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ถึงแม้ว่าการสกัดจับ ในปฏิบัติการเรียกสกัดจับ สอบถาม และค้นตัว ได้ลดลงอย่างมาก 

หลังจากการปฏิรูปกรมตำรวจนิวยอร์ค ในปี 2013 แต่การสกัดจับที่ไม่จำเป็น และการใช้อาวุธกับ
ประชาชนผู้บริสุทธิ์ ยังคงเป็นปัญหาสำคัญ งานศึกษานี้ ได้วิเคราะห์การสกัดจับระหว่างปี 2014-
2019 โดยใช้การเรียนรู้ด้วยเครื่องแบบต้นไม้ 3 ประเภท ได้แก่ Decision Tree, Random Forest 
และ XGBoost เพ่ือสร้างแบบจำลองเพ่ือทำนายการสกัดจับว่าจะมีการกระทำผิดหรือไม่  และเพ่ือ
ทำนายระดับการใช้กำลังของตำรวจ รวมทั้งระบุปัจจัยที่ส่งผล ผลการศึกษา แสดงให้เห็นว่า 
XGBoost ให้ผลลัพธ์ดีกว่าแบบจำลองอ่ืนในการทำนายทั้งสองปัญหา ในการทำนายความผิด ได้
คะแนน F1 ที่ 65.9% และความแม่นยำ 84.0% ส่วนในการทำนายระดับการใช้กำลังของตำรวจ 
ได้คะแนน F1 ของระดับ 1 และระดับ 2 เป็น 40.7% และ 35.0% ตามลำดับ ด้วยความแม่นยำ
โดยรวม 80.4% โดยผลลัพธ์ชี้ให้เห็นว่าการมีอาวุธสื่อถึงการที่ผู้ต้องสงสัยได้กระทำผิด  ถึงกระนั้น 
ตำรวจอาจมีการสันนิษฐานที่ไม่แม่นยำเกี่ยวกับการครอบครองอาวุธของผู้ต้องสงสัย ซึ่งอาจนำไปสู่
การสกัดจับ และการใช้ปืนกับประชาชนผู้บริสุทธิ์ได้ นอกจากนี้ งานศึกษานี้ยังได้ศึกษาเทคนิคการ
ผสมผสานที่ชื่อว่า Super Learner โดยได้ทดลองสร้างโครงสร้างหลากหลายแบบ พบว่า Super 
Learner ให้ผลลัพธ์ที่พัฒนาขึ้นจากแบบจำลองพ้ืนฐานของมันเองเมื่อใช้แบบจำลองพ้ืนฐานที่ไม่ได้
ปรับตั้งค่า แต่จะไม่พัฒนาขึ้นมากนักหากใช้แบบจำลองพ้ืนฐานที่ผ่านการปรับตั้งค่ามาแล้ว 
ความสามารถการทำนายของแบบจำลองพ้ืนฐานก็เป็นสิ่งหลักที่ส่งผลต่อความสามารถในการ
ทำนายของ Super Learner เช่นกัน นั่นคือหากใช้แบบจำลองพ้ืนฐานที่มีความสามารถที่ดี ก็จะ
ช่วยพัฒนาความสามารถของ meta model ได้ และในทางกลับกันก็เช่นกัน สุดท้ายพบว่า meta 
model ซึ่งใช้ XGBoost และ Logistic Regression ให้ผลลัพธ์ดีกว่าแบบจำลองอ่ืนในการทำนาย
ทั้ง 2 ปัญหา 
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Although stops from “Stop, Question, and Frisk” program have decreased 
dramatically after the New York Police Department (NYPD) reform in 2013, the unnecessary 
stops and weapon use against innocent citizens remain critical problems. This study analyzes 
the stops during 2014 – 2019, using three tree-based machine learning approaches: Decision 
Tree, Random Forest, and XGBoost. Models for predicting stops that resulted in a conviction 
and police’s level of force used are developed and driving factors are identified. Results show 
that XGBoost outperformed other models in both predictions. The performance of Guilty 
Prediction was at 65.9% F1 score and 84.0% accuracy. For Level of Force Prediction, the F1 
score obtained for “Level 1” and “Level 2” were 40.7% and 35.0% respectively, with 80.4% 
overall accuracy. The findings indicated that the presence of a weapon implies a suspect's 
conviction. Despite that, numerous unnecessary stops are likely driven by inaccurate 
assumptions about suspect’s weapon possession, which lead to police’s gunfire usage against 
innocent citizens. Additionally, this study explores a hybrid technique called Super Learner. 
Experiments on various structures of Super Learners are performed. For base models, Super 
Learners can improve performance from their own base models when using untuned base 
models but do not improve when using tuned base models. The performance of base models 
also played a significant role in the performance of Super Learners, namely having high-
performance base models improved meta models’ performance, and vice versa. For meta 
models, XGBoost and Logistic Regression outperform other meta models across both 
predictions.  
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Chapter 1 : Introduction 

1.1 Background 
 The ‘Stop, Question, and Frisk (SQF)’ program in New York City was established from the 

decision of Terry v. Ohio by The United States Supreme Court in 1968. A Terry Stop is a lawful 

practice that allows the United States officers to stop and temporarily detain suspects when 

there is a reasonable suspicion of criminal involvement. The officers are also allowed to pat 

down the suspect’s clothing in order to search for weapons and contrabands, known as ‘Frisk’. 

Arresting and issuing a search warrant may proceed if probable cause is found. When a police 

officer stops a suspect on a street or in a vehicle, it is called ‘Stop and Frisk’ and ‘Vehicle Stop’ 

respectively.  

Nowadays, U.S. police officers are questioned about their biased behaviors towards 

suspects, including those in New York City, where the population is highly diverse. The New York 

Police Department (NYPD) has a high number of officers per capita among others in the United 

States. Despite the benefit of law enforcement, unnecessary stops and excessive actions were 

frequently mentioned in recent years. 

From the statistical record of stops published, the number of stops rapidly increased, 

from 97,296 stops in 2002 to its peak at 685,724 stops in 2011. Since its peak in 2011, the 

number of stops has significantly dropped as shown in Figure 1. Although the proportion of stops 

without arrest or summon issued has also dropped after the reform as shown in Figure 2, it is still 

high (76.6% of all stops after the reform) compared to those that resulted in a conviction (23.4% 

of all stops after the reform). 
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Figure 1 The number of stops by NYPD in 2011-2019 

 

 

 

 

 

 

 

 

 

 

Figure 2 The percentage of stops without arrest or summon issued 

 

During the Stop, Question, and Frisk practices, the officers may use physical forces 

against suspects in various ways, with or without weapons, such as handcuffs, baton, conducted 

energy weapon (CEW), and firearm. Although it is legal to use weapons during SQF practices, a 

suspect who was not convicted should not encounter any forces. After the reform, 12.21% of 

innocent suspects were stopped with police’s use of weapons, and the percentage tends to 

increase as shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 
Figure 3 The percentage of innocent suspects stopped with police’s use of weapons 
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As demonstrated, despite the NYPD reform, the unnecessary stops and physical force with 

weapons used towards innocent citizens by officers still are critical problems. To investigate the 

issue, this study will analyze the SQF dataset during 2014 – 2019 retrieved from the NYPD 

website. With data analytic techniques, driven factors for stops which resulted in a conviction and 

police’s weapons usage can be found. These factors can be analyzed whether an officer used 

weapons based on a sign of guilty suspect or suspect’s other characteristics. Furthermore, the 

discovered insights can be applied to enhance law enforcement in New York City. 

Additionally, with a lot of social issues that have been continuously gaining public’s 

interest in recent years, exploring this issue is the opportunity to extend the usability of data 

analytics, especially machine learning methods. it is also crucial to analyze this area with 

quantitative reference besides other established areas, such as finance and healthcare. However, 

lack of data collection was the main obstacle for the social area. The SQF dataset of New York 

City is, fortunately, one of the very detailed police operation dataset published. Taken together, 

analysis of this dataset using machine learning methods was the chosen topic to experiment in 

this project. 

 

1.2 Objectives of the study 
1. To create a model and investigate the factors relating to an arrest or a summon issued 

after a stop, using classification machine learning techniques. 

2. To create a model and investigate the factors relating to police’s weapons usage during 

a stop, using classification machine learning techniques. 

3. To explore a hybrid approach aiming to enhance the performance of the established 

models.  

 

1.3 Scope of the study 
1. This study analyzed the Stop, Question, and Frisk datasets during 2014 – 2019, published 

on the NYPD website. 

2. The model creation was based on stopped suspects during 2014 – 2019 as population, 

which did not include all of New York City citizens. 

3. The study only explored the factors contained in the datasets.  

4. The investigated machine learning techniques were tree-based classification, such as 

Decision Tree, Random Forest, and XGBoost. 
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5. The hybrid technique, Super Learner, was explored. It was composed of various base 

learners such as Decision Tree, Random Forest, XGBoost, Logistic Regression, and 

Gaussian Naive Bayes, with a meta learner such as Logistic Regression, Decision Tree, 

Random Forest, XGBoost, and Neural Network.  

 

1.4 Benefits of the study 
1. The driven factors for an arrest or a summon issued after a stop and police’s weapons 

usage during a stop can be identified. 

2. NYPD officer’s behavior in SQF practices can be analyzed in terms of its 

appropriateness  

3. The performance of the hybrid approach can be explored, and the performance of 

established models can be improved. 
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Chapter 2 : Related Theories and Literature Review 

2.1 Related Work 

2.1.1 Studies analyzing NYPD Stop, Question, and Frisk datasets 
The United States officers’ behavior has been an interesting issue in society as well as 

researchers for many years. Terry Stop or Stop and Frisk practices in many states were also 

investigated. In recent years, many researchers have focused on analyzing the Stop, Question, 

and Frisk practices of NYPD officers by using quantitative methods. 

The racial disparity in SQF practices before the NYPD reform was investigated by some 

researchers. A study from SQF records during 1998-1999, using Poisson regression models, 

showed that African and Hispanic pedestrians were stopped more than whites after controlling 

for racial population variability and crime rate across precincts (Gelman et al., 2007). However, a 

study conducted later which used SQF data during 2003-2011 with precinct-level fixed regression 

models, indicated that race was not a significant factor for deciding whom to stop (Coviello & 

Persico, 2015). 

 The consequence of the NYPD reform was also examined by a study using external and 

internal benchmarking approach, with indicators measuring whether the stops resulted in frisk, 

search, summon issued, arrest, and use of force. The study showed that during 2013-2015 after 

the reform, race was no longer a significant factor, even though there was some racial disparity in 

2012 before the reform (MacDonald & Braga, 2019). 

 In addition to ethnics, several studies suggested some relationships between SQF 

practices in New York City and other suspect characteristics. Using the generalized linear mixed 

models to analyze SQF data during 2006-2013, a study showed that among male suspects who 

were above 18 years old, Black and Hispanic men with large BMI (body mass index) were more 

likely to be frisked, searched, or encountered physical force (Milner et al., 2016). Some situational 

characteristics, such as a suspect was proximal to the scene, had significant relationships to 

physical force usage as well. The evidence was shown in another study using SQF data in 2012 

with logistic regression models (Morrow et al., 2017). The summary of this topic is shown in Table 

1. 
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Table 1 Studies analyzing NYPD Stop, Question, and Frisk datasets 

 

2.1.2 Studies relating to police behavior using tree-based classification 

machine learning methods. 
Apart from the NYPD SQF dataset, tree-based machine learning classifiers were used in 

several research papers that focused on the U.S. police law enforcement. Public perception of 

Researchers Data used Techniques Results 

Gelman et 
al., 2007 

SQF records 
during 1998-
1999 

Poisson regression 
models, controlling 
racial population 
variability and crime 
rate across precincts 

African and Hispanic pedestrians were 
stopped more than whites. 

Coviello & 
Persico, 2015 

SQF records 
during 2003-
2011 

Precinct-level fixed 
regression models 

Race was not a significant factor for 
deciding whom to stop. 

MacDonald & 
Braga, 2019 

SQF records 
during 2012-
2015 

External and internal 
benchmarking 
approach  

After the reform, race was no longer 
a significant factor measuring whether 
the stops resulted in frisk, search, 
summon issued, arrest, and use of 
force, even though there was some 
racial disparity in 2012 before the 
reform. 

Milner et al., 
2016 

SQF records 
during 2006-
2013 

Generalized linear 
mixed models 

Among male suspects who were 
above 18 years old, Black and 
Hispanic men with large BMI (body 
mass index) were more likely to be 
frisked, searched, or encountered 
physical force. 

Morrow et 
al., 2017 

SQF records 
during 2012 

Logistic regression 
models 

Some situational characteristics, such 
as a suspect was proximal to the 
scene, had significant relationships to 
physical force usage. 
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police behavior during traffic stops was predicted in a study, using Random Forest classification 

and conventional logistic regression. The results of both approaches were consistent in terms of a 

principal factor, which was drivers’ belief that a stop is legal (Hu et al., 2021). Another study, 

aiming to predict the U.S. police adverse incidents, compared the performance among tree-based 

classifiers. The result showed that Extra Tree, similar to Random Forest, had the best 

performance among others (Helsby et al., 2017). 

 Police law enforcement outside the United States was also investigated. Supervised 

machine learning techniques, including Decision Tree and Random Forest, were used to predict 

re-arrest by police in Santiago, Chile. The prediction was conducted based on data regarding to 

previous arrests and personal information, such as gender and age. The study showed that all 

models had achieved excellent performance (van ‘t Wout et al., 2021). The summary of this 

topic is shown in Table 2. 

Table 2 Studies relating to police behavior using tree-based classification machine learning 
methods. 

 

Researchers Data used Techniques Results 

Hu et al., 2021 Police traffic stops 
surveys in 2005, 2008, 
2011, and 2015, from 
BJS police–public 
contact surveys (PPCS) 

Random Forest 
classification and 
Logistic Regression 

Public perception of police 
behavior during traffic 
stops was predicted.  The 
results of both approaches 
were consistent in terms 
of a principal factor. 

Helsby et al., 
2017 

Datasets from 
Charlotte-Mecklenburg 
Police Department 

Extra Tree, Random 
Forest, Logistic 
Regression, and Ada 
Boost 

Extra Tree, similar to 
Random Forest, had the 
best performance among 
others (AUC = 0.67). 

van ‘t Wout et 
al., 2021 

Arrests history in 
Santiago de Chile and 
personal metadata, 
such as age and 
gender 

Decision Tree, 
Random Forest, 
Logistic Regression, 
Naïve Bayes, 
Multilayer Perceptron 

All models had achieved 
excellent performance 
(AUC = 0.81 for all 
models). 
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2.1.3 Studies relating to the performance of tree-based classification 

techniques. 
 Tree-based classification techniques were applied and compared by many researchers in 

various fields.  A study regarding to star and galaxy classification with a photometric dataset was 

carried out. They used many classification algorithms including Function Tree, Random Forest, 

Gradient Boosting Decision Tree (GBDT), Adaboost, and XGBoost (eXtreem Gradient Boosting). The 

result showed that XGBoost outperformed other models (Chao et al., 2019). In another study, 

cardiovascular disease was investigated by analyzing data with machine learning techniques such 

as Random Forest, GBDT, and XGBoost. From experimental results, XGBoost had the best 

performance among other models (Jiang et al., 2021). XGBoost also outperformed Random Forest 

in a study predicting water table depth, for improving agricultural production efficiency (Brédy et 

al., 2020).The summary of this topic is shown in Table 3.  

Table 3 Studies relating to the performance of tree-based classification techniques 

Researchers Data used Techniques Results 

Chao et al., 
2019 

Photometric data set 
from Sloan Digital Sky 
Survey-DR7. 

Function tree (FT), 
Adaptive boosting 
(Adaboost), Random 
Forest (RF), Gradient 
Boosting Decision Tree 
(GBDT), Stacked 
Denoising AutoEncoders 
(SDAE), and Deep Belief 
Nets (DBN) 

XGBoost outperformed 
other models (accuracy 
99.87% for bright 
stellar, 95.72% for dark 
stella, and 79.48% for 
the darkest stellar). 

Jiang et al., 
2021 

Data from patients 
with suspected 
cardiovascular disease 
presenting at ED 
triage. 

XGBoost, Gradient 
Boosting Decision Tree, 
Random Forest, 
Multinomial Logistic 
Regression. 

XGBoost had the best 
performance among 
other models (AUC = 
0.937) 

Brédy et al., 
2020 

Water table depth 
measured from a 
cranberry farm, near 
Québec City, Québec, 
Canada 

Random Forest and 
XGBoost. 

XGBoost outperformed 
Random Forest, in 
terms of RMSE and 
NSE. 
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2.1.4 Studies relating to Super Learner technique for improving the 

performance of established models. 
 To improve the performance of tree-based classifiers, Super Learner technique, which 

combined various types of classifiers was proposed and explored by many researchers. Transient 

prediction of CO2 and NOx of diesel trucks was conducted in a study, using tree-based classifiers 

including Random Forest, XGBoost, LightGBM, and CatBoost as base learners for Super Learner. 

The result showed that the Super Learner model outperformed the traditional method (Wei et 

al., 2022). A Super Learner ensemble was also proposed for the vehicle-type image classification 

problem in a study. Several types of neural networks were used as base learners. The Super 

Learner was then used to optimize the weight combination of the base learners. The result 

showed that Super Learner outperformed base learners on accuracy (Hedeya et al., 2020). In 

another study, Super learner was used to predict flight delay. Base learners were Gaussian Naïve 

Bayes, Random Forest, K Nearest Neighbor, Logistic Regression, and Decision Tree, and Meta 

learner was Logistic Regression. Super Learner with all base learners outperformed on accuracy 

and f1 score compared with other combinations of base learners (Yi et al., 2021). The summary 

of this topic is shown in Table 4. 
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Table 4 Studies relating to Super Learner technique for improving the performance of 
established models. 

 

According to all studies mentioned above, it suggests that there are possible 

relationships between suspects’ or situational characteristics and SQF practices. However, the 

SQF datasets in the last few years, after the reform, are not much explored. Moreover, most 

methods used in previous works with the NYPD SQF datasets are statistical methods, while 

machine learning models seem to be effective tools used by researchers in relevant fields. Tree-

based algorithms such as Decision Tree and Random Forest showed great performance in related 

predictive problems. Also, according to the previous section, XGBoost is an algorithm that 

outperformed Random Forest in many studies. Since this study aims to find related factors to the 

practices, it examines the NYPD SQF dataset in the last few years with tree-based machine 

Researchers Data used Techniques Results 

Wei et al., 
2022 

Onboard test data of 9 
China VI N2 vehicles  

Tree-based classifiers 
including Random Forest, 
XGBoost, LightGBM, and 
CatBoost as base learners for 
Super Learner. 

Super Learner model 
outperformed the 
traditional method 

Hedeya et 
al., 2020 

The MIOvision Traffic 
Camera Dataset (MIO-
TCD) and the Beijing 
Institute of 
Technology’s (BIT) 
vehicle classification 
dataset. 

Several types of neural 
networks were used as base 
learners. The Super Learner 
was used to optimize the 
weight combination of the 
base learners. 

Super Learner 
outperformed base 
learners on accuracy  

Yi et al., 
2021 

Flight data from 
January to December 
2019 at Logan 
International Airport in 
Boston, Massachusetts, 
the United States. 

Super Learner. Base learners 
were Gaussian Naïve Bayes, 
Random Forest, K Nearest 
Neighbor, Logistic Regression, 
and Decision Tree, and Meta 
learner was Logistic Regression 

Super Learner with 
all base learners 
outperformed on 
accuracy and f1 
score compared with 
other combinations 
of base learners 
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learning algorithms including Decision Tree, Random Forest, and XGBoost to create predictive 

models. With these models, the driven factors for probable cause that leads to an arrest or 

issuing a summon, and a decision on weapons used, can be found.  

Additionally, this study explores the potential hybrid approach, Super Learner, on top of 

the established models previously mentioned, to seek opportunities for enhancing the prediction 

performance. For base learners, Decision Tree, Random Forest, and XGBoost are chosen from a 

past study which showed a good performance of Super Learner with tree-based models as base 

models (Wei et al., 2022). In order to explore other predictive models with different structures, 

Logistic Regression and Gaussian Naïve Bayes are used with tree-based models, inspired by a past 

study that showed Super Learner with various base learners, including Decision Tree, Logistic 

Regression, and Gaussian Naïve Bayes, performed well on accuracy and f1 score (Yi et al., 2021). 

For meta learners, Logistic Regression is chosen from its good performance in the past study (Yi 

et al., 2021). A neural network algorithm, Multilayer Perceptron (MLP), is also chosen inspired by 

the past study using neural networks for Super Learner (Hedeya et al., 2020). However, due to  

heavy computation, this study only uses MLP as a meta learner and not as base learners. Lastly, 

since tree-based models are not much explored as meta learners in past studies, this study uses 

Decision Tree, Random Forest, and XGBoost to investigate how well tree-based models perform 

as meta learners.  

Besides different techniques, this study also explores how the optimization of base 

models affects Super Learner, by using both tuned and untuned base models. Since the Super 

Learner consists of many models and training processes, using untuned base models may have 

benefits in terms of efficient resource usage, and this kind of experiment is not much explored in 

past studies. 

2.2  Related Theories 

2.2.1 Classification models 

2.2.1.1 Decision Tree 
 Decision Tree is one of the supervised learning algorithms, for both regression and 

classification problems. The model is relating to recursively partition or segment attributes space 

into several regions. Predictors’ value is compared to a threshold for numerical predictors or a 

set of values for categorical predictors. Decision Tree is commonly used because its model is 
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understandable, which is beneficial for interpretation. An example of decision tree analyzed from 

a training set is shown in Figure 4 (Kotsiantis, 2013; Lin et al., 2006). 

 

  

 

 

 

 

 

  

 

 

Figure 4 Example of a decision tree for a training set (Kotsiantis, 2013). 
 In classification problems, the predicted class for each record is the most frequently 

occurring class for the region in which the record comes under. Splitting each node can be 

impure if not all training observations in divided regions fall into the same class. The process of 

partitioning or splitting nodes is commonly measured its purity by two metrics, Gini Index and 

Entropy. Gini index can be written as Equation 1, and Entropy as Equation 2 (Lin et al., 2006). 

𝐺 = ∑ �̂�𝑚𝑘(1 −𝐾
𝑘=1 �̂�𝑚𝑘)                                         (1) 

𝐷 =  − ∑ �̂�𝑚𝑘𝑙𝑜𝑔�̂�𝑚𝑘
𝐾
𝑘=1                                         (2) 

 Where 0 ≤ �̂�𝑚𝑘  ≤ 1 is the proportion of kth class training observations that fall into the 

mth region. The smaller value of both metrics refers to more node purity. 

2.2.1.2 Random Forest, Extra Tree, and Balanced Random Forest 
 Random forest is an ensemble of decision trees trained with bagging method. Bootstrap 

aggregation or bagging is a process of decreasing variance by building separate models from sets 
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of observations sampled from the dataset. The result is the average of all predictions as shown in 

Equation 3.  

𝑓𝑏𝑎𝑔(𝑥) =  
1

𝐵
 ∑ 𝑓∗𝑏(𝑥)𝐵

𝑏=1                                     (3) 

 Where 𝑓∗𝑏(𝑥) is the result from each bth bootstrapped training set. 

For classification problems, 𝑓𝑏𝑎𝑔(𝑥)  is obtained from the most common result from 

all models. Since the Decision Tree model mentioned earlier mostly results in high variance, the 

Bagging method helps improve the algorithm. However, all trees from the traditional bagging 

method are mostly similar, with the same strong predictors in the top nodes. Random forest 

increases randomness in the traditional bragging method by instead of selecting the most 

important attributes while growing the trees, it selects from a random subset of all attributes (Lin 

et al., 2006). 

Extra Tree is another decision tree ensemble approach. When splitting, the features and 

cut-off values are randomized in each node. Extra Tress has the benefit of being efficient, and it 

can be improved by tuning hyperparameters for each problem (Geurts et al., 2006). 

Balanced Random Forest is an adaptation of Random Forest. The training set for each 

tree is modified for class imbalance. It is built by combining two bootstrapped data sets, the 

minority class and the majority class. Both have the size of the minority class (Kobyliński & 

Przepiórkowski, 2008). 

2.2.1.3 Gradient Boosting Decision Tree, XGBoost, AdaBoost, and Histogram-based 

Gradient Boosting Classification Tree. 
 Gradient Boosting Decision Tree (GBDT) is an algorithm based on aggregated Decision 

Trees as shown in Equation 4. 

𝑓𝑀(𝑥) = ∑ 𝑇(𝑥; 𝜃𝑚)𝑀
𝑚=1          (4) 

Where  𝑥  is the sample dataset 

 𝑇(𝑥; 𝜃𝑀) is the Decision Tree  

 𝜃𝑀  is the parameters of the Decision Tree 

 𝑀 is the number of Decision Trees 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 14 

The model is sequentially built by previous trees, the mth step model is shown in 

Equation 5. 

𝑓𝑚(𝑥) = 𝑓𝑚−1(𝑥) + 𝑇(𝑥; 𝜃𝑚)           (5) 

Where 𝑓𝑚−1(𝑥) is the present model, the next model parameters or �̂�𝑚 is 

calculated from minimizing loss function as shown in Equation 6. 

�̂�𝑚 = 𝑎𝑟𝑔 min
𝜃𝑚

∑ 𝐿(𝑦𝑖 , 𝑓(𝑚−1)(𝑥) + 𝑇(𝑥;𝑁
𝑖=1 𝜃𝑚))                     (6) 

 Where 𝑦𝑖  is true class of the ith observation. The 𝐿 function is a loss function which 

depends on the type of the problem, negative binomial log-likelihood may be used for 

classification problems as shown in Equation 7-9 (Jerome, 2001) 

𝐿(𝑦, 𝐹) = log (1 + exp(−2𝑦𝐹))                                        (7) 

Where       𝐹(𝑥) =
1

2
log [

Pr(𝑦 = 1|𝑥)

Pr(𝑦 = −1|𝑥)
]            (8) 

And the pseudorespond (Pr) is 

�̃�𝑖 = 2𝑦𝑖/(1 + exp(2𝑦𝑖𝐹𝑚−1(𝑥𝑖)))                                 (9) 

 XGBoost is different from Gradient Boosting Decision Tree by adding second-order Taylor 

expansion for optimizing the loss function, while the first-order derivative information obtained in 

GBDT is still preserved. This technique makes the model converge quicker. Furthermore, a regular 

term is also added in the loss function to prevent the model from overfitting (Chen & Guestrin, 

2016) 

Another Boost algorithm is AdaBoost. AdaBoost is the algorithm that trains the weak 

learners (in this case, decision tress) by starting from using original dataset. Then sequentially 

trains other same weak learners with weight-adjusting datasets, focusing more on the wrongly 

predicted samples (Freund & Schapire, 1997). 

Lastly, Histogram-based Gradient Boosting Classification Tree is the implementation of 

GBDT based on LightGBM (Ke et al., 2017). The histogram-based models are significantly faster 

than GBDT when the dataset is large. The splitting nodes are greatly decreased by separating data 

into integer bins, as in a histogram. The algorithm also supports missing values (Pedregosa et al., 

2011). 
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2.2.1.4 Logistic Regression 
 Logistic Regression is a model which is widely used for classification problems, it is 

defined as the conditional probability shown in Equation 10. 

𝑃(𝑦𝑖 =  ±1 | 𝑥𝑖) =  𝜋𝑖 =
1

1+ 𝑒−𝑥𝑖𝛽                               (10) 

 Where  𝑥𝑖  , 𝑖 = 1,2,3, … , 𝑛 is a sample from n observations with the vectors of 

independent variables which have (1 × 𝑘) dimensions. 

  𝑦𝑖  ∈ {0,1} , 𝑖 = 1,2,3, … , 𝑛 is a class label for the 𝑖𝑡ℎ observation 

 The maximum likelihood estimates for regression parameters, 𝛽𝑟 , 𝑟 = 1,2, … , 𝑘, can 

be obtained by the score equation as shown in Equation 11. 

𝜕 log 𝐿

𝜕𝑙𝑜𝑔𝐵𝑟
= 𝑈(𝛽𝑟) =  ∑ (𝑦𝑖 − 𝜋𝑖)𝑥𝑖 = 0 𝑛

𝑖=1            (11) 

 Where 𝐿 is a likelihood function. 

 To generate finite estimates while minimizing bias, maximizing Equation 12 is 

recommended (Firth, 1993). 

log𝐿(𝛽)∗ = 𝑙𝑜𝑔𝐿(𝛽) + 0.5log |𝐼(𝛽)|                   (12) 

 Where 0.5log |𝐼(𝛽)|  is a penalty function (Bacaksiz & Koç, 2021; Ecevit, 2008; Yu et 

al., 2011). 

2.2.1.5 Gaussian Naive Bayes and Multinomial Naïve Bayes 
Naive Bayes is a supervised learning algorithm based on Bayes’ theorem. The algorithm is 

popular because of its simplicity, making it easier to construct and more effective. According to 

Bayes’ theorem, the probability of an instant 𝐸 being in a class 𝑐 is shown in Equation 13. 

 𝑝(𝑐|𝐸) =  
𝑝(𝐸|𝑐)𝑝(𝑐)

𝑝(𝐸)
                     (13) 

E is classified as class 𝐶 =  + (positive class) only if Equation 14 is satisfied. 

𝑓𝑏(𝐸) =  
𝑝(𝐶 =  +|𝐸)

𝑝(𝐶 =  −|𝐸)
 ≥ 1                   (14) 

Where 𝑓𝑏(𝐸) is called a Bayesian Classifier. 
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Given an instant 𝐸 is represented by the features 𝑥1, … , 𝑥𝑛 . Naïve Bayesian is 

assumed that all features are independent given class 𝐶, that is shown in Equation 15. 

𝑝(𝐸|𝐶) =  𝑝(𝑥1, … , 𝑥𝑛|𝐶) =  ∏ 𝑝(𝑥𝑖|𝐶)𝑛
𝑖=1                 (15) 

Then a Naïve Bayesian classifier 𝑓𝑛𝑏(𝐸) is shown as Equation 16 (Zhang, 2004). 

𝑓𝑛𝑏(𝐸) =  
𝑝(𝐶= +)

𝑝(𝐶=−)
 ∏

𝑝(𝑥𝑖|𝐶= +)

𝑝(𝑥𝑖|𝐶= −)

𝑛
𝑖=1         (16) 

 For Gaussian Naïve Bayesian algorithm, when a feature has continuous values, the 

probability of the value is assumed to be under Gaussian Distribution, defined by Equation 17. 

          𝑃(𝑥𝑖|𝐶) =  𝑔(𝑥, 𝜇, 𝜎) =  
1

√2𝜋𝜎
𝑒

−
(𝑥−𝜇)2

2𝜎2         (17) 

  Where 𝜇 is a mean and 𝜎 is a standard deviation (Han et al., 2011). 

 For Multinomial Naïve Bayesian algorithm, which is suitable for discrete features and 

widely used in text classification, the probability of a text given class 𝐶 is shown in Equation 18. 

𝑃(𝑡𝑖|𝐶) = (∑ 𝑓𝑛𝑖)! ∏
𝑃(𝑤𝑛|𝑐)𝑓𝑛𝑖

𝑓𝑛𝑖!𝑛𝑛         (18) 

 Where 𝑓𝑛𝑖  is the count of word 𝑤𝑛 in the size of word vocabulary 𝑁 and 𝑃(𝑤𝑛|𝑐) 

is the probability of 𝑤𝑛 given class 𝐶 (Kibriya et al., 2004). 

2.2.1.6 K Nearest Neighbor 
 K Nearest Neighbor classification is another one of the basic and simple classification 

algorithms. It is recommended when the distribution of data is unknown or has not been 

determined. 

 The Euclidean distance between a test sample and the required training samples is 

widely used to train the K Nearest Neighbor classifier.  The Euclidean distance between the 

sample 𝑥𝑖  (𝑖 = 1, 2, 3, … , 𝑛) and 𝑥𝑙  (𝑙 = 1, 2, 3, … , 𝑛) is shown in Equation 19. 

𝑑(𝑥𝑖 , 𝑥𝑙) = √(𝑥𝑖1 − 𝑥𝑙1)2 + (𝑥𝑖2 − 𝑥𝑙2)2 + ⋯ + (𝑥𝑖𝑝 − 𝑥𝑙𝑝)
2

        (19) 

 Where each 𝑥𝑖  has 𝑝 features (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝) 
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 The nearest neighbor is based on the Voronoi tessellation concept as shown in Figure 5. 

The Voronoi cells surround all 19 “+” marks, which are 19 samples. Each Voronoi cell, 𝑅𝑖 , 

contains all of the surrounding points that are closest to each sample 𝑥𝑖 , as defined in Equation 

20. 

 

Figure 5 Voronoi tessellation (Peterson, 2009). 
 

𝑅𝑖 = {𝑥 ∈ 𝑅𝑝: 𝑑(𝑥, 𝑥𝑖) ≤ 𝑑(𝑥, 𝑥𝑚), ∀𝑖 ≠ 𝑚}          (20) 

 Where 𝑥 is all possible points within Voronoi cell 𝑅𝑖 (Peterson, 2009). 

2.2.1.7 Multilayer Perceptron Neural Network 
 Artificial Neural Network (ANNs) has been driven from the concept of the way a human 

brain works, which is different from a normal digital computer. Because it is highly complex, 

nonlinear, and can work in parallel, the brain is capable of specific calculations by organizing its 

structural units, called neurons.   

 Multilayer Perceptron is a structure of neural networks which consists of hidden layers 

besides the input and output layer. Each neuron in the network has a “differentiable” nonlinear 

activation function and the network is highly connected. These hidden layers detect features that 

characterize the data. Figure 6 shows a Multilayer Perceptron Neural Network that is fully 

connected, which means each neuron is connected to all neurons in the former layer (Haykin, 

2009). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 18 

 

Figure 6 Example structure of a Multilayer Perceptron Neural Network with 2 hidden layers 
(Haykin, 2009) 

 Given a network that has one hidden layer, the inputs 𝑥𝑖  are multiplied by their weight 

𝑤𝑖𝑗  to generate preactivation functions 𝑦𝑗  for each neuron. 𝑦𝑗  are input into the non-linear 

activation function 𝑓𝑗  in the hidden layer to generate outputs ℎ𝑗 . The preactivation functions of 

output neurons 𝑦𝑘  are also generated with all ℎ𝑗 multiplied by their weight 𝑤𝑗𝑘 . The final 

output 𝑝𝑘  is calculated using linear activation function 𝑓𝑘 . The computation is shown in 

Equation 21 – 24. 

 𝑦𝑗 = 𝑏𝑗 + ∑ 𝑥𝑖𝑤𝑖𝑗𝑖            (21) 

    ℎ𝑗 = 𝑓𝑗(𝑏𝑗 + ∑ 𝑥𝑖𝑤𝑖𝑗)𝑖                        (22) 

𝑦𝑘 = 𝑏𝑘 + ∑ 𝑓𝑗(𝑏𝑗 + ∑ 𝑥𝑖𝑤𝑖𝑗)𝑖𝑗 𝑤𝑗𝑘         (23) 

𝑝𝑘 = 𝑓𝑘(𝑏𝑘 + ∑ 𝑓𝑗(𝑏𝑗 + ∑ 𝑥𝑖𝑤𝑖𝑗)𝑖𝑗 𝑤𝑗𝑘)        (24) 

 Where 𝑏𝑗 , 𝑏𝑘  are biases of neurons in hidden and output layers. The error function is 

defined from the difference of the outputs and the expected results as shown in Equation 25. 

𝐸 =  
1

2
∑ (𝑡𝑘 − 𝑝𝑘)2

𝑘         (25) 

 Where 𝑡𝑘  is the expected result.  
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The basic training method of the network is the Back-Propagation algorithm. This 

technique is used to identify the effect of weights on the output prediction and to change the 

obtained weights for error reduction (Agustika et al., 2021; Akbaş & Özdemir, 2020). 

2.2.2 Super Learner 
 Super Learner is an ensemble algorithm based on the idea of stacking, which is the 

process of combining outputs from trained models together for the final prediction (Wolpert, 

1992). The Super Learner algorithm involves combining results of various learners and uses cross-

validation to select the learners among the candidates. To compute the best ensemble weight 

vector, it finds the optimal combination of the base learners by minimizing the v-fold cross-

validation loss. (Laan et al., 2007; Polley & Laan, 2010; van ‘t Wout et al., 2021). 

 The structure of Super Learner is shown in Figure 7. The training dataset is divided into V 

blocks, each block is trained with base learners, then the validation set of each block is 

predicted. After that, predictions from all base learners of every block are combined as the input 

for training the meta model. Finally, evaluation is made by training each base learner with the 

entire train dataset and then predicting the validation dataset. The meta learner then also uses 

the predictions of all base learners to predict the validation set. Performance on validation set 

between each base learner and the Super Learner can be compared (Neto et al., 2020). 

 

Figure 7 Example structure of Super Learner algorithm (Neto et al., 2020) 
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2.2.3 Classification Metrics 
 The evaluation of binary classification problems is basically based on the confusion 

matrix as shown in Table 5. 

Table 5 Confusion matrix 

 Actual Positive Class Actual Negative Class 
Predicted Positive Class True positive  False Positive 

Predicted Negative Class False Negative True Negative 
 

Accuracy  

Accuracy is a widely used metric for classification problems, defined as the ratio of 

correctly predicted observations over total observations. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
        (26) 

 Accuracy is easy to use and understand, but with imbalanced datasets, the result can be 

misleading due to less favor towards minority class (Chawla et al., 2004). 

Precision                             

 Precision is used to measure the ratio of actual positive observations among predicted 

positive observations. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
      (27) 

Recall  

 Recall or Sensitivity is used to measure the ratio of predicted positive observations 

among actual positive observations. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
       (28) 

F-Measure or F1 score 

 F-Measure or F1 score is the harmonic mean between Precision and Recall, it combines 

Precision and Recall into one metric. For imbalanced data, maximizing Recall often decreases 

Precision, because increasing True Positive often increases False Positive. F1 score is widely used 
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as a performance metric for imbalanced data, as it expresses both Precision and Recall, which 

refers to the overall predictive performance of the positive class.  

     𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
       (29) 

Specificity 

 Specificity is used to measure the ratio of predicted negative observations among actual 

negative observations, just like the Recall of negative class. The inverse of Specificity, known as 

False Positive rate (1 – Specificity), is calculated in plotting ROC curve (Receiver operating 

characteristic curve). 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
      (30) 

 All previously mentioned metrics are single-threshold metrics, which represent only for 

individual thresholds of a model and cannot measure the overall performance across various 

thresholds. 

 

Receiver operating characteristic curve (ROC curve) and Area under curve 

(AUC) 

 Receiver operating characteristic curve (ROC curve) is a plot showing the trade-off 

between Sensitivity and Specificity across thresholds. Area under curve (AUC) is an area under 

ROC curve, showing the probability that the model will value a random positive observation over 

a random negative observation. AUC is also used as a metric for evaluating model’s performance, 

the model is better when AUC gets close to 1. Figure 8 shows an example of ROC curve from 2 

models, A and B, where AUC is the area shaded. The inverse of Specificity, known as False 

Positive rate (1 – Specificity), is plotted on the x-axis, while the Sensitivity or Recall, known as 

True Positive rate, is plotted on the y-axis. As the True Positive rate increases, the False Positive 

rate increases, which shows the trade-off between Sensitivity and Specificity. Model B has better 

performance than Model A since it has a higher AUC (Fawcett, 2006). 
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Figure 8 Example of ROC curve and AUC (Fawcett, 2006) 
 

Precision-Recall curve 

 Precision-Recall curve is a plot showing the trade-off between Precision and Recall 

(Sensitivity). The curve is plot across various thresholds, similar to ROC curve. It can measure the 

overall performance of models and is useful for model comparison (Saito & Rehmsmeier, 2015). 

 For imbalanced data, Precision-Recall curve is more informative than ROC curve because 

ROC curve only demonstrates value calculated from columns in the confusion matrix (Sensitivity 

and Specificity). Thus, ROC curve will not change if the proportion of positive to negative 

observations changes and may provide an overly optimistic result for large skewed data. On the 

other hand, Precision-Recall curve uses value calculated from both rows and columns in the 

confusion matrix, so it can provide a more informative evaluation. Figure 9 shows ROC curve and 

Precision-Recall curve of 2 models. When the ratio of positive class to negative class changes 

from 1:1 to 1:10, the Precision-Recall curve shows worse performance while the ROC curve does 

not change, which can lead to an overly optimistic result (Davis & Goadrich, 2006; Fawcett, 2006; 

Saito & Rehmsmeier, 2015). 
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Figure 9 ROC and Precision-Recall Curve under skewed data (Fawcett, 2006) 

2.2.4 SHAP (Shapley Additive eXplanation) value 
 Despite the understandable structure of tree-based models, the effect of significant 

features in the model needs to be interpreted. It is straightforward to obtain ‘Feature 

Importance’ through the trained model, which is calculated from decreasing in Gini impurity or 

Entropy and the possibility of reaching that feature’s nodes.  

 Unfortunately, the importance ranking directly generated from the models is not enough 

to explain features’ contribution to the outcome. To clarify, though it showed which features are 

important, how the values of each feature affect the outcome is unknown. Thus, the additive 

future attribution methods are used in this study as shown in Equation 31.  

𝑔(𝑧′) =  ∅0 + ∑ ∅𝑖𝑧′𝑖
𝑀
𝑖=1      (31) 

 Where g is a linear function of the feature attribution values, ∅𝑖 is the feature attribution 

value of feature i, M is the number of features and 𝑧𝑖
′ ∈ {0,1} stands for whether i is the 

observed feature (Meng et al., 2021). 
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 The value of ∅ in Equation 15 is calculated from the method based on game theory. 

Classic Shapley values attribute ∅𝑖  for each feature i can be calculated as shown in Equation 32. 

∅𝑖 =  ∑
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!
[𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)]𝑆 ⊆𝐹{𝑖}  (32) 

 Where F is the set of all features, S is the subset of F, 𝑓𝑆 is the model trained with 

features in set S and 𝑥𝑆 is the dataset contained features in set S. 

 With some limitations in the calculation of Equation 32, a tree SHAP value estimation 

algorithm is implemented for using with tree-based models (Lundberg et al., 2018). 
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Chapter 3 : Methodology 

3.1 Problem Approach 
 As mentioned earlier, this study aims to investigate the driven factors for stops which 

resulted in a conviction, as well as the driven factors for weapons usage during stops. Thus, 

predictive models were created to find significant features for both issues. In addition, to analyze 

the appropriateness of an officer’ decision on weapon usage, those driven factors for both issues 

were compared due to the assumption that an officer should decide to use weapon based on a 

sign of guilty suspect. 

3.2 Data source 
 Stop, Question, and Frisk datasets used in this study were originally retrieved from the 

New York Police Department (NYPD) website. The data were recorded by the NYPD officers, each 

row in datasets represents each stop. Since the files posted on the website were annually 

published, the format of the SQF records may be changed through the years. Focused on the 

records during 2014-2019, there were major changes in dataset format after 2016. In other words, 

there were 2 versions of SQF records (2014-2016 and 2017-2019). In the former version (2014-

2016), there were 80,753 records with 112 features and in the later version (2017-2019), there 

were 36,095 records with 83 features. 

3.3 Data Preparation and Output labeling 
 Since there were differences between 2 versions, such as some features appeared only 

in one version, combining both versions was an essential process aside from the conventional 

data cleaning process. 

 To maintain consistency of the aggregated dataset, some features which did not include 

in both versions were dropped, some similar features were grouped in order to match those in 

another version, and values in some columns were grouped or changed. The features in the 

aggregated dataset adopted from the original versions had 50 columns in total and divided into 8 

categories. 

1. Date and Time  

- Year of stop 

- Month of stop 

- Date of stop 
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- Days in week of stop 

- Time of stop 

2. Authority 

- Was stop inside or outside? 

- Jurisdiction 

3. Location 

- Precinct 

- Borough 

- X Coordinate 

- Y Coordinate 

4. Police action 

- Observed duration 

- Stop duration 

- Was stop initiated by radio run? 

- Did officers explain reason of stop? 

- Was an arrest made? 

- Was a summon issued? 

- Were officers in uniform? 

- Were ID cards provided by officers? (if officers were not in uniform) 

- Was verbal statement provided by officers? (if officers were not in uniform) 

- Were shields provided by officers? (if officers were not in uniform) 

- Was suspect frisked? 

- Was suspect searched? 

5. Physical force used 

- Was physical force without weapon used? 

- Was physical force with gunfire used? 

- Was physical force with other weapons used? 

- Was other physical force used? 

6. Crime details 

- Crime suspected 

- Were other persons stopped? 

- Was any weapon found on suspect? 
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- Was contraband found on suspect? 

- Was gun found on suspect? 

- Was knife found on suspect? 

- Was other weapons found on suspect? 

 

7. Situational Characteristics 

- Did stop relate to suspect carrying suspicious object? 

- Did stop relate to suspicious appearance of the suspect? 

- Did stop relate to suspect casing a victim or location? 

- Did stop relate to suspect acting as a lookout? 

- Did stop relate to drug transaction? 

- Did stop relate to identified crime pattern? 

- Did stop relate to proximity to crime scene? 

- Did stop relate to evasive or other actions? (Combined due to discontinuous of 

features. Including furtive movements, evasive response to questioning, refuse 

to comply with officers’ directions, change direction at sight of officers, verbal 

threats by suspect, and others) 

8. Suspect Characteristics 

- Suspect’s sex 

- Suspect’s race 

- Suspect’s age 

- Suspect’s height 

- Suspect’s weight 

- Suspect’s hair color 

- Suspect’s eye color 

- Suspect’s build 

 Outcome columns were calculated from related features. A suspect was “Guilty” if an 

arrest or issuing a summon occurred in stop records. Police’s physical force usage was divided 

into 3 levels. The definition in each outcome column is described in Table 6. 
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Table 6 Outcome description 

Outcome label Description 
Guilty 1 if an arrest made or summon issued 

0 otherwise 

Level of force 0 if no physical force or physical force without 
weapon  
1 if physical force with other weapons, without 
gunfire 
2 if physical force with gunfire  
3 if only other physical force 

 Finally, duplicate records had been removed. The combined dataset totally had 116,574 

records, with 52 columns. 

3.4 Exploratory Data Analysis 
 After combining datasets and labeling the outcome columns, the dataset was explored. 

As shown in Figure 10, out of 116,574 observations, 23.40% fell into the “Guilty=1” class. 

 

 

 

 

 

 

 

 

Figure 10 The number of observations for each “Guilty” class 
 For level of force column, out of 116,574 observations, 83.01% (96,766 observations) fell 

into the “Level of force = 0” class, 13.05% (15,214 observations) fell into the “Level of force = 

1” class, 2.50% (2,917 observations) fell into the “Level of force = 2” class and 1.67% (1,951 

observations) fell into the “Level of force = 3” class, as shown in Figure 11. Since the “Level of 
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force = 3” class is defined as only other physical force used, which is ambiguous, the class was 

excluded from the analysis process. 

 

 

 

 

 

 

 

 

Figure 11 The number of observations in each “Level of force” class 

3.5 Tools and Model Construction 
This study used Python 3.6 as a programming language, operating on Jupyter Notebook, 

a web-based application for data analysis. Python libraries, such as Pandas and NumPy, were 

implemented as tools for data preparation. For data visualization, Tableau 2020.3 along with 

Python libraries such as Matplotlib and Seaborn running on Jupyter Notebook were used. For 

training and optimizing models as well as evaluation, Python libraries such as XGBoost and Scikit-

learn were implemented. 

The steps of model training are as follows: 

1.  Data adjustment  

1.1 Drop some columns which directly correlated to the outcome of the predictions or 

were not causation of the outcome. Those included “Was an arrest made?”, “Was a 

summon issued?”, “Was suspect frisked?”, “Was suspect searched?”, “Stop duration”, 

“Did officers explain the reason for stop?”, “Were ID cards provided by officers?”, “Was 

verbal statement provided by officers?”, “Were shields provided by officers?”, “Was 

contraband found on suspect?” and all “Physical forced used” columns. As a result, the 

dataset had 36 features in total.  
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1.2 Transform categorical features into numeric values for training models, the 

transformation can be conducted in various ways, such as ordinal encoding and one-hot 

encoding. Ordinal encoding was used to transform binary features or categorical features 

of which the values orderly related to one another, such as days of a week (Monday to 

Sunday), otherwise, one-hot encoding was used, such as crime suspected. 

1.3 Some continuous numerical features were transformed into discrete values by 

binning, such as height of suspects.  

2. Dividing dataset 

Model training was performed using the prepared dataset, which was divided into 3 sets: 

Training set (60%), Validation set (20%) and Test set (20%) Due to the imbalance of the dataset, 

the sampling was stratified by using a stratified train-test split in Scikit-learn. 

3. Model training and optimization 

Training set was used for fitting the model in the training period. The classifier of each 

technique has various parameters, tuning the parameters was carried out using GridSearchCV in 

Scikit-learn to search over parameter values for the best performance. The steps of parameters 

tuning for each model are as follows: 

3.1 Define specific ranges of each parameter to search over for the best value 

3.2 Divide Training set into 3 subsets, for a set of parameters, do the cross-validation by 

training 2 subsets using those parameters and evaluate the performance with another subset. 

Repeat the steps for 2 times by using different training and evaluating subsets. 

3.3 Repeat step 3.2 with all possible combination of the parameters. 

3.4 Average the F1 scores of each combination of parameters from cross-validation 

process. 

3.5 Choose the combination of parameters that had the best performance. 

For Super Learner, the meta learners were optimized as well. 

4. Dropping insignificant features 

4.1 Train the tuned model with all features using Training set. 
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4.2 Obtain the importance of features and sort from minimum to maximum value. 

4.3 Drop the least significant feature. Train the model with the remaining features and 

evaluate the model with the validation set. 

4.4 Repeat step 4.3 until F1 score does not improve. 

4.5 Use the remaining features that give the best performance. 

5. Repeat step 3 with the remaining features 

6. Threshold Adjustment 

Threshold is the cut-off probability to determine whether each sample is in the class. 

Basically, the models predict the probability of being in the outcome class for each record in the 

test set. For binary classification, the default threshold is set to 0.5, which is, if the predicted 

probability for the positive class of a sample is more than 0.5, then the sample will result in the 

positive class. For imbalance data, adjusting threshold plays a significant role in optimizing the 

evaluation metrics, as mentioned in Chapter 2. 

7. Evaluate the result of each model 

 7.1 Combine Training and Validation set and divide into 4 subsets 

 7.2 Do 4-folds cross-validation by training 3 subsets with the optimal model and 

evaluating with another subset. 

7.3 Average the performance from all folds. 

8. Compare the results and choose the best model 

9. Calculate SHAP value for each feature from the best model 

10. Test the best model with Test set to obtain the final result. 

3.6 Evaluation metric  
 For Guilty Prediction, which is binary classification with imbalance, Area Under Curve of 

Precision-Recall Curve was used for comparing the model’s performance among techniques, as 

well as selecting the best threshold for each model which was calculated from the threshold 

that optimizes the F1 score.  
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For Level of Force Prediction, which is multiclass classification with imbalance, F1 score 

of minority class (level 1 and level 2) was used for comparing the model’s performance among 

techniques to harmonize between Precision and Recall. So, the macro average (simple average 

with no weight considered) of F1 score was implemented. 

F1 score, Accuracy, Precision and Recall were measured for evaluating the best model’s 

performance when testing with Test set.  

Finally, for investigating the contribution of features in all techniques, SHAP values for 

each feature were calculated from the best models of each technique.  

3.7 Super Learner experiment  
 To explore various structural designs for Super Learner, experiments were divided into 2 

sections, Guilty Prediction (section A) and Level of Force Prediction (section B). Each section 

contains 4 experiments as described in Table 7. Each section was divided into 4 experiments 

based on base models; (1) Tree-based without tuning, (2) Tree-based tuned, (3) Tree-based, 

Logistic Regression, and Gaussian Naïve Bayes, all without tuning, and (4) Tree-based, Logistic 

Regression, and Gaussian Naïve Bayes, all were tuned. 

Table 7 Super Learner experimental plan 

Prediction Experiment Base models Meta model 
Guilty Prediction A1 DF, RF, XGB (No tuning) DT, RF, XGB, LR, MLP 

(5 meta models for 
each experiment) 

A2 DF, RF, XGB (tuned) 
A3 DF, RF, XGB, LR, GB (No tuning) 
A4 DF, RF, XGB, LR, GB (tuned) 

Level of Force 
Prediction 

B1 DF, RF, XGB (No tuning) DT, RF, XGB, LR, MLP 
(5 meta models for 
each experiment) 

B2 DF, RF, XGB (tuned) 

B3 DF, RF, XGB, LR, GB (No tuning) 
B4 DF, RF, XGB, LR, GB (tuned) 

*DF = Decision Tree, RF = Random Forest, XGB = XGBoost, LR = Logistic Regression, GB = Gaussian Naïve Bayes,       
MLP = Multilayer Perceptron Neural Network 
* tuned = single model optimization 
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Chapter 4 : Results and Discussion 

4.1 Results of tree-based models 

4.1.1 Guilty Prediction 
 The models of all techniques were optimized by parameters and threshold tuning. The 

ranges and optimum values for each technique are demonstrated in Appendix. 

 After tuning the parameters and threshold, cross-validation was conducted. The average 

results from 4-fold cross-validation of all techniques are shown in Table 8. 

Table 8 Average results from 4-fold cross-validation for Guilty Prediction 
Models Metrics (4 fold cross validation) 

AUC of PCR Accuracy F1 Score Precision Recall 

Decision Tree  0.612 0.801 0.569 0.578 0.560 
Random Forest 0.692 0.824 0.622 0.626 0.618 

XGBoost 0.731 0.841 0.662 0.657 0.667 

 

XGBoost had the best performance among all models since it obtained the highest score 

in all metrics, followed by Random Forest and Decision Tree, which had the lowest score in all 

metrics. All techniques reached good performance with more than 80% accuracy especially 

XGBoost, which obtained 84.1% accuracy while maintained both good Precision and good Recall 

at 65.7% and 66.7% respectively. Precision-Recall Curves and AUC from the best models of each 

technique are shown in Figure 12, XGBoost also outperformed other models across all thresholds 

with the highest AUC. 
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Figure 12 Precision-Recall Curves for Guilty Prediction 
 The best XGBoost model was evaluated using Test set and the results are shown in 

Table 9. The average results from 4-fold cross-validation mentioned above are also shown in this 

table for comparison. It showed that the model was reliable because the results of predicting the 

unseen dataset (Test set) conformed to those of the training period.   

Table 9 Performance of the best XGBoost model on Test set for Guilty Prediction 
 (comparing with 4-fold cross-validation on Training set) 

Results Metrics (4 fold cross validation) 
Accuracy F1 Score Precision Recall 

Test set  0.840 0.659 0.659 0.659 
4-fold cross-
validation  

0.841 0.662 0.657 0.667 

 

 In terms of important factors, the best models from each technique were analyzed and 

SHAP values of all factors were calculated. The important features ranked by the average 

magnitude of SHAP values are illustrated in Figure 13 – 15. The top 10 features are described in 

Table 10. 
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Figure 13 Important features in the best Decision Tree model for Guilty Prediction 
based on average magnitude of SHAP values (class 0 = Not Guilty, class 1 = Guilty) 

 

Figure 14 Important features in the best Random Forest model for Guilty Prediction 
based on average magnitude of SHAP values (class 0 = Not Guilty, class 1 = Guilty) 
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Figure 15 Important features in the best XGBoost model for Guilty Prediction 
based on average magnitude of SHAP values 
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Table 10 Top 10 important features for Guilty Prediction 
Decision Tree Random Forest XGBoost 

1. Year of the stop 1. Was crime suspected 
Criminal Possession of 
Weapon?  

1. Year of the stop 

2. Was any weapon found on 
suspect?  

2. Was any weapon found on 
suspect? 

2. Was crime suspected 
Criminal Possession of 
Weapon? 

3. Was crime suspected 
Criminal Possession of 
Weapon? 

3. Year of the stop 3. Was any weapon found on 
suspect? 

4. Was crime suspected 
Criminal Trespass? 

4. Did stop relate to suspect 
casing a victim or location? 

4. Y coordinate of the stop 

5. Did stop relate to suspect 
carrying suspicious object? 

5. Was crime suspected 
Criminal Trespass? 

5. X coordinate of the stop 

6 Did stop relate to suspicious 
appearance of the suspect? 

6. Did stop relate to suspect 
carrying suspicious object? 

6. Did stop relate to suspect 
carrying suspicious object? 

7. Did stop relate to suspect 
casing a victim or location? 

7. Precinct (New York City 
regions) 

7. Precinct (New York City 
regions) 

8. Did Patrol Service Bureau 
have jurisdiction? 

8. Y coordinate of the stop 8. Was crime suspected 
Criminal Trespass? 

9. Y coordinate of the stop 9. Did Patrol Service Bureau 
have jurisdiction? 

9. Suspect’s age  

10. Was crime suspected other 
crime? 

10. Did stop relate to 
suspicious appearance of the 
suspect? 

10. Did stop relate to suspect 
casing a victim or location? 

  

According to Table 10, the bold features are ones that appear in all columns, which 

means they were important in all techniques. The important features were similar among 

techniques as most of the features were bold. Moreover, all techniques obtained the same top 3 

important features which were “Year of stop”, “Was any weapon found on suspect?” and “Was 

crime suspected Criminal Possession of Weapon?”.  
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 Since the XGBoost model had the best performance among others, its effects of features 

on outcome column were focused. Raw SHAP values calculated from samples are plotted in 

Figure 16 to show effects toward Guilty class from features.  

 

 

 

 

 

 

 

 

 

Figure 16 Effects of important features toward Guilty class based on SHAP value 
 

From Figure 16, among top 10 features, “Y coordinate”, “X coordinate”, “Precinct” and 

“Suspect’s age” did not clearly show direction of values that led to Guilty class. Thus, SHAP 

value for those features were plotted as illustrated in Figure 17 
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Figure 17 SHAP value of “Y coordinate”, “X coordinate”, “Precinct” and “Suspect’s age” 
 

 According to Figure 17, entire range of “Y coordinate”, “X coordinate” and “Precinct” 

could possibly lead to Guilty class as there were positive SHAP value (plotted above the red line) 

over entire range. However, the range of “Suspect’s age” that had positive SHAP value (plotted 

above the red line) was in the range of around 15– 60 years old. In summary, effects of Top 10 

important features on the outcome column are shown in Table 11. 
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Table 11 Effects toward Guilty class of important features the best XGBoost model 
(Features which were important in all techniques were also bold) 

 

4.1.2 Level of Force Prediction 
The models of all techniques were optimized by parameters tuning. The ranges and 

optimum values for each technique are demonstrated in Appendix.  

After tuning the parameters and threshold, cross-validation was conducted. The average 

results from 4-fold cross-validation of all techniques are shown in Table 12. 

Table 12 Average results from 4-fold cross-validation for Level of Force Prediction 

Models Accuracy F1 score Precision Recall 

Level 1 Level 2 Macro 
average 

Level 1 Level 2 Level 1 Level 2 

Decision Tree 0.694 0.311 0.187 0.249 0.245 0.135 0.426 0.306 

Random Forest 0.788 0.382 0.289 0.336 0.351 0.273 0.420 0.309 
XGBoost 0.806 0.401 0.366 0.384 0.376 0.389 0.430 0.346 

 

Top 10 Important Features Value that led to Guilty  

1. Year of the stop Close to 2019 

2. Was crime suspected Criminal Possession of 
Weapon? 

No 

3. Was any weapon found on suspect? Yes 

4. Y coordinate of the stop - 

5. X coordinate of the stop - 

6. Did stop relate to suspect carrying suspicious object? Yes 

7. Precinct (New York City regions) - 

8. Was crime suspected Criminal Trespass? Yes 

9. Suspect’s age  Around 15 - 60 

10. Did stop relate to suspect casing a victim or 
location? 

Yes 
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XGBoost had the best performance among all models since it obtained the highest score 

in all metrics, followed by Random Forest and Decision Tree, which had the lowest score in all 

metrics except Recall of Level 1. XGBoost reached good performance with more than 80% 

accuracy while F1 scores of the minority classes, level 1 and level2, were 40.1% and 36.6% 

respectively.  

The best XGBoost model was evaluated using Test set and the results are shown in 

Table 13. The average results from the 4-fold cross-validation mentioned above are also shown 

in this table for comparison. It showed that the model was reliable because the results of 

predicting the unseen dataset (Test set) conformed to those of the training period.   

Table 13 Performance of the best XGBoost model on Test set for Level of Force Prediction 
 (comparing with 4-fold cross-validation on Training set) 

Results Accuracy F1 score Precision Recall 
Level 1 Level 2 Macro 

average 
Level 1 Level 2 Level 1 Level 2 

Test set 0.804 0.407 0.350 0.379 0.375 0.373 0.444 0.330 

4 folds cross-
validation 

0.806 0.401 0.366 0.384 0.376 0.389 0.430 0.346 

 

In terms of important factors, the best models from each technique were analyzed and 

SHAP values of all factors were calculated. The important features ranked by the average 

magnitude of SHAP values are illustrated in Figure 18 – 20, and the top 10 features are described 

in Table 14. 
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Figure 18 Important features in the best Decision Tree model for Level of Force Prediction 
based on average magnitude of SHAP values (Class = Level) 

 

 

 

 

 

 

 

 

 

Figure 19 Important features in the best Random Forest model for Level of Force Prediction 
based on average magnitude of SHAP values (Class = Level) 
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Figure 20 Important features in the best XGBoost model for Level of Force Prediction 
based on average magnitude of SHAP values (Class = Level) 
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Table 14 Top 10 important features for Level of Force Prediction 
Decision Tree Random Forest XGBoost 

1. Was crime suspected 
Criminal Possession of 
Weapon? 

1.. Was crime suspected 
Criminal Possession of 
Weapon? 

1. Y Coordinate of the 
stop 

2. Year of the stop 2. Year of the stop 2. Year of the stop 

3. Y Coordinate of the stop 3. Was stop initiated by radio 
run?  

3. Was crime suspected 
Criminal Possession of 
Weapon? 

4. X Coordinate of the stop 4. Were officers in uniform?  4. X Coordinate of the 
stop 

5. Did stop relate to 
identified crime pattern? 

5. Did stop relate to suspect 
casing a victim or location? 

5. Did stop relate to 
identified crime 
pattern? 

6. Did stop relate to suspect 
casing a victim or location? 

6. Precinct (New York City 
regions) 

6. Precinct (New York 
City regions) 

7. Precinct (New York City 
regions) 

7. Y Coordinate of the stop 7. Suspect’s age 

8. Was stop initiated by radio 
run? 

8. Did stop relate to 
identified crime pattern?  

8. Did stop relate to 
evasive or other actions?  

9. Suspect’s age 9. Did stop relate to suspect 
carrying suspicious object? 

9. Day of the stop 

10. Hour of the stop 10. Were other persons 
stopped?  

10. Was stop initiated by 
radio run? 

 

According to Table 14, same as Guilty Prediction, the bold features are ones that appear 

in all columns, which means they were important in all techniques. The important features were 

similar among techniques as most of the features were bold. Note that “Year of the stop” and 

“Was crime suspected Criminal Possession of Weapon?” were ranked in the top 3 for all 

techniques in both Guilty and Level of Force Prediction.  
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Since the XGBoost model had the best performance among others, its effects of features 

on the outcome column were focused. Raw SHAP values calculated from samples are plotted in 

Figure 21 to show effects toward each Level from features. 

     Level 0      Level 1 
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Figure 21 Effects of important features toward each Level based on SHAP value 
 

From Figure 21, ranks of features were different for each Level and different from the 

overall rank shown in Figure 20. This is because it was ranked by sum of the magnitude of each 

Level. Thus, only the top 10 features from the overall rank were focused. From the plots, some 
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features did not clearly show the direction of values that led to each Level. Therefore, SHAP 

values of those features were plotted and investigated. 

As a result, some features including “Y coordinate”, “X coordinate”, “Day of the stop” 

and “Precinct” could lead to any Level in a wide range of values (similar to the plots shown in 

Figure 17). Some features clearly showed the direction of values in some Levels, for example, 

“Year of the stop” showed the clear direction in Level 0 and 2, but not in Level 1. The effects of 

Top 10 important features on the outcome column are summarized in Table 15. Additionally, the 

plot of SHAP values toward Level 1 for “Suspect’s age” is shown in Figure 22, in order to clarify 

the value in Table 15. 

Table 15 Effects toward each Level of important features in the best XGBoost model 
(Features which were important in all techniques were also bold) 

Top 10 Important Features Value that leads to each level  

0 1 2 

1. Y Coordinate of the stop - 
2. Year of the stop Close to 

2014 
- Close to 

2019 
3. Was crime suspected Criminal Possession of 
Weapon? 

- No Yes 

4. X Coordinate of the stop - 
5. Did stop relate to identified crime pattern? No - Yes 
6. Precinct (New York City regions) - 
7. Suspect’s age - Around 15-60 - 
8. Did stop relate to evasive or other actions?  No Yes Yes 
9. Day of the stop - 
10. Was stop initiated by radio run? No No Yes 
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Figure 22 SHAP values toward Level 1 for “Suspect’s age”  
 

4.2 Discussion of tree-based models 

4.2.1 Results interpretation 
 Although accuracy is a basic metric for model evaluation, focusing only on accuracy may 

lead to misinterpretation when it comes to an imbalanced dataset. Regarding Guilty Prediction, if 

all samples were predicted as “Not Guilty”, the model would simply achieve 76.63% accuracy 

while all “Guilty” cases were wrongly predicted. That was why Precision and Recall of the 

“Guilty” class were taken into consideration in this problem. This issue was also applied to the 

Level of Force Prediction, in which the “Level 1” class and “Level 2” class were minority but 

interesting classes.  

As previously mentioned in Chapter 2, maximizing Precision often decreases Recall, and 

vice versa. Referring to the context of this problem, low Precision means when the model 

predicted that a record was “Guilty” or experienced force at “Level 1 or 2”, most of the 

predictions were wrong. Meanwhile, low Recall means the model cannot recall most of the 

records which were actually “Guilty” or experienced force at “Level 1 or 2”. Since both “low 

Precision” and “low Recall” cases were unacceptable, the F1 score was focused to maximize 

both metrics simultaneously. 

From the results of Test set in Chapter 4, the best XGBoost model for Guilty Prediction 

obtained F1 score at 65.9% with both Precision and Recall at 65.9%. This means that 65.9% of all 

stops that the model predicts “Guilty” are really “Guilty” (precision) and means that 65.9% of all 
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stops that are “Guilty” are correctly predicted (recall). This shows that the model can increase 

the possibility of detecting the minority class which was originally 23.37% (stops with “Guilty” are 

23.37% of the population).  

For Level of Force Prediction, the best XGBoost model obtained F1 score for “Level 1” 

at 40.7% (37.5% Precision and 44.4% Recall), and for “Level 2” at 35.0% (37.3 Precision and 

33.0% Recall). While the performance seems inferior to those in Guilty Prediction, the model 

increased the significant probability of detecting the minority classes, which were originally 

13.04% and 2.49% of the population for “Level 1” and “Level 2” respectively. Aiming to 

optimize F1 score of both Level 1 and Level 2, the process optimized macro average F1 score 

which resulted in similar F1 score for both Levels. In addition, obtaining 80.4% accuracy might be 

lower than 82.8% accuracy when the model just predicted “Level 0” for all samples. However, 

the decreased accuracy was traded off by increasing the ability to detect more severe usage of 

force, which was the focused issue of this project as mentioned earlier. 

4.2.2 XGBoost Performance 
 According to the results, XGBoost outperformed other tree-based models, Decision Tree 

and Random Forest, by all metrics in both predictions. Different scheme of building trees was 

probably a major cause of this. Trees in Random Forest were built separately and the result 

came from the majority votes among the trees. Meanwhile, trees in the XGBoost model were 

sequentially built by the previous trees with parameters calculated to minimize loss function, 

then the result came from the last tree. This ability to learn from the previous trees possibly led 

to a better fit with the dataset. 

 Optimization also played a significant role in model construction. Parameter tuning and 

dropping insignificant features helped to increase the performance in all techniques. For 

example, the F1 score in XGBoost for Guilty Prediction was increased from 55.7% to 66.2% by the 

optimization. The optimal model contained 63 from 112 columns with tuned parameters, namely 

as a learning rate of 0.01 (default at 0.3), max depth of 25 (default at 6), etc. 

4.2.3 Interpretation of important features’ effect 

4.2.3.1 Guilty Prediction 
 “Year” had the largest impact on Guilty Prediction, and later years (close to 2019) led to 

more possibility for a record to be “Guilty”. The result conformed to Figure 2 in Chapter 1, the 
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plot shows the decrease in “Not Guilty” proportion, and thus the increase in “Guilty” proportion. 

This was a good sign that NYPD had a tendency to lessen the “Not Guilty” cases. However, as 

mentioned in Chapter 1, the proportion of “Not Guilty” was still high.  

 Crimes suspected including “Criminal Possession of Weapon” and “Criminal Trespass” 

were significant driving factors. From the results shown, when the police suspected a case to be 

Criminal Trespass, the case tended to be Guilty since trespassing was quite an explicit crime to 

commit. On the other hand, a case tended to be “Not Guilty” when the police suspected a case 

to be “Criminal Possession of Weapon”, which was an interesting finding especially because this 

feature had the second-largest impact on the model. Moreover, “Criminal Possession of 

Weapon” was the most suspected crime. All above could imply that police often assumed that 

suspects committed “Criminal Possession of Weapon” when they did not, and this may have 

contributed to high unnecessary stops. 

 In terms of the suspect’s actions from the police’s point of view, “Carrying suspicious 

object” and “Casing a victim or location” were the significant factors. Both actions led to “Guilty” 

cases as expected. Another important factor, the third-largest impact on the model, was 

“Weapon found on suspect”, which also led to “Guilty” cases. The results of this factor, together 

with “Carrying suspicious object”, pointed to the fact that weapons carriage was a major element 

of criminal in New York City. However, the effect from “Criminal Possession of Weapon” was the 

opposite, indicating that there was significant false suspicion in the operation. 

 Lastly, the result, which showed that suspects who were in the range of around 15 – 60 

years old led to “Guilty” cases, was sensible. Although the location features including “X 

coordinate”, “Y coordinate” and “Precinct” were important, values of these features that led to 

“Guilty” were widespread, meaning that crime areas were spread out in all direction of NYC. 

4.2.3.2 Level of Force Prediction 
 In Level of Force Prediction, Year also played a significant role as the second-largest 

impact feature. The result showed that the former years (close to 2014) led to “Level 0” and the 

later years (close to 2019) led to “Level 2”. This corresponds to Figure 3 in Chapter 1, which 

indicates increases in police force usage over years.  

 Criminal Possession of Weapon was the only significant crime suspected. According to 

the results, when the police suspected that a case was Criminal Possession of Weapon, they 
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tended to use “Level 2” of Force, and use “Level 1” when it was other crimes. This indicates the 

possibility of gunfire usage if the police assumed that the suspect possessed weapons. Another 

significant police’s action was “Stop initiated by radio run”, which led to “Level 2” if it was and 

led to other levels if it was not. This also suggested that cases initiated by radio run tended to 

experience gunfire usage. From “Street Stop Encounter Report” published on New York City 

website, police might receive a radio report from a third party other than personal observation. 

Further inspection should be done to investigate why these radio-initiated cases tended to 

encounter more severe force.  

 The suspect’s actions that had an important impact on Level of Force Prediction were 

“Identified Crime Pattern” and “Evasive or others”. From the results, the police possibly used 

“Level 2” of Force when they “Identified Crime Pattern”, and “Level 0” when they did not. This 

might happen because the pattern indicated violent crimes. “Evasive or others” was also a 

combination of multiple actions, including “Refuse to comply with officers’ directions” and 

“Verbal threats by the suspect”. The effect led to Level 2 when suspects doing those actions. 

These findings suggested that the suspect's acts connected with violent crime and threat to 

officers increased the likelihood of police drawing firearms, which was also highlighted in past 

studies. 

 Finally, the results showed that suspects who were in the range around 15 – 60 years 

old led to “Level 1” of Force. Other important features, including “Day of the stop”, “Y 

Coordination”, “X Coordination” and “Precinct”, were not clearly showed the direction of values 

that led to specific Level. However, there were potential directions of values in “Precinct”. Plots 

of SHAP value toward each Level for Precinct are shown in Figure 23. From the plots, the higher 

Precinct number had potential leading to “Level 0”, while the lower number had potential 

leading to “Level 1”. The information about which Borough each Precinct number belongs to is 

provided in Table 16, the data was obtained from the NYPD website for better understanding. 
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Figure 23 Plots of SHAP value toward each Level for Precinct 
Table 16 Boroughs and Precinct numbers in New York City 
 

4.2.4 Appropriateness of the NYPD officer’s behavior in SQF practices 
 As discussed in the previous sections, the results of “Criminal Possession of Weapon” 

feature had high impact on both predictions, but there was a conflict in terms of effects 

interpretation. While the high number of unnecessary stops probably caused from the false 

Borough Precinct 
Manhattan 1-34 
Bronx 40-52 

Brooklyn 60-94 
Queens 100-115 
Staten Island 120-123 
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assumption of this crime suspected, its effect led to the police’s gunfire usage. Moreover, the 

high contribution of “Weapon found” feature toward “Guilty” class pointed to the actual guilty 

cases with weapons carriage, but the feature did not show any importance in Level of Force 

Prediction for all techniques. This indicated lack of precise assumption about suspect’s weapons 

possession during the operation, which may lead to force usage toward innocence citizen.  

 Suspect’s actions from police’s point of view appeared to be significant features in both 

predictions, but they were different actions for each prediction. “Carrying suspicious object” and 

“Casing a victim or location” led to actual guilty cases, but they were not the driving factors in 

force usage selection. Meanwhile, “Identified Crime Pattern” and “Evasive or others” were the 

driving factors for police’s weapons usage, but it did not contribute to “Guilty” of the case. This 

conflict can be further analyzed to ensure appropriateness of police’s weapons usage.  

 Lastly, from the findings, suspect’s race was not the significant factor in any problems 

and techniques. Although races may not be the main driving factor from the methodology used 

in this project, we cannot claim that there was no different treatment in the operation among 

racial groups. To further investigate racial discrimination in the SQF practices, as mentioned in 

Chapter 1, additional hypothesis testing was done in the next section. 

4.2.5 Supplementary hypothesis testing among racial groups  
There were 8 racial groups in this dataset, including “Missing” group (cases of which 

suspect’s race were missing). As shown in Figure 24, there was the significant imbalance in those 

groups. More than half of all suspects stopped were “Black”, and more than 80% of all suspects 

stopped were “Black”, “White Hispanic” and “White”. 
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Figure 24 The number of observations for each racial group 

Hypothesis testing was conducted in 2 parts, “False stop” and “Level of Force” among 

racial groups. A “False stop” case actually was a “Not Guilty” case because stops with no 

conviction were acted on innocent citizen and were unnecessary. From Figure 25, there were 

some differences in the proportion of “False stop” among the groups. Thus, the objective of the 

“False stop” part is to explore whether those differences were significant.  

 

 

 

 

 

 

 

 

Figure 25 Percentages of “False stop” for each racial group 
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To achieve the objective of this part, Chi-square test was conducted to analyze 

difference in proportion of guilty among races. The results are shown in Table 17. 

Table 17 Results of hypothesis testing for “False stop” among racial groups 

  

The conclusion from Table 17 is that there was a significant difference in the proportion 

of “False stop” among racial groups at 95% confidence level. It thus suggests that the operation 

proceeding with some racial groups, such as “American Indian/ Alaskan Native” and “Asian/ 

Pacific Islander”, can be further investigated due to high “False stop” proportion. However, the 

Cramer’s V value, which was used to eliminate the influence of sample size, indicated that there 

was minor association between races and “False stop”. 

 Another testing part was “Level of Force” used among racial groups. Figure 26 illustrates 

percentages of each “Level of Force” based on racial groups. Since there were some differences 

among the groups, Kruskal Wallis H test was conducted to analyze the significance of those 

differences. The results are shown in Table 18. 

 

 

 

 

Variable Value 

X2 496.2199534 
No. of racial groups 8 

Df 7 
Critical value 14.06714045 

p-value 0.00 
Alpha 0.05 

Result Reject null hypothesis 
 

Cramer's V 0.065243352 
Result Little association 
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Figure 26 Percentages of “Level of Force” for each racial group 
 

Table 18 Results of hypothesis testing for “Level of Force” among racial groups 
Variable Value 

H 183.80 
Df 7 
p-value 0.00 
Alpha 0.05 
Result Reject null hypothesis 

 

From Table 18, the conclusion is that there was a significant difference for “Level of 

Force” used among racial groups at 95% confidence level. According to Figure 26, “Black 

Hispanic”, “White Hispanic” and “Black” had high proportion of non-gunfire weapons used by 

police (Level 1). However, those groups also had high proportion of “Guilty” cases (low “False 

stop” proportion) regarding Figure 25. “Missing” group had high proportion of gunfire weapon 

used by police (Level 2), it suggests that further investigation can be done, due to lack of clear 

racial information. 
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To summarize, even though race was not the main driving factor of the predictions, there 

was significantly difference in SQF practices among the racial groups. Thus, NYPD should not 

overlook the racial issue and proceed the operation with caution and fairness.  

 

4.3 Results of Super Learners  

4.3.1 Guilty Prediction 
 In order to be used as base learners in experiment A2 and A4, single Logistic Regression 

and single Gaussian Naïve Bayes were optimized by parameter tuning. During the Super Learners 

constructing process, meta models were also optimized by parameters and threshold tuning. The 

ranges and optimum values for each technique are demonstrated in Appendix. 

 After tuning the parameters and threshold, cross-validation was conducted. The average 

results from 4-fold cross-validation of base models and Super Learners of all experiments are 

shown in Table 19 – 20. Base models were evaluated on the validation set before using meta 

models. Super Learners were evaluated on the validation set after using meta models. Bold 

numbers are the best results in each experiment. 
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Table 19 Average results from 4-fold cross-validation of the base models  
Base models Metrics (4 fold cross validation) 

Accuracy F1 Score 
A1 
Without tuning 

DT 0.776 0.522 

RF 0.844 0.560 
XGB 0.798 0.607 

A2 
Tuned  

DT 0.745 0.555 
RF 0.824 0.621 

XGB 0.848 0.660 
A3 
Without tuning 

DT 0.776 0.521 

RF 0.844 0.560 
XGB 0.798 0.607 
LR 0.591 0.385 

GNB 0.707 0.343 
A4 
Tuned  

DT 0.745 0.555 

RF 0.824 0.621 
XGB 0.848 0.660 

LR 0.736 0.536 
GNB 0.764 0.511 

*DT = Decision Tree, RF = Random Forest, XGB = XGBoost, LR = Logistic Regression, GNB = Gaussian Naïve Bayes  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 58 

Table 20 Average results from 4-fold cross-validation of the Super Learners  
Experiment Meta 

model 
(optimal) 

Metrics (4 fold cross validation) Most 
important 

base model AUC of 
PRC 

Accuracy F1 Score Precision Recall 

A1 
(Base models: 
DT, RF, XGB  
without 
tuning) 

DT 0.681 0.820 0.641 0.602 0.687 RF 

RF 0.685 0.831 0.645 0.632 0.659 RF 
XGB 0.700 0.825 0.645 0.615 0.679 RF 
LR  0.714 0.832 0.646 0.636 0.683 RF 

MLP 0.713 0.838 0.646 0.660 0.634 - 

A2 
(Base models: 
DT, RF, XGB 
tuned) 

DT 0.694 0.826 0.656 0.611 0.709 XGB 

RF 0.695 0.833 0.658 0.630 0.689 XGB 

XGB 0.730 0.838 0.659 0.647 0.672 XGB 

LR  0.729 0.840 0.660 0.657 0.663 XGB 
MLP 0.730 0.837 0.659 0.645 0.674 - 

A3 
(Base models: 
DT, RF, XGB, 
LR, GNB 
without 
tuning) 

DT 0.680 0.820 0.640 0.601 0.686 RF 

RF 0.713 0.825 0.646 0.614 0.681 RF 

XGB 0.714 0.823 0.644 0.609 0.683 DT 

LR  0.714 0.824 0.646 0.609 0.686 RF 

MLP 0.717 0.828 0.648 0.624 0.675 - 

A4 
(Base models: 
DT, RF, XGB, 
LR, GNB 
tuned) 
 

DT 0.680 0.820 0.640 0.601 0.686 XGB 

RF 0.690 0.833 0.657 0.631 0.687 XGB 

XGB 0.730 0.834 0.658 0.635 0.683 XGB 

LR  0.729 0.840 0.660 0.656 0.664 XGB 

MLP 0.730 0.839 0.660 0.654 0.666 - 

*DT = Decision Tree, RF = Random Forest, XGB = XGBoost, LR = Logistic Regression, GNB = Gaussian Naïve Bayes,   

MLP = Multilayer Perceptron Neural Network 
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XGBoost, Logistic Regression and Multilayer Perceptron (MLP) performed good as meta 

model across all experiments. Experiment A2 and A4 had better performance from tuned base 

models. XGBoost, Logistic Regression and MLP in both A2 and A4 showed similar performance. 

The best result among all was MLP in A4 (highlighted in Table 20), which reached 73.0% AUC and 

66.0% F1 score. However, according to Table 8, the best Super Learner performance still did not 

reach the best single XGBoost performance (73.1% AUC, 66.2% F1 score).  

 In order to improve Super Learner performance, additional experiments were done. Even 

though experiment A2 and experiment A4 performed better, the performance did not improve 

from tuned base models shown in Table 19. And when adding more tuned base models, the 

performance of A4 did not improve form A2. Meanwhile, experiment A1 and experiment A3 

significantly improved performance from their untuned base models, from F1 score 60.7% to 

64.6% in experiment A1, and to 64.8% in experiment A3. Adding more untuned base models, in 

this case Logistic Regression and Gaussian Naïve Bayes, had potential to improve the 

performance.  

So, the additional experiment A5 and experiment A6 were created as shown in Table 21. 

A5 focused on adding advanced tree-based models like XGBoost, in order to have base models 

with good performance. And A6 focused on adding simple classification models, in order to have 

base models with various structures and small run time. For meta model, XGBoost, Logistic 

Regression, and MLP were selected as they had good performance in previous experiments. The 

ranges and optimum values for each technique are demonstrated in Appendix. The performance 

of base models and Super Learners in experiment A5 and experiment A6 are shown in Table 22 – 

23. 

Table 21 Additional Super Learner experimental plan (Guilty Prediction) 
Prediction Experiment Base models Meta model 

Guilty Prediction A5 DT, RF, XGB, BRF, AB, BG, ET, GBDT, 
HGB (No tuning) 

XGB, LR, MLP 
(3 meta models for 
each experiment) A6 DT, LR, GNB, MNB, KNN (No tuning) 

*DT = Decision Tree, RF = Random Forest, XGB = XGBoost, BRF = Balanced Random Forest, AB = AdaBoost,             
BG = Bagging, ET = Extra Trees, GBDT = Gradient Boosting Decision Tree, HGB = HistGradientBoost, LR = Logistic 
Regression, GNB = Gaussian Naïve Bayes, MNB = Multinomial Naïve Bayes, KNN = K Nearest Neighbor, MLP = 
Multilayer Perceptron Neural Network 
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Table 22 Results from 4-fold cross-validation of the base models (additional experiments) 

Base models Metrics (4 fold cross validation) 
Accuracy F1 Score 

A5 
without tuning 

DT 0.776 0.521 

RF 0.844 0.600 
XGB 0.800 0.607 

BRF 0.796 0.622 
AB 0.810 0.546 

BG 0.837 0.559 
ET 0.846 0.579 
GB 0.826 0.495 
HGB 0.834 0.539 

A6 
without tuning 

DT 0.776 0.521 
LR 0.591 0.385 
GNB 0.707 0.343 
MNB 0.591 0.387 
KNN 0.760 0.359 

*DT = Decision Tree, RF = Random Forest, XGB = XGBoost, BRF = Balanced Random Forest, AB = AdaBoost,             
BG = Bagging, ET = Extra Trees, GB = GradientBoost, HGB = HistGradientBoost, LR = Logistic Regression,  
GNB = Gaussian Naïve Bayes, MNB = Multinomial Naïve Bayes, KNN = K Nearest Neighbor 
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Table 23 Average results from 4-fold cross-validation of the Super Learners (additional 
experiments) 

Experiment Meta 
model 
(optimal) 

Metrics (4 fold cross validation) Most 
important 

base 
model 

AUC of 
PRC 

Accuracy F1 Score Precision Recall 

A5 
(Base models: 
DT, RF, XGB, 
BRF, AB, BG, ET, 
GB, HGB, 
without tuning) 

XGB 0.724 0.838 0.655 0.651 0.659 RF 

LR  
0.721 0.844 0.654 0.680 0.629 

GB 

MLP 
0.723 0.843 0.654 0.675 0.635 

- 

A6 
(Base models: 
DT, LR, GNB, 
MNB, KNN 
without tuning) 

XGB 0.561 0.766 0.543 0.499 0.595 DT 

LR 0.551 0.768 0.537 0.503 0.576 GNB 

MLP 0.558 0.745 0.540 0.467 0.641 - 

*DF = Decision Tree, RF = Random Forest, XGB = XGBoost, BRF = Balanced Random Forest, AB = AdaBoost,             
BG = Bagging, ET = Extra Trees, GB = GradientBoost, HGB = HistGradientBoost, LR = Logistic Regression,  
GNB = Gaussian Naïve Bayes, MNB = Multinomial Naïve Bayes, KNN = K Nearest Neighbor, MLP = Multilayer Perceptron 

Neural Network 

 All tree-based base models in A5 showed better performance compared to A3 (best 
71.7% AUC and 64.8% F1 score). All meta models showed similar performance, the best among 
others was XGBoost (highlighted in Table 23) with 72.4% AUC and 65.5% F1 score. Meanwhile, all 
A6 experiments showed significantly worse performance compared to A3. The best meta model 
was also XGBoost, with 56.1% AUC and 54.3% F1 score. 
 Even though adding more advanced tree-based base models helped improve 
performance, it still did not reach the performance of A4 which used tuned base models (best at 
73.1% AUC and 66.0% F1 score).  
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4.3.2 Level of Force Prediction 
 In order to be used as base learners in experiment B2 and B4, single Logistic Regression 

and single Gaussian Naïve Bayes were optimized by parameter tuning. During the Super Learners 

constructing process, meta models were also optimized by parameter tuning. The ranges and 

optimum values for each technique are demonstrated in Appendix. 

 After tuning the parameters, cross-validation was conducted. The average results from 4-

fold cross-validation of base models and Super Learners of all experiments are shown in Table 

24 – 25. Base models were evaluated on the validation set before using meta models. Super 

Learners were evaluated on the validation set after using meta models. Bold numbers are the 

best results in each experiment. 

Table 24 Results from 4-fold cross-validation of the base models  
Base models Metrics (4 fold cross validation) 

Accuracy F1 Score 
 (Macro average) 

B1 
without tuning 

DT 0.774 0.240 
RF 0.850 0.118 

XGB 0.681 0.280 
B2 
Tuned  

DT 0.694 0.249 
RF 0.730 0.309 

XGB 0.806 0.384 
B3 
without tuning 

DT 0.773 0.240 

RF 0.850 0.117 
XGB 0.681 0.280 

LR 0.538 0.137 
GNB 0.583 0.147 

B4 
Tuned  

DT 0.694 0.249 
RF 0.730 0.310 
XGB 0.806 0.384 

LR 0.493 0.216 
GNB 0.519 0.179 

*DT = Decision Tree, RF = Random Forest, XGB = XGBoost, LR = Logistic Regression, GNB = Gaussian Naïve Bayes  
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Table 25 Results from 4-fold cross-validation of the Super Learners  
Experiment Meta 

model 
(optimal) 

Metrics (4 fold cross validation) Most 
important 

base 
model 

Accuracy F1 Score Precision 
(Macro 
average) 

Recall 
(Macro 
average) 

Level 
1 

Level 
2 

Macro 
average 

B1 
(Base 
models: 
DT, RF, 
XGB  
without 
tuning) 

DT 0.570 0.352 0.212 0.282 0.182 0.644 RF 

RF 0.735 0.409 0.275 0.342 0.261 0.497 XGB 

XGB 0.786 0.395 0.320 0.357 0.337 0.388 RF 
LR  0.810 0.402 0.302 0.352 0.331 0.406 RF 

MLP 0.857 0.234 0.346 0.290 0.759 0.180 - 

B2 
(Base 
models: 
DT, RF, 
XGB tuned) 

DT 0.559 0.360 0.173 0.267 0.176 0.650 XGB 

RF 0.754 0.408 0.294 0.351 0.285 0.461 XGB 

XGB 0.785 0.394 0.335 0.365 0.344 0.395 XGB 

LR  0.803 0.393 0.298 0.345 0.318 0.399 XGB 
MLP 0.851 0.224 0.344 0.284 0.625 0.185 - 

B3 
(Base 
models: 
DT, RF, 
XGB, LR, 
GNB 
without 
tuning) 

DT 0.572 0.356 0.200 0.278 0.181 0.647 RF 

RF 0.752 0.416 0.301 0.358 0.284 0.486 XGB 

XGB 0.763 0.406 0.294 0.350 0.290 0.442 RF 

LR  0.810 0.401 0.305 0.353 0.332 0.405 RF 

MLP 0.854 0.279 0.347 0.313 0.656 0.206 - 

B4 
(Base 
models: 
DT, RF, 
XGB, 
LR, GNB 
tuned) 

DT 0.579 0.364 0.185 0.274 0.180 0.637 XGB 

RF 0.713 0.339 0.270 0.304 0.220 0.339 XGB 

XGB 0.758 0.402 0.282 0.342 0.280 0.440 RF 

LR  0.803 0.391 0.299 0.345 0.318 0.401 XGB 

MLP 0.854 0.229 0.359 0.294 0.671 0.190 - 

*DT = Decision Tree, RF = Random Forest, XGB = XGBoost, LR = Logistic Regression, GNB = Gaussian Naïve Bayes, 

  MLP = Multilayer Perceptron Neural Network 
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 As best results (bold numbers) in all metrics were scattered among techniques, the 

macro average of F1 score was the focused metric. Therefore, Random Forest, XGBoost, and 

Logistic Regression performed well as meta models across all experiments. The best result 

among all was XGBoost in B2, which reached a 36.5% macro average F1 score. However, 

according to Table 12, the best Super Learner performance still did not reach the best single 

XGBoost performance (38.4% macro average F1 score).  

 As well as Guilty Prediction, additional experiments were done. The performance of 

experiments B2 and experiment B4 did not improve from the tuned base models shown in Table 

24. Meanwhile, experiment B1 and experiment B3 significantly improved performance from their 

untuned base models, from a macro average F1 score of 28.0% to 35.7% in experiment B1, and 

to 35.8% in experiment B3. Using untuned base models had the potential to improve the 

performance of Super Learners.  

So, the additional experiment B5 and experiment B6 were created as shown in Table 26. 

B5 focused on adding advanced tree-based models like XGBoost, in order to have base models 

with good performance. And B6 focused on adding simple classification models, in order to have 

base models with various structures and small run times. For meta model, Random Forest, 

XGBoost, and Logistic Regression were selected as they had good performance in previous 

experiments. The performance of base models and Super Learners in experiment B5 and 

experiment B6 are shown in Table 27 – 28. 

Table 26 Additional Super Learner experimental plan (Level of Force Prediction) 
Prediction Experiment Base models Meta model 

Level of Force 
Prediction 

B5 DT, RF, XGB, BRF, AB, BG, ET, GB, 
HGB (No tuning) 

RF, XGB, LR 
(3 meta models for 
each experiment) B6 DT, LR, GNB, MNB, KNN 

*DT = Decision Tree, RF = Random Forest, XGB = XGBoost, BRF = Balanced Random Forest, AB = AdaBoost,             
BG = Bagging, ET = Extra Trees, GB = GradientBoost, HGB = HistGradientBoost, LR = Logistic Regression,  
GNB = Gaussian Naïve Bayes, MNB = Multinomial Naïve Bayes, KNN = K Nearest Neighbor 
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Table 27 Average result from 4-fold cross-validation of the base models (additional experiments) 

Base models Metrics (4 fold cross validation) 
Accuracy F1 Score 

(Macro average) 

B5 
without tuning 

DT 0.773 0.239 
RF 0.850 0.117 

XGB 0.681 0.280 
BRF 0.524 0.242 

AB 0.853 0.192 
BG 0.848 0.184 

ET 0.854 0.191 
GB 0.843 0.030 
HGB 0.845 0.083 

B6 
without tuning 

DT 0.774 0.241 
LR 0.538 0.137 

GNB 0.583 0.147 
MNB 0.547 0.141 

KNN 0.825 0.106 
*DT = Decision Tree, RF = Random Forest, XGB = XGBoost, BRF = Balanced Random Forest, AB = AdaBoost,             
BG = Bagging, ET = Extra Trees, GB = GradientBoost, HGB = HistGradientBoost, LR = Logistic Regression,  
GNB = Gaussian Naïve Bayes, MNB = Multinomial Naïve Bayes, KNN = K Nearest Neighbor 
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Table 28 Average results from 4-fold cross-validation of the Super Learners (additional 
experiments) 

Experiment Meta 
model 
(optimal) 

Metrics (4 fold cross validation) Most 
important 

base 
model 

Accuracy F1 Score Precision 
(Macro 
average) 

Recall 
(Macro 
average) 

Level 
1 

Level 
2 

Macro 
average 

B5 
(Base 
models: 
DT, RF, 
XGB, BRF, 
AB, BG, ET, 
GB, HGB, 
without 
tuning)  

RF 0.785 0.427 0.332 0.379 0.331 0.446 BRF 

XGB 0.785 0.419 0.347 0.383 0.346 0.436 BRF 

LR 0.813 0.406 0.297 0.351 0.335 0.404 XGB 

B6 
(Base 
models: 
DT, LR, 
GNB, MNB, 
KNN 
without 
tuning)  

RF 0.682 0.310 0.207 0.259 0.196 0.384 GNB 

XGB 0.698 0.304 0.207 0.255 0.199 0.361 KNN 

LR 0.592 0.312 0.153 0.232 0.159 0.499 GNB 

*DT = Decision Tree, RF = Random Forest, XGB = XGBoost, BRF = Balanced Random Forest, AB = AdaBoost,             
BG = Bagging, ET = Extra Trees, GB = GradientBoost, HGB = HistGradientBoost, LR = Logistic Regression,  
GNB = Gaussian Naïve Bayes, MNB = Multinomial Naïve Bayes, KNN = K Nearest Neighbor 
 

All tree-based base models in B5 showed better performance compared to B1-B4 (best 
36.5% macro average F1 score). All meta models showed similar performance, the best among 
others was XGBoost (highlighted in Table 28) with a 38.3% macro F1 score. Meanwhile, all B6 
experiments showed significantly worse performance compared to B1-B4. The best meta model 
was Random Forest, with a 25.9% macro average F1 score. 
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 Unlike Guilty Prediction, the performance of B5, which added advanced tree-based base 
models, surpassed B1-B4. And the performance almost reached the single XGBoost performance 
(38.4% macro F1 score) 
 

4.3.3 Confusion Matrix observation 
Since F1 score, which is the focused metric in this study, is calculated from precision and 

recall, it is not clearly shown how precision and recall were changed through the process. Thus, 

the Confusion Matrix of some models were discussed in this section, in order to clearly see the 

change when the F1 score increased or decreased. 

4.3.3.1 Guilty Prediction 
Confusion Matrix of the best untuned and tuned base model, XGBoost, are shown in 

Table 29 and Table 30, respectively. The result was obtained from testing trained models with 

the validation set. 

Table 29 Confusion matrix and related metrics of single XGBoost (untuned) 
 Predicted Not Guilty Predicted Guilty  

Actual Not Guilty 14994 2772  
Actual Guilty 1875 3674  

    
Class Precision Recall F1 score 
Not Guilty  0.89 0.84 0.87 

Guilty 0.57 0.66 0.61 
 
Table 30 Confusion matrix and related metrics of single XGBoost (tuned) 
 Predicted Not Guilty Predicted Guilty  
Actual Not Guilty 16001 1865  
Actual Guilty 1821 3628  
    

Class Precision Recall F1 score 
Not Guilty  0.90 0.90  0.90 

Guilty 0.66 0.67 0.66 
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From Table 29 and Table 30, after the XGBoost was tuned it predicted “Not Guilty” class 

more accurately. This reduced False Positive and significantly increased precision. 

As mentioned in the previous section, Super Learners which used untuned base models 

can improve the performance from their base models. Confusion Matrix of the best Super 

Learner from Experiment A1 is shown in Table 31 as an example. For Super Learner which used 

tuned base models, the result is omitted as it is similar to the tuned base model (Table 30). 

Table 31 Confusion matrix and related metrics of Super Learner in Experiment A1 (Untuned tree-
based models as base models, Logistic Regression as meta model) 
 Predicted Not Guilty Predicted Guilty  
Actual Not Guilty 15809 2057  
Actual Guilty 1872 3577  
    
Class Precision Recall F1 score 
Not Guilty  0.89 0.88  0.89 
Guilty 0.63 0.66 0.65 

 

From Table 31, the meta model predicted “Not Guilty” class more accurately than the 

untuned base models (Table 29). This also increased precision but still not as much as the tuned 

base model (Table 30). Both tuning the model and using a meta model used the same approach 

for increasing the F1 score, which is predicting the majority class more accurately.  

4.3.3.2 Level of Force Prediction 
Confusion Matrix of the best untuned and tuned base model, XGBoost, are shown in 

Table 32 and Table 33, respectively. The result was obtained from testing trained models with 

the validation set. 
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Table 32 Confusion matrix and related metrics of single XGBoost (untuned) 
 Predicted Level 0 Predicted Level 1 Predicted Level 2 

Actual Level 0 13730 3492 2126 
Actual Level 1 1875 3674 383 

Actual Level 2 145 108 322 
    

Class Precision Recall F1 score 
Level 0 0.91 0.71 0.80 

Level 1 0.29 0.48 0.36 
Level 2 0.11 0.56 0.19 

 
Table 33 Confusion matrix and related metrics of single XGBoost (tuned) 
 Predicted Level 0 Predicted Level 1 Predicted Level 2 
Actual Level 0 16957 2099 248 
Actual Level 1 1638 1348 54 
Actual Level 2 286 98 198 
    
Class Precision Recall F1 score 

Level 0 0.90 0.88 0.89 
Level 1 0.38 0.44 0.41  
Level 2 0.40 0.34 0.37 

 

From Table 32 and Table 33, after the XGBoost was tuned the precision of both “Level 1” 

and “Level 2” increased, while recall decreased. This was caused by predicting fewer “Level 1” 

and “Level 2”, so it significantly reduced samples that were wrongly predicted but also reduced 

samples that were correctly predicted.  

As mentioned in the previous section, Super Learners which used untuned base models 

can improve the performance from their base models. Confusion Matrix of the best Super 

Learner from Experiment B1 and B3 are shown in Table 34 and Table 35, respectively.  
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Table 34 Confusion matrix and related metrics of Super Learner in Experiment B1 (untuned tree-
based models as base models, XGBoost as meta model) 

 Predicted Level 0 Predicted Level 1 Predicted Level 2 
Actual Level 0 16395 2554 355 

Actual Level 1 1513 1452 75 
Actual Level 2 294 111 177 

    
Class Precision Recall F1 score 
Level 0 0.90 0.85 0.87 

Level 1 0.35 0.48 0.41 
Level 2 0.29 0.30 0.30 

 
Table 35 Confusion matrix and related metrics of Super Learner in Experiment B3 (untuned tree-
based, Logistic Regression, and Gaussian Naïve Bayes as base models, Random Forest as meta 
model) 
 Predicted Level 0 Predicted Level 1 Predicted Level 2 

Actual Level 0 15198 3396 710 
Actual Level 1 1127 1768 145 
Actual Level 2 212 140 230 

    
Class Precision Recall F1 score 

Level 0 0.92 0.79 0.85 
Level 1 0.33 0.58 0.42 

Level 2 0.21 0.40 0.28 
 

From Table 34, the meta model made the precision of both “Level 1” and “Level 2” 

increase, while recall of “Level 2” decreased compared to their untuned base models (Table 32). 

This was caused by predicting fewer “Level 1” and “Level 2”, so it significantly reduced samples 

that were wrongly predicted but also reduced samples that were correctly predicted. While in 

Table 35, the meta model made the recall of “Level 1” and “Level 2” high, while precision 

decreased compared to their untuned base model (Table 32). This was caused by predicting 

more “Level 1” and “Level 2”, so it significantly increased samples that were correctly predicted 

but also increased samples that were wrongly predicted. This demonstrates that two Super 
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Learners with different base learners and meta learner have different approaches to increase F1 

score. 

Additionally, from the result in the previous section, Super Learners using tuned base 

learners got a lower F1 score than their base models. To investigate the issue, Confusion Matrix 

of the best Super Learner from Experiment B2 and B4 are shown in Table 36 and Table 37, 

respectively.  

Table 36 Confusion matrix and related metrics of Super Learner in Experiment B2 (tuned tree-
based models as base models, XGBoost as meta model) 
 Predicted Level 0 Predicted Level 1 Predicted Level 2 
Actual Level 0 16344 2675 285 
Actual Level 1 1533 1452 55 
Actual Level 2 282 111 189 
    
Class Precision Recall F1 score 
Level 0 0.90 0.85 0.87 
Level 1 0.34 0.48 0.40 
Level 2 0.36 0.32 0.34 

 
Table 37 Confusion matrix and related metrics of Super Learner in Experiment B4 (tuned tree-
based, Logistic Regression, and Gaussian Naïve Bayes as base models, Logistic Regression as meta 
model) 

 Predicted Level 0 Predicted Level 1 Predicted Level 2 
Actual Level 0 17026 1603 675 

Actual Level 1 1714 1174 152 
Actual Level 2 283 61 238 

    
Class Precision Recall F1 score 

Level 0 0.90 0.88 0.89 
Level 1 0.41 0.39 0.40 
Level 2 0.22 0.41 0.29 
 

From Table 36, the meta model predicted many samples as “Level 1” but they were 

actually “Level 0”, this made the precision of both “Level 1” and “Level 2” significantly 
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decreased from its tuned base model (Table 33), while the recall of “Level 1” increased and 

“Level 2” decreased. While in Table 37, the meta model predicted many samples as “Level 2” 

but they were actually “Level 0”, this made the precision “Level 2” significantly decreased from 

its tuned base model (Table 33), while the recall of “Level 2” increased. The meta model also 

predicted fewer samples as “Level 1”, so it reduced samples that were correctly predicted but 

also reduced samples that were wrongly predicted. This caused the precision of “Level 1” higher 

and the recall of “Level 1” lower, compared to its tuned base models (Table 33).  

To summarize, it was found that Super Learners with untuned base models increased F1 

score by 2 approaches; one is predicting the majority class more accurately, which caused higher 

precision, and another one is predicting the minority class more, which caused higher recall. On 

the other hand, the reason that some Super Learners had lower F1 score than their base models 

was the Super Learner predicted more samples as minority class but inaccurately, this 

significantly decreased precision. 

 

4.4 Discussion of Super Learners  

4.4.1 Base models 
 According to Table 20 and Table 25, when focusing on the F1 score, tuned base models 

performed better than untuned ones for Guilty Prediction, but for some experiments in Level of 

Force Prediction, the results were worse when using tuned base models.  

Even though most experiments performed better when using tuned base models, they 

did not improve from the performance of their own base models. On the other hand, when using 

untuned base models, Super Learners could improve performance from their own base models. 

This happened in both Guilty and Level of Force Prediction. It can be implied that well-groomed 

base models may not be suitable for Super Learners. However, as Super Learners performed just 

almost as good as the single best XGBoost, it is questionable whether using tuned base models 

really did not cause better performance or the performance could not be any better as it had 

reached the limitations of the data itself. 

Adding Logistic Regression and Gaussian Naïve Bayes as base models also had mixed 

results in both predictions. None of both models were important base models in any experiment, 

it can be implied that those two models had little impact on Super Learners. From Table 19 and 
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Table 24, base models with high accuracy or high F1 score were the most significant base model 

for all experiments. Because adding low-performance models may not be any help, the 

additional experiments were created to investigate more about adding various base models. 

The results of additional experiments showed that the performance of base models 

significantly influenced the performance of meta models. Having high-performance base models 

improved meta models’ performance and vice versa. Another interesting observation was the 

structure similarity of base models did not seem to impact the performance. Using various types 

of base models but with low accuracy, as in experiment A6 and experiment B6, did not help 

boost the performance, as well as adding different types of base models from A1/B1 to A3/B3. 

4.4.2 Meta models 
 For Guilty Prediction, XGBoost, Logistic Regression, and MLP had high AUC, Accuracy, and 

F1 score across all experiments. But for Level of Force Prediction, which was a multi-class 

classification, MLP did not have a high macro average F1 score. It was Random Forest that had a 

high macro average F1 score, although it had lower accuracy. Due to multiple classes and highly 

imbalance in Level of Force, MLP which cannot determine class weight may probably struggle to 

have high F1 score for minority classes.  

  So, the meta models that performed well across experiments were XGBoost and 

Logistic Regression. XGBoost has an advanced way of building trees that is probably the major 

cause of high predictive power as discussed in 4.2.2. On the other hand, Logistic Regression, 

which is one of the simple classification models, had a competitive performance as meta 

models. It is noteworthy that Logistic Regression had a significantly worse performance as base 

models compared to XGBoost but had close performance to XGBoost as meta models. It is 

possibly due to different kinds of problems in the input data between base models and meta 

models. The data input in base models were the SQF datasets, which had high numbers of 

features and required complex strategies to predict the results. Meanwhile, the data input in 

meta models were probabilities, only a few columns, and the goal was to find the best 

combination of those probabilities from base models. With the scheme of Logistic Regression 

that can be written as a formula of variables with coefficients, it might be more suitable for 

finding the best coefficients as weights for each probability of each base model, than solving the 

original predictions as base models.  
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4.4.3 Summarized findings for structural designs of Super Learners 
 Summarized findings for structural designs of Super Learners are demonstrated in Table 

38 for base models and Table 39 for meta models. Please note that the evaluation metrics that 

define how well the performance was, were AUC for Guilty Prediction and macro average F1 

score for Level of Force Prediction. 

Table 38 Summarized findings for structural designs of Super Learners (base models) 
Base model strategies Not tuned Tuned 

Tree-based - Improve from base models 
- Worse than tuned 

- Not improve from base 
models 
- Better than not tuned  

Tree-based with 
additional simple models 

- Improve from base models 
- Worse than tuned in Guilty 
Prediction and better in Level of 
Force Prediction 
- Improve from only tree-based 

- Not Improve from base 
models 
- Better than tuned in Guilty 
Prediction and worse in Level of 
Force Prediction 
- Equal and worse performance 
from only tree-based 

Several advanced tree-
based 

- Improve from base models 
- Best among all untuned base 
models 
- Competitive performance to 
tuned base models and single 
XGBoost 

- 

Several various simple 
models 

- Improve from base models 
- Worst among all untuned base 
models 

- 
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Table 39 Summarized findings for structural designs of Super Learners (meta models) 
Meta model Guilty Prediction Level of Force Prediction 

Decision Tree - Worst performance 
- High recall  

- Worst performance 
- High recall 

Random Forest - Competitive performance - Good performance 
- High F1 score for Level 1 

XGBoost - Good performance - Good performance 
- Worse performance when adding Logistic 
Regression and Gaussian Naïve Bayes to 
tree-based base models 

Logistic 
Regression 

- Good performance 
- High recall with untuned base 
models and high precision with 
tuned base models 

- Good performance 
- Worse performance with tuned base 
models than untuned 

MLP - Good performance 
- High Precision 

- High accuracy and Precision 
- High F1 score for Level 2 but Low for 
Level 1 

 

Super Learners have competitive performance but still could not reach the best 

performance of a single XGBoost. Despite that, the main advantage of Super Learner found in this 

study is less effort used for optimizing models, in terms of computation time and resources. 

Logistic Regression is a simple model with a small run time, and the optimization process takes 

less effort and run time due to few parameters. Thus, in the case of Super Learner with untuned 

base models and Logistic Regression as a meta model, the performance comparison between 

optimized single XGBoost and the Super Learner is shown in Table 40. 
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Table 40 Performance comparison between optimized single XGBoost and Super Learner with 
Logistic Regression as meta model 

Prediction Model Metric 
Base model Meta model F1 score  Accuracy 

Guilty Single XGBoost (untuned) 0.613 0.801 
Single XGBoost (tuned) 0.662 0.841 

DT, RF, XGB, BRF, 
AB, BG, ET, GB, HGB, 
(without tuning) 

LR (tuned) 0.654 0.844 
LR (without 
tuning) 

0.648 0.811 

Level of Force 
(F1 score is  
macro average for  
Level 1 and 2) 

Single XGBoost (untuned) 0.275 0.676 
Single XGBoost (tuned) 0.384  0.806 

DT, RF, XGB, BRF, 
AB, BG, ET, GB, HGB, 
(without tuning) 

LR (tuned) 0.351 0.813 
LR (without 
tuning) 

0.307 0.653 

*DF = Decision Tree, RF = Random Forest, XGB = XGBoost, BRF = Balanced Random Forest, AB = AdaBoost,             
BG = Bagging, ET = Extra Trees, GB = GradientBoost, HGB = HistGradientBoost, LR = Logistic Regression 

Optimizing a single XGBoost takes a certain time and resources, on the other hand, using 

Super Learner with untuned base models and a simple meta model like Logistic Regression does 

not require such effort. From Table 40, for Guilty Prediction, simply using the Super Learner with 

untuned Logistic Regression as meta model obtained competitive performance compared to a 

single XGBoost. In this case, the Super Learner can be ready for implementation without an 

optimization process. For Level of Force Prediction, even though the Super Learner with untuned 

Logistic Regression as meta model did not have competitive performance, using the Super 

Learner with tuned Logistic Regression as meta model still takes less effort in the optimization 

process than a single XGBoost model. 

For further study, Super Learner could be implemented for different kinds of problems, 

such as regression. Other base models and meta models could be explored. Also, the different 

structures of Super Learner could be investigated and improved, such as the number of folds for 

training base models.  
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Chapter 5 : Conclusion   
 

The objective of this study is to analyze the appropriateness of the NYPD officer’s 

behavior in SQF practices. To achieve the objective, predictive models were created. Factors, 

relating to a stop that resulted in a conviction (Guilty Prediction) and police’s weapon usage 

during a stop (Level of Force Prediction), were investigated using tree-based machine learning 

techniques. XGBoost models outperformed other techniques in both predictions. The 

performance of Guilty Prediction was at 65.9% F1 score and 84.0% accuracy. For Level of Force 

Prediction, the F1 score obtained for “Level 1” and “Level 2” were 40.7% and 35.0% 

respectively, with 80.4% overall accuracy.  

The main findings are as follows. First, later years (close to 2019) led to more possibility 

for a case to be “Guilty” and also led to “Level 2” of Force usage. This indicates a tendency of 

fewer unnecessary stops but more police’s weapons usage over time. Second, carrying weapons 

or carrying suspicious objects were the suspect’s actions which led to “Guilty” cases. This 

suggests that weapons carriage was still a major element of criminal in the city. However, when 

“Criminal Possession of Weapon” was the suspected crime, the result led to “Not Guilty” cases 

yet “Level 2” of force usage. Taken together, these findings indicate a lack of accurate 

assumption about the suspect’s weapons possession, which could be a major cause of 

unnecessary stops and overuse of force toward innocent citizens. Lastly, some suspect’s actions 

led to “Level 2” of Force usage but did not lead to “Guilty” cases, and vice versa. This conflict 

showed that some protocols of the operation may be adjusted for appropriateness. Even though 

race was not the main driving factor of the predictions, there was significant different treatment in 

SQF practices among the racial groups. This suggests that NYPD should not overlook the racial 

issue and proceed the operation with caution and fairness. For further study, updated data could 

be gathered, and other actions that occurred during a stop, such as a frisk, might be explored to 

extend the perspective on the issue.  

Additionally, this study also explored a hybrid technique called Super Learner. 

Experiments on various structures of Super Learners were done. The best model for Guilty 

Prediction used tuned classifiers including Decision Tree, Random Forest, XGBoost, Logistic 

Regression, and Gaussian Naïve Bayes, as base models, and used MLP as a meta model. It 

obtained 66.0% F1 score and 83.9% accuracy. And For Level of Force Prediction, the best model 
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used no-tuned various tree-based classifiers, such as XGBoost, Balanced Random Forest, as base 

models, and used XGBoost as a meta model. It obtained 41.9% F1 score and 34.7% F1 score for 

“Level 1” and “Level 2” respectively, with 78.5% accuracy.  

The interesting findings of Super Learner structural designs are as follows. For base 

models, Super Learners could improve performance from their own base models when using 

untuned base models but did not improve when using tuned base models. The performance of 

base models also played a significant role in the performance of Super Learners, having high-

performance base models improved meta models’ performance, and vice versa. For meta 

models, XGBoost and Logistic Regression outperformed other meta models across both 

predictions. It is worth noting that Logistic Regression performed much worse as base models 

than XGBoost but performed similarly as meta models. For further study, different kinds of 

problems, such as regression, could be solved with Super Learner. Also, other experiments on 

structural design might be explored. 
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APPENDIX 
Guilty Prediction (single model) 

Ranges and optimum values of parameters and threshold for Decision Tree (Guilty Prediction) 

Parameter/Threshold Default  Range Optimum Value 
class_weight ‘balanced’ (manually set for imbalance data) 

criterion ‘gini’ [‘gini’, ‘entropy’] ‘gini’ 
max_depth None [5, 10, 15] 10 

min_samples_leaf 1 [1, 2, 4] 1 
min_samples_split 2 [4, 6, 8, 10] 8 
Threshold 0.5 0-1 0.585819 
 

Ranges and optimum values of parameters and threshold for Random Forest (Guilty Prediction) 

Parameter/Threshold Default Range Optimum Value 
bootstrap True [True,False] False 

class_weight ‘balanced_subsumple’ (manually set for imbalance data) 
criterion ‘gini’ [‘gini’, ‘entropy’] ‘entropy’ 

max_depth None [5, 10, 12, 15, 18, 20, 
22, 25] 

18 

max_features ‘sqrt’ [‘auto’, ‘sqrt’, ‘log2’] ‘auto’ 

min_samples_leaf 1 [1, 2, 4, 6, 8] 4 
min_samples_split 2 [4, 6, 8, 10, 12] 8 

n_estimators 100 [100, 200, 500, 800, 
1000, 1400, 1500, 
1600, 1800] 

1600 

Threshold 0.5 0-1 0.501037 
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Ranges and optimum values of parameters and threshold for XGBoost (Guilty Prediction) 

Parameter/Threshold Default Range Optimum Value 
colsample_bylevel 1 [0.5, 0.6, 0.8, 1] 0.6 
colsample_bynode 1 [0.5, 0.6, 0.8, 1] 0.6 

colsample_bytree 1 [0.6, 0.8, 1] 0.6 
gamma 0 [0, 0.1, 0.2, 0.3, 3, 5, 6, 7, 8, 10] 5 
learning_rate 0.3 [0.01, 0.02, 0.03, 0.04, 0.05, 

0.07, 0.08, 0.1] 
0.01 

max_depth 6 [10, 15, 18, 20, 22, 25, 28, 30] 25 

min_child_weight 1 [1, 2, 4, 6, 8] 1 
n_estimators 100 1-1974 1874 
reg_alpha 0 [0, 0.1, 0.2, 0.3, 0.4, 0.5] 0.2 
reg_lambda 1 [0.4, 0.6, 0.8, 1] 0.6 

scale_pos_weight 3 (manually set for imbalance data) 
subsample 1 [0.6, 0.8, 1] 0.8 

Threshold 0.5 0-1 0.444231 
 

Ranges and optimum values of parameters and threshold for Logistic Regression (Guilty 

Prediction) 

Parameter/Threshold Default Range Optimum value 

C 1 [0.01, 0.1, 1, 10, 100] 100 
class_weight ‘balanced’ (manually set for imbalance data) 

penalty ‘l2’ [‘none’, ‘l1’, ‘l2’, ‘elasticnet’] ‘l2’ 
solver ‘lbfgs’ [‘newton-cg’, ‘lbfgs’, ‘liblinear’, 

‘sag’, ‘saga’] 
‘newton-cg’ 

Threshold 0.5 0-1 0.510124 
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Ranges and optimum values of parameters and threshold for Gaussian Naïve Bayes (Guilty 

Prediction) 

Parameter/Threshold Default Range Optimum value 

Var_smoothing 1e-9 [1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 
1e-7, 1e-8, 1e-9, 1e-10, 1e-11, 
1e-12, 1e-13, 1e-14, 1e-15] 

1e-11 

Threshold 0.5 0-1 0.679297 
 

Level of Force Prediction (single model) 

Ranges and optimum values of parameters for Decision Tree (Level of Force Prediction) 

Parameter Default Range Optimum Value 
class_weight ‘balanced’ (manually set for imbalance data) 
criterion ‘gini’ [‘gini’, ‘entropy’] ‘gini’ 
max_depth None [15,18,20,22,25,28,30] 20 
min_samples_leaf 1 [1,2,3,4,5] 1 
min_samples_split 2 [2,3,4,5,6] 3 

 

Ranges and optimum values of parameters for Random Forest (Level of Force Prediction) 

Parameter Default Range Optimum Value 
bootstrap True [True,False] False 
class_weight ‘balanced_subsumple’ (manually set for imbalance data) 

criterion ‘gini’ [‘gini’, ‘entropy’] ‘gini’ 
max_depth None [8, 10, 11, 12, 13, 15, 18, 

20, 22, 25] 
15 

max_features ‘sqrt’ [‘auto’, ‘sqrt’, ‘log2’] ‘auto’ 
min_samples_leaf 1 [1, 2, 4, 6, 8, 10] 2 

min_samples_split 2 [2, 4, 5, 8, 10, 12, 16, 20] 16 
n_estimators 100 [100, 300, 400, 500, 600, 

700, 800, 1000, 1200, 
1400, 1500, 1600, 1800, 
2000, 2200, 2500] 

2000 
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Ranges and optimum values of parameters for XGBoost (Level of Force Prediction) 

Parameter Default Range Optimum Value 
colsample_bylevel 1 [0.3, 0.4, 0.5, 0.6, 0.8, 1] 0.4 

colsample_bynode 1 [0.6, 0.8, 1] 1 
colsample_bytree 1 [0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1] 0.6 
gamma 0 [0, 0.1, 0.2, 0.3, 0.5, 0.7, 1] 0.1 

learning_rate 0.3 [0.03, 0.05, 0.07, 0.1, 0.3] 0.03 
max_depth 6 [6, 8, 10, 12, 15, 20] 8 

min_child_weight 1 [1, 2, 4, 6, 8, 10, 12] 8 
n_estimators 100 1-2669 2569 
num_class 3 (manually set from number of class in dataset) 
objective multi : softmax (manually set for multi-class classification) 
reg_alpha 0 [0, 0.2, 0.4] 0.2 
reg_lambda 1 [0.6, 0.8, 1] 0.8 

subsample 1 [0.6, 0.8, 1] 0.8 
 

Ranges and optimum values of parameters and threshold for Logistic Regression (Level of Force 

Prediction) 

Parameter Default Range Optimum value 

C 1 [0.01, 0.1, 1, 10, 100] 1 
class_weight ‘balanced’ (manually set for imbalance data) 

penalty ‘l2’ [‘none’, ‘l1’, ‘l2’, ‘elasticnet’] ‘l2’ 
solver ‘lbfgs’ [‘newton-cg’, ‘lbfgs’, ‘liblinear’, 

‘sag’, ‘saga’] 
‘newton-cg’ 

 

Ranges and optimum values of parameters and threshold for Gaussian Naïve Bayes (Level of 

Force Prediction) 

Parameter Default Range Optimum value 

Var_smoothing 1e-9 [1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8, 1e-9, 
1e-10, 1e-11, 1e-12, 1e-13, 1e-14, 1e-15] 

1e-10 
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Guilty Prediction (Super Learner Experiment A1-A4) 

Ranges and optimum values of parameters and threshold for Decision Tree as meta model 

(Guilty Prediction) 

Parameter/Threshold Default Range Optimum Value for each experiment 

A1 A2 A3 A4 
class_weight ‘balanced’ (manually set for imbalance data) 

criterion ‘gini’ [‘gini’, 
‘entropy’] 

‘entropy’ ‘entropy’ ‘entropy’ ‘entropy’ 

max_depth None [1, 2, 3, 5, 8, 
10, 15] 

1 1 1 1 

min_samples_leaf 1 [1, 2, 4] 1 1 1 1 

min_samples_split 2 [2, 4, 6, 8] 2 2 2 2 
Threshold 0.5 0-1 0.5 0.5 0.5 0.5 

 

Ranges and optimum values of parameters and threshold for Random Forest as meta model 

(Guilty Prediction) 

Parameter  
/Threshold 

Default Range Optimum Value for each experiment 
A1 A2 A3 A4 

bootstrap True [True,False] True True True True 
class_weight ‘balanced_subsumple’ (manually set for imbalance data) 

criterion ‘gini’ [‘gini’, ‘entropy’] ‘entropy’ ‘entropy’ ‘entropy’ ‘entropy’ 
max_depth None [1, 3, 5, 8, 10, 

15] 
1 1 5 1 

max_features ‘sqrt’ [‘auto’, ‘sqrt’, 
‘log2’] 

‘auto’ ‘auto’ ‘auto’ ‘sqrt’ 

min_samples_leaf 1 [1, 2, 4, 6, 8, 10] 1 2 4 8 
min_samples_split 2 [2, 5, 8, 10, 12] 2 2 10 8 
n_estimators 100 [100, 200, 500, 

800, 1000, 1200, 
1500] 

200 1000 1000 500 

Threshold 0.5 0-1 0.601776 0.507906 0.568302 0.568302 
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Ranges and optimum values of parameters and threshold for XGBoost as meta model (Guilty 

Prediction) 

Parameter/Threshold Default Range Optimum Value for each experiment 

A1 A2 A3 A4 
colsample_bylevel 1 [0.2, 0.3, 0.4, 

0.5, 0.6, 0.8, 1] 
0.4 1 0.6 0.6 

colsample_bynode 1 [0.6, 0.8, 1] 1 1 0.6 1 
colsample_bytree 1 [0.6, 0.8, 1] 1 1 0.8 1 

gamma 0 [0, 0.1, 1, 3] 0 0 5 1 
learning_rate 0.3 [0.01, 0.02, 

0.03, 0.05, 
0.07, 0.1] 

0.01 0.07 0.05 0.07 

max_depth 6 [1,2,3,5] 1 1 3 1 
min_child_weight 1 [1, 4, 8] 1 1 1 4 
n_estimators 100 [60, 80, 100, 

200, 300, 500, 
1000] 

100 500 100 500 

reg_alpha 0 [0, 0.2, 0.4] 0 0 0 0 

reg_lambda 1 [0.6, 0.8, 1] 1 1 0.8 1 
scale_pos_weight 3 (manually set for imbalance data) 
subsample 1 [0.6, 0.8, 1] 1 1 0.6 1 
Threshold 0.5 0-1 0.525549 0.581517 0.54389 0.562639 
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Ranges and optimum values of parameters and threshold for Logistic Regression as meta model 

(Guilty Prediction) 

Parameter/Threshold Default Range Optimum Value for each experiment 
A1 A2 A3 A4 

C 1 [0.01, 0.1, 1, 
10, 100] 

1 0.01 1 0.01 

class_weight ‘balanced’ (manually set for imbalance data) 
penalty ‘l2’ [‘none’, ‘l1’, 

‘l2’, 
‘elasticnet’] 

‘l2’ ‘l1’ ‘l2’ ‘l1’ 

solver ‘lbfgs’ [‘newton-cg’, 
‘lbfgs’, 
‘liblinear’, 
‘sag’, ‘saga’] 

‘lbfgs’ ‘saga’ ‘lbfgs’ ‘saga’ 

Threshold 0.5 0-1 0.572728 0.606267 0.528609 0.604695 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 91 

Ranges and optimum values of parameters and threshold for Multilayer Perceptron Neural 

Network as meta model (Guilty Prediction) 

Parameter 
/Threshold 

Default Range Optimum Value for each experiment 
A1 A2 A3 A4 

activation ‘relu’ [‘identity’, 
‘logistic’, 
‘tanh’, 
relu’] 

‘relu’ ‘tanh’ ‘relu’ ‘logistic’ 

alpha 0.0001 [0.00001, 
0.00005, 
0.0001, 
0.05] 

0.0001 0.01 0.0001 0.00001 

hidden_layer
_sizes 

(100,) [(10,30,10), 
(20,), (40,), 
(40,40), 
(40,40,40,), 
(50,50,50), 
(50,100,50,), 
(60,), (80.), 
(100,), 
(100,100,10
0)] 

(100,) (10,30,10) (50,100,50) (40,) 

learning_rate ‘constant’ [‘constant’, 
‘invscaling’, 
‘adaptive’] 

‘constant’ ‘constant’ ‘constant’ ‘constant’ 

random_stat
e 

99  

solver ‘adam’ [‘lbfgs’, 
‘sgd’, 
‘adam’] 

‘adam’ ‘sgd’ ‘adam’ ‘adam’ 

Threshold 0.5 0-1 0.342049 0.32137 0.289899 0.335143 
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Level of Force Prediction (Super Learner Experiment A1-A4) 

Ranges and optimum values of parameters and threshold for Decision Tree as meta model 

(Level of Force Prediction) 

Parameter Default Range Optimum Value for each experiment 
B1 B2 B3 B4 

class_weight ‘balanced’ (manually set for imbalance data) 

criterion ‘gini’ [‘gini’, 
‘entropy’] 

‘gini’ ‘gini’ ‘gini’ ‘entropy’ 

max_depth None [1, 2, 3, 5, 8, 10, 
15] 

2 2 2 3 

min_samples_leaf 1 [1, 2, 4] 1 1 1 1 
min_samples_split 2 [2, 4, 6, 8] 2 2 2 2 

 

Ranges and optimum values of parameters and threshold for Random Forest as meta model 

(Level of Force Prediction) 

Parameter Default Range Optimum Value for each experiment 

B1 B2 B3 B4 
bootstrap True [True,False] True True True True 
class_weight ‘balanced_subsumple’ (manually set for imbalance data) 
criterion ‘gini’ [‘gini’, 

‘entropy’] 
‘gini’ ‘gini’ ‘gini’ ‘gini’ 

max_depth None [1, 3, 5, 8, 10, 
15, 18, 20] 

15 15 15 15 

max_features ‘sqrt’ [‘auto’, ‘sqrt’, 
‘log2’] 

‘auto’ ‘log2’ ‘log2’ ‘sqrt’ 

min_samples_leaf 1 [1, 2, 4, 6, 8, 
10] 

4 4 4 4 

min_samples_split 2 [2, 5, 8, 10, 12] 10 8 5 2 
n_estimators 100 [100, 200, 500, 

800, 1000, 
1200, 1500, 
1800] 

200 500 1500 500 
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Ranges and optimum values of parameters and threshold for XGBoost as meta model (Level of 

Force Prediction) 

Parameter Default Range Optimum Value for each experiment 

B1 B2 B3 B4 
colsample_bylevel 1 [0.4, 0.5, 0.6, 0.8, 1] 0.8 0.8 0.8 0.5 

colsample_bynode 1 [0.4, 0.5, 0.6, 0.8, 1] 1 1 0.5 0.4 
colsample_bytree 1 [0.2, 0.3, 0.4, 0.5, 

0.6, 0.8, 1] 
0.5 0.5 0.4 0.5 

gamma 0 [0, 0.1, 0.5, 1, 1.5, 3, 
5, 7] 

1 1 1 1 

learning_rate 0.3 [0.03, 0.05, 0.07, 
0.1, 0.2, 0.3] 

0.05 0.05 0.1 0.1 

max_depth 6 [1, 5, 8, 10, 12, 15, 
18] 

15 15 10 10 

min_child_weight 1 [1, 4, 8] 1 4 1 1 
n_estimators 100 [100, 200, 300, 500, 

800, 1000] 
500 500 300 300 

num_class 3 (manually set from number of class in dataset) 

objective multi : softmax (manually set for multi-class classification) 
reg_alpha 0 [0, 0.2, 0.4] 0 0 0.2 0 
reg_lambda 1 [0.6, 0.8, 1] 0.8 0.8 0.8 1 
subsample 1 [0.6, 0.8, 1] 0.8 0.8 1 0.8 
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Ranges and optimum values of parameters and threshold for Logistic Regression as meta model 

(Level of Force Prediction) 

Parameter Default Range Optimum Value for each experiment 
B1 B2 B3 B4 

C 1 [0.01, 0.1, 1, 10, 
100] 

1 0.01 10 0.01 

class_weight ‘balanced’ (manually set for imbalance data) 
penalty ‘l2’ [‘none’, ‘l1’, 

‘l2’, 
‘elasticnet’] 

‘l2’ ‘l1’ ‘l2’ ‘l1’ 

solver ‘lbfgs’ [‘newton-cg’, 
‘lbfgs’, 
‘liblinear’, ‘sag’, 
‘saga’] 

‘liblinear’ ‘liblinear’ ‘liblinear’ ‘liblinear’ 
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Ranges and optimum values of parameters and threshold for Multilayer Perceptron Neural 

Network as meta model (Level of Force Prediction) 

Parameter 
 

Default Range Optimum Value for each experiment 
B1 B2 B3 B4 

activation ‘relu’ [‘identity’, 
‘logistic’, 
‘tanh’, relu’] 

‘relu’ ‘tanh’ ‘tanh’ ‘relu’ 

alpha 0.0001 [0.00001, 
0.00005, 
0.0001, 0.05] 

0.0001 0.0001 0.0001 0.0001 

hidden_layer
_sizes 

(100,) [(10,30,10), 
(20,), (40,), 
(40,40), 
(40,40,40,), 
(50,50,50), 
(50,100,50,), 
(60,), (80.), 
(100,), 
(100,100,100)
] 

(100,) (50,50,50) (100,200,1
00) 

(100,) 

learning_rate ‘constant’ [‘constant’, 
‘invscaling’, 
‘adaptive’] 

‘constant’ ‘constant’ ‘constant’ ‘constant’ 

random_stat
e 

99  

solver ‘adam’ [‘lbfgs’, 
‘sgd’, 
‘adam’] 

‘adam’ ‘sgd’ ‘adam’ ‘adam’ 
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Guilty Prediction (Super Learner Experiment A5-A6) 

Ranges and optimum values of parameters and threshold for XGBoost as meta model in 

additional experiments (Guilty Prediction) 

Parameter/Threshold Default Range Optimum Value for each 
experiment 

A5 A6 
colsample_bylevel 1 [0.6, 0.8, 1] 0.6 1 

colsample_bynode 1 [0.6, 0.8, 1] 0.6 1 
colsample_bytree 1 [0.6, 0.8, 1] 0.6 1 
gamma 0 [0, 0.1, 1, 3, 5, 7, 10] 0 7 
learning_rate 0.3 [0.01, 0.02, 0.03, 0.05, 0.07, 0.1, 0.3] 0.05 0..02 

max_depth 6 [1, 2, 3, 5, 7, 10] 7 3 
min_child_weight 1 [1, 4, 8] 1 1 

n_estimators 100 [60, 80, 100, 200, 300, 500] 100 300 
reg_alpha 0 [0, 0.2, 0.4, 1, 3] 0.2 0 
reg_lambda 1 [0, 0.6, 0.8, 1, 3] 0.8 1 

scale_pos_weight 3 (manually set for imbalance data) 
subsample 1 [0.4, 0.5, 0.6, 0.8, 1] 1 0.5 

Threshold 0.5 0-1 0.581434 0.522632 
 

Ranges and optimum values of parameters and threshold for Logistic Regression as meta model 

in additional experiments (Guilty Prediction) 

Parameter/Threshold Default Range Optimum Value for 
each experiment 
A5 A6 

C 1 [0.01, 0.1, 1, 10, 100] 1 0.01 
class_weight ‘balanced’ (manually set for imbalance data) 

penalty ‘l2’ [‘none’, ‘l1’, ‘l2’, ‘elasticnet’] ‘l2’ ‘l2’ 
solver ‘lbfgs’ [‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, 

‘saga’] 
‘lbfgs’ ‘liblinear’ 

Threshold 0.5 0-1 0.639204 0.570276 
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Ranges and optimum values of parameters and threshold for Multilayer Perceptron Neural 

Network as meta model in additional experiments (Guilty Prediction) 

Parameter 
/Threshold 

Default Range Optimum Value for each 
experiment 

A5 A6 
activation ‘relu’ [‘identity’, ‘logistic’, ‘tanh’, relu’] ‘logistic’ ‘relu’ 

alpha 0.0001 [0.0001, 0.001, 0.01, 0.05] 0.0001 0.0001 
hidden_layer_sizes (100,) [(30,30,30), (50,), (50,50), 

(50,50,50), (50,100,50,), (60,), (80.), 
(80,80), (80,80,80), (100,), 
(100,100,100)] 

(80,) (50,50,50) 

learning_rate ‘constant’ [‘constant’, ‘invscaling’, 
‘adaptive’] 

‘constant’ ‘constant’ 

random_state 99  

solver ‘adam’ [‘lbfgs’, ‘sgd’, ‘adam’] ‘adam’ ‘adam’ 
Threshold 0.5 0-1 0.351285 0.240983 

 

Level of Force Prediction (Super Learner Experiment A5-A6) 

Ranges and optimum values of parameters and threshold for Random Forest as meta model in 

additional experiments (Level of Force Prediction) 

Parameter Default Range Optimum Value for 
each experiment 

B5 B6 
bootstrap True [True,False] True True 
class_weight ‘balanced_subsumple’ (manually set for imbalance data) 

criterion ‘gini’ [‘gini’, ‘entropy’] ‘entropy’ ‘gini’ 
max_depth None [5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20] 15 14 
max_features ‘sqrt’ [‘auto’, ‘sqrt’, ‘log2’] ‘auto’ ‘auto’ 
min_samples_leaf 1 [1, 2, 3, 4, 5, 6, 8] 3 4 

min_samples_split 2 [2, 3, 4, 5, 6, 10] 5 5 
n_estimators 100 [100, 200, 300, 400, 500, 600, 700, 800, 

900] 
700 600 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 98 

Ranges and optimum values of parameters and threshold for XGBoost as meta model in 

additional experiments (Level of Force Prediction) 

Parameter Default Range Optimum Value for 
each experiment 

B5 B6 
colsample_bylevel 1 [0.4, 0.5, 0.6, 0.8, 1] 0.6 .0.6 

colsample_bynode 1 [0.6, 0.8, 1] 1 1 
colsample_bytree 1 [0.4, 0.5, 0.6, 0.8, 1] 0.6 1 

gamma 0 [0, 0.5, 1, 1.5, 2, 3, 5, 7, 10] 1 3 
learning_rate 0.3 [0.05, 0.07, 0.1, 0.3] 0.07 0.01 
max_depth 6 [1, 5, 6, 7, 8, 10, 15] 10 8 

min_child_weight 1 [1, 4, 8, 10, 20] 1 1 
n_estimators 100 [100, 200, 300, 500, 800] 300 500 
num_class 3 (manually set from number of class in dataset) 
objective multi : softmax (manually set for multi-class classification) 
reg_alpha 0 [0, 0.2, 0.4, 0.5, 1, 5, 10] 1 0 
reg_lambda 1 [0.5, 0.6, 1, 1.5, 3, 5, 10] 1 1 

subsample 1 [0.6, 0.8, 1] 0.8 0.8 
 

Ranges and optimum values of parameters and threshold for Logistic Regression as meta model 

in additional experiments (Level of Force Prediction) 

Parameter Default Range Optimum Value for 
each experiment 
B5 B6 

C 1 [0.01, 0.1, 1, 10, 100] 0.1 0.01 

class_weight ‘balanced’ (manually set for imbalance data) 
penalty ‘l2’ [‘none’, ‘l1’, ‘l2’, ‘elasticnet’] ‘l1’ ‘l2’ 

solver ‘lbfgs’ [‘newton-cg’, ‘lbfgs’, ‘liblinear’, 
‘sag’, ‘saga’] 

‘liblinear’ ‘newton-
cg’ 
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