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จากการเพิ่มประสิทธิภาพของกลุ่มอนุภาค (PSO) ที่ได้รับความนิยมซึ่งถูกพัฒนามาจากพฤติกรรม
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OPTIMIZATION USING ENHANCED COMPREHENSIVE LEARNING PARTICLE 
SWARM OPTIMIZATION. Advisor: Assoc. Prof. SAWEKCHAI TANGARAMVONG, 
Ph.D. 

  
This study proposes a simultaneous size and shape structural optimization 

on truss structures using a metaheuristic algorithm, namely Enhanced 
Comprehensive Learning Particle Swarm Optimization (ECLPSO) which is based on 
the CLPSO algorithm. CLPSO itself was originated from a famous Particle Swarm 
Optimization (PSO) that was invented based on behaviour or movement of a bird 
flock. CLPSO is an improved PSO algorithm which has good exploration ability but is 
poor in exploitation. Thus, ECLPSO introduces of two enhancements, including 
perturbation-based exploitation and adaptive learning probabilities, to improve the 
exploitation ability and to adjust the learning probabilities of each particle, 
respectively. The objective of the study is to obtain the minimum weight of the 
benchmark truss structures under the design constraints required specifically for 
each problem. By combining size variables and shape variables of the problems, the 
optimizations shall produce better results than those of size optimizations alone. In 
this research, the optimizations are implemented in Python code and performed 
several times individually to conclude the robustness and accuracy of the algorithm. 
The results including the minimum weight and standard deviation of the solutions 
shall be compared and discussed with those of some other metaheuristic algorithms 
in the literatures. 
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CHAPTER 1 
INTRODUCTION 

 
Metaheuristic algorithm is an efficient tool to solve the complex optimization problems. 
In this proposed study, one of the metaheuristic algorithms, namely the enhanced 
comprehensive learning particle swarm optimization, was addressed to apply to the 
benchmark structural problems. The scope of work and methodology will be stated 
with the expected results which can be compared with the outcome of the previous 
research and relevant studies. 

1.1. Motivations 
Metaheuristic algorithm consists of trial-and-error approach to solve the optimization 
problems. To obtain the solution, the metaheuristic algorithm needs two main features 
including the exploitation phase and the exploration phase. They became the basics 
features in all metaheuristic algorithms. In the past decades, many metaheuristic 
algorithms were introduced to improve the performance of algorithm while the 
optimization problems became more and more complex. Particle swarm optimization 
(PSO) (Kennedy and Eberhart 1995) is one of a popular swarm-intelligence based 
algorithms which was used in many real-world optimization problems. Since the 
algorithm was first introduced, tons of variant of the standard particle swarm 
optimization algorithm were created and used in many fields of optimization. 
Unfortunately, the solution of the algorithm might get trapped in the local optimum 
easily. Thus, the comprehensive learning particle swarm optimization (Liang, Qin et al. 
2006) was proposed with the learning probabilities strategy to improve the exploration 
ability of the optimization performance. Although the CLPSO is good at exploration, its 
exploitation ability is poor. The enhanced comprehensive learning particle swarm 
optimization algorithm (ECLPSO) was proposed in 2014 (Yu and Zhang 2014) based on 
the original concept of the comprehensive learning particle swarm optimization with 
the application of two novel enhancements to (CLPSO) to improve both exploration 
and exploitation ability of the algorithm. 
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Structural optimization became a widely known field for research in structural 
engineering. The study turns out to be an important part of civil engineering in 
structural design. Since truss structure is one of a trendy type of structure for 
optimization, it shall be discussed as the structural optimization problems in this study. 
To achieve an economic design, size of structural members is an important factor. 
However, by considering both size and shape variables of structure, the optimization 
provides the more economical material design than the size optimization alone. 
Hence, by employing the enhanced comprehensive learning particle swarm 
optimization (ECLPSO) on the simultaneous size and shape structural optimization 
problems, the outcome of optimization shall be expected to be valid and vital for this 
study. 

1.2. Research Objective 
The main objectives of this research are: 

(1) To implement the enhanced comprehensive learning particle swarm 
optimization algorithm to the simultaneous size and shape optimization of the 
benchmark truss structures. 

(2) To obtain minimum total weight of the structures under design specifications 
or design constraints as stated for each problem. 

(3) To discuss the robustness and accuracy of the algorithm solution by doing 
comparison of the results with those processed by some other metaheuristic 
algorithm in relevant literatures. 

1.3. Scope of Research 
This research is proposed to execute with the following scope: 

(1) A Python program is used for all the process of this study including structural 
analysis and optimization phase. 

(2) Structural analysis shall be performed by utilizing the direct stiffness method. 
(3) The enhanced comprehensive learning particle swarm optimization algorithm 

is implemented into the Python program. 
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(4) Benchmark 2D and 3D truss structures are selected for this study with design 
load and design constraints associated with each problem including stress 
constraints and/or displacement constraints. 

(5) Size and shape optimization is performed simultaneously. 
(6) Size and shape variables shall be picked from provided lists which consist of 

continuous variables and/or discrete variables as stated for each problem. 
(7) Verify the results of the optimization and compare with those in literatures. 

1.4. Methodology 
Truss structural optimization is performed by executing the Python code created for 
this specific task and configured for each optimization problems. Python code includes 
input phase, analysis phase, optimization phase and output phase. The code starts 
with inputs of structural data including node coordinates, start and end node of bars, 
modulus of elasticity and material density. Linear analyses of benchmark truss 
structures are performed by utilizing the direct stiffness method. Stress of each 
member and total weight of structure are collected after structural optimization. 
Several benchmark truss structures are optimized with the enhanced comprehensive 
learning particle swarm optimization algorithm which is implemented in Python code 
with a proposed number of total population and a total number of iterations. The 
total number of variables is the summation of size variables and shape variables as 
stated for each benchmark problems. The optimization process initiates from first 
iteration until it reaches the maximum numbers of iterations to obtain the minimum 
total of weight of structure. The optimization variables shall be selected within a 
provided list or the limit. The design constraints are checked at each iteration, so that 
there are no constraint violations for result of optimization. The optimization process 
shall be executed many times to find a best optimization result, mean result and the 
standard deviation of those result as well. To finalize the outcome of optimization, 
the results shall be discussed and compared with those in literatures.  
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CHAPTER 2 
LITERATURE REVIEW 

 
To utilize the enhanced comprehensive learning particle swarm optimization algorithm 
to the simultaneous size and shape structural optimization problems, historical 
background studies shall be presented. 

2.1. Direct Stiffness Method 
Direct stiffness method or matrix stiffness method has been used in many applications 
of structural analysis. The method is commonly suited for implementation to 
computer-aid structural analysis of complex structures including both statically 
determinate and indeterminate structure. To perform structural analysis, all necessary 
input data are required and shall be input in the form of matrices or array as specified 
in Python code. 
Those data can be divided into six categories (Kassimali 2011): 

• Joint data 

• Support data 

• Material property data 

• Cross-sectional property data 

• Member data 

• Load data 
 
The direct stiffness method can be performed as the following step-by-step 
procedures: 

(1) Prepare analytical model and collect all input data in matrix forms. 
(2) Formulate the structure stiffness matrix K  
(3) Determine the joint displacements by substituting the known force P  and 

structure stiffness matrix K  into the equation P KU=  where U  is the joint 
displacement array. 

(4) Compute member end displacements and end forces, and support reactions. 
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(5) Verify the result by using the equilibrium equations. (For planar frame: 0xF = , 
0yF = , and 0M = ) 

 

 
Figure 2.1. Plane truss and analytical model (Kassimali 2011) 

2.2. Metaheuristic Algorithm 
The optimization algorithm is a vital part of optimization process. “Meta-” in 
metaheuristic algorithm means beyond or higher level (Gandomi, Yang et al. 2013). All 
metaheuristic algorithms use trial and error method to deliver satisfactory solutions to 
optimization problems. The complexity of the problems can cause the performance 
of the algorithm to produce solution slower or inaccuracy. Many metaheuristic 
algorithms were proposed by utilizing different strategies to produce better solutions 
in less time. However, the best solutions may not be found easily. 
Metaheuristic algorithms consist of exploitation and exploration phase. Exploitation is 
an ability to search for solutions in local area by using the information from a good 
solution in that area. Meanwhile, exploration is an ability to explore the search space 
on the global scale to produce global optimum. The differences in ability of 
exploitation and exploration of metaheuristic algorithms can cause the accuracy of the 
solutions. 
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Metaheuristic algorithms can be classified as population-based or trajectory-based. 
Particle swarm optimization (PSO) is considered a swarm-intelligence-based algorithm 
and a population-bases algorithm. 
 

 
Figure 2.2. Metaheuristic algorithm classification (León-Aldaco, Calleja et al. 2015) 

2.3. Particle Swarm Optimization 
 

 
Figure 2.3. PSO position and velocity update (Perez and Behdinan 2007) 
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Particle swarm optimization algorithm (PSO) was first introduced in 1995 (Kennedy and 
Eberhart 1995). The algorithm is invented based on the behaviour or movement of a 
bird flock. PSO utilizes many argents or particles to search for acceptable solution in a 
search space. The idea of the algorithm is to share information of each particle to one 
another every iteration. Thus, if one particle has a better position than others, this 
particle holds a vital information that lets other particles follow its position. To apply 
the concept of algorithm to the mathematical problems, two essential equations for 
the d th dimension of particle i  are utilized which are a velocity equation (Eq. 2.1) 
and a position equation (Eq. 2.2) as follows (Shi 2001): 
 
 

1 21 ( ) 2 ( )d d d d d d d

i i i i

d

i i iV wV c rand pbest X c rand gbest X= + − + −  (2.1) 
 d d d

i i iX X V= +  (2.2) 
where 1 2( , ,..., )D

i i i iX X X X=  is the particle i  position. 
 1 2( , ,..., )D

i i i iV V V V=  is the particle i  velocity. 
 1d

irand  and 2d

irand  represent random numbers in the range [0, 1] 
 d

ipbest  is a personal best position in the previous iteration for particle i  
 d

igbest  is the global best position of whole population 
 1c  and 2c  are the acceleration constants which both equal to 2 in this study 
 w  in the inertial weight which can be computed by using Eq. 2.3 
 

  
max

0.9 (0.9 0.4)
k

w
k

= − −  (2.3) 

where k  and maxk  are iteration number and maximum number of iterations, 
respectively. 

The algorithm procedure starts with initial positions with associated velocity of each 
particle which are randomly located anywhere in a search space. The personal best 
and global best position can be defined using initial position information. The algorithm 
initializes the first iteration in the next step. The velocity and position of each particle 
are updated by utilizing Eq. 2.1 and Eq. 2.2. However, the velocity and position of each 
particle of d th dimension shall be within limit of search space and velocity, 
respectively. The maximum value of velocity 

max

dV  normally equals to 20% of 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 8 

max min

d dX X−  and the minimum value 
min

dV  shall equal to 
max

dV−  (Yu and Zhang 2014). 
Finally, the fitness value shall be compared with previous one to define the personal 
best position and global best position. The steps shall be repeated until the algorithm 
reaches the maximum number of iterations. 
 

 
Figure 2.4. Flowchart of the standard PSO algorithm (Liang, Qin et al. 2006) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 9 

The simplicity of the standard PSO makes this algorithm popular and it was used in 
many real-world optimization problems. However, there is a drawback of this algorithm 
which turns out to be a major disappointment in yielding good solutions of complex 
optimization problems. The main drawback of this algorithm is the ability to get out of 
local optimal region. All particles in complex problems where there are many local 
optimums within a search space can be trapped in those regions forever. Thus, the 
outcome of optimization might not be good or even acceptable. Since the creation of 
standard PSO, there are many variants of PSO were proposed in the past decades to 
solve this problem. Even though new strategies or approaches are implemented to 
the standard PSO, the concept of algorithm is still the same. 

2.3.1. Initialization 
The initial positions and velocities of the particles shall be generated randomly within 
the limits, 

max min[ , ]d dX X  and 
max min[ , ]d dV V , respectively. To generate the random particles, 

the following equations can be used (Venter and Sobieszczanski-Sobieski 2004). 
 
  ( )0 min 1 max min

ix x r x x= + −  (2.4) 

  ( )min 2 max min

0

i
x r x

t

x
v

+ −
=


 (2.5) 

where 1r  and 2r  are random numbers between 0 and 1. 

2.3.2. Inertia Weight 
The inertia weight was not applied in the original equation of PSO but later it was used 
to improve the convergence speed of the optimization solution which was introduced 
in 1998 (Shi and Eberhart 1998). The inertia weight balances the global search ability 
and local search ability of PSO algorithm. When inertia weight is small ( 0.8w ), PSO 
becomes a local search algorithm. Thus, if small inertia weight is used within initial 
search space, the solution can converge fast but might not be global optimum. On the 
contrary, PSO is more like a global search algorithm when the inertia weight is large 
( 1.2w ). To have the best change of obtaining the global optimum, the value of 
inertia weight shall be adjusted dynamically by using a large value at initial search and 
decrease linearly until the end of iteration. Equation below can be employed. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 10 

  max min
1 max

max

k

w w
w w k

k
+

−
= −   (2.6) 

where maxw  and minw  are set to 0.9 and 0.4, respectively. 

2.3.3. Variable Bounds 
The limitation of variables is vital for optimization problem to keep the variable stay 
in search space. The limit of velocities and positions shall be selected to prevent the 
particles move outside of the bounds. 

max

dX  and 
min

dX  are the position bounds of the 
particles; whilst 

max

dV  and 
min

dV  are the velocity bounds and they can be limited as 
shown in equations below. 

  ( )( )max minmin ,max ,d d d d

i ix x x x=  (2.7) 

  ( )( )max minmin ,max ,d d d d

i iv v v v=  (2.8) 

2.4. Comprehensive Learning PSO 
In the original PSO, the algorithm let the particles learn from the global best value 
which may or may not be near the global optimum of objective function. In a case, 
where the current global best is far from global optimum, the algorithm might not 
yield a good solution because the particles probably stuck in a local optimum which 
the current global best located at. To improve the standard PSO algorithm, 
comprehensive learning particle swarm optimization (CLPSO) was introduced (Liang, 
Qin et al. 2006). The algorithm is one of numerous variants of the standard PSO. A new 
learning strategy was proposed to let each particle learns from information of personal 
best values in the population and to prevent premature convergence. By using this 
strategy, the velocity equation now is based on the personal best of the particles. 
 
The velocity of each particle can be updated by using the equation as follows: 
 

1 ( ) 21 ( ) 2 ( )d d d d d d d

i i i

d

i fi d i iV wV c rand pbest X c rand gbest X= +  − +  −  (2.9) 
where 1 2( , ,..., )D

i i i iX X X X=  is the particle i  position. 
 1 2( , ,..., )D

i i i iV V V V=  is the particle i  velocity. 
 [ (1), (2),..., ( )]i i i if f f f D=  defines which particles’ personal best the particle 

i  should follow. The exemplar index if  can be determined depending 
on the learning probability Pc . 
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( )

d

fi dpbest  is personal best position of particle with index ( )if d  which can be 
its own personal best. 

 dgbest  is global best position of population. 
 

1c  and 2c  is the acceleration constant which equals to 2. 
 1d

irand  and 2d

irand  is a random number in range [0, 1]. This value is different 
for each dimension and particle of the population. 

 w  is the inertia weight which can be computed as describe in the standard 
PSO algorithm. 

2.4.1. Exemplar Index 
To define the exemplar index if , a tournament selection procedure shall be 
employed. The procedure can be followed as shown in flowchart below. 
 

 
Figure 2.5. Selection of exemplar index for particle i (Liang, Qin et al. 2006) 
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For each dimension, the tournament selection can be employing as follows: 
(1) A random number in range of [0,1] is generated and compared with the learning 

probability which can be calculated by using Eq. 2.10. 
(2) If the learning probability is smaller, the exemplar index if  is set as particle i . 

Otherwise, two random particles are selected excluding the particle whose 
velocity is updated and proceed to next step. 

(3) Fitness values of those two particles are compared. The index of particle with 
better fitness value is selected as the exemplar index. 

(4) If all exemplars of a particle are its own personal best, a random dimension of 
that particle is set to learn from another personal best of the corresponding 
dimension randomly. 

2.4.2. Learning Probabilities 

 
Figure 2.6. Each particle’s Pc with a population size of 30. 

 
The learning probability Pc  can be computed by using equation as follows: 

 

( )

( )( )

10 1
exp 1

1
0.05 0.45

exp 10 1
i

i

ps
Pc

 − 
−   −  = +

−
 (2.10) 

where ps  is the total number of population. 
To prevent each particle learns from poor exemplar, a refreshing gap m  is employed. 
The refreshing gap will let the particles learn from one exemplar until the fitness value 
stops improving for a certain number of generations. In this study, m  is set to 7. 
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The CLPSO can be followed as shown in flowchart below. 

 
Figure 2.7. Flowchart of CLPSO algorithm (Liang, Qin et al. 2006) 
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The concept of the comprehensive learning particle swarm optimization algorithm is 
to let the particles within the search to learn from information of other particles in the 
population. By doing so, the algorithm improves the exploration ability. Thus, the 
algorithm can yield a better solution and more accurate than the standard PSO when 
it faces complex optimization problems. 

2.5. Enhanced Comprehensive Learning PSO 
Comprehensive learning particle swarm optimization algorithm is good at exploration; 
however, it is poor at exploitation. As a result, the solution of optimization lacks 
accuracy. Thus, two enhancements to the algorithm of CLPSO was proposed to 
improve the algorithm. The enhanced CLPSO algorithm (Yu and Zhang 2014) was 
introduced in 2014 which was based on the original concept of CLPSO algorithm but 
with the two enhancement, ECLPSO could yield better results. Two techniques, 
namely perturbation-based exploitation, and adaptive learning probabilities are 
developed within the ECLPSO algorithm. These concepts can be described as follows. 

2.5.1. Perturbation-based Exploitation 
To improve the exploitation of particle swarm optimization, the enhanced 
comprehensive learning particle swarm optimization algorithm implements a 
normative knowledge structure as shown in Table 2.1. The normative knowledge is 
dimensional intervals to all the personal best positions of population. To employ the 
perturbation-based exploitation-based term, a certain condition based on the 
normative knowledge shall be made to decide when to perform exploitation 
effectively and which region to focus on. 
 
Table 2.1. Structure of the normative knowledge (Yu and Zhang 2014) 
Dimension 1 2 … D 
Present dimensional lower bound 1P  

2P  … DP  

Present dimensional upper bound 
1P  

2P  … 
DP  

 
where 

dP  and 
dP  are respectively the lower and upper bounds of all personal best 

positions on the d th dimension. 
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The value of the lower and upper bounds can be calculated as follows. 
  1, 2, ,min , ,...,d d d N dP P P P=  (2.11) 

  1, 2, ,max , ,...,d d d N dP P P P=  (2.12) 

 
The perturbation-based exploitation term mainly improves the exploitation and 
accuracy of CLPSO algorithm. However, the procedure of this algorithm is as same as 
that of CLPSO algorithm. The perturbation-based exploitation term shall be applied 
when the Eq. 2.13 is true. Thus, the velocity shall be updated by utilizing Eq. 2.14 
which includes the perturbation-based exploitation term. 
 

 
( )d d d d

d d

P P X X

P P





 −  −


− 

 (2.13) 

 1 ( )

2

( )1

                    2 ( )

2

d d d d

fi d i

d

d

d d d

i PbE i i fi d

d d

i i

V
P

w V c r pbest

c r X

P
pbe

gb

t

e

s

s

X

t


 −
 − −

 
 = +  +
 
 



−




+ 

 (2.14) 

where   is relative ratio which equals to 0.01. 
   is small absolute bound which set as 2. 
   is the perturbation coefficient which can be generated randomly from a 

normal distribution with mean 1 and standard deviation 0.65. 
 PbEw  is the inertia weight but only used for this case which is fixed at 0.5. 
 
If the Eq. 2.13 is not true, we shall use the velocity equation from the CLPSO algorithm 
which is shown as Eq. 2.9. 

2.5.2. Adaptive Learning Probabilities 
Learning probabilities strategy is a vital method for finding an exemplar index of the 
comprehensive learning particle swarm optimization algorithm. However, in CLPSO 
algorithm, the learning probabilities are only based on particles’ index and does not 
change during optimization iteration. Thus, this static strategy might create difficulties 
of convergence.  To improve this strategy, the ECLPSO algorithm was introduced with 
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a new adaptive learning probabilities which was adjusted dynamically by the ranking 
information of personal best particles. 
The adaptive learning probabilities of ECLPSO will replace the original equation in 
CLPSO by the Eq. 2.15 as follows. 

 ( )

( )

( )
min max min

10 1
exp 1

1

exp 10 1

i

i

K

ps
Pc L L L

− 
− 

− = + −
−

 (2.15) 

 
( ) ( )max min 1

0.25 0.45log 1kD
L L M

+
= + + +  (2.16) 

where maxL  can be computed by using the Eq. 2.16 above. 
 minL  is fixed at 0.05. 
 kM  is the number of the dimensions where the Eq. 2.13 is satisfied before or 

during the iteration k . 
 
The Eq. 2.15 is like Eq. 2.10 of CLPSO algorithm but included with ranking parameter 

iK . The ranking information iK  can be defined by sorting the personal best fitness 
value in ascending order. Thus, if a particle has the best fitness value compared to 
other particles, its rank shall be 1 (i.e. 1iK = ). On the other hand, if it has the worst 
fitness value, its rank equals to total number of population ps . 
To prevent premature convergence, adjustment to the parameter maxL  is needed. A 
small maxL  seems good for exploration while a large maxL  helps in exploitation. Hence, 
Eq. 2.16 was proposed to balance exploration and exploitation of the algorithm. As we 
can see from Eq. 2.16, max 0.3L =  which is the minimum value when 0kM = . 
Otherwise, max 0.75L =  which is the maximum value when kM D= . 
With the adaptive learning probabilities strategy, the algorithm can improve the 
particles’ exploitation ability to accelerate convergence. This is an important role of 
ECLPSO which can improve the exploitation weakness of CLPSO algorithm.  
 
The enhanced comprehensive learning particle swarm optimization algorithm 
possesses a similar procedure to CLPSO algorithm. The flowchart of ECLPSO is shown 
as follows. 
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Figure 2.8. Flowchart of ECLPSO algorithm 
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2.6. Comparison of PSO, CLPSO, and ECLPSO on benchmark function 
The improvement of CLPSO and ECLPSO algorithm were tested in many benchmark 
functions and compared with solution from the conventional PSO algorithm. In this 
study, the optimization of two benchmark functions, which are sphere function and 
Rosenbrock’s function, will be shown below. 
Table 2.2. Expressions and information of the benchmark functions. 

Function description *
x  ( )*

f x  Search space 
Initialization 

space 

Sphere, ( ) 2

1

1

D

i

i

f x x
=

=   0
D  0   100,100

D
−   100,50

D
−  

Schwefel’s, 

( )
1

2
2

1

418.9829 sin
D

i i

i

f x D x x
=

= −
 
 
 

   420.96
D  0   500,500

D
−   500,500

D
−  

 
The first problem is the sphere function which is considered a unimodal function and 
is easy to solve. The second problem is a unrotated multimodal problem called 
Schwefel’s function. This function is more complex due the number of local optima 
being so large. The solution might be hard to obtain if many particles stuck deep in 
local optima. 
 

 
Figure 2.9. Sphere function (Dutu, Mauris et al. 2015) 
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Figure 2.10. Schwefel’s function (Omidi and Mazaheri 2020) 

 

2.6.1. CLPSO Algorithm 
The optimizations were performed with many PSO algorithms as listed below. For this 
test, the CLPSO algorithm was used with 10 dimensions and 10 particles or agents to 
find the global optimum. The maximum evaluations (Fes) were set to 30,000 and the 
optimization was performed 30 times. The results will be presented for both problems 
with the graph of convergence curve, the mean values and standard deviation. 
The algorithms and parameters settings for the test problems: (Liang, Qin et al. 2006) 

- PSO with inertia weight (PSO-w) 
- PSO with constriction factor (PSO-cf) 
- Local version of PSO with inertia weight (PSO-w-local) 
- Local version of PSO with constriction factor (PSO-cf-local) 
- UPSO 
- Fully informed particle swarm (FIPS) 
- FDR-PSO 
- CPSO-H 
- CLPSO 

 
As we can observe from results below, CLPSO does not yield better for unimodal, 
sphere function but performs the best for multimodal function, Schwefel’s function. 
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Table 2.3. Results of CLPSO improvement over PSO (Liang, Qin et al. 2006) 
Alogorithm Sphere function Schwefel’s function 
PSO-w 7.96e-051 ± 3.56e-050 3.20e+002 ± 1.85e+002 
PSO-cf 9.846e-105 ± 4.21e-104 9.87e+002 ± 2.76e+002 
PSO-w-local 2.13e-035 ± 6.17e-035 3.26e+002 ± 1.32e+002 
PSO-cf-local 1.37e-079 ± 5.60e-079 8.78e+002 ± 2.93e+002 
UPSO 9.84e-118 ± 3.56e-117 1.08e+003 ± 2.68e+002 
FDR 2.21e-090 ± 9.88e-090 8.51e+002 ± 2.76e+002 
FIPS 3.15e-030 ± 4.56e-030 7.10e+001 ± 1.50e+002 
CPSO-H 4.98e-045 ± 1.00e-044 2.13e+002 ± 1.41e+002 
CLPSO 5.15e-029 ± 2.16e-028 0 ± 0 

 

  
Figure 2.11. Convergence characteristics of sphere function (left) and Schwefel’s 

function (right) 

2.6.2. ECLPSO Algorithm 
The experiments were tested with 30 dimensions and 40 particles. The maximum 
number of fitness evaluation (Fes) is 200,000 for each run on each function. The 
optimization were performed by using many algorithms such as CLPSO, OLPSO-G, 
OLPSO-L, SPSO from (Zhan, Zhang et al. 2011) and ECLPSO. The problems were solved 
25 times independently. The solution of optimization shall be shown below with the 
mean value and standard deviation. 
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Table 2.4. Results of ECLPSO improvement over CLPSO (Yu and Zhang 2014) 

Algorithm 
Sphere function Schwefel’s function 

Mean SD Mean SD 
CLPSO 2.56e-14 8.77e-14 3.82e-4 2.42e-13 
OLPSO-G 4.12e-54 6.34e-54 3.84e2 2.17e2 
OLPSO-L 1.11e-38 1.28e-38 3.82e-4 0 
SPSO 2.29e-96 9.48e-96 3.14e3 7.81e2 
ECLPSO 1.00e-96 3.01e-96 3.82e-4 0 

 

 
Figure 2.12. Convergence characteristics of CLPSO and ECLPSO of sphere function 

 
The benefit of perturbation-based exploitation makes the solution of optimization 
problem better. If we look at convergence characteristics of CLPSO and ECLPSO, we 
can see the difference in solution of the problem is after around 50,000 fitness 
evaluations, the ECLPSO algorithm starts to produce a better result.  

2.7. Size and Shape Truss Structural Optimization 
The purpose of the structural optimization is to obtain a minimum total weight of the 
truss structure by getting the optimal cross-sectional areas and the best nodal 
coordinates without violating the design constraints. Combined size and shape 
optimization yields better results than those of size optimization or shape optimization 
alone. The structural optimization contains two types of variables which are the size 
(cross-sectional area) variables and shape (nodal location) variables. 
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Figure 2.13. Example of optimization problem of 15-bar planar truss structure 

 

 
Figure 2.14. Sample of optimal shape of truss structure 

 
After an optimization of truss structure in Figure 2.13, we can obtain the optimal shape 
of truss structure as shown in Figure 2.14. The red line represents the optimal shape 
of truss structure while the grey line indicates the original shape. The nodal coordinates 
move every iteration to find the optimal shape, however they shall be within the 
geometry limitation. Since the nodal coordinates change, the length of each member 
shall be computed every structural analysis as well. 

2.8. Constraint Handling 
The solution of optimization shall be under the design constraint for each problem as 
stated above. To handle the design constraints, a penalty function method is 
employed which can be formulated as follows (Jawad, Mahmood et al. 2021). 
 ( )' ,A G pW W X X K=  (2.17) 
 ( )1p C


 = +  (2.18) 

where 'W  is the total weight of truss structure after handling the design constraints. 
   is a multiplication coefficient which can be computed using Eq. 2.18. 
 K  and   are respectively the penalty constant and penalty exponent which 

are both fixed at 1 in this study. 
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The parameter C  is for measuring the violation of penalty constraints which is the 
summation of the design constraints’ penalties including stress, displacement and 
buckling constraints. The parameter C  can be calculated by using equation below. 

 
1

(

1

)

1

buckli

n

n

m n
j i i

j

g

i i

C C C C  
= = =

= + +    (2.19) 

 
The displacement, stress, and buckling constraints (

( ), ,j i i

bucklingC C C  
, respectively) 

shall be penalties for each iteration of the optimization process in the mathematical 
formula as follows. 

2.8.1. Strength Constraint 
Penalty of stress constraints: 
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 (2.20) 

 
Penalty of buckling constraints: 
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 (2.21) 

2.8.2. Serviceability Constraint 
Penalty of displacement constraints: 
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 (2.22)  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 24 

CHAPTER 3 
FORMULATION AND PROBLEM STATEMENT 

3.1. Problem Statement 
In this study proposal, 4 benchmark optimization problems are addressed. Each 
problems have specific properties as stated. There are 2 types of truss structures in 
this study which are the planar truss structure and the space truss structure. The planar 
truss structures include 3 different truss systems with 15, 18 and 47 elements, 
respectively. The space truss structure consists of 25 elements. 
The optimization problems consider size (namely  1 2, ,...,n

A nX A A A = ) and 
shape (namely  1 2, ,...,ng

G ngX G G G = ) variables simultaneously to obtain the 

minimum total weight of truss structures. The weight minimization problem for the 
benchmark truss structures can be mathematically expressed as follows. 
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 (3.1) 

where W  is the total weight of the design structure defined as the function of 
member density i . 

 iL  is the physical length of each member. 
 iA  defines the cross-sectional area of each member. 
 m  is the total number of degrees of freedom; n  and ng  are the total 

number of size and shape variables, respectively. 
 

j  is the displacement at the j-th degree of freedom. 
 i  indicates the member stress. 
 
The optimization problem is Eq. 3.1 minimizes the total weight of truss structure under 
the bounds on permissible compression c

i  and tension t

i  stresses, minimum min  
and maximum max  displacements, and minimum minA  and maximum maxA  areas. 
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3.1.1. 15-bar Planar Truss Structure 
 

 
Figure 3.1. 15-bar planar truss structure 

 
Table 3.1. Optimization data for the 15-bar planar truss structure 

Objective function: ( )
15

1

min , i iA G

i

iW X X L A
=

=  

Stress constraints: 
25 (ksi)

  , 1,2,...,15
25 (ksi)

t

i

c

i

i




 
=



 

Size variables:  , 1,2,...,15iA i =  
Shape variables: 2 6 3 7 2 3 4 6 7 8 ,  ,  ,  ,  ,  ,  , x x x x y y y y y y= =  
Permissible size variables: 

{0.111,0.141,0.174,0.220,0.270,0.287,0.347,0.440,0.539,0.954,1.081,

1.174,1.333,1.488,1.764,2.142,2.697,2.800,3.131,3.565,3.813,4.805,

5.952,6.572,7.192,8.525,9.300,10.850,13.330,14.290,17.170,19.1

iA S =

280} in

 

Limitation of shape variables: 

2

3

2

3

4

6

7

8

100 140

220 260

100 140

100 140

50 90

20 20

20 20

20 60

x

x

y

y

y

y

y

y

 

 

 

 

 

−  

−  

 

 

Young modulus: 410  (ksi)E =  
Material density: 3)0.1 (lb/in =  
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The optimization problem includes a 15-bar planar truss structure subjected to a 
vertical load (10 kips) at node 8 as shown in Figure 3.1. There are 15 discrete and 8 
continuous design variables for the cross-sectional areas and the nodal coordinates, 
respectively. The discrete variables shall be selected from a list as shown in Table 3.1 
and the continuous variables shall be limited as well. All structural members are 
subjected to stress limitation of ±25 (ksi) for both tension and compression, 
respectively. 

3.1.2. 18-bar Planar Truss Structure 
 

 
Figure 3.2. 18-bar planar truss structure 

 
This benchmark problem considers 18-bar planar truss structure subjected to vertical 
forces (20 kips) at nodes 8, 6, 4, 2, and 1 as shown in Figure 3.2. The optimization 
problem also includes the buckling constraints with the buckling coefficient 4K =  as 
stated in Table 3.2 below. 
 
Table 3.2. Optimization data for the 18-bar planar truss structure 

Objective function: ( )
18

1

min , i iA G

i

iW X X L A
=

=  

Stress constraints: 
25 (ksi)

  , 1,2,...,18
25 (ksi)

t

i

c

i

i




 
=



 

Buckling constraints: 2/  , 1,2,...,18c

i ii KEA L i  =  

Size variables: 1 4 8 12 16 2 6 10 14 18

3 7 11 15 5 9 13 17

 ,  ,

 , 

A A A A A A A A A A

A A A A A A A A

= = = = = = = =

= = = = = =
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Shape variables: 3 3 5 5 7 7 9 9 ,  ,  ,  ,  ,  ,  , x y x y x y x y  
Permissible size variables:   22.00,2.25,2.50,...,21.25,21.50,21.75  iniA S =  
Limitation of shape variables: 

3

5

7

9

3 5 7 9

775 1225

525 975

275 725

25 475

225  ,  ,  , 245

x

x

x

x

y y y y

 

 

 

 

−  

 

Young modulus: 410  (ksi)E =  
Buckling coefficient: 4K =  
Material density: 3)0.1 (lb/in =  

 

3.1.3. 47-bar Planar Truss Structure 
The size and shape optimization of the 47-bar planar truss structure consists of 44 
design variables under stress and buckling constraints. The forces are applied at node 
17 and 22 with value 6 (kips)xF =  and 14 (kips)yF = − . 
 
Table 3.3. Optimization data for the 47-bar planar truss structure 

Objective function: ( )
47

1

min , i iA G

i

iW X X L A
=

=  

Stress constraints: 
20 (ksi)

  , 1,2,..., 47
15 (ksi)

t

i

c

i

i




 
=



 

Buckling constraints: 2/  , 1,2,..., 47c

i ii KEA L i  =  

Size variables: 

3 1 4 2 5 6 7 8 9 10 12 11

14 13 15 16 18 17 20 19 22 21

24 23 26 25 27 28 30 29 31 32 33

35 34 36 37 38 40 39 41

 ,  ,  ,  ,  ,  ,  , 

 ,  ,  ,  ,  , 

 ,  ,  ,  ,  ,  ,  , 

 ,  ,  ,  , 

A A A A A A A A A A A A

A A A A A A A A A A

A A A A A A A A A A A

A A A A A A A A

= = = = =

= = = = =

= = = =

= = = 42 43

45 44 46 47

 ,  , 

 , 

A A

A A A A

=

= =

 

Shape variables: 

2 1 4 3 4 3 6 5 6 5

8 7 8 7 10 9 10 9 12 11

12 11 14 13 14 13 20 19 20 19

21 18 21 18

 ,  ,  ,  ,  , 

 ,  ,  ,  ,  , 

 ,  ,  ,  ,  , 

 , 

x x x x y y x x y y

x x y y x x y y x x

y y x x y y x x y y

x x y y

= − = − = = − =

= − = = − = = −

= = − = = − =

= − =
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Permissible size variables:   20.1,0.2,0.3,...,4.8,4.9,5.0  iniA S =  
Limitation of shape variables:  , i ix y   
Loads: 
Case 1: Node 17 and 22 6 (kips), 14 (kips)x yF F= = −  
Case 2: Node 17 6 (kips), 14 (kips)x yF F= = −  
Case 3: Node 22 6 (kips), 14 (kips)x yF F= = −  
Young modulus: 43 10  (ksi)E =   
Buckling coefficient: 3.96K =  
Material density: 3)0.3 (lb/in =  

 

 
Figure 3.3. 47-bar planar truss structure 
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3.1.4. 25-bar Space Truss Structure 
 

 
Figure 3.4. 25-bar space truss structure 

 
Table 3.4. Optimization data of the 25-bar space truss structure 

Objective function: ( )
25

1

min , i iA G

i

iW X X L A
=

=  

Stress constraints: 
40 (ksi)

  , 1,2,...,25
40 (ksi)

t

i

c

i

i




 
=



 

Displacement constraints: ( , , ) 0.3 in 6 , 1,2,...,x y z

j j  =  

Size variables: 

3 1 4 2 5 6 7 8 9 10 12 11

14 13 15 16 18 17 20 19 22 21

24 23 26 25 27 28 30 29 31 32 33

35 34 36 37 38 40 39 41

 ,  ,  ,  ,  ,  ,  , 

 ,  ,  ,  ,  , 

 ,  ,  ,  ,  ,  ,  , 

 ,  ,  ,  , 

A A A A A A A A A A A A

A A A A A A A A A A

A A A A A A A A A A A

A A A A A A A A

= = = = =

= = = = =

= = = =

= = = 42 43

45 44 46 47

 ,  , 

 , 

A A

A A A A

=

= =

 

Shape variables: 

2 1 4 3 4 3 6 5 6 5

8 7 8 7 10 9 10 9 12 11

12 11 14 13 14 13 20 19 20 19

21 18 21 18

 ,  ,  ,  ,  , 

 ,  ,  ,  ,  , 

 ,  ,  ,  ,  , 

 , 

x x x x y y x x y y

x x y y x x y y x x

y y x x y y x x y y

x x y y

= − = − = = − =

= − = = − = = −

= = − = = − =

= − =
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Permissible size variables: 

2

{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,

1.9,2.0,2.1,2.2,2.3,2.4,2.5,2.6,2.8,3.0,3.2,3.4} in

iA S =  

Limitation of shape variables: 

4

8

4

8

4

20 60

40 80

40 80

100 140

90 130

x

x

y

y

z

 

 

 

 

 

 

Loads (kips): 
Node: 1 1 , 10 , 10x y zF F F= = − = −  
Node: 2 0 , 10 , 10x y zF F F= = − = −  
Node: 3 0.5 , 0 , 0x y zF F F= = =  
Node: 6 0.6 , 0 , 0x y zF F F= = =  
Young modulus: 410  (ksi)E =  
Material density: 3)0.1 (lb/in =  

 
The optimization shall include with the displacement constraint for all free nodes 
(node 1 to 6) and the stress constraint. The loads are applied to nodes 1, 2, 3 and 6 
as shown in Table 3.4.  
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CHAPTER 4 
SOLUTION METHODOLOGY AND RESULTS 

4.1. Size and Shape Truss Structural Optimization Algorithm 
The weight minimization problems of truss structure are implemented in Python code 
by using the enhanced comprehensive learning particle swarm optimization algorithm 
(ECLPSO). The procedures of the optimization are the same for all benchmark truss 
structure in this study even though there are some different parameters or types of 
truss system. The objective function of the truss structural optimization problems is 
stated in Chapter 3. For every benchmark problem, there are 2 types of variables which 
are size variables (discrete) and shape variables (continuous). The design constraints 
include displacement, stress and buckling constraints as indicated for each problem. 
The procedure of the optimization can be expressed step-by-step as follows. 

(1) Input truss structural data including node coordinates, bars connectivity data 
and other parameters. 

(2) Input ECLPSO algorithm parameters 
(3) Start the optimization with initial positions associated with its velocities and 

evaluate the weight (fitness value) of truss structure by performing the 
structural analysis with direct stiffness method. 

(4) Define personal best positions and a global best position. 
(5) Begin the first iteration (k = 1) and follow the process of the optimization using 

ECLPSO in Chapter 2. 
(6) Before updating the personal best position for each iteration, introduce the 

constraint control using the formula in Chapter 2. 
(7) During the process of every iteration, record the global best position and global 

best fitness value (weight) to plot a convergence curve. 
(8) Output the solution of optimization including the optimal cross-sectional areas 

and the best nodal coordinates, the convergence curve, and optimal shape of 
truss structure. 
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The flowchart of simultaneous size and shape optimization of truss structure can be 
summarized as shown in Figure 4.1. 

 
Figure 4.1. Flowchart of the optimization of the benchmark truss structure 
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4.2. Input Parameters for Optimization 
The correct input parameters shall be carefully used in the optimization problems 
since they might have effect significantly on the solution. The parameters of ELCPSO 
and CLPSO algorithm as described in literature review are used in the optimization 
process of the benchmark truss structures in this study. 
The total population for the optimization problems is set to 20 particles but the 
number of iterations varies accordingly to each problem. The dimension of objective 
function is the total number of variables of the problems which consists of discrete 
size variables and nodal coordinate variables or shape variables. The design constraints, 
including strength constraints and serviceability constraints, are different for each 
problem and handled by techniques as described in literature review. 
To obtain the best results and compare fairly to those of other algorithms in the 
literatures, the optimization is performed 25 times independently for each problem. 
The best value, constraint violation ratio, number of structural analysis and standard 
deviation are presented in the result table for each problem. 

4.3. Results for 15-bar Planar Truss Structure 
The comparison of the solution from ECLPSO algorithm with those of others in 
literature in show in Table 4.1. There are 23 total number of design variables including 
15 discrete size variables and 8 shape variables. The size variables are limit to 25 (ksi) 
by constraint handling technique. 
The best result of ECLPSO algorithm is 74.1723 (lb) which is around 10% lighter than 
that of the standard PSO which is 82.2344 (lb). The standard deviation of the 
optimization is of 3.22 for the ECLPSO algorithm. However, the algorithm requires a 
greater number of structural analysis (i.e., 6000) to yield the result. The maximum 
stress obtained from structural analysis after the optimization is 24.9964 (ksi). The 
original and optimal shape of truss structure is shown in Figure 4.2. The convergence 
of the ECLPSO algorithm is illustrated in Figure 4.3 including the best value and mean 
value of the optimizations after 25 runs. It is seen that the results start to converge at 
200 iterations and fully converge at 300 iterations. 
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Table 4.1. Optimal discrete size and shape of the 15-bar planar truss structure 

Variables 
(Rahami, Kaveh 

et al. 2008) 

(Miguel, Lopez 
et al. 2013) 

(Gholizadeh 2013) This study 

FA PSO SCPSO ECLPSO 

A1 1.081 0.954 0.954 0.954 0.954 

A2 0.539 0.539 1.081 0.539 0.539 

A3 0.287 0.220 0.270 0.270 0.220 

A4 0.954 0.954 1.081 0.954 0.954 

A5 0.539 0.539 0.539 0.539 0.539 

A6 0.141 0.220 0.287 0.174 0.220 

A7 0.110 0.111 0.141 0.111 0.111 

A8 0.110 0.111 0.111 0.111 0.111 
A9 0.539 0.287 0.347 0.287 0.440 

A10 0.440 0.440 0.440 0.347 0.440 

A11 0.539 0.440 0.270 0.347 0.440 

A12 0.270 0.220 0.111 0.220 0.270 

A13 0.220 0.220 0.347 0.220 0.220 

A14 0.141 0.270 0.440 0.174 0.220 

A15 0.287 0.220 0.220 0.270 0.220 

X2 101.5775 114.967 106.0521 137.2216 100.9857 

X3 227.9112 247.040 239.0245 259.9093 242.8470 

Y2 134.7986 125.919 130.3556 123.5006 134.2018 
Y3 128.2206 111.067 114.273 110.0020 119.9010 

Y4 54.8630 58.298 51.9866 59.9356 50.8212 

Y6 -16.4484 -17.564 1.8135 -5.1799 -17.1359 

Y7 -13.3007 -5.821 9.1827 4.2193 -4.1215 

Y8 54.8572 31.465 46.9087 57.8829 50.7841 

Weight (lb) 76.6854 75.55 82.2344 72.5143 74.1723 

Constraint (%) 0.0 - 0.0 0.0 0.0 

Max. stress  24.9992 - 24.9999 24.9912 24.9964 

NSA 8000 8000 4500 4500 6000 

SD - 2.96 - 1.922 3.22 
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Figure 4.2. Optimal shape of 15-bar planar truss structure 

 

 
Figure 4.3. Convergence curve of 15-bar planar truss problem 

4.4. Results for 18-bar Planar Truss Structure 
In this problem, there are 4 discrete area variables and 8 nodal coordinate variables. 
The constraint restrictions consist of stress constraint for tension members (i.e., 25 ksi) 
and buckling constraint for compression members with buckling coefficient K = 4. 
From the results in Table 4.2, we can see that there are no constraint violations 
including the stress constraint and buckling constraint. The ECLPSO algorithm need 
more structural analysis that the standard PSO but the weight from ECLPSO algorithm 
is the lowest comparing to other algorithms which is 4175.1425 (lb) with standard 
deviation of 57.32. Figure 4.4 shows the original and optimal shape of truss structure. 
The convergence curve is illustrated in Figure 4.5. It is seen that the algorithm starts to 
converge at 200 iterations then fully converges at 300 iterations. 
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Table 4.2. Optimal discrete size and shape of the 18-bar planar truss structure 

Variables 
(Rahami, Kaveh 

et al. 2008) 

(Jawad, Ozturk 
et al. 2021) 

(Gholizadeh 2013) This study 

ABC PSO SCPSO ECLPSO 

A1 12.75 12.50 12.00 12.5 10.25 

A2 18.50 17.75 18.50 17.5 17.5 

A3 4.75 5.75 5.25 5.75 6.25 

A5 3.25 3.75 4.50 3.75 2.75 

X3 917.4475 912.9974 903.9806 907.2491 909.0566 

Y3 193.7899 183.6806 185.7807 179.8671 180.1431 

X5 654.3243 642.7143 644.9170 636.7873 636.8079 

Y5 159.9436 143.8920 144.9692 141.8271 138.5523 
X7 424.4821 411.6918 428.2196 407.9442 406.1961 

Y7 108.5779 97.14763 100.5623 94.0559 94.7056 

X9 208.4691 200.9087 209.5415 198.7897 197.5999 

Y9 37.6349 30.21906 24.3748 29.5157 33.6241 

Weight (lb) 4530.68 4537.064 4609.001 4512.365 4175.1425 

Constraint (%) 0.0 0.0 0.0 0.0 0.0 

NSA 8000 2700 4500 4500 6000 

SD - 9.7971 - 37.691 57.32 

 
 

 
 

Figure 4.4. Optimal shape of 18-bar planar truss structure 
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Figure 4.5. Convergence curve of 18-bar planar truss problem 

4.5. Results for 47-bar Planar Truss Structure 
Table 4.3. Optimal discrete size and shape of the 47-bar planar truss structure 

Variables 
(Hasançebi and 
Erbatur 2002) 

(Kaveh and 
Zaerreza 2020) 

(Gholizadeh 2013) This study 

PSO SCPSO ECLPSO 

A3 2.5 2.8 2.80 2.5 2.7 

A4 2.5 2.5 2.70 2.5 1.9 
A5 0.8 0.7 0.80 0.8 0.8 

A7 0.1 0.1 1.10 0.1 0.5 

A8 0.7 1.0 0.80 0.7 1.1 

A10 1.3 1.1 1.30 1.4 1.7 

A12 1.8 1.8 1.80 1.7 2.2 

A14 0.7 0.7 0.90 0.8 0.5 

A15 0.9 0.8 1.20 0.9 0.9 

A18 1.2 1.5 1.40 1.3 1.9 

A20 0.4 0.4 0.30 0.3 0.4 

A22 1.3 1.0 1.40 0.9 0.4 
A24 0.9 1.1 1.10 1.0 1.7 

A26 0.9 1.0 1.20 1.1 1.5 

A27 0.7 5.0 1.60 5.0 2.3 

A28 0.1 0.1 1.00 0.1 0.3 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 38 

A30 2.5 2.7 2.80 2.5 3.1 

A31 1.0 0.9 0.80 1.0 0.5 

A33 0.1 0.1 0.10 0.1 0.1 

A35 2.9 3.0 3.00 2.8 3.3 

A36 0.8 0.8 0.90 0.9 0.8 
A38 0.1 0.1 0.10 0.1 0.1 

A40 3.0 3.2 3.30 3.0 3.4 

A41 1.2 1.1 0.90 1.0 0.7 

A43 0.1 0.1 0.10 0.1 0.2 

A45 3.2 3.3 3.30 3.2 3.7 

A46 1.1 1.1 1.20 1.2 0.3 

X2 104 100.5396 98.8628 101.3393 96.1045 

X4 87 81.0279 78.6595 85.9111 75.1729 

Y4 128 137.2003 146.7331 135.9645 132.4016 

X6 70 63.8334 66.5231 74.7969 52.6328 
Y6 259 254.1838 239.0901 237.7447 276.0971 

X8 62 56.1445 55.6936 64.3115 45.4036 

Y8 3.26 327.9040 327.7882 321.3416 348.3091 

X10 53 48.2708 48.8641 53.3345 35.6093 

Y10 412 407.5132 398.6775 414.3025 417.0551 

X12 47 42.4458 43.1400 46.0277 30.7598 

Y12 486 468.8267 464.7831 489.9216 482.1343 

X14 45 45.8692 37.8993 41.8353 30.2856 

Y14 504 515.2907 511.0450 522.4161 536.6923 

X20 2.0 0.0010 18.2341 1.0005 0.1239 
Y20 584 586.9443 594.0710 598.3905 594.3145 

X21 89 80.7351 90.9369 97.8696 94.5263 

Y21 637 621.5769 621.3943 624.0552 604.8316 

Weight (lb) 1871.17 1869.876 1975.839 1864.10 1799.8757 

Constraint (%) 0.0 - 0.0 0.0 0.0 

NSA - 20,020 25,000 25,000 30,000 

SD - 29.55 - 97.478 89.53 
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Figure 4.6. Optimal shape of 47-bar planar truss structure 

 

   
Figure 4.7. Convergence curve of 47-bar planar truss problem 
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The 47-bar planar truss structure problem consists of the biggest number of variables 
in this study which is 44 numbers of total variables. There are 17 shape variables and 
27 size variable which is limited to the design constraints including stress constraint 
and buckling constraint. There are 20 particles used to search for global optimum in 
this problem. 
The optimization results are shown in Table 4.3. The best value after 25 runs 
independently is of 1799.8757 lb with corresponding standard deviation of 89.53. The 
original and optimal shape and convergence curve are shown in Figure 4.6 and Figure 
4.7, respectively. It is seen that the best solution of the problem starts to converge at 
1200 iterations and fully converges at 1500 iterations. 

4.6. Results for 25-bar Space Truss Structure 
Table 4.4. Optimal discrete size and shape of the 25-bar space truss structure 

Variables 
(Tang, Tong 
et al. 2005) 

(Miguel, Lopez 
et al. 2013) 

(Gholizadeh 2013) This study 

PSO SCPSO ECLPSO 

A1 0.1 0.1 0.1 0.1 0.1 

A2 0.1 0.1 0.1 0.1 0.1 

A3 1.1 0.9 1.1 1.0 0.9 

A4 0.1 0.1 0.1 0.1 0.1 
A5 0.1 0.1 0.4 0.1 0.1 

A6 0.2 0.1 0.1 0.1 0.1 

A7 0.2 0.1 0.4 0.1 0.1 

A8 0.7 1 0.7 0.9 1 

X4 35.47 37.32 27.6169 36.9520 39.9664 

Y4 60.37 55.74 51.6196 54.5786 557.433 

Z4 129.07 126.62 129.9071 129.9758 124.1553 

X8 45.06 50.14 42.5526 51.7317 58.0017 

Y8 137.04 136.40 132.7241 139.5316 138.6544 

Weight (lb) 124.943 118.83 129.207 117.227 120.0191 
Constraint (%) 0.0 - 0.0 0.0 0.0 

NSA 6000 6000 4500 4500 6000 

SD - 5.5 - 3.671 2.96 
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Figure 4.8. Optimal shape of 25-bar space truss structure (top view on right) 

 

 
Figure 4.9. Convergence curve of 25-bar space truss problem 

 
The problem consists of 8 discrete area variables and 5 nodal coordinates variables 
including all axis (i.e., X, Y and Z). The optimization is performed 25 times 
independently with 20 particles for each run. There are 2 design constraints namely 
stress constraint and displacement constraint. 
The optimization produces an acceptable result where the weight is of 120.0191 lb 
with standard deviation of 2.96. Figure 4.8 shows 3D view and top view of the original 
and optimal shape of the space truss structure. The convergence characteristic is 
shown in Figure 4.9. It is seen that the optimization starts to yield the solution at 280 
iterations and completely converge at 300 iterations.  
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CHAPTER 5 
CONCLUSION 

 
This study presents research purposes and solution methodology of the simultaneous 
size and shape optimization using enhanced comprehensive learning particle swarm 
optimization algorithm which is a variant of the standard PSO. The objective of this 
study is to apply the ECLPSO algorithm to the benchmark truss structures under the 
design constraints including strength constraints and serviceability constraints, and to 
compare the outcome with those results reported in the literatures. The benchmark 
problems include planar truss structures and a space truss structure with 
correspondingly properties. The solutions of the benchmark truss structure problem 
using ECLPSO algorithm are presented with fast convergence and comparable results. 
After the optimizations, the ECLPSO is observed to yield better results than those of 
the standard PSO. This improvement over PSO is the resultant of the introduction of 
learning probabilities concept of CLPSO algorithm and the two enhancements of 
ECLPSO algorithm, namely perturbation-based exploitation, and adaptive learning 
probabilities. This proves that ECLPSO algorithm can be used in many structural 
applications and is a robust, effective, and reliable optimization method for solving 
structural optimization problem. 
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