseudo samples
are utilized in the training of the next task.

Silver and Mahfuz (2020) utilized a stack of Restricted Boltzmann Machine
(RBM) (Hinton 2010) to generate pseudo samples and selected only those that most
adhere to training data distribution. Only pseudo samples with reconstruction error
from the trained RBM lower the mean squared error of all generated samples were
used, while the rest were discarded. Consequently, by training the model with the
remaining pseudo samples, they were able to match the performance of the model
trained with real examples.

In contrast, Pomponi, Scardapane, and Uncini (2020) approached the problem
in the embedding space. Their framework consists of an encoder, a generative model
based on a normalizing flow (NF) (Papamakarios et al. 2019), and a decoder. The
NF model is an invertible neural network, capable of performing both sampling
and density estimation in both ways. During training, the encoder (augmented
with a task-specific head) encodes the training data while the NF is optimized on
generating the encoded data and the decoder trains on reconstructing the encoded
data. When training on the next task, the framework performs a regularization
step, occasionally, replacing data from the new task with samples drawn from the
NF model. The regularization step is performed as follows:
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1. The NF is utilized to generate an embedding from the training distribution.

2. The input embedding is used by the decoder to reconstruct a pseudo training
data.

3. The encoder encodes the reconstructed pseudo training data.

4. The encoder is regularized based on the distance loss between the encoded
pseudo sample and the generated sample from step 1.

With this framework, they were able to achieve significantly less CF when com-
pared with strong regularization-approach and rehearsal-approach baselines.

To the best of our knowledge, our work is the first attempt to explicitly improve
the quality of pseudo samples in the NLP domain, especially when the tasks to learn
contain long texts but with insufficient training data.

2.7 LAMOL
Inspired by Shin et al. (2017), LAMOL (Sun, Ho, and Lee 2020) leverages a single
GPT-2 language model (LM) (Radford et al. 2019c) to prevent CF by utilizing the
innate generative capability of the LM to create pseudo samples which are later
learned jointly with data from a new task. By following the decaNLP (McCann
et al. 2018) data formatting protocol, where every NLP task can be converted into a
QA format, LAMOL is able to tackle various NLP problems without requiring task-
specific modules. Particularly, each example is converted to the following format:
[GEN] context [SEP] question [ANS] answer, where [GEN], [SEP], and [ANS]
are additional special tokens.

During training on a particular task τi, the LM is optimized on two objectives:
L = LQA + λLLM , where LQA and LLM refer to the QA loss and the LM loss,
respectively, and λ is the weight of the auxiliary LM loss. Specifically, the GPT-2
model learns to generate the correct answer (via the QA loss) while also trying to
capture the distribution of given examples in order to better generate pseudo samples
as an auxiliary task (via the LM loss). This is illustrated in Figure 2.5. Note that
they use categorical cross entropy for both types of losses. Then, before starting
training on the next task τi+1, LAMOL uses the LM to generate pseudo samples of
all previous tasks τt for t = 1, . . . , i. Given a [GEN] token, the LM samples from
the learned distributions until it outputs an [EOS] token. To prevent the LM from
generating pseudo samples only for the most recent tasks, LAMOL adds a task-
specific token for each task τi. Task-specific tokens can be utilized in place of the
GEN token to inform the LM to generate pseudo samples from a particular task. A
total of γ|τi+1| pseudo samples are generated, divided equally into γ

i
|τi+1| samples
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Figure 2.5: Upper: LM learns to answer question given context. Lower: LM learns
to generate training samples given generation token GEN.

for each previous task, where γ is a hyperparameter. Finally, the LM model learns
on the mixture of new examples of task τi+1 and pseudo samples of previous tasks.

Even though pre-trained LMs such as GPT-2 have shown impressive capabilities
in learning various tasks, they require large amount of training examples to con-
verge properly. The problem is even more prevalent in complex tasks like language
modelling. In real life settings, labelled examples may be scarce, in which case the
LM would struggle to appropriately capture the data characteristics, causing the
generated pseudo samples to possibly be malformed. Since LAMOL formats data
according to decaNLP, pseudo samples are required to be in the same form. Any
pseudo sample with an incorrect format will be discarded and not used in training.
In our experiments, we have observed that most pseudo samples from generated
from LAMOL do not have the correct format. Additionally, there are also many
undesirable characteristics of the generated pseudo samples present. These include:

1. Wrong format: Generated pseudo samples do not conform to the QA format.

2. Uninformative: Many pseudo samples contain non-sensical texts.

3. Wrong Task: Pseudo samples generated do not match the task-specific token
specified.

4. Wrong Answer: Incorrect answers are generated for some pseudo samples.

These problems are depicted in Table 1.1.
Consequently, without adequate amount of usable pseudo samples, LAMOL loses

the ability of preventing catastrophic forgetting and is comparable with only sequen-
tial finetuning.
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Figure 2.6: Left In a transformer layer, the adapter modules are inserted at two
places: both before the layer normalizations. Right The design of the adapter
modules. They consist of a bottleneck (two feed forward layers) and a non-linearity.

2.8 Adapter Modules
Finetuning large pre-trained language models has pushed the limits of performance
on various NLP tasks; nevertheless, it is highly inefficient because the whole model
has to be finetuned individually for each task. To alleviate this issue, Houlsby et al.
(2019) introduced adapter modules as an alternative paradigm for transfer learning.

On a high level, the adapters (each of which is composed of two feed forward
layers and a non-linear activation function) are inserted into each layer of a trans-
former model and used to adapt the content of each transformer block of the base
pre-trained model.

More specifically, the first feed forward layer in the adapters down-projects the
d-dimensional input into n-dimensions after which it is applied the non-linearity.
Finally, the second feed forward layer up-projects the input back to d-dimensions.
For each layer in a transformer-based model, the adapter modules are inserted at
two places, both before each of the layer normalizations in the transformer layer.
The architecture of the adapters is illustrated in Figure 2.6.

Adapters introduce only 0.5% - 8% of conventional large pre-trained models such
as GPT-2. During the finetuning step, only the adapters are finetuned, increasing
the training efficiency when compared with finetuning the whole model. Extensive
experiments showed that the resulting model achieved similar performance with
conventional finetuning.
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Chapter 3

Concept and Research
Methodology

In this section, we explain our proposed solutions. Section 3.1 presents the Double
LM framework where an additional LM is leveraged to improve the quality of pseudo
samples. Section 3.1.1 details the integration of adapter modules into our framework.
We also describe the procedure of our pseudo sample analysis in Section 3.2. Finally,
we detail our pseudo sample enhancement strategies in Section 3.3.

3.1 Double LM
As mentioned in Section 2.7, LAMOL suffers heavily from the low quality of pseudo
samples. Using insights from multiple works such as Pelosin and Torsello (2021)
and Masson d’Autume et al. (2019) where the performance of rehearsal-based LL
methods heavily rely on the preserved samples, we seek to improve the pseudo
sample generation of LAMOL with the aim of increasing pseudo samples quality.

Instead of allocating the model’s learning capacity to model the input structure
in addition to predicting the output, we propose decoupling the auxiliary language
modelling task in LAMOL into two separate learning problems and applying a lan-
guage model to solve each problem.

Training Given that the required format of each input is [GEN] context [SEP]
question [ANS] answer, in our framework, each LM is optimized on different
part(s) of input. The problem setup is shown in Figure 3.1 (right). The first LM
would take the main responsibility of learning the QA task, i.e., predicting an answer
given a context and a question, and learning to model the context part of an example.
Meanwhile, the other LM would learn to generate a question given an input context.

More formally, let L(Y, θLMi
(X)) denote the cross entropy loss of LMi with

parameters θ on an input X with a target Y . The objective function of each LM
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Figure 3.1: Left: Training step of LAMOL. In a single optimization step, a single
language model is trained on the QA task (upper) and the LM task (lower). Right:
Our framework utilizes two language models that focus on different parts of the
input. The first LM is optimized on the QA task and the context generation task,
while the second LM is optimized solely on the question generation task.

would be defined as:

(3.1)LLM1 = L(YQA, θLM1(X)) + λL(Ycontext, θLM1(X))

(3.2)LLM2 = L(Yquestion, θLM2(X))

Generation By having two LMs, we can exactly control the pseudo sample gen-
eration process so that it conforms to the predefined format by:

1. First, LM1 is utilized to generate the context part of the pseudo sample given a
task-specific token indicating which task the generated context should belong
to.

2. Second, a [SEP] token is appended to the previous output, and then LM2

generates an appropriate question according to the given context.

3. Finally, an [ANS] token is appended to the previous output, and then LM1

takes in the context and the question and predicts the answer as it would when
training.
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Figure 3.2: Top: Pseudo sample generation step of LAMOL. Given a [GEN] token,
a single LM generates the whole sample. Bottom: Given a [GEN] token, LM1 is
utilized to generate a context. Next, given the context, LM2 generates the corre-
sponding question. Finally, given the context and the question, LM1 generates an
appropriate answer to complete the pseudo sample. Note that, for both LAMOL
and our work, [GEN] will be replaced by a task-specific token to indicate the desired
task of the generated pseudo sample.

The process is illustrated in Figure 3.2 (bottom). As a result, the output pseudo
samples are more likely to be in the correct format and more realistically imitate
real training examples. Freeing the LM from learning the QA structure of examples
also relaxes the complexity of the language modelling task, leading to better pseudo
samples.

3.1.1 Adapter

Training another instance of GPT-2 LM as in Section 3.1 imposes significant ad-
ditional memory and computation requirements. Thus, we also propose to instead
use the adapter modules to mimic the function of the additional GPT-2 model as a
remedy to the problem.

In our framework, the adapters are added after the LM1 has been trained on
Equation 3.1. Since the adapter modules can utilize the information learned by the
underlying model, we believe that it can effectively function as well as the LM2.
Then, the LM1, which can now be referred to as the base model, is kept frozen,
while we train the added adapters using Equation 3.2.

Due to the modular nature of the adapters, we can choose to ignore or “deac-
tivate” the added adapters during the forward pass. By doing so, we get our base
model LM1 back. Therefore, to generate a pseudo sample, we start by deactivating
the adapter modules and letting the base model generate the context part. Next,
we reactivate the adapters and feed the generated context into the model to get the
corresponding question. Lastly, the adapters are deactivated once again, and now
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Figure 3.3: The process of our pseudo sample analysis. The colour orange in each de-
cision diamond refers to rule-based decision while the colour purple means decisions
are made by classifiers.

we utilize the base model to generate the answer to the pseudo sample.

3.2 Pseudo Sample Analysis

The performance of rehearsal-based LL approaches has been shown to rely mainly on
the preserved samples. Multiple sample selection strategies have been devised in an
attempt to choose data that can better represent previous distributions (Ramalho
and Garnelo 2019; Wang et al. 2020; Toneva et al. 2019). However, for pseudo-
rehearsal approaches, the problem is more complex due to the sub-optimal quality
of generated pseudo samples. Therefore, in addition to the proposed framework, we
conduct an analysis of pseudo samples in order to understand the effect of multiple
aspects of pseudo sample quality on the final LL performance of pseudo-rehearsal
methods.

In the analysis, pseudo samples are checked for four aspects of quality: (1) format
correctness, (2) informativeness, (3) task correctness, and (4) answer correctness.
The process is illustrated in Figure 3.3.

• First, we check if a pseudo sample conforms to the correct format. Recall
that pseudo samples with the incorrect format are discarded. This is done
by simply checking for three special tokens and their order. A pseudo sample
has the correct format if it has a task-specific token, a [SEP] token, and an
[ANS] token, in this specific order. The ones with an incorrect format will be
classified as “Wrong Format”.

• Next, pseudo samples with the correct format are checked whether they are
informative or not. This process depends on the nature of the datasets used.
We used a simple criterion: if the context part of a pseudo sample has less than
50 unique tokens, it is considered “Uninformative”. The number was obtained
from the macro-average of minimum numbers of unique tokens of the datasets
we used in our experiment.
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• Then we checked whether the content of each generated sample matches its
task token or not. To do so, we trained BERT (Devlin et al. 2019) to classify
the generated pseudo samples into their corresponding tasks. Note that we
train this BERTmodel in the standard supervised learning fashion (not lifelong
learning). To put it simply, it was trained using the training data from all the
tasks. This model achieved perfect accuracy on the test data, and it was used
for the purpose of analyzing the quality of pseudo samples only. If the content
of a pseudo sample does not match its task-specific token, then it is categorized
as “Wrong Task”.

• Finally, we checked for the answer correctness by using a finetuned RoBERTa
(Liu et al. 2019) model. We opted for RoBERTa due to its superior perfor-
mance over BERT in predicting the correct answers. If the RoBERTa model
agrees with the answer of the generated pseudo sample, it is considered “Cor-
rect Answer” else it is classified as “Wrong Answer”1. As with the previous
step, we finetuned one RoBERTa model per task and use all the finetuned
models to analyze the quality of pseudo samples only.

3.3 Further Improving Pseudo Sample Quality

After analyzing the pseudo samples of our framework, we further attempted to
enhance their overall quality in practice. We chose to improve two of the aspects
mentioned in the previous section: answer correctness and uninformativeness.

A number of pseudo samples have been observed to be repetitive and non-
sensical, containing only a few unique tokens without actual meaning. This phe-
nomenon has also been referred to as “failure modes” in the original GPT2 blog post
(Radford et al. 2019a). To reduce the amount of uninformative pseudo samples, we
propose a simple filtering strategy, nicknamed ReGen. Pseudo samples that have
less than 50 unique tokens in the context part, as in Section 3.2, are re-generated
until we obtain all informative samples or reach the computation limit (set as ten
iterations in our experiments).

To improve the pseudo sample answer correctness, we propose using a popular
semi-supervised learning technique called Temporal Ensembling (Laine and Aila
2017). The work builds around the idea of dropout regularization (Srivastava et
al. 2014). When training with dropout, only a subset of the network is utilised.

1It is important to note that “Correct Answer” and “Wrong Answer” are not definitely correct
and wrong, respectively. This is because the finetuned RoBERTa models we used are not perfect.
The accuracy of the models for the BoolQ, Movie, and SciFact tasks are 80.33%, 99.5%, 77.66%,
respectively.
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Figure 3.4: The process of our adopted Temporal Ensembling. Given that LM1 is
trained for X epochs, we utilize LM1 from epochs X and X-1 to vote on an answer
for the given pseudo sample. Note that only LM1 is used for temporal ensembling.

Essentially, the whole network can be seen as an ensemble of multiple sub-networks.
Temporal Ensembling extends the idea by performing ensembling across different
epochs of training. This is based on the assumption that predictions which are not
stable even when reaching the end of the training are not likely to be a reliable
label. Originally, Temporal Ensembling is designed to work in conjunction with
data augmentation to introduce additional noise. We believe that a similar effect
can be achieved by generating pseudo samples from two different LMs. Therefore,
explicit data augmentation is not required in our adoption of Temporal Ensembling.

In our work, during the generation process, two models (LM1) from the last two
epochs of training are utilized to vote on answers for pseudo samples. We only
keep pseudo samples that the two models agreed on an answer, whereas the rest are
replaced with a new batch of pseudo samples. This process is depicted in Figure 3.4.
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Chapter 4

Experimental Setting

4.1 Datasets

We performed our experiments on five datasets, selected due to their high complexity
and small size. The details of all datasets are listed below and data statistics are in
Table 4.1. In Table 4.2, we detailed the QA components for each task. Note that
both LAMOL and our framework do not make use of the validation sets.

• BoolQ (Clark et al. 2019): a dataset containing yes/no questions generated
from selected Wikipedia passages. The questions in this dataset were gen-
erated in unprompted and unconstrained settings, resulting in naturally oc-
curring questions. The setup of this text-pair classification task is similar to
natural language inference tasks, albeit more challenging.

• Movie Reviews (Zaidan, Eisner, and Piatko 2008): a dataset that includes
movie reviews with positive/negative sentiment labels. Most reviews comprise
a combination of positive text, negative text, and factual descriptions.

• SciFact (Wadden et al. 2020): a dataset of scientific abstracts paired with
claims written by experts. The objective is to identify whether the claim is
supported by the given documents. This dataset was created in an effort
to facilitate the development of an assistant system capable of assessing the
correctness of a claim. Therefore, it is a strenuous task, requiring both reading
comprehension skills and real-world knowledge.

• Fever (Thorne et al. 2018): Fact Extraction and VERification is a dataset
consisting of claims and textual sources, i.e., documents. The task is to verify
if each claim is supported by a given document. To make the task more
challenging, we randomly sampled data from the dataset so that the size is
comparable with other datasets in our experiment.
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Dataset # Train # Test Metric
BoolQ 6,363 2,817

EM
Fever 7,390 6,111
Movie 1,600 200
SciFact 405 188
TriviaQA 3,005 1,207 nF1

Table 4.1: Summary of datasets, their sizes, and the corresponding metrics. EM is
an exact match between texts while nF1 represents normalized F1 score.

• TriviaQA (Joshi et al. 2017): a realistic question-answering dataset extracted
from Wikipedia and the Web. In this paper, we used only examples from the
Web section. As with Fever, we also randomly sampled data from this dataset.

Dataset Context Question Answer
BoolQ Passage Question True/False
Fever Doc. Claim Supports/Refutes**
Movie Passage Question* Positive/Negative
SciFact Doc. Claim Supports/Refutes**
TriviaQA Doc. Question Answer

Table 4.2: Each component of the QA structure of each dataset. * Note that, unlike
other datasets in our experiments, Movie is a single-text classification task; therefore,
the question is manually added and reused across the task. ** We prepend the task
name to the answers to encourage the model to learn the difference between the two
tasks.

We consider the following task sequences in our experiment:

1. Short sequence: all permutations of tasks BoolQ, Movie, and SciFact; and

2. Long sequence: two permutations of all the five tasks, from the largest to
the smallest tasks and vice versa.

4.2 Implementation Details
In all of our experiments, the best LAMOL configuration according to Sun, Ho,
and Lee (2020) was used. In particular, the sampling ratio γ is set to 0.2. Also,
task-specific tokens are used instead of the [GEN] token to generate pseudo-samples
of a specific task.
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We utilized the small GPT-2 model (Radford et al. 2019c) as the language model
for all methods. We applied greedy decoding during inference.

The adapter modules parameters are also kept at the default values as proposed
by Pfeiffer et al. (2020) with a reduction factor of 16. The hyperparameters of both
the LM and the adapters are listed in Table 4.3.

Hyperparameter Value
Training hyperparameters

Training epochs per task 5
Optimizer Adam
Adam epsilon 1.0× 10−4

Weight decay 0.01
Max gradient norm 1.0
Learning rate schedule warmup linear
Warmup ratio 0.005

LM-specific hyperparameters
Learning rate 6.25× 10−5

Top-k sampling k=20
Adapters-specific hyperparameters

Learning rate 1× 10−4

Reduction factor 16
Non-linearity ReLu

Table 4.3: Hyperparameters used in our experiments

For all task sequences, we ran all methods three times with different random seeds
and averaged the results. All of the experiments were conducted on an NVIDIA DGX
station. We used adapter-transformers1 for the implementation of the GPT-2 LM
and adapters.

4.3 Metrics
For classification tasks (the first four datasets), we used EM, or exact match between
texts, as the metric. This is because the GPT-2 is a generative model. However,
because of the nature of text classification, the percentage of exact matches can also
be seen as the accuracy of the model.

While, for the TriviaQA dataset, we used the standard nF1 score, or normalized2

1https://github.com/Adapter-Hub/adapter-transformers
2Note that the normalization refers to text normalization, i.e., lower-casing, article removal,

when comparing the model output and the ground truth answer from the test set.
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F1 score. Since the scores for all metrics lie between 0 and 1, we can simply average
the scores across different metrics.

The amount of catastrophic forgetting will be reflected in the performance gap
between the multitasking upper-bound at the end of a task sequence. The better
lifelong learner will be less affected by task order; therefore, we also report standard
deviation across different permutations of each method.
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Chapter 5

Results

This section reports and discusses the experimental results. Specifically, Section 5.1
and 5.2 report the final LL performance and runtime of different methods, respec-
tively. Section 5.3 shows the result of our pseudo sample analysis. This is then
followed by an ablation study and an additional discussion in Section 5.4 and 5.5,
respectively.

5.1 LL Performance

5.1.1 Three-task Sequence

We trained the baseline and our proposed frameworks, Rational LAMOL and Double
LM, on six permutations of three tasks: BoolQ (B), Movie Reviews (M), and Scifact
(S). The results are shown in Table 5.1.

In task permutations BMS and MBS, LAMOL was able to generate sufficient cor-
rectly formatted pseudo samples and hence was able to prevent total knowledge loss.
Nevertheless, in the other permutations, we found that the majority of pseudo sam-
ples generated from LAMOL do not have the correct format. As a result, LAMOL
showed almost complete forgetting of previous tasks, especially in the order BSM,
where LAMOL scored less than 1% correctness in both BoolQ and SciFact tasks.

To highlight the problem of pseudo samples having the wrong format, we try
mitigating the problem of LAMOL by implementing an algorithm that heuristically
assigns an answer to all pseudo samples, regardless of the questions. In every pseudo
sample, the algorithm looks for the last [ANS] token of the generated pseudo sample
and replaces all tokens behind the [ANS] with a valid answer according to the task-
specific token. The answer is chosen according to the next-token probability of the
first token (after [ANS]) of all valid answers. In the case where there is no [ANS]
token, we added it at the end of the pseudo sample and a random valid answer is
then added. Finally, we bypassed the format control of LAMOL to guarantee that
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Methods BMS BSM MBS MSB SBM SMB Average Std.
Baselines. Section 2.7 & Section 5.1.1
LAMOL 64.53 35.48 66.79 60.76 52.02 54.40 55.67 11.41
LAMOLall 62.22 62.06 61.42 52.93 65.32 63.35 61.22 4.29
Double LM Framework. Section 3.1-3.1.1
Double LM 68.94 69.00 71.78 69.20 71.44 69.37 69.96 1.29
LM+Adapter 69.68 67.88 69.73 69.19 69.00 71.23 69.45 1.10
With Additional Pseudo Sample Enhancement. Section 3.3
LM+Adapter+R 70.22 69.02 69.16 67.51 71.48 71.43 69.80 1.54
LM+Adapter+T 69.73 71.75 70.16 69.60 71.02 71.83 70.68 0.99
LM+Adapter+RT 71.28 70.53 70.30 70.09 71.45 73.62 71.21 1.30
LAMOLreal 69.07 71.97 70.84 72.31 74.13 73.32 71.94 1.80
Multitask 75.52

Table 5.1: Accuracy of different methods, averaged over three random seeds. The
scores are evaluated on the models at the last epoch of the last task. Each column
represents the order of tasks on which the methods were trained. B, M and, S refer
to BoolQ, Movie Reviews, and SciFact, respectively. The Average and Std columns
refer to the average and standard deviation of the accuracy scores for each row
of the methods, respectively. R and T refer to ReGen and temporal ensembling,
respectively.

all generated pseudo samples were used. The result is shown in LAMOLall, where we
were able to gain an average of 5.55% improvement from LAMOL. Unsurprisingly,
in task orders where LAMOL was already able to generate decent pseudo samples
(i.e., BMS and MBS), LAMOLall introduced noise that destructively interfered with
learned knowledge.

With the ability to generate high-quality pseudo samples, our Double LM was
able to improve upon LAMOL by 14.29% average accuracy while also having only
1.29% standard deviation. As expected, LM+Adapter was able to perform on par
with Double LM on average, gaining 13.78% average accuracy over LAMOL and
achieving only 1.10% standard deviation. This suggests that the adapter modules
successfully mimic the function of the additional GPT-2 of Double LM. Both of our
variants were competitive with LAMOLreal (using real examples instead of pseudo
samples) in the orders BMS and MBS but slightly underperformed in the other
orders. Concerning the strategies proposed in Section 3.3, applying ReGen (R) to
our LM+Adapter (i.e., LM+Adapter+R) was able to gain an improvement, although
statistically insignificant, of 0.45% in terms of average accuracy. Meanwhile, by
incorporating Temporal Ensembling (T) into our LM+Adapter, we were able to
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further increase the performance of our framework by 1.13% (LM+Adapter+T)
even though we did not apply additional data augmentation as proposed by Laine
and Aila (2017). Combining these two strategies (LM+Adapter+RT) improves the
performance of our LM+Adapter with statistical significance (p-value of 0.004) by
1.76%, being even closer to LAMOLreal with only a 0.73% difference in the accuracy
score.

A sample of accuracy graphs (as the learning progressed) of the compared meth-
ods, with the BoolQ → SciFact→Movies (BSM) task order, is shown in Figure 5.1
from top to bottom, respectively. From the graphs, as training progressed from
Bool-Q to SciFact, all methods showed good knowledge retention ability, achieving
approximately 58% Bool-Q accuracy; albeit, slightly lower for LAMOL, only 48%
Bool-Q accuracy. Then, as training moved on to the Movie task, LAMOL entirely
forgot all the knowledge from the Bool-Q task. On the other hand, Double LM,
LM+Adapter, and LM+Adapter+T suffered from a small performance drop, af-
ter which they were later restored. Meanwhile, LAMOLreal, LM+Adapter+R, and
LM+Adapter+RT were not affected by the task shift. This could be explained in
part by the stability-plasticity dilemma. By having higher stability, the learner is
less affected by CF (Bool-Q drop is smaller); however, it is harder for the learner
to assimilate new knowledge (SciFact performance is lower). Similarly, all models
except LAMOL was able to prevent knowledge loss on SciFact task, attaining ap-
proximately 60% accuracy, while LAMOL achieved only around 20%. As the last
task, Movies was not affected by CF. All models were able to achieve a comparable
performance of approximately 95%.

5.1.2 Five-task Sequence

Besides, we conducted an experiment on all five tasks sequentially to further demon-
strate our framework’s effectiveness in preventing CF. Due to the limited computa-
tional resources, we only explored two orders: from the largest to the smallest tasks
(FBTMS) and vice versa (SMTBF).

The results are shown in Table 5.2, where our framework greatly outperformed
LAMOL in both orders. Even though LAMOL was able to prevent catastrophic
forgetting to an extent, the superior quality of pseudo samples generated by our
framework enabled the model to retain significantly more knowledge and gain an
improvement of 13.18% average score. The combined pseudo sample enhancement
strategy (LM+Adapter+RT) also generalizes to a longer sequence of tasks where we
gained an additional 3.03% average score.

We also provided accuracy graphs in Figure 5.2. Our proposed methods showed
significantly higher knowledge retention ability as seen on the first three tasks of
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Figure 5.1: Learning curves of task order BSM. The graphs show accuracy at each
epoch for each task. Green background refers to the epochs on which the model
is first introduced with a particular task. In this figure, for example, the model is
trained on Bool-Q and evaluated on all the three tasks during epoch 1-5.
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Methods FBTMS SMTBF Average
LAMOL 57.01 44.32 50.67
LM+Adapter 65.51 62.18 63.85
LM+Adapter+RT 66.03 67.74 66.88
LAMOLreal 70.95 71.83 71.39
Multitask 68.89

Table 5.2: Performance of LLL models on five tasks, averaged over three random
seeds.

Methods Runtime #Parameters
LAMOL 90.7 min 124.44M
Double LM 178.2 min 248.88M
LM+Adapter 127.5 min 125.33M
Re-generate +13.1 min -
Temporal Ensem. +3.2 min -

Table 5.3: Runtime and parameter count of different LLL methods from Table 5.1.
The runtime is an average of all task permutations across three random seeds.

the sequence. However, they slightly underperform LAMOL on the Bool-Q task.
One possible explanation for this is because the pseudo samples generated from our
framework might not be able to provide the positive forward transfer as did the real
examples (LAMOLreal). Additionally, the models were required to assimilate all the
knowledge of the previous three tasks and the Bool-Q task. Consequently, there
might be insufficient model capacities to accommodate all the knowledge. On the
other hand, LAMOL had already forgotten most of the knowledge learnt prior to
the start of Bool-Q; therefore, there was higher model capacity left to accommodate
the knowledge from the Bool-Q task. It is also noteworthy to mention that our LM
+Adapter+RT showed the ability of backward knowledge transfer in the SciFact
task, achieving higher accuracy than after it has just learnt the task.

5.2 Efficiency

We detailed the runtime and parameter counts of each method in Table 5.3. The
runtime is calculated by averaging the runtime of all task permutations from Ta-
ble 5.1. Despite massive performance improvement, Double LM took almost 2 times
longer than vanilla LAMOL and doubled the storage requirement. LM+Adapter
was able to retain most of the improvements while taking only approximately 1.4
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Figure 5.2: Learning curves of task order SMTBF. Each graph shows the perfor-
mance at each epoch for each task. Green background refers to the epochs on which
the model is first introduced with a particular task.
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times longer. It also requires a negligible amount of additional storage. We also
report the runtime of the pseudo sample enhancement strategies. Note that tempo-
ral ensembling only temporarily stores the extra model which is discarded after the
generation process; therefore, no additional parameters are introduced.

5.3 Results of Pseudo Sample Analysis
The analysis showed that pseudo samples generated by LAMOL mostly did not
conform to the QA format and thus were not used in training. This is shown in Ta-
ble 5.4a. As a consequence, LAMOL was unable to effectively prevent catastrophic
forgetting. Our framework increased the success rate of pseudo sample generation
(Table 5.4b). This also resulted in a significant increase in the final LL performance.
Note that it is still possible for our framework to produce malformed pseudo samples
if the LM outputs special tokens inappropriately. However, the numbers are much
less than LAMOL, at least approximately seven times smaller. There were also still
some undesirable pseudo samples generated by our framework. Here, we attempt
to identify the cause and anticipate the effect of each aspect, providing insights for
future improvements.

Uninformative Pseudo Samples From Table 5.4b, in task orders where Sci-
Fact is not the last task, the number of uninformative pseudo samples dominates
other aspects. This is because the extremely complicated language used in the
task examples of SciFact greatly differs from the general domain on which GPT-2
was pretrained. Thus, without enough training examples, the LM fails to generate
coherent examples. We hypothesize that pseudo samples of this nature may not
necessarily be destructive to the model’s knowledge; however, the generation quota
could still be better allocated for more informative pseudo samples. This hypothesis
is supported by the minor improvements gained by using ReGen.

Wrong Task Pseudo Samples As mentioned in Sun, Ho, and Lee (2020), gener-
ated pseudo samples sometimes do not correspond to the given task tokens. This is
caused by the imbalanced amount of pseudo samples and samples from a new task.
As a result, the model tends to generate more pseudo samples from newer tasks.
From our pseudo sample analysis, the problem is more prevalent when the dataset
of the new task is larger than the one of the previous task. We have observed many
wrong-task pseudo samples to actually be perfectly fine pseudo samples, i.e., having
correct answers and logically sound contexts and questions. Despite the decent qual-
ity of these pseudo samples, wrong-task pseudo samples worsen the data imbalance
problem. Therefore, we believe that this kind of pseudo samples is less destructive
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Aspect BMS BSM MBS MSB SBM SMB
Wrong Format 41.00 320.00 72.33 1,239.00 310.00 703.00
Uninformative 0.00 0.00 0.00 0.67 1.67 1.00
Wrong task 2.00 0.00 0.33 7.33 0.00 10.67
Wrong Answer 8.00 0.00 2.33 5.33 3.00 72.33
Correct answer 30.00 0.00 6.00 19.67 5.33 485.00

Total Number 81.00 320.00 81.00 1272.00 320.00 1272.00

(a) Pseudo sample analysis of LAMOL.
Aspect BMS BSM MBS MSB SBM SMB
Wrong Format 3.33 8.67 2.67 14.67 36.33 102.00

Uninformative 15.00 173.33 19.00 409.00 180.00 347.67
Wrong task 22.33 47.00 29.00 107.00 58.67 153.67
Wrong Answer 8.00 37.67 5.33 162.67 15.00 122.67
Correct answer 32.33 53.33 25.00 578.67 30.00 546.00

Total Number 81.00 320.00 81.00 1272.00 320.00 1272.00

(b) Pseudo sample analysis of LM+Adapter.
Aspect BMS BSM MBS MSB SBM SMB
Wrong Format 0.33 1.00 1.67 11.00 26.00 23.00
Uninformative 0.00 4.00 0.00 0.00 5.00 0.33
Wrong task 23.67 105.00 31.00 194.67 93.67 128.00
Wrong Answer 10.67 91.33 12.67 194.67 81.67 186.00
Correct answer 46.33 118.67 35.67 871.67 113.67 934.67

Total Number 81.00 320.00 81.00 1272.00 320.00 1272.00

(c) Pseudo sample analysis of LM+Adapter+R.
Aspect BMS BSM MBS MSB SBM SMB
Wrong Format 1.00 6.67 2.67 3.67 31.67 101.33

Uninformative 14.67 174.33 17.67 329.00 161.67 352.33
Wrong task 18.33 36.00 29.00 62.67 60.67 90.00
Wrong Answer 7.00 35.33 7.00 177.33 28.00 107.00
Correct answer 40.00 67.33 24.67 699.33 38.00 621.33

Total Number 81.00 320.00 81.00 1272.00 320.00 1272.00

(d) Pseudo sample analysis of LM+Adapter+T.
Aspect BMS BSM MBS MSB SBM SMB
Wrong Format 0.33 2.00 0.33 5.33 21.00 36.67

Uninformative 1.67 80.67 3.33 53.00 42.00 24.67
Wrong task 22.67 69.33 35.33 109.00 102.33 103.33
Wrong Answer 7.67 68.33 6.67 191.33 66.00 171.00
Correct answer 48.67 99.67 35.33 913.33 88.67 936.33

Total Number 81.00 320.00 81.00 1272.00 320.00 1272.00

(e) Pseudo sample analysis of LM+Adapter+RT.

Table 5.4: Results of the pseudo sample analysis. The numbers indicate the amount
of pseudo samples corresponding to each characteristics, averaged over three seeds.
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to LL performance for shorter task sequences. The effect of this problem is more
apparent in longer task sequences, where the knowledge of the first task is eventually
lost, resulting in larger gaps of performance between LAMOLreal and other methods
(Table 5.2) when compared with shorter sequences (Table 5.1).

Wrong Answer Pseudo Samples We believe that pseudo samples with wrong
answers are the most destructive to the model’s knowledge, relative to the previously
mentioned issues. This effect is most clearly seen when we included temporal en-
sembling into our framework, where improving answer correctness of pseudo samples
consistently improves the performance of our framework on every task permutations.
Therefore, future work should focus on minimizing the number of pseudo samples
of this nature.

5.4 Ablation Study
Other Variations Our proposed framework uses LM1 to learn the context part
and the QA task and uses LM2 to learn the question part. This can be written
as (c+qa/q). We also experimented with other two different configurations of our
proposed Double LM namely:

• (c+q/qa): LM1 learns the context and the question parts, whereas LM2 learns
on the QA task only; and

• (c/q+qa): LM1 learns only the context, while LM2 learns the question part
and the QA task.

Variation Average Acc. Std.
Double LM (c+qa/q) 69.96 1.29
Double LM (c+q/qa) 69.43 2.64
Double LM (c/q+qa) 30.68 9.83

Table 5.5: The performance of other variations of our framework.

We performed the experiment on all permutations of the three tasks: BoolQ,
Movie Reviews, and SciFact. The results are reported in Table 5.5. We found that
the first variation (c+q/qa) performs comparably with our default configuration
(c+qa/q) while having a higher standard deviation. The second variation (c/q
+qa) was observed to produce mostly malformed pseudo samples. In particular,
the LM was unable to distinguish between the question generation process (step
2 of Figure 3.2) and the answer generation process (step 3 of Figure 3.2). Thus,
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most generated pseudo samples do not have answers but rather two questions. As
a result, this variation was unable to prevent CF and achieved only 30.68% average
accuracy, comparable to sequential finetuning.

5.5 Discussion
Even though the proposed framework has shown impressive performance improve-
ments over LAMOL in our experiments, it provides relatively small improvements
when trained on datasets with short texts such as those in Sun, Ho, and Lee (2020).
This is because LAMOL is already able to produce high-quality pseudo samples on
these datasets. Hence, the Double LM framework would only introduce additional
training time.

As an illustration, Table 5.6 shows the performance of LAMOL compared with
our framework on one task sequence from the original LAMOL paper: SQuADv1
→ WikiSQL → SST → QA-SRL → WOZ. For all methods, we trained each task
for only five epochs.

Methods Average Acc.
LAMOL 70.71
LM+Adapter 70.39
LM+Adapter+T 71.50

Table 5.6: The performance of different methods on task sequence: SQuADv1 →
WikiSQL → SST → QA-SRL → WOZ. Note that the ReGen strategy was not
required since there were virtually no uninformative pseudo samples present in the
experiments.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion
In this thesis, we introduced Double LM, a lifelong learning framework that focuses
on improving pseudo samples. Our framework utilizes two language models each
specializing on certain part(s) of input. As a consequence, the framework enjoys
higher pseudo sample quality which is crucial for good LL performance. Double LM
excels on datasets with longer text while also is able to perform well on datasets
with short text. In our experiments, Double LM was able to significantly outperform
LAMOL in every task sequence while also rivalling LAMOLreal in some task per-
mutations. We also successfully reduced the computational requirements of Double
LM by using the adapter modules. By applying temporal ensembling and simple
pseudo sample re-generation to enhance pseudo samples, our framework was able
to almost match the performance of LAMOLreal. Lastly, we provided an analysis of
pseudo samples and their effects on final LL performance. Future work could build
on our analysis to potentially create better pseudo-rehearsal based lifelong language
learners.

6.2 Future work
For future work, we aim to enhance the impact of our framework on tasks with
shorter texts. Additionally, by analysing how in some task permutations our frame-
work managed to outperform LAMOLreal could provide deeper insights on generating
pseudo samples with quality that rival real samples.
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A Rational LAMOL

As mentioned in the introduction, Rational LAMOL was a collaboration with a
fellow graduate student. In the spirit of the requirement for a thesis, only the new
Double LM framework is described in the main text while the Rational LAMOL
framework is described here in the appendix.

Rational LAMOL, illustrated in Figure 1 (right), augments the original method-
ologies of LAMOL by freezing a part of the model where most knowledge is lost
when training on a new task. We believe that by preventing the loss of knowledge,
the model can better retain its performance on the previous tasks while reusing the
knowledge to help learn the new task. The part to be frozen is identified by a novel
rationale-based algorithm called Critical Component Identification (CCI). The CCI
algorithm finds the critical component by comparing the attention scores of each
layer of the model with the ground truth rationales.

Our experiments are conducted in an LL setting in which a model is trained
on a stream of task τ = {τ1, τ2, ..., τi, ...} where τi is the i-th task to train at time
step i. Let Mi denote the model M after being trained for task i, where M0 is the
initialized pre-trained model. Our Rational LAMOL follows the following process.
First, using LAMOL’s training procedure, the modelMi is optimized on the task τi+1

to obtain M̂i+1. Second, when i > 0, the proposed critical component identification
algorithm, which is described in Section A.1, is applied to both Mi and M̂i+1 by
using the rationales of task τi to identify the block most susceptible to forgetting.
Finally, by applying freezing to the most plastic block identified by our algorithm,
we train MCF

i on the task ti+1 again to get a new model Mi+1 which now retains
the most plastic knowledge.

A.1 Critical Component Identification (CCI)

Inspired by Nguyen et al. (2020) that leverages Explainable AI to dissect a CNN
model of the most plastic blocks via Auto DeepVis, we create an algorithm that is
able to identify the most plastic component similarly in transformer-based models.
The selected component is then kept frozen to prevent loss of knowledge. Nev-
ertheless, we cannot directly adapt Auto DeepVis to the NLP context. Certain
discrepancies need to be rectified. Specifically, the lack of ground truth semantic
segmentation labels and the different semantic values of hidden state visualization.

Auto DeepVis was devised to automatically select the most plastic blocks to be
subjected to freezing. The main idea is to first identify representative maps, which
are feature maps that most resemble the semantic segmentation ground truth, in
each block of both the model before and after training on incoming data. The
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Figure 1: Left: The overview of LAMOL. Right: The overview of Rational
LAMOL, our proposed framework that aims to alleviate catastrophic forgetting
by freezing the critical component.

forgetting effect is measured by the drop in Intersection over Union (IoU) values
between the two representative maps.

Representative maps are automatically dissected through the resemblance of
feature maps to the ground truth semantic segmentation labels. Diverse features
of objects are captured by feature maps isolatedly throughout the channels, which
these semantic segmentation labels are deemed apropos for the distinctive features
containing positive evidence for prediction.

However, in the NLP context, the field of interpretable AI currently is in its
budding and does not yet possess such visualization tools (DeYoung et al. 2020).
There are certain methods that can visualize the self-attention mechanism (Vig 2019;
Hoover, Strobelt, and Gehrmann 2020), illustrating the ability of the mechanism
to relate tokens from different positions to form a representation of the sequence.
Similarly, attention heads have also been shown to exhibit behaviour related to the
syntactic and semantic structure of sentences (Vaswani et al. 2017). Therefore, we
believe that the self-attention mechanism would naturally attend to tokens that
represent positive evidence crucial for predictions. This is analogous to rationales–
snippets that support outputs.

The Critical Component Identification used in our thesis is depicted in Algo-
rithm 1. Note that we preserve most of the variable names according to Nguyen
et al. (2020) for ease of reference. Each validation sample is passed through the old
and new models MO and MN respectively. We find these representative maps of
each transformer block by running through the attention scores AT of each block j.

Given a model M and the ground truth segmentation GT , the model would
output an array with the shape of (12 blocks, 12 heads, 1024 tokens, 1024 tokens).
Specifically, a single Transformer block j outputs |A| attention heads, with each
attention head consisting of |S| tokens, and each token containing attention scores
relating to all other |S| tokens.

46



Algorithm 1 Critical Component Identification
Input: Validation set X, ground truth GT , old model MO, new model MN , number

of blocks K
Output: Critical block F

Ł← ∅
for all validation sample {xi}|X|

i=1 ∈ X do:
IoUs ← ∅
ATO, ATN ← [MO(xi),MN(xi)]

for j = 1, K do:
RMMO,GT ←
ATj,a∗,s∗ with highest IoUMO,GT

RMMN ,MO
←

ATj,a∗,s∗ with highest IoUMN ,MO

Append(IoUs, max(IoUMN ,MO
))

end for
b← block index with highest drop in IoUs
Append(Ł, b)

end for
F = Mode(Ł)
return F
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Figure 2: Schematic illustration of the calculation of IoUM,GT . A: The input is fed
through each attention block ATb, where each block b has multiple heads. B: A
single attention head ATb,a consists of the attention of the sequence in relation to all
other tokens, as shown in C. Finally, the IoU calculation F is applied on the hard
selection of attention token with percentiles D and the rationale ground truth in E.

For each block j, the algorithm iterates over all heads and all tokens and calcu-
lates the IoU similarity of the attention score of each token in relation to all other
tokens with the ground truth. For instance, the IoU of the s token in the a attention
head of the j Transformer block is computed as:

IoUM,GT (j, a, s) =
Pβ(ATj,a,s) ∩GT

Pβ(ATj,a,s) ∪GT
(1)

where Pβ denotes a simple binary thresholding function with the threshold being at
the β-th percentile of the entire sequence.

Since IoU calculations require a comparison of two binary masks, the threshold-
ing function is required as an important design choice due to the soft scores in the
self-attention mechanism.

Correspondingly, the representative map (RM) is the attention output of the
token with the highest IoU between its attention scores to other tokens and the
ground truth rationale. For a block index j, this can be computed as:

(a∗, s∗) = argmax
a∈A,s∈S

(IoUM,GT (j, a, s))

RMM,GT (j) = ATj,a∗,s∗

(2)

Note that a∗ and s∗ are the attention head index and token index respectively that
receive the highest IoUM,GT value. The value of RMM,GT is the attention value that
is extracted from the attention output AT on block index j, attention head index
a∗, and token index s∗. Similarly, IoUMN ,MO

is identical to Equation 1, replacing
GT with Pβ(RMMO,GT ). The binary thresholding function Pβ is applied whenever
there are non-binary inputs. RMMN ,MO

is identical to Equation 2, replacing the
IoU value with the one we just computed. The IoU calculation in the representative
maps selection process is illustrated in Figure 2 for more clarity.

In addition, since each transformer block is composed of multiple attention heads
(Vaswani et al. 2017), it is possible for us to freeze individual heads separately.
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Freezing in this manner means we can control the loss of knowledge with finer
granularity. Therefore, we propose another algorithm that can be instead applied
to transformer heads. This is similar to Algorithm 1, but instead of just iterating
through each block, the algorithm will go through each attention head (in all blocks)
and identify those that are most prone to forgetting. Although the calculation of
IoU will be the same, the definition of the representative map will be at a higher
granularity. For a block index j and attention head a, RMM,GT will be computed
as:

(s∗) = argmax
s∈S

(IoUM,GT (j, a, s))

RMM,GT (j, a) = ATj,a,s∗

(3)

A.2 Unsupervised Rationale Generation

As mentioned in Section A, rationales are a crucial requirement for Rational LAMOL.
However, existing NLP datasets usually possess only labels but not rationales.
Therefore, we leverage a recent unsupervised rationale generation framework, In-
vRat (Chang et al. 2020), to automatically generate rationales from any dataset as
substitutions. However, InvRat was originally designed for single-input tasks and
most of the datasets used in our experiments are multi-input tasks such as text-pair
classification. To amend the issue, we additionally append the query (or question)
at the end of each sample in order to accommodate these tasks.

B Results of Rational LAMOL
To validate our hypothesis that freezing does help retain knowledge important to
previous tasks, we conducted a partial brute force block-level freezing as the upper
bound of our Rationale LAMOL block on each task permutation. Due to the limited
computation resources, we performed the brute force in a partial fashion, searching
only on the even-numberd block. The result is presented in Table 1. Brute Force
outperformed LAMOL by a large margin of 9.56%, confirming our hypothesis that
freezing does help reduce catastrophic forgetting.

Using our CCI algorithm to identify the critical component, Rational LAMOLblock

was also able to outperform LAMOL by 7.28%. Similarly, Rational LAMOLhead was
also able to achieve comparable performance with the block-level variant.

Finally, to our surprise, using generated rationale instead of human rationales
in CCI, Gen R-LAMOLblock was able to further improve the performance by an
additional of 0.84% upon R-LAMOLblock.

Although all variants of Rational LAMOL were able to improve on the baseline,
they only slightly outperformed LAMOLall. This indicates that pseudo samples
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Methods BMS BSM MBS MSB SBM SMB Average Std.
Baselines. Section 2.7 & Section 5.1.1
LAMOL 64.53 35.48 66.79 60.76 52.02 54.40 55.67 11.41
LAMOLall 62.22 62.06 61.42 52.93 65.32 63.35 61.22 4.29
Rational LAMOL. Section A
Partial Brute Forceblock 67.01 62.90 66.20 63.31 68.75 63.20 65.23 2.44
R-LAMOLblock 67.40 62.34 65.31 56.55 58.69 67.40 62.95 4.57
R-LAMOLhead 67.25 63.51 64.29 61.15 59.54 51.16 61.15 5.57
Gen R-LAMOLblock 64.39 65.63 65.68 57.65 63.30 66.39 63.84 3.22
Gen R-LAMOLhead 63.45 66.98 65.93 56.39 63.37 63.43 63.26 3.69
Double LM Framework. Section 3.1-3.1.1
Double LM 68.94 69.00 71.78 69.20 71.44 69.37 69.96 1.29
LM+Adapter 69.68 67.88 69.73 69.19 69.00 71.23 69.45 1.10
With Additional Pseudo Sample Enhancement. Section 3.3
LM+Adapter+R 70.22 69.02 69.16 67.51 71.48 71.43 69.80 1.54
LM+Adapter+T 69.73 71.75 70.16 69.60 71.02 71.83 70.68 0.99
LM+Adapter+RT 71.28 70.53 70.30 70.09 71.45 73.62 71.21 1.30
LAMOLreal 69.07 71.97 70.84 72.31 74.13 73.32 71.94 1.80
Multitask 75.52

Table 1: Accuracy of different methods, averaged over three random seeds. The
scores are evaluated on the models at the last epoch of the last task. Each column
represents the order of tasks on which the methods were trained. B, M and, S refer
to BoolQ, Movie Reviews, and SciFact, respectively. The Average and Std columns
refer to the average and standard deviation of the accuracy scores for each row of the
methods, respectively. R-LAMOL and Gen R-LAMOL refer to Rational LAMOL
and Generated Rational LAMOL, respectively.

may play a more critical role in preventing catastrophic forgetting. Overall, the
results are actually consistent with the results from Sun, Ho, and Lee (2020) where
regularization-base approaches such as EWC and MAS provide only marginal im-
provements to LAMOL since R-LAMOL can also be seen as a regularization-base
approach.
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