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งานวิจยัน้ีได้น าเสนอวิธีการท่ีเรียกว่า การหาความเหมาะสมท่ีสุดของผลลพัธ์เกมโกลาหล (Chaos Game 

Optimozation ; CGO) เพื่อออกแบบขนาดท่ีเหมาะสมท่ีสุดของโครงถกัเหลก็ ภายใตร้ะบบแรง การหาความเหมาะสม
ท่ีสุดของผลลัพธ์มีจุดมุ่งหมายเพ่ือลดน ้ าหนักโดยรวม (เก่ียวข้องโดยตรงกับฟังก์ชันต้นทุน) ของโครงสร้างท่ีมีจุดรองรับ 

(Constrain) ท่ีอธิบายถึงการตอบสนองโครงสร้างท่ีสอดคลอ้งกบัขอ้ก าหนดของสภาพการจ ากดั (Limit-State) แนว
ทางการวิเคราะห์โดยCGO มีแนวคิดมาจาก ทฤษฎีความโกลาหลพ้ืนฐาน โดยจะก าหนดรูปแบบทางเลขาคณิต (Fractal) 

ในการตอบสนองต่อระบบท่ีเป็นตวัแทนของพวกเขาเป็นระบบพลวตัท่ีจดัระเบียบดว้ยตนเอง รูปแบบทางเลขาคณิตถูกสร้างขึ้น
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The research proposes the so-called chaos game optimization (CGO) 

method to perform the optimal sizing design of steel truss structures under applied 

loading regimes. The optimization problem aims at the minimization of the total 

weight (directly related to the cost function) of the designed structure subjected to 

the constraints describing the intrinsic structural responses complying with limit-

state specifications. The CGO approach is based on the underlying chaos theory 

that establishes the primary patterns as fractals in responses to the systems 

representing them as self-organized dynamical systems. The fractal is generated as 

an initial Sierpinski triangle (i.e., search space of solution candidates) with 

randomly selected initial points to map out the sequence of points and hence the 

overall shape of the triangle. The optimal solutions can be obtained at a small 

amount of searching efforts. The applications in the optimal sizing design of steel 

trusses under specified forces illustrate the efficiency and accuracy of the CGO 

method through the good comparisons with some available benchmarks (including 

the statistical data of solutions) solved by other meta-heuristic techniques. The 

optimal solution of the benchmark results with three examples of 10-bar, 72-bar, 

200-bar truss structures are tested which ends in an effective way with the CGO 

optimization and these results are compared to other methods. The Chaos Game 

Optimization proved that it is capable of providing the good result and 

outperforming the previously developed optimization methods. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

  The majority of design issues in nature can be categorized as optimization 

issues, which necessitate the use of appropriate optimization techniques and algorithms. 

These days, design issues are so complicated that traditional optimization methods founded 

on mathematical concepts are unable to deliver some adequate outcomes in a fair amount of 

time. One of these mathematical approaches is gradient-based algorithms, which configures 

the optimization issue using the gradient of the objective function. Dealing with the 

shortcomings of traditional optimization algorithms and proposing new effective optimization 

algorithms have been major concerns over the past few decades. The introduction of new 

optimization algorithms that produce a high efficiency, great accuracy, and enhanced speed 

rate in handling challenging optimization issues is becoming more and more popular as a 

result of recent technological advancements. Additionally, there are certain other challenges 

that need to be addressed, such as the local optima problems and the non-smoothness and 

non-convexity of the search spaces, which have been quite problematic in this area [1].  

These worries regarding optimization algorithms have prompted researchers and 

industry professionals to offer new, "Metaheuristic," algorithms for dealing with various 

optimization challenges. This phrase, which is made up of a core word (Heuristics) and a 

suffix (Meta), both of which have their roots in Greek words, was initially proposed by 

Glover in 1986 [2]. The word "heuristic" derives from the Greek word "heuriskein," which 

originally meant to discover new rules (strategies) in order to deal with various difficulties. 

The word "meta" refers to some higher-level techniques in nature. The term "metaheuristics" 

refers to a unique class of problem-solving techniques that take advantage of higher-level 

approaches to carry out a search process while taking into account certain special capabilities 

(such as avoiding local optimal results) in order to identify suitable solutions. Metaheuristic 

algorithms also make it possible to take into consideration design constraints by fusing an 

optimization process with precise engineering analysis. Trajectory-based algorithms and 

population-based algorithms are two categories of metaheuristic algorithms. Simulated 

Annealing (SA) method developed by Kirkpatrick et al. [3] is a trajectory-based algorithm, 
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while Harmony Search (HS) [4], Genetic Algorithm (GA) [5], Cuckoo Search [6], Particle 

Swarm Optimization (PSO)[7], Ant Colony Optimization (ACO)[8] are all population-based 

algorithms. New metaheuristic algorithms are also being created in order to enhance 

convergence behavior and optimization capabilities. For instance, Yang recently created the 

Flower Pollination Algorithm (FPA), a population-based metaheuristic technique [9] , which 

imitates the nature of flower pollination.  

Numerous techniques have been used to optimize truss structures. To discover a local 

optimum of the approximate problem, Adeli and Kamal, for instance, used a dual simplex 

technique to optimize space trusses while repeatedly solving the initial problem [10]. . 

Discrete variables and GA with a penalty parameter based on constraint violation were 

employed by Rajeev and Krishnamoorthy [11]. For the ideal design of frame structures, Cao 

also used GA.  [12]. To optimize the size and configuration of truss structures, Schutte and 

Groenwold employed PSO [13]. To reduce the total weight of the structure subject to stress 

and deflection limitations, Camp and Bichon used ACO [14]. By utilizing the HS method and 

continuous design variables, Lee and Geem created trusses that performed optimally under 

various loading circumstances [15]. Camp used the Big bang–big crunch (BB–BC) algorithm 

developed by Erol and Eksin [16] to create space trusses with the best possible design. Based 

on the particle swarm optimizer with passive congregation and an HS scheme, Li et al. 

created a heuristic particle swarm optimizer. This approach was effectively used to optimize 

the design of planar and spatial truss structures [17]. 

The chaos game optimization (CGO) method is recommended for performing the best 

sizing design for steel truss structures under the applied loading regimes. The objective of the 

optimization issue is to minimize the overall weight, which is directly related to the cost 

function, of the designed structure under the conditions of constraints specifying the intrinsic 

structural responses that satisfy limit-state requirements. The CGO method is founded on the 

underlying chaos theory, which establishes the fundamental patterns as fractals in reaction to 

the systems portraying them as self-organized dynamical systems [1]. The fractal is produced 

as an initial Sierpinski triangle (i.e., search space of solution candidates) with initially chosen 

starting points that are chosen at random in order to map out the points' order and 

subsequently the overall shape of the triangle. With minimal research effort, the optimal 

answers can be found. trusses Through accurate comparisons with various existing 
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benchmarks (including the statistical data of solutions) resolved by other meta-heuristic 

techniques, the applications in the optimal sizing design of steel under specified stresses 

demonstrate the effectiveness and correctness of the CGO method. 

1.2 Objectives of the Study   

The following are the objectives of this investigation. 

(a) To outline a useful and effective strategy based on the Chaos Game Optimization 

(CGO) that can optimize the design of true truss structures. 

(b) To reduce the weight of the truss structure by using the Chaos Game 

Optimization (CGO) algorithm. 

(c) To satisfy the structural constraints that are applied to the building which are 

stresses, deflections, and lateral displacement by finite element analysis 

(FEA). 

 

1.3 Scope of the Study   

To accomplish the scope of this research, numerous parameters are investigated as 

follows: 

(a)  An optimization test has been made on three different truss structures which are 

considered as the structural size optimization problems using the proposed 

method. 

(b) The stress and displacement serve as the design constraints in these issues. 

(c) This study has tested the optimization tool for truss structures with continuous 

variables. 

(d) The MATLAB program is applied to optimize and analyze with an iterative 

manner to minimize the total weight of the structure. 

(e) The violations of these constraints are considered as penalty functions and will 

have accounted them for the total weight. 
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1.4 Methodology 

             In this paper, a Chaos Game Optimization (CGO) is suggested. The central 

concept is founded on the ideas of chaos theory, and as inspiration, fractal configuration and 

self-similarity problems are used. The algorithm is tested on several well-known benchmark 

truss problems for sizing optimization and the obtained results were compared to those of 

some well-known meta-heuristics which successfully solved benchmarks highlighted 

efficiency optimization problems.  

To investigate the efficiency and viability of the proposed CGO method, three 

prominent benchmarks of trusses will be explored for sizing optimization. The goal is to find 

the optimum cross-sections of the members by minimizing the weight of the structure. For 

the numerical purpose, the 10-bar, 72-bar, 200-bar truss structures as three of the benchmark 

problems are considered as design examples. 

In addition, the direct stiffness method is applied to analyze the mass and stiffness of 

all benchmark structures. The coding procedure is implemented with MATLAB program. 

The optimization procedure terminates when the minimum cross-sections are obtained 

without violating its given constraints at the maximum number of iterations. The penalty 

function method will be applied to the weight minimization process. The outcomes of the 

suggested approach will be contrasted with those of other meta-heuristic optimization 

methods that have just been published in the literature. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2  

LITERATURE REVIEW 

 

2.1 Overview of Structural Optimization 

The three key categories for the best skeletal structure design are optimization of size, 

shape, and topology as shown in Figures 1. 

 

 

Figure 1 Three main categories of structural optimization problems 

           

 In shape optimization, the target is to find the best shape of the structure. In topology 

optimization, the target is to find the optimum structure by changing the amount and the 

location of material or components in the structure. While the cross-sectional areas of 

structural members are regarded as design variables in sizing optimization, they can be 

further classified into two subcategories, such as continuous and discrete [18]. In real-world 

applications, where structural components must be chosen from a range of offered sections by 

manufacturers, this is typically not the case for the continuous sizing optimization. In 

contrast, the most typical situation for structural optimization in practice is discrete 

optimization issues. However, the discrete variable space is hardly organized for algorithms 

to converge to good solutions of steel frame design optimization [19]. 
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Figure 2 Schematic configuration of an optimization process. 

 

2.2 Optimum Design of Truss Structures 

           The structural structures known as trusses are made up of N bars connected by nodes. 

The system is vulnerable to outside forces that are applied at the joints. The main goal of 

truss system structural optimization is to reduce the overall weight of the system. The 

optimization procedure and the truss structural analysis are both included in the suggested 

technique. The latter utilizes the stiffness method, and nodal displacements are computed in 

accordance with 

                                               ∆ = K-1P                                                                        (1) 

 

K and P in Eq. (1) stand for the external load vector, the system stiffness matrix, and 

the nodal displacement vector, respectively. By combining the element stiffness matrices in 

global coordinates and removing the row and column conditions, the system stiffness matrix 

is created. A bar element with three degrees of freedom at each node has the following 

stiffness matrix: 

                                                     l2        lm       nl       -l2      -lm     -nl 

                                                    lm     m2      mn     -lm    -m2     -mn 

                             Ki = EAi               nl      mn      n2      -nl     -mn     -n2                         (2) 

                                                    -l2     -lm     -nl        l2         lm       nl 

                                                    -lm   -m2    -mn       lm     m2     mn 

                                                    -nl    -mn       n2         nl      mn      n2 

where, 
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                                𝑙 =
Lxi

Li
  ,    𝑚 =

Lyi

Li
    and   𝑛 =

Lzi

Li
                                             (3) 

 

           The coordinates of the nodes and boundaries of the elements, which are established as 

the design constants, are used in Eqs. (2) and (3) to compute the total length of the bars (Li) 

and the dimensions of the length in x, y, and z coordinates (Lxi, Lyi and Lzi). Additionally, 

design constants for bar materials include density (γ) and elasticity modulus (E). The design 

variables (X) of the optimization problem are the areas of the bars (Ai) (from i = 1 to N). The 

optimization's goal is to reduce the overall structural weight. That is 

min        
1

N

i i

i

W L A
=

=  ( iA R )                                                                               (4) 

 

for the design variables: 

 

XT =     A1, A2, . . ., AN                                                                                              (5) 

 

within the ranges of 

 

AL ≤ Ai ≤ AU      i = 1, N                                                                                          (5’) 

 

subject to the stress (g1(X)≤0) and displacement (g2(X)≤0) constraints 

 

g1(X) : _𝜎L ≤  σi  ≤  σU                       i = 1, Ni 

 

g2(X) : δL ≤  δj  ≤ δU                           j = 1,Nj                                                           (6) 

The lower and upper limits of the design variable solution ranges are designated as AL 

and AU, respectively. The displacement limits, δL and δU, often have equal absolute values 

but the opposite signs. The displacement of nodes (δj) from j=1 to Nj (for a system with j 

nodes) are the components of the displacement vector: 

 

                 δ1 

                 δ2 

                  . 

∆ =            .                            ( δ1,Nj ∈ R )                                                                 (7) 

 

                  . 

                δNj-1 

                δN 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 8 

σL and σU are two different types of stress limits which are for compression (σL in - 

sign) and tension (σU in + sign). The stresses of a bar (σiG) in global coordinate are 

calculated by 

 

G i i
j

i

K

A
 = ,    i = 1, N                                                                                                  (8) 

where ∆i is the vector of the nodal displacements of ith bar. Global stresses are 

multiplied by directional cosines to determine the axial stress on a bar (σi). The same rows 

are home to various design factors while creating the system stiffness matrix (K). Since there 

are several design variables in the equilibrium equations obtained in each row, the 

optimization issue is coupled. It is impossible to achieve nodal displacements according to 

Eq. (1) and stresses according to Eq. (8) without making these design variables assumptions. 

These numbers can be seen as the upper and lower bounds of the design restrictions given by 

g1(X) and g2(X), however the best outcome never involves maximizing all nodal 

displacements and bar stresses. 

Additionally, bar stresses may be higher than the limit when all displacements are at 

their limits. Different loads and time periods may stimulate the structures in different ways. 

When design variables are altered in accordance with various loading scenarios, the 

maximum stresses change as a result of the interaction of the bars. Large structural systems 

might not be able to handle the quantity of design variations.  All of these factors can make it 

impossible for us to use mathematical optimization techniques to solve structural design 

issues. In this case, metaheuristic approaches that employ randomly generated design 

variables are appropriate options for completing such jobs. Thus, it is possible to resolve the 

linked equilibrium equation. The best design variables can be discovered by performing 

iterative studies. 

2.3 Problem Formulation of the Optimum Design Problem 

     The optimization problem endeavors to minimize the total weight (W) of the structure 

under the limited design constraints. The member cross-sectional areas, namely Ad for each d-

th member are the design variables and the constraints consider the stresses developed in the 

element (i.e., tensile, compression and buckling) and the nodal displacement of joints. This 

can be mathematically described as follows:  
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                                                                                           (9) 

where nd is the total number of (pin-jointed) truss members, ρd is the material density of the 

structure, Ld is the length of a generic d-th member, σd is the stress developed in each d-th 

member, and δd is the nodal displacement of joints of each d-th member, σmin and σmax are the 

lower and upper limits on the element stresses, δmin and δmax are the lower and upper limits on 

the nodal displacements and Amin and Amax the lower and upper limits on the available 

sectional areas, respectively.  

     Truss structure designs must adhere to the limited design constraints in order to be 

optimal. In this study, a penalty approach f has been applied to the total weight (W) of the 

structure to be accounted for the design infeasibility. Then, the problem in Eq. (9) is 

reformulated as: 
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            The penalty factor C is associated with the violation of the design constraints and the 

parameters ε1 and ε2 are set to 1 and 2, respectively. dc  and dc  are the parameters that 

indicates the satisfaction or violation of the stress and nodal displacement. *

d and *

d  denote 

as the allowable stress and the allowable nodal displacement. 
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2.4 Direct Stiffness Method 

The direct stiffness method is carried out to perform the truss element stiffness 

depending on their material properties, section properties, and member configurations 

assuming that the truss is loaded at the joints as the concentrated loads and the member of 

the truss is subjected to axial forces only which remain constant along the length of the 

member. Additionally, the joints are also presumed as frictionless pins or internal hinges. 

The element local stiffness matrix can be indicated as:   

                                                                      
1 1

'
1 1

d
e

d

EA
k

L

− 
=  

− 
 

 

 

Figure 3 Typical Two-node Truss element in Global and Local coordinates. 
 

A unit displacement is applied in the global coordinate for the purpose of determining 

the corresponding displacement in local coordinate. The relationship between the 

displacements of local and global coordinates is computed as follows: 
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(i) 

 

 

(ii) 

 

Figure 4 unit displacement applying in global coordinate to determine corresponding 

displacement in local coordinate system, (i) at node 1, (ii) at node 2. 

 

      Then, the global stiffness matrix for a truss element can be stated as follows: 
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2.5 Structural Optimization Methods  

The objective and constraint functions are non-smooth and non-convex optimization 

problems in the optimal design of steel frames in order to be optimal. Over the past years, 

many different algorithms for optimization have been developed. Most of these algorithms 

are based on numerical methods which can be typically classified into two groups including 

deterministic and stochastic techniques [20]. 

2.5.1 Deterministic Techniques 

2.5.1.1 Mathematical Programming Methods  

The objective function's gradient information as well as constraints pertaining to the 

design variables are necessary for programming methodologies. In the case of minimization 

problems, to find the next point until there is no major discrepancy 22 between the design 

variable values within two consecutive iterations, they take a step in the negative direction of 

the gradient of the objective function. There are various mathematical programming methods 

for solving complicated optimization problems. Several techniques include sequential linear 

programs, penalty function methods and gradient methods. However, when using these 

techniques to the design real-size practical steel frames, numerical difficulties were met [20]. 

2.5.1.2 Optimality criteria Methods  

The way solving the optimum design problem of optimality criteria methods is 

different from that of the mathematical programming methods. While mathematical 

programming techniques exert to minimize the objective function directly taking into account 

the constraint conditions, the optimality criteria methods derive a criterion based on intuitive 

such as fully stressed design or a mathematical statement such as Kuhn-Tucker conditions. 

The objective function of optimality criteria methods is formulated in form of a Lagrangian 

function instead of the original one. They then establish an iteration procedure to achieve this 
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criterion. The mathematical programming techniques are more general, but optimality criteria 

methods are computationally more effective. However, there are some circumstances when 

they might not lead to the best answer [20]. 

2.5.2 Stochastic Search Methods 

            Both continuous and discrete optimization problems can be successfully solved using 

stochastic search strategies. The fundamental idea behind these methods is to mimic natural 

phenomena like the cooling process, immune system, swarm intelligence, and the survival of 

the fittest. These techniques deviate from conventional stochastic search and do not require 

knowledge of the gradient or the convexity of the objective function and constraints. 

Furthermore, they employ probabilistic transition rules rather than deterministic ones [20]. 

Numerous of researcher have paid much attention on the meta-heuristic search procedures. 

The meta-heuristic techniques are successfully used in the optimum design steel frames. Ali 

Kaveh and Ghazaan [21] reported that some of the well-known methods being a genetic (GA) 

is inspired by Darwin’s theory about biological evolution. The Simulated Annealing (SA) 

algorithm makes use of the energy minimization that takes place during the cooling of molten 

metals. The notion of the Harmony Search (HS) algorithm was inspired by the musical 

practice of seeking for the ideal condition of harmony. Charged system search (CSS) directs 

the charged particles according to the Newtonian rules of mechanics and the electric laws of 

physics. 

 Especially, Swarm intelligence (SI) based algorithm is one of the best choices to 

obtain the optimum solutions by using special strategies. The algorithm based on collective 

behaviors of animals such as birds, insects, or fishes. Particle swarm optimization (PSO), 

which models the social interaction behavior of flocking birds and schooling fish, is one of 

the most popular swarm intelligence algorithms. Ant colony optimization (ACO) mimics how 

ant colonies determine the quickest path between the food source and their nest. The flashing 

patterns and behaviors of fireflies serve as the basis for the Firefly Algorithm (FA). Table.1 

given below is to illustrate the development of different algorithms with respect to their 

development years [22]. 

Table 1. Meta-Heuristic Algorithms 

 

2010  Charge system, Bat Search Algorithm, 

2009  Cuckoo Algorithm 

2007  Firefly Algorithm, Improved Harmony   Search 

2005  Bee Colony Algorithm, Glowworm Swarm Optimization 

2001  Harmony Search 
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1995  Particle Swarm Optimization 

1992  Ant Colony Optimization 

1989  Swarm Intelligence 

1986  Tubu Search, Artificial Immune System 

1983  Simulated Annealing 

1970  Genetic Algorithm 

 

 According to Saka and Geem [20], they also have the following negative aspects. The 

first is that it is impossible to show whether the optimum solution they achieve is the global 

optimum or is close to the global optimum because they do not employ mathematical 

derivations. The second is that they work with random numbers, and they have several param 

needing to be given values by the user. The third drawback is that they need many structural 

analyses which becomes computationally expensive for the large size steel frames. It is 

therefore difficult to predict which of these strategies will be adopted as the norm for the 

design tools in the finite element programs. 

 

2.6 Application of Meta-Heuristic Algorithms for Steel Truss Design 

  A huge number of studies have been performed by applying meta-heuristic methods 

to solve the optimum design of steel trusses. An extensive review of metaheuristic techniques 

employed in developing optimum design algorithms for steel trusses in the literature until 

now.  

Lamberti [23] and Saka [24] Lamberti recently examined the state-of-the-art for the 

use of metaheuristic algorithms in weight or cost optimization of skeletal systems. Dorigo et 

al. [25]  first introduced the ACO for optimization issues. The procedure imitates how ant 

colonies forage in the real world. 

By using stochastic combinatorial optimization, the ACO aims to simulate some of 

the key traits seen in ant behavior [26]. By employing pheromone trails, ants can create the 

quickest route between their colony and the source of their food and return [23]. The 

approach has been utilized for structural system design optimization in addition to its other 

uses. For example, truss structures were optimized by Camp and Bichon [14], Capriles et 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 15 

al. [27], Serra and Venini [28], and Hasancebi et al. [29]. Frame structures were optimized by 

Camp et al.[26] , Kaveh and Shojaee [30], Hasancebi et al.[31] , Kaveh and Talatahari [32]. 

For the purpose of resolving combinatorial optimization issues, Geem et al. [4] 

developed HS. The approach is based on a comparison between the search for optimal 

harmony in music and the search for answers to optimization issues. For instance, the 

optimum design method aims to discover the optimum solution as indicated by the goal 

function, similar to jazz improvisation which seeks to achieve musically satisfying harmony 

[26]. Following works by Lee and Geem [15] and Lee et al. [33]  that employed HS to 

optimize truss structures, HS has now been used to a number of structural optimization 

issues, such as the best design for geodesic domes [34], grillage systems [35], steel 

frames and trusses. In addition to the traditional HS algorithm implementation created several 

unique HS characteristics. For instance, Lamberti and Pappalettere [36] developed a better 

harmony search formulation in which trial designs are produced with knowledge of the cost 

function gradients. Compared to conventional harmony search and other meta-heuristic 

optimization algorithms, the novel HS formulation finished the optimization process with 

much less iterations [38]. An adaptive harmony search approach for structure optimization 

was put out by Hasancebi et al. [37]. Internal constant values that are acceptable are assigned 

in the typical implementation of HS. As a result, the chosen parameter value set directly 

affects how effective HS is. In order to find the most effective optimization procedure, 

Hasancebi et al. 's harmony search algorithm [37] adopts a novel method for automatically 

altering internal parameters.  

The PSO method was developed by Kennedy and Eberhart [7]. It is predicated on the 

idea that social information exchange among species members provides an evolutionary 

benefit [38]. An objective function's search space is initialized at random with a number of 

particles that represent the swarm. Each member of the swarm is a potential answer to the 

optimal design issue. The current position, a velocity vector, and a time increment are used to 

update the positions of the particles as they move across the search space [26]. PSO has been 

used in optimization of skeletal structures [39], [13], [17], [40]. Researchers updated the PSO 

standard For the purpose of sizing optimization of truss structures, For the purpose of sizing 

optimization of truss structures, For the purpose of sizing optimization of truss structures, For 

the purpose of sizing optimization of truss structures, implementation with new functionality. 

https://www.sciencedirect.com/topics/engineering/grillage
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A PSO strategy and an HS method are combined in the heuristic particle swarm optimizer 

(HPSO) developed by Li et al. [19], [42]. For truss constructions with both discrete [43] and 

continuous variables, Particle swarmer, ant colony optimization, and harmony search are 

inventions of Kaveh and Talatahari [41], [42]. The strategy combines a particle swarm 

optimizer with harmony search technique, passive congregation (PSOPC), and ant colony 

optimization (ACO) (HS).  

The BB-BC model that Erol and Eksin presented simulates theories about the 

development of the cosmos. This hypothesis states that the Big Bang phase is characterized 

by chaos and energy dissipation, whereas the Big Crunch phase sees the order of randomly 

scattered particles being brought into it [43]. To optimize the size of truss constructions, the 

BB-BC algorithm was used [44]. In order to improve convergence capability of standard BB–

BC algorithm, Kaveh and Talatahari  [45] created the hybrid BB-BC (HBB-BC) algorithm to 

increase the convergence capabilities of the ordinary BB-BC algorithm and to optimize space 

trusses and ribbed domes. Two stages make up the HBB-BC method: a Big Bang phase in 

which potential solutions are dispersed randomly throughout the search space, and a Big 

Crunch phase acting as a convergence operator where the center of mass is produced [45]. 

For the purpose of optimizing numerical functions, Karaboga [46] invented the ABC 

approach initially. The ABC is an optimization technique based on the brilliant behavior of a 

swarm of honey bees. Each food source that the bees utilize in the ABC approach indicates a 

potential resolution to a specific optimization challenge. The design variables and fitness 

function are represented by the position and quantity of nectar from the flower patch, 

respectively [47]. Truss structure size optimization using the ABC has been done effectively 

for both continuous [48] and discrete variables When results from the ABC algorithm are 

compared to those from other meta-heuristic techniques, it is clear that the ABC algorithm 

produces results that are at least as excellent as those of other optimization algorithms for 

truss structure optimization [48]. 

For limited mechanical design optimization issues, Rao et al. [48] have developed a 

brand-new optimization technique named "teaching-learning-based optimization (TLBO).  

The approach is based on how learners interact with one another and how a teacher 

influences them. In order to show the robustness of TLBO, Rao et al. [50] provided five 

distinct restricted benchmark test functions. The design example results were compared to 
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those from various meta-heuristic optimization techniques. The comparisons revealed that the 

TLBO outperformed other meta-heuristic optimization techniques while requiring less 

computer work. The TLBO approach was created by Rao et al. [49] for solving large-scale 

non-linear optimization issues. The TLBO approach is used to optimize five distinct 

benchmark problems, and the outcomes are compared to those obtained using the GA, ant 

colony system, bee algorithm, and grenade explosion method. The outcomes demonstrated 

the TLBO method's efficacy in terms of computing effort, consistency, and providing 

solutions that are close to optimal. The TLBO was utilized for the best design of planar steel 

frames [50] following the groundbreaking work of Rao et al. [49]. Three steel frames that had 

previously been optimized by the GA, HS, and enhanced ACO were used to demonstrate the 

effectiveness of the approach. The TLBO approach outperformed the GA, ACO, HS, and 

improved ACO in terms of the number of analyses and the outcomes for the frames included 

in the research [52]. 

 

2.7 Application of CGO Algorithm for Steel Truss Design 

            In this study, the so-called Chaos Game Optimization (CGO) metaheuristic is 

proposed. The CGO algorithm's basic idea is based on some chaos theory concepts, which 

put fractal self-similarity concerns and fractal configuration using chaos game approach into 

perspective. Different metaheuristic algorithms have used the fractals as the primary or 

secondary notion, such as the Stochastic Fractal Search (SFS) method developed by Salimi 

[51], Fractal-Based Algorithm (FBA) developed by Kaedi [52], Fractal Decomposition-Based 

Algorithm (FDA) presented by Nakib et al. [53], and Fractal Triangle Search (FTS) algorithm 

proposed by Rodrigues et al. [54]. In addition, some more enhanced versions of metaheuristic 

algorithms have been put out in which the general formulation of these algorithms for various 

purposes incorporates the chaos theory. 

         It should be mentioned that the technique of the CGO algorithm is entirely distinct from 

the prior research, according to the provided literature study. The Chaos Game Theory 

(CGO) algorithm bases its general formulation on the game theory and uses it as its primary 

conceptual framework. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3  

RESEARCH METHODOLOGY 

  

3.1 Overview of Chaos Game Theory  

 The study of dynamical systems with unique properties that are very sensitive to their 

beginning conditions is the focus of the mathematical field known as chaos theory. Chaos 

theory indicates the existence of some fundamental patterns in the behavior of these 

dynamical systems, such as similar loops, repeated templates, fractals, and multiple sub-

systems, which represent them as self-similar and self-organized dynamical systems despite 

the randomness of these systems [55]. The chaos theory demonstrates how a dynamical 

system's dependency on its starting conditions causes even slight changes to its beginning 

conditions to have severe effects on the system's future states. According to this theory, the 

current state of a system could predict its future state, as opposed to the approximate present 

state of a system, which cannot predict its future state precisely. The majority of chaotic 

processes have fractal graphic forms. A fractal is a subset of Euclidean space in mathematics 

where a certain geometric design is reproduced on various scales. Fractals are self-similar 

systems because they have roughly similar shapes at various scales. One of the most well-

known fractals is the Mandelbrot set, as shown in Fig. 5, represents a complex infinite border 

in which various recursive aspects are gradually displayed at various scales. 

            In this study, the CGO is put forth as a metaheuristic algorithm that is conceptualized 

in terms of chaos game theory, a well-known method for making strategic decisions in 

mathematics. To put it another way, the CGO technique is based on this theory, which is seen 

as a general iterated system for simulating the decision-making of different individuals. 

Furthermore, the mathematical representation of this approach is a fully detailed model that 

includes both general and specific aspects of the chaos game theory. The difficulties in 

producing exceptional or even acceptable outcomes while dealing with various optimization 

problems can be overcome by creating a metaheuristic with solid inspiration and a 

mathematical model, such as CGO. The suggested CGO technique is a parameter-free 

metaheuristic algorithm, meaning that no internal parameter needs to be found during the 

optimization process. The parameter algorithm of this technique is one of its most 

outstanding features, to put it simply. Additionally, the solution's location updating method 
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allows for more precise local and global searching across the whole search space, producing 

outstanding results. 

3.2 Background of Chaos Game Theory 

 

           The chaotic game is a method for making fractals in mathematics that starts with a 

polygonal shape and a randomly chosen initial point. To produce a sketch with a comparable 

shape at various scales, the primary goal is to iteratively build a series of points [55]. In this 

regard, it is first important to correctly position the vertices of a polygon, which is thought to 

define the main shape of the fractal. Afterwards, a randomly chosen initial point is chosen to 

serve as the fractal's starting point. The following point in the series, which is based on the 

original point, is calculated as a portion of the distance between the initial point and a 

randomly chosen polygonal vertex in each iteration. A fractal is produced by continuously 

repeating this process while taking into account the random initial point and the random 

vertex selection in each iteration. By utilizing three vertices with the factor of 1/2, a 

Sierpinski triangle is created. When the fractal's initial vertex count reaches N, a Sierpinski 

Simplex with N-1 dimensions can be produced. 

            The systematic construction of a Sierpinski triangle using the chaos game 

methodology is shown as a straightforward example. In order to start building the main shape 

of the fractal, which in this case is a triangle, three vertices must first be chosen. One of the 

red, blue, or green colors designates each of the chosen vertices. It is decided to roll a die 

with two red, two blue, and two green faces. In this example, the initial random point that 

serves as the fractal's starting point or seed is chosen. The beginning point's seed is moved 

toward the linked vertex by half the distance between them as the dice are rolled, depending 

on whatever color comes up. The seed is transferred to the appropriate vertex in accordance 

with the new position of the seed, which is used as the starting point for the next roll of the 

dice. The ultimate shape is the Sierpinski triangle, which is created by repeatedly rolling the 

dice. Fig. 6 shows the proposed methodology's schematic view, and Fig. 7 shows the 

Sierpinski triangle's final form and its self-similarity at various scales. 
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                   Figure 5 Self-similarity of Mandelbrot set in different scales 

 

 

                   Figure 6 The methodology of chaos game for creating Sierpinski triangle 

 

 

      Figure 7 The final shape and self-similarity of the Sierpinski triangle in different scales 
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                        Figure 8 The schematic view of creating temporary triangles. 

 

 

 
 

                     Figure 9 The schematic view of temporary triangles in the search space. 

 
 

3.3 Mathematical model 

 The fundamentals of the chaos theory are discussed in this part, and an optimization 

strategy is suggested. The basic concepts of the chaotic game and fractals are used to create a 

mathematical model for the CGO algorithm. Due to the fact that many natural evolution 

algorithms preserve a population of solutions that are evolved through random changes and 

selection, the CGO technique takes into consideration a number of solution candidates (X) in 

this regard that represent some eligible seeds inside a Sierpinski triangle [55]. Each solution 

candidate (Xi) in this technique is made up of some decision variables (xi
j) that indicate 
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where these eligible seeds are located inside a Sierpinski triangle. In the optimization 

algorithm, the Sierpinski triangle is regarded as the search space for potential solutions. 

These aspects are presented mathematically as follows: 

 

where n is the total number of potential seeds (solution candidates) contained within 

the Sierpinski triangle (search space), and d is their dimension. 

           These qualifying seeds' starting places in the search space are chosen at random and 

are as follows: 

 

 

            where xj
i(0) determines the initial position of the eligible seeds; xj

i min  x
j
i max are the 

minimum and maximum allowable values for the jth decision variable of the ith solution 

candidate; rand is a random number in the interval of [0,1]. 

            As was previously said, the underlying patterns in the behavior of dynamical systems 

that demonstrate that they are self-similar and self-organized systems are what the principles 

of chaos theory are concerned with. The produced initial seeds, also known as "eligible 

seeds," represent the fundamental patterns of the chaotic dynamical systems. An optimization 

problem's solution candidates (X) can be used to describe the self-similarity of these seeds, 

which determines their suitability to serve as the primary patterns. The greatest and worst 

fitness values are represented, respectively, by the solution candidates with the highest and 

lowest eligibility levels. 

            In order to complete the overall Sierpinski triangle form, the essential idea behind this 

mathematical model is to create many suitable seeds within the search area. In this sense, the 

Sierpinski triangle-based seed-creation approach is also applied. A temporary triangle is 

created with three seeds as follows for each of the eligible seeds in the search space (Xi); 

• The position of the so far found Global Best (GB), 
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• The position of the Mean Group (MGi), 

• The position of the ith solution candidate (Xi) as the selected seed. 

The most qualified candidate for the best solution found thus far is referred to as the 

GB. The term MGi refers to the average values of certain randomly chosen eligible seeds, 

each of which has an equal chance of being the currently accepted initial eligible seed (Xi). 

The three vertices of a Sierpinski triangle are the GB, MGi, and the chosen eligible seed (Xi). 

As previously stated, a temporary triangle is formed for each of the initial eligible seeds in 

the search space with the intention of producing some additional seeds inside the search space 

that could be regarded as fresh eligible seeds for finishing the Sierpinski triangle. In Figures 8 

and 9, respectively, the schematic perspective and thorough schematic description of the 

process of manufacturing temporary triangles are shown. 

              In order to produce fresh viable seeds in the search space, temporary triangles are 

primarily used as follows [55]. Four methods are created to achieve this goal. The n suitable 

seeds that were obtained in the previous iteration are included in the ith temporary triangle 

(ith iteration), along with three Sierpinski triangle vertices: the GB (green seed), MGi (red 

seed), and Xi (blue seed). A dice, three seeds, and the chaotic game methodology are used to 

generate fresh seeds in this temporary triangle. The first seed is placed in the Xi, followed by 

the second in the GB, and the third in the MGi.. Using a dice with three green faces and three 

red faces, the first seed is placed. The seed in the Xi is shifted toward the GB (green face) or 

the MGi (red face) depending on which color (red or green) appears on the dice. The dice is 

rolled and based on which color comes up (green or red), the seed in the Xi is moved toward 

the GB (green face) or the MGi (red face). This feature is represented by a random integer 

generating function that only generates the values 0 and 1 and allows the user to choose 

between green or red faces. If the green face comes up, the seed positioned in the Xi is 

moving toward the GB but if the red face comes up, the seed positioned in the Xi is moving 

toward the MGi. The possibility of producing two identical random integers for the GB and 

the MGi is also taken into consideration, with the seed in the Xi moving toward a point of the 

connected lines between the GB and the MGi, despite the fact that each green or red face has 

an equal chance of appearing in the game. Some randomly generated factorials are used in 

this purpose to control this element because the mobility of the seeds in the search space 

should be restricted as a result of the chaos game methodology. Figure 10a provides a 
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schematic representation of the first seed's described process, and the following equations 

represent it mathematically: 

1 ( ),i i i i i iSeed X GB MG  = +   −   1,2,......,i n=                                      (3) 

where Xi is the ith solution candidate, GB is the so far found global best, and MGi is 

the mean values of some selected eligible seeds. 𝛼i is the randomly generated factorial for 

modelling the movement limitations of the seeds while each of the 𝛽i and 𝛾i represent a 

random integer of 0 or 1 for modelling the possibility of rolling a dice. 

               For second seed and third seed is also performed by the same process and the 

following equations are utilized. 

 

2 ( ),i i i i i iSeed GB X MG  = +   −    1,2,......,i n=                                      (4) 

3 ( ),i i i i i iSeed MG X GB  = +   −    1,2,......,i n=                                      (5) 

 

              Another procedure is also used to produce the fourth seed in order to implement the 

mutation phase in the position updates of the eligible seeds in the search space [55]. This 

seed's location updates are dependent on some random changes to the randomly selected 

decision factors. Figure 10 d provides a visual representation of the specified procedure for 

the fourth seed while the following equations represent this feature mathematically:

4 ( ),k

i i iSeed X x R= +   [1,2,......,d]k =                                                                   

(6) 

where k is a random integer in the interval of [1, d] 

and R is a uniformly distributed random number in 

the interval of [0,1]. 
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                                 (a)                                                                      (b) 

                  

                           (c)                                                                           (d) 

 

Figure 10 The schematic view of position update for (a) first seed , (b) second seed, 

(c) third seed and (d) fourth seed in the search space 

 

           Four separate equations are used to determine the value of the variable αi which is 

concerned with modeling the mobility constraints of the seeds, in the proposed innovative 

CGO algorithm in order to regulate and adapt the exploration and exploitation rate [55]. Each 

of the equations (3) to (5), which determine the order of the first to third seeds, uses one of 

these equations at random.  

( )

( ) ( )

2

1i

Rand

Rand

Rand

Rand




 





= 

 +

  +

                                                                                                                          (7) 

where Rand is a uniformly distributed random number in the interval of [0,1], while δ 

and ε are random integers in the interval of [0,1].  
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             To decide whether or not the new seeds should be included in the total eligible points 

in the search space based on the self-similarity problems in the fractals, one must take into 

account the eligibility of the starting points as well as the newly created seeds by the chaotic 

game idea. When comparing new solution candidates to starting ones, the new points (seeds) 

should be swapped out for the initial points with the lowest fitness values, which correspond 

to the lowest levels of self-similarity. It should be emphasized that the mathematical approach 

uses the replacement process to reduce the complexity of the mathematical model.In 

actuality, the general shape of the Sierpinski triangle is formed by using all of the eligible 

points that have been discovered in the search area so far. 

In order to cope with solution variables (xi
j) that violate the boundary conditions of 

the variables, a mathematical flag is constructed for (xi
j) outside the variables range, which 

directs a boundary adjustment for the violating variables. The termination criterion is the 

maximum number of iterations allowed before the optimization process is terminated after a 

predefined number of iterations [55]. The CGO algorithm's step-by-step configuration is as 

follows, and Fig. 11 shows the algorithm's pseudo-code. Additionally, Fig. 12 displays the 

CGO algorithm's flowchart. 

procedure Chaos Game Optimization (CGO) Algorithm 

Create random values for initial positions ( ) of eligible points ( ) 

Evaluate fitness values for each eligible point 

GB=the so far found best eligible point 

while (t < maximum number of iterations) 

for i=1: number of initial eligible points 

Create 

Create temporary triangles with , GB, and 

Calculate the , , and values 

Create new seeds by Eqs. 3 to 6. 

if new seeds violate boundary conditions 

Control the position constraints for new seeds and amend it 

end if 

Evaluate the fitness values for new seeds 

if new seeds have better fitness values than the worst initial eligible points 

Substitute the worst initial eligible points by the new seeds 

end if 

Update GB if a better solution is found 

end for 

t=t+1 

end while 

return GB 

End Procedure 

                                  

                                 Figure 11 Pseudo-code of the CGO algorithm  
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3.4 Chaos Game Optimization Algorithm (CGO) 

           The step-by-step procedure of the CGO algorithm is as follows: 

• Step 1. The initial positions of solution candidates (X)or the initial seeds that are 

eligible are set at random in the search space. 

• Step 2. Based on the self-similarity of the initial eligible seeds, the fitness values of the 

initial solution candidates are computed. 

• Step 3. The seed with the greatest levels of eligibility is identified as the Global Best  

• Step 4. A Mean Group (MGi) for each valid seed (Xi) in the search space is established. 

• Step 5. A temporary triangle is created in the search space with the three vertices Xi, 

GB, and MGi for each acceptable seed (Xi). 

• Step 6.  For each of the temporary triangles, αi , βi , and γi values are calculated. 

• Step 7.  Four seeds are made based on the Eqs. 3-6 for every temporary triangle. 

 

• Step 8. A boundary condition check is performed for the fresh seeds whose xi
j is 

outside the variable range. 

• Step 9. Based on self-similarity problems, the fitness values of the new seeds are 

computed. 

• Step 10. The new seeds are used to replace the available eligible seeds with the lowest 

fitness values and lowest degrees of self-similarity. 

• Step 11. It is tested against the terminating criterion. 
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Figure 12 Flowchart of the CGO algorithm



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4  

RESULTS AND DISCUSSIONS 

 

In this chapter, the optimal sizing designs of three popular benchmark truss problems 

of 10-bar, 72-bar and 200-bar were successfully performed by the proposed CGO method.  

 

4.1. Test on Benchmark of 10-bar Steel Truss Structure 

The geometry of the planar 10-bar truss is presented in Fig. 13. For all members, the 

unit weight of material is 0.1 lb/in3 and the modulus of elasticity is 107 psi. All members are 

subjected to the stress constraints of ±25 ksi. The maximum allowable displacement is ±2 in 

in both vertical and horizontal directions for all nodes. Two vertical loads, P of the magnitude 

of 105 lb are applied at the node 2 and 4. The cross-sectional areas of each member are 

considered as design variables which are varying from 0.1 in2 to 35 in2.  

  

Figure 13 A 10-bar truss 

 

           The effectiveness of the CGO approach is tested on the 10-bar truss. The results 

confirm the validity and provide a comparison between the performance of the proposed 

algorithm and the other meta-heuristic optimization in the literature. 

            Table 2 summarizes the resulting areas of members and the optimal weight W = 

5061.09 lb by the CGO method in evaluation with the solutions from other metaheuristic 

methods. More explicitly, the designed weight values are 5060.92 lb by heuristic particle 
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swarm optimization (HPSO) [17] , 5057.88 lb by harmony search algorithm (HSA) [15], 

5060.82 lb by improved harmony search (IHS) [36], 5024.21 lb by particle swarm 

optimization (PSO) [38] , 5060.88 lb by artificial bee colony (ABC-AP) [47], 5062.39 lb  by 

efficient harmony search (EHS) [56] and 5061.42 lb by self-adaptive harmony search 

(SAHS) [56] , and 5060.96 lb by teaching learning based optimization (TLBO) [57] . The 

optimal result from the proposed method is comparatively close to the other methods with the 

modest numerical efforts. The solution convergence with the number of analysis (up to 100) 

iterations for this example is represented in Fig. 14. 

 

                           Figure 14 Solution convergency of 10-bar truss 

          The figure 14 of solution convergency and table 2 of results obtained from the 10-bar 

truss and the table of comparison result, the optimization results and the convergence history 

developed and compared with applying different algorithms for the 10-bar steel truss 

problem. The algorithm took only couple of minutes to converge the optimum solution within 

50 analysis iterations. In this study, the optimum weight has the good optimization results 

along with the other algorithms.  
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Table 2. Comparison of Optimization results obtained for the planar 10-bar plane truss 

Design 

variables 

(areas) 

Li et al. Lee et 

al. 

Lamberti 

and 

Pappaletter

e 

Perez and 

Bedhinan 

Sonmez Degertekin Degertekin 

and 

Hayalioglu 

Present 

[17] [15] [36] [38] [47] [56] [57] 

HPSO HSA IHS PSO ABC-AP EHS SAHS TLBO CGO 

A1 30.704 30.15 30.522 33.5 30.548 30.208 30.394 30.429 30.523 

A2 0.1 0.102 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A3 23.167 22.71 23.201 22.766 23.18 22.698 23.098 23.244 23.394 

A4 15.183 15.27 15.223 14.417 15.218 15.275 15.491 15.368 15.273 

A5 0.1 0.102 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A6 0.551 0.544 0.551 0.1 0.551 0.529 0.529 0.575 0.55 

A7 7.46 7.541 7.457 7.534 7.463 7.558 7.488 7.440 7.414 

A8 20.978 21.56 21.037 20.467 21.058 21.559 21.189 20.967 20.819 

A9 21.508 21.45 21.529 20.392 21.501 21.491 21.342 21.533 21.619 

A10 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Weight(lb) 5060.92 5057.88 5060.82 5024.21 5060.88 5062.39 5061.42 5060.96 5061.09 

Number of 

analyses 

1250000 20000 1350  500000 9791 7081 16872 2500 

Worst 

Weight(lb) 

N/A N/A N/A N/A N/A N/A N/A N/A 5063.02 

Mean 

Weight(lb) 

N/A N/A N/A N/A N/A 5063.73 5061.95 N/A 5062.02 

 

4.2 Test on Benchmark of a space 72-bar truss  

             The geometry of the space 72-bar truss is shown in Fig. 15. The material has a 

unit weight of 0.1 lb/in3 and the modulus of elasticity of 107 psi for all members. The 

maximum allowable stresses of ±25 ksi are considered as stress constraints for all members 

of the truss. The maximum allowable nodal displacements of ±0.25 in both vertical and 

horizontal directions are considered as displacement constraints for all nodes of the truss. The 

continuous design variables are the cross-sectional areas of each member varying from 0.1 in2 

to 100 in2. The load distribution on nodes is listed in Table 3. The members are divided into 

16 groups: (1)A1-A4, (2) A5-A12, (3) A13-A16, (4) A17-A18, (5) A19-A22, (6) A23-A30, (7) A31-
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A34, (8) A35-A36, (9) A37-A40, (10) A41-A48, (11) A49-A52, (12) A53-A54, (13) A55-A58, (14) 

A59-A66, (15) A67-A70, and (16) A71-A72. 

 

Table 3. Load cases of the 72-bar space truss structure 

Nodes 

Load case 1 Load case 2 

Px(kips) Py(kips) Pz(kips) Px(kips) Py(kips) Pz(kips) 

17 5 5 -5 0 0 -5 

18 0 0 0 0 0 -5 

19 0 0 0 0 0 -5 

20 0 0 0 0 0 -5 

 

 

Figure 15 A 72-bar space truss  
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Table 4. Comparison of optimized designs of the 72-bar space truss  

Design variables 

(areas) 

Li et 

al. 

Lee et 

al. 

Perez 

and 

Bedinan 

Camp Jalili and 

Hosseinzadeh 

Degertekin Degertekin 

and 

Hayalioglu Present 

[17] [15] [38] [44] [58] [56] [57] 

HPSO HSA PSO BB-BC CA EHS SAHS TLBO CGO 

A1-A4 1.857 1.79 1.743 1.858 1.861 1.967 1.86 1.906 1.867 

A5-A12 0.505 0.521 0.519 0.506 0.509 0.51 0.521 0.506 0.514 

A13-A16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A17-A18 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A19-A22 1.255 1.229 1.308 1.248 1.263 1.293 1.271 1.262 1.241 

A23-A30 0.503 0.522 0.519 0.527 0.504 0.511 0.509 0.511 0.511 

A31-A34 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A35-A36 0.1 0.1 0.1 0.101 0.1 0.1 0.1 0.1 0.1 

A37-A40 0.496 0.517 0.514 0.521 0.523 0.499 0.485 0.532 0.486 

A41-A48 0.506 0.504 0.546 0.517 0.525 0.501 0.501 0.516 0.511 

A49-A52 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

A53-A54 0.1 0.101 0.11 0.101 0.103 0.1 0.1 0.1 0.1 

A55-A58 0.1 0.156 0.162 0.157 0.156 0.16 0.168 0.156 0.1 

A59-A66 0.524 0.547 0.509 0.551 0.553 0.522 0.584 0.549 0.518 

A67-A70 0.4 0.442 0.497 0.392 0.42 0.478 0.433 0.41 0.377 

A71-A72 0.534 0.59 0.562 0.592 0.562 0.591 0.52 0.57 0.532 

Weight(lb) 369.65 379.27 381.91 379.85 379.69 381.03 380.62 379.63 369.88 

Number of 

analyses 

125000 20000  19621 18460 15044 13742 19709 25000 

Worst Weight(lb) N/A N/A N/A N/A N/A N/A N/A N/A 370.56 

Mean Weight(lb) N/A N/A N/A 382.08 380.86 383.51 382.42 380.2 370.02 

 

 

              Table 4 represents the best structural weight of the CGO algorithm in comparison of 

other metaheuristic algorithms such as heuristic particle swarm optimization (HPSO) [17] , 

harmony search algorithm (HSA) [15] , particle swarm optimization (PSO) [38] , big bang-
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big crunch (BB-BC) [44] , cultural algorithm (CA) [58], efficient harmony search (EHS) 

[56], self-adaptive harmony search (SAHS) [56] , and teaching learning based optimization 

(TLBO) [57] . In this design example, the CGO algorithm gives the best result of (369.88 lb) 

in all other metaheuristic algorithms. The optimum weights of other algorithms are HPSO 

(369.65 lb), HSA (379.27 lb), PSO (381.91 lb), BB-BC (379.85 lb), CA (379.69 lb), EHS 

(381.03 lb), SAHS (380.62 lb), and TLBO (379.63 lb) individually.  

              The CGO algorithm progressively performs the number of structural analyses than 

most of the algorithms in the literature. The optimization history of the CGO algorithm is 

described in Fig. 16 with respect to the variation of the best penalized weight and the number 

of iterations. The optimal design of the steel space truss was successfully performed by the 

proposed CGO method within 40 analysis iterations. The solution (total weight) convergence 

with the number of analysis (up to 100) iterations is clearly depicted in Fig. 16. More 

explicitly, the second minimum weight of 369.88 lbs was occurred during the early number 

of iterations within a few minutes. 

 

                                Figure 16 Solution convergency of 72-bar space truss  
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4.3 Test on Benchmark of a planar 200-bar truss  

            The geometry of the planar 200-bar truss is shown in Fig. 17. The material has 

a unit weight of 0.283 lb/in3 and the modulus of elasticity of 3x107 psi for all members. The 

maximum allowable stresses of ±10 ksi are considered as stress constraints for all members 

of the truss. The load distribution on nodes is listed in Table 5. The members are divided into 

29 groups. The element data is presented in Table 6.  

Table 5. Load cases of the 200-bar planar truss  

Load case Description Node 

1 1 kip acting in the positive x direction 1, 6, 15, 20, 29, 34, 43, 48, 57, 62 and 71 

2 

 

10 kips acting in the negative y direction 

1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 24, 

26, 28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 42, 43, 44, 45, 46, 

47, 48, 50, 52, 54, 56, 57, 58, 59, 60, 61, 62, 64, 66, 68, 70, 

71, 72, 73, 74 and 75 

3 A combination of the case 1 and case 2 together 
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                                              Figure 17 A 200-bar planar truss  

 

Table 6. Element data of the 200-bar planar truss 

Elem. 

group 

Node Elem. 

no. 

Elem. 

group 

Node Elem. 

no. 

Elem. 

group 

Node Elem. 

no. 

Elem. 

group 

Node Elem. 

no. 

1 2 1 2 1 2 1 2 

1 1 2 1 8 15 20 43  40 46 111  53 59 147 

2 3 2 16 22 46 42 47 114 53 60 148 

3 4 3 17 24 49 16 29 35 82 55 60 150 

4 5 4 18 26 52 30 35 83 55 61 151 

2 1 6 5 19 28 55 30 37 85 22 57 58 153 
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2 8 8 9 21 22 57 31 37 86 58 59 154 

3 10 11 22 23 58 31 39 88 59 60 155 

4 12 14 23 24 59 32 39 89 60 61 156 

5 14 17 24 25 60 32 41 91 23 57 62 157 

3 7 8 19 25 26 61 33 41 92 58 64 160 

8 9 20 26 27 62 35 43 103 59 66 163 

9 10 21 10 20 29 64 35 44 104 60 68 166 

10 11 22 22 30 67 37 44 106 61 70 169 

11 12 23 24 31 70 37 45 107 24 63 64 171 

12 13 24 26 32 73 39 45 109 64 65 172 

4 6 7 18 28 33 76 39 46 110 65 66 173 

13 14 25 11 15 21 44 41 46 112 66 67 174 

20 21 56 16 21 45 41 47 113 67 68 175 

27 28 63 16 23 47 17 43 44 115 68 69 176 

34 35 94 17 23 48 44 45 116 25 62 71 178 

41 42 101 17 25 50 45 46 117 64 72 181 

48 49 132  18 25 51  46 47 118  66 73 184 

55 56 139 18 27 53 18 43 48 119  68 74 187 

62 63 170 19 27 54 44 50 122  70 75 190 

69 70 177 21 29 65 45 52 125 26 57 63 158 

5 6 15 26 21 30 66 46 54 128 58 63 159 

8 16 29 23 30 68 47 56 131 58 65 161 

10 17 32 23 31 69 19 49 50 133 59 65 162 

12 18 35 25 31 71 50 51 134 59 67 164 

14 19 38 25 32 72 51 52 135 60 67 165 

6 1 7 6 27 32 74 52 53 136 60 69 167 

2 7 7 27 33 75 53 54 137 61 69 168 

2 9 9 12 29 30 77 54 55 138 63 71 179 

3 9 10 30 31 78 20 48 57 140 63 72 180 

3 11 12 31 32 79 50 58 143 65 72 182 

4 11 13 32 33 80 52 59 146 65 73 183 
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4 13 15 13 29 34 81 54 60 149 67 73 185 

5 13 16 30 36 84 56 61 152 67 74 186 

7 15 27 31 38 87 21 43 49 120 69 74 188 

7 16 28 32 40 90 44 49 121 69 75 189 

9 16 30 33 42 93 44 51 123 27 71 72 191 

9 17 31 14 35 36 95 45 51 124 72 73 192 

11 17 33 36 37 96 45 53 126 73 74 193 

11 18 34 37 38 97 46 53 127 74 75 194 

13 18 36 38 39 98 46 55 129 28 71 76 195 

13 19 37 39 40 99 47 55 130 73 76 197 

7 15 16 39 40 41 100 49 57 141 73 77 198 

16 17 40 15 34 43 102 49 58 142 75 77 200 

17 18 41 36 44 105 51 58 144 29 72 76 196 

18 19 42 38 45 108 51 59 145 74 77 199 

 

Table 7. Comparison of optimized designs of the 200-bar planar truss  

Design variables 

(areas) 

To˘gan & 

Daloǧlu 

Sonmez  

 

Kaveh & 

Bakhshp

oori 

 

Kaveh & 

Zolghadr 

 

Kaveh      

&   

Zakian 

Present   

[59] [47] [60] [61] [62]  

GA (ABC-AP) WEO CPA (GWO) (IGWO) CGO 

A1 0.3469 0.1039 0.1144 0.1721 1.3363 0.1024 0.1036 

A2 1.0810 0.9463 0.9443 0.9553 2.7525 0.9654 0.9281 

A3 0.1000 0.1037 0.1310 0.1000 0.5923 0.1391 0.1018 

A4 0.1000 0.1126 0.1016 0.1004 0.5258 0.1741 0.1000 

A5 2.1421 1.9520 2.0353 1.9662 5.0281 1.9613 1.9545 

A6 0.3470 0.2930 0.3126 0.3055 0.4945 0.2899 0.2629 

A7 0.1000 0.1064 0.1679 0.1000 1.7505 0.1294 0.1000 

A8 3.5650 3.1249 3.1541 3.1618 3.3725 3.1511 2.8854 
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A9 0.3470 0.1077 0.1003 0.1152 0.2057 0.1251 0.6690 

A10 4.8050 4.1286 4.1005 4.2405 4.3035 4.0627 3.8836 

A11 0.4400 0.4250 0.4350 0.4046 0.7077 0.4131 0.5074 

A12 0.4400 0.1046 0.1148 0.1000 0.1212 0.4043 0.9424 

A13 5.9520 5.4803 5.3823 5.4132 6.6465 5.3357 5.2916 

A14 0.3470 0.1060 0.1607 0.1545 0.1000 0.2632 0.1073 

A15 6.5720 6.4853 6.4152 6.3976 6.9236 6.3226 6.2830 

A16 0.9540 0.5600 0.5629 0.5555 0.8096 0.7972 1.0162 

A17 0.3470 0.1825 0.4010 0.4425 0.1943 0.1791 0.1141 

A18 8.5250 8.0445 7.9735 8.0928 7.9800 8.1286 8.0176 

A19 0.1 0.1026 0.1092 0.1004 0.9110 0.1141 1.9519 

A20 9.3000 9.0334 9.0155 8.9918 10.7262 9.1337 9.2295 

A21 0.9540 0.7844 0.8628 0.8925 1.0542 0.8000 1.3999 

A22 1.7639 0.7506 0.2220 0.2544 0.2809 0.2487 0.1226 

A23 13.3006 11.3057 11.0254 11.1214 15.0000 11.2008 12.0314 

A24 0.3470 0.2208 0.1397 0.1000 0.1310 0.1136 0.1446 

A25 13.3006 12.2730 12.0340 12.3304 15.0000 12.1703 13.2845 

A26 2.1421 1.4055 1.0043 0.0110 0.9469 0.9947 1.3095 

A27 4.8050 5.1600 6.5762 6.4103 7.8886 6.3377 5.0915 

A28 9.3000 9.9930 10.7265 10.5814 15.0000 10.5338 9.2529 

A29 17.1740 14.70144 13.9666 14.1288 13.8801 14.0917 15.6092 

Weight(lb) 28,544.0 25,533.79 25674.83 25651.58 33137.452 25771.78 25650.37 

Number of 

analyses 

N/A N/A N/A N/A N/A N/A 12500 

Worst Weight(lb) N/A N/A N/A N/A N/A N/A 26904.99 

Mean Weight(lb) N/A N/A 26,613.45 25957.15 33,137.452  25,771.78 26413 
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Table 7 represents the best structural weight of the CGO algorithm in comparison of 

other metaheuristic algorithms such as genetic algorithm (GA) [59], Artificial Bee Colony 

algorithm (ABC-AP) [47], water evaporation optimization (WEO) [60], Cyclical 

Parthenogenesis Algorithm (CPA) [61], GWO algorithm (GWO) [62] and Improved GWO 

algorithm (IGWO) [62]. The optimum weight comes from CGO (25650.37 lb) is better than 

GA (28544.0 lb), WEO (25674.83 lb), CPA (25651.58 lb), GWO (33137.78 lb) and IGWO 

(25771.78 lb) particularly whereas it is more than ABC (25533.79 lb). The optimization 

history of CGO is described in Fig. 18 with respect to the variation of the best penalized 

weight and the number of iterations. 

  

Figure 18 Solution convergency of 200-bar planar truss 

 

The optimal design of the steel truss was successfully performed by the proposed 

CGO method within 400 analysis iterations with the minimum weight of 25650.37 lbs. The 

solution (total weight) convergence with the number of analysis (up to 500) iterations is 

clearly depicted in Fig. 18. In essence, the present CGO approach provides the second most 

minimum weight solution with the satisfaction of all constraints. 
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CHAPTER 5  

CONCLUSION 

 

5.1 Concluding Remarks 

           The optimization results are compared to those of some well-known meta-heuristics. 

The results obtained by the present algorithms is the same or lighter than all other reported 

results. The proposed method quickly converges to the optimum weight. The proposed 

method has been illustrated through 10-bar, 72-bar and 200-bar trusses where its accuracy 

and robustness are evidenced by the good comparisons with other available meta-heuristic 

algorithms. 

           The effectiveness and robustness of the proposed algorithm was successfully 

investigated on three popular sizing optimization benchmarks of steel trusses. The numerical 

result comparison obtained from these problems reveals that in most cases, the performance 

of the proposed CGO algorithm is remarkably better than the other optimization techniques 

available in the literature. It can be concluded that the proposed CGO algorithm is an 

effective and robust optimizer for solving various optimization problems in engineering fields 

and can be straightforwardly integrated into in the shape and topology optimization. 

5.2 Recommendation for future research 

The various application of Chaos Game Optimization algorithm (CGO) should be 

taken into consideration for upcoming challenges in light of the need to assess this 

algorithm's aptitude for solving some challenging practical optimization issues. The CGO 

method can be considered applicable in various technical domains. Moreover, the optimal 

design of vibration control systems in buildings and other engineering structures is one area 

where the CGO algorithm can be considered applicable. Additionally, the researchers' 

differing views on the CGO approach as it is now given should be taken into account when 

evaluating novel configurations of this algorithm.
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