จำนวนแรมซีย์ขนาดเชื่อมโยงสำหรับการจับคู่และกราฟบางกราฟ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาคณิตศาสตร์ ภาควิชาคณิตศาสตร์และวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2565
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Mathematics

Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2022
Copyright of Chulalongkorn University

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree
Molkit
Sangurnioh

Dean of the Faculty of Science
(Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

Chairman
(Associate Professor Chariya Uiyyasathian, Ph.D.)

(Assistant Professor Teeradej Kittipassorn, Ph.D.)

(Associate Professor Varanoot Khemmani, Ph.D.)

จิรัวตน์ มุ่งตุ้มกลาง : จำนวนแรมซีย์ขนาดเชื่อมโยงสำหรับการจับคู่และกราฟบางกราฟ. (CONNECTED SIZE RAMSEY NUMBERS OF MATCHING AND SOME GRAPHS) อ.ที่ปรึกษาวิทยานิพนธ์หลัก : ผศ.ดร.ธีระเดช กิตติภัสสร, 21 หน้า.

จำนวนแรมซีย์ขนาดเชื่อมโยงสำหรับกราฟ G และ H ซึ่งเขียนแทนด้วยสัญลักษณ์โดย $\hat{r}_{c}(G, H)$ คือจำนวนับที่น้อยที่สุดที่จะมีกราฟเชื่อมโยง F ที่มีเส้นเชื่อม k เส้นและการระบาย สีบนเส้นเชื่อมของกราฟ F ด้วยสีแดงหรือน้ำเงินต้องประกอบด้วยสำเนาของกราฟ G ที่เป็นสี แดงหรือสำเนาของกราฟ F ที่เป็นสีน้ำเงิน Assiyatun, Baskoro และ Rahadjeng แสดงไว้ ว่า $\hat{r}_{c}\left(n K_{2}, P_{3}\right) \leq\left\lfloor\frac{5 n-1}{2}\right\rfloor$ เมื่อไม่นานมานี้ Wang, Song, Zhang และ Zhang ได้พิสูจน์ ว่า $\hat{r}_{c}\left(n K_{2}, P_{3}\right)=\left\lfloor\frac{5 n-1}{2}\right\rfloor$ ในวิทยานิพนธ์นี้เราได้ทำการแสดงบทพิสูจน์ $\hat{r}_{c}\left(n K_{2}, P_{3}\right)=$ $\left\lfloor\frac{5 n-1}{2}\right\rfloor$ โดยใช้วิธีพิสูจน์ที่แตกต่างกัน

ภาควิชา คคิตศาสตร์และ

ลายมือชื่อนิสิต

สาขาวิชา .. คณิตศศาสตร์
\#\# 6270014223 : MAJOR MATHEMATICS
KEYWORDS : CONNECTED GRAPH / MATCHING NUMBER / RAMSEY NUMBER JIRAWAT MUNGTUMKLANG : CONNECTED SIZE RAMSEY NUMBERS OF MATCHING AND SOME GRAPHS. ADVISOR : ASST. PROF. TEERADEJ KITTIPASSORN, Ph.D., 21 pp.

The connected size Ramsey number of graphs G and H, denoted by $\hat{r}_{c}(G, H)$, is the smallest natural number k such that there exists a connected graph F with k edges and any red-blue edge-coloring of F contains a red copy of G or a blue copy of H. Assiyatun, Baskoro and Rahadjeng showed that $\hat{r}_{c}\left(n K_{2}, P_{3}\right) \leq\left\lfloor\frac{5 n-1}{2}\right\rfloor$. Recently, Wang, Song, Zhang, and Zhang proved that $\hat{r}_{c}\left(n K_{2}, P_{3}\right)=\left\lfloor\frac{5 n-1}{2}\right\rfloor$. In this thesis, we give an alternative proof of this result.

Chulalongkorn University

Department : ..Mathematics and

Field of Study : ..Mathematics
Academic Year : .. 2022

ACKNOWLEDGEMENTS

It is difficult to express my gratitude to my advisor, Assistant Professor Dr. Teeradej Kittipassorn for his enthusiasm, to inspire and efforts in explaining and clarify important things related to this research. Throughout research writing period, he has provided advice, taught basic knowledge for research and given lots of ideas with kindness. This research would not have been completed without him.

I further would like to thank all of my thesis committees: Associate Professor Dr. Chariya Uiyyasathian, Dr. Nithi Rungtanapirom and Associate Professor Dr. Varanoot Khemmani for their insightful suggestions and improving the quality of this research.

I wish to thank all of my teachers for sharing their knowledge and would like to thank all other lecturers and staffs of the Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, for their patience, encouragement and impressive advising. Moreover, I would like to thank all friends and my seniors in Department of Mathematics and Computer Science for their useful advice, helpful comments and friendship over the course of my study.

จุฬาลงกรณ์มหาวิทยาลัย

CONTENTS

Page
ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH v
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF FIGURES viii
CHAPTER
1 INTRODUCTION 1
1.1 Background on graph theory 1
1.2 Ramsey number 4
1.3 Size Ramsey number 5
1.4 Connected size Ramsey number 6
2 PROOF OF THE MAIN THEOREM 8
3 CONCLUSIONS 16
REFERENCES 17
BIOGRAPHY 19

จุฬาลงกรณ์มหาวิทยาลัย

LIST OF FIGURES

Figure Page
1.1 The graph G 1
1.2 The path P_{4}. 2
1.3 The cycle C_{5} 2
1.4 The complete graph K_{4}. 2
1.5 The bipartite graph G. 3
1.6 The complete bipartite graph $K_{3,2}$. 3
1.7 The matching $4 K_{2}$. 3
1.8 The edge-coloring of K_{5} containing neither red copies of K_{3} nor blue copies of K_{3}. 4
1.9 The graph G with $G \rightarrow\left(2 K_{2}, K_{3}\right)$. 6
1.10 The connected graph G with $G \rightarrow\left(2 K_{2}, K_{3}\right)$. 7
1.11 The edge-coloring of H containing neither red copies of $2 K_{2}$ nor blue copies of K_{3}. 7
2.1 The edge-coloring of P_{6} in Lemma 2.1 9
2.2 The edge-coloring of C_{6} in Lemma 2.1 9

CHAPTER I

INTRODUCTION

1.1 Background on graph theory

Throughout this thesis, a graph G consists of a set of vertices, denoted by $V(G)$, and a set of edges that connect pairs of vertices, denoted by $E(G)$. Moreover, we write $e(G)$ for the number of edges of graph G. We only consider simple graphs in this thesis.

For example, let G be a graph in Figure 1.1. Then $V(G)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ and $E(G)=\left\{v_{1} v_{2}, v_{1} v_{3}\right\}$.

Figure 1.1: The graph G.

There are many types of graphs, however, in this thesis, we will focus on the following basic graphs.

A path of order n, denoted by P_{n}, is a graph with $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(P_{n}\right)=\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{n-1} v_{n}\right\}$. A cycle of order n, denoted by C_{n}, is a graph with $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, 4 \ldots, v_{n}\right\}$ and $E\left(C_{n}\right)=\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{n-1} v_{n}, v_{n} v_{1}\right\}$.

For example, the path P_{4} and the cycle C_{5} are shown in Figures 1.2 and 1.3.

Figure 1.2: The path P_{4}.

Figure 1.3: The cycle C_{5}.

A complete graph, denoted by K_{n}, is a graph consisting of n vertices such that any two vertices are adjacent. A graph G is said to be bipartite if its vertices can be partitioned into two parts so that all edges are between the two parts. A complete bipartite graph, denoted by $K_{m, n}$, is a bipartite graph with two parts $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ and $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ where u_{i} and v_{j} are adjacent for all $i \in[m]$ and $j \in[n]$.

For example, the complete graph K_{4}, the graph G, and the complete bipartite graph $K_{3,2}$ are shown in Figures 1.4, 1.5, and 1.6, respectively.

Figure 1.4: The complete graph K_{4}.

Figure 1.5: The bipartite graph G.

Figure 1.6: The complete bipartite graph $K_{3,2}$.

A matching of size n, denoted by $n K_{2}$, is a graph consisting of $2 n$ vertices and n edges such that no two edges share common vertices. For example, the matching $4 K_{2}$ is shown in Figure 1.7. In general, we write $n G$ for a graph consisting of n disjoint copies of a graph G.

Figure 1.7: The matching $4 K_{2}$.

A graph is said to be connected if for any two vertices, there exists a path between them. Observe that a path and a cycle are connected, while the graphs in Figures 1.1 and 1.7 are disconnected.

Interested readers can further investigate basic definitions and results in graph theory in West [1].

1.2 Ramsey number

Ramsey theory is a branch in graph theory concerning colorings on the edges of complete graphs.

We define $R(m, n)$ to be the minimum positive integer r such that for any red-blue edge-coloring of K_{r}, there exists a red copy of K_{m} or a blue copy of K_{n}. This number is called a Ramsey number. Ramsey [2] showed that the Ramsey numbers $R(m, n)$ are well defined.

First, we start with some trivial facts about the Ramsey numbers. Observe that, for any positive integers m and n, we have $R(m, n)=R(n, m)$ and $R(2, n)=n$.

The easiest non-trivial value of the Ramsey numbers is $R(3,3)=6$. Indeed, we can color the edges of the K_{5} as shown in Figure 1.8. The edge-coloring contains neither red copies of K_{3} nor blue copies of K_{3}, thus $R(3,3)>5$. Conversely, it can be shown by the pigeonhole principle that for any red-blue edge-coloring on K_{6}, there exists a red copy of K_{3} or a blue copy of K_{3}.

Figure 1.8: The edge-coloring of K_{5} containing neither red copies of K_{3} nor blue copies of K_{3}.

Currently, we only know the exact values of the Ramsey numbers for some small m and n. For example, $R(3,4)=9, R(3,5)=14, R(4,4)=18$ and $R(4,5)=25$ (see [3-7]).

It is extremely difficult to compute the Ramsey numbers exactly for the remaining cases, so we only have lower and upper bounds.

1.3 Size Ramsey number

Ramsey number has been studied intensively by many mathematicians (see, for example, $[8-10])$ who decided to generalize this concept in various ways, one of which is replacing complete graphs with arbitrary graphs. We start by introducing the following notation.

Given graphs F, G and H, the notation $F \rightarrow(G, H)$ means for any red-blue edgecoloring of F, there exists a red copy of G or a blue copy of H. It can be easily seen that $R(m, n)$ in the previous section can also be defined as the smallest positive integer r such that $K_{r} \rightarrow\left(K_{m}, K_{n}\right)$.

Burr, Erdős, Faudree and Rousseau [11] defined the size Ramsey numbers of graphs G and H, denoted by $\hat{r}(G, H)$, to be the smallest positive integer k such that there exists a graph F with k edges and $F \rightarrow(G, H)$. Observe that, for any graphs G and H, $\hat{r}(G, H) \leq(\underset{2}{R(|V(G)|, V(H)| |})$. Then $\hat{r}(G, H)$ is well-defined.

We give an example of the size Ramsey numbers. We will determine the value of $\hat{r}\left(2 K_{2}, K_{3}\right)$. First, the upper bound can be found by constructing a graph G with $G \rightarrow\left(2 K_{2}, K_{3}\right)$. A graph G in Figure 1.9 has such a property and G has 6 edges. This implies that $\hat{r}\left(2 K_{2}, K_{3}\right) \leq 6$.

Conversely, we want to show that for any graph H with 5 edges, there exists a redblue edge-coloring containing neither red copies of $2 K_{2}$ nor blue copies of K_{3}. This can be shown by checking all cases as follows. We separate the cases by considering whether H contains a copy of K_{3}. If H contains no copies of K_{3}, we color all edges of H by blue. If H contains a copy of K_{3}, we color the edges of K_{3} by red, and the remaining edges are colored by blue. This implies that $\hat{r}\left(2 K_{2}, K_{3}\right) \geq 6$. Hence $\hat{r}\left(2 K_{2}, K_{3}\right)=6$.

Figure 1.9: The graph G with $G \rightarrow\left(2 K_{2}, K_{3}\right)$.

The size Ramsey numbers of many pairs of graphs are already determined, e.g, K_{m} versus K_{n} and K_{m} versus $K_{1, n}$. The size Ramsey numbers involving a matching was first considered by Burr, Erdős, Faudree, Rousseau and Schelp [12] in 1978. They showed that $\hat{r}\left(m K_{1, s}, n K_{1, t}\right)=(m+n-1)(s+t-1)$ for all natural numbers m, n, s and t. In 1981, Erdős and Faudree [13] determined the size Ramsey numbers of a matching versus several classic graphs including a path, a cycle, a complete graph and a complete bipartite graph. For instance, they proved that $\hat{r}\left(n K_{2}, P_{4}\right)=\left\lceil\frac{5 n}{2}\right\rceil$ and $\hat{r}\left(n K_{2}, P_{5}\right)=3 n+l_{n}$ where $l_{n}=0$ if n is even and $l_{n}=1$ if n is odd.

1.4 Connected size Ramsey number

The size Ramsey numbers was modified by adding connectedness to F by Assiyatun, Baskoro and Rahadjeng [14]. They defined the connected size Ramsey number of G and H, denoted by $\hat{r}_{c}(G, H)$, to be the smallest natural number k such that there exists a connected graph F with k edges and $F \rightarrow(G, H)$. Using the same bound as $\hat{r}(G, H)$, we have that $\hat{r}_{c}(G, H)$ is well-defined.

We illustrate concept for the value of $\hat{r}_{c}\left(2 K_{2}, K_{3}\right)$. We cannot apply the graph in Figure 1.9 because that graph is not connected. Therefore, we use the connected graph in Figure 1.10. This implies that $\hat{r}_{c}\left(2 K_{2}, K_{3}\right) \leq 7$.

Conversely, let H be a connected graph with 6 edges. We separate the cases by considering whether H contains a copy of K_{3}. If H contains no copies of K_{3}, we color all edges of H by blue. Suppose H contains a copy of K_{3} and we let $H^{\prime}=H-E\left(K_{3}\right)$. If H^{\prime} does not contain copies of K_{3}, we color the edges of K_{3} by red and the edges of H^{\prime}
by blue. If H^{\prime} contains a copy of K_{3}, then H must be the graph in Figure 1.11 and we can color as shown. This implies that $\hat{r}_{c}\left(2 K_{2}, K_{3}\right) \geq 7$. Hence, $\hat{r}_{c}\left(2 K_{2}, K_{3}\right)=7$.

Figure 1.10: The connected graph G with $G \rightarrow\left(2 K_{2}, K_{3}\right)$.

Figure 1.11: The edge-coloring of H containing neither red copies of $2 K_{2}$ nor blue copies of K_{3}.

Assiyatun, Baskoro and Rahadjeng [14-17] determined upper bounds for $\hat{r}_{c}\left(n K_{2}, P_{3}\right)$, $\hat{r}_{c}\left(n K_{2}, P_{4}\right), \hat{r}_{c}\left(n K_{2}, P_{5}\right), \hat{r}_{c}\left(n K_{2}, 2 P_{3}\right)$, and proved that they are sharp for small n. We are interested in the upper bound $\hat{r}_{c}\left(n K_{2}, P_{3}\right) \leq\left\lfloor\frac{5 n-1}{2}\right\rfloor$. Recently, Wang, Song, Zhang, and Zhang [18] proved that this upper bound matches the exact value. In this thesis, we give an alternative proof of this result.

Theorem 1.1. $\hat{r}_{c}\left(n K_{2}, P_{3}\right)=\left\lfloor\frac{5 n-1}{2}\right\rfloor$ for all $n \in \mathbb{N}$.

The rest of this thesis is organized as follows. In Chapter 2, we prove the main theorem. We discuss some questions regarding generalizations of the main theorem in Chapter 3.

CHAPTER II

PROOF OF THE MAIN THEOREM

It suffices to show that $\hat{r}_{c}\left(n K_{2}, P_{3}\right) \geq\left\lfloor\frac{5 n-1}{2}\right\rfloor$, i.e., for any connected graph F with at most $\left\lfloor\frac{5 n-1}{2}\right\rfloor-1$ edges, we have $F \nrightarrow\left(n K_{2}, P_{3}\right)$. In the other words, there exists a red-blue edge-coloring of F such that F contains neither red copies of $n K_{2}$ nor blue copies of P_{3}.

Recall that the matching number of G, denoted by $\nu(G)$, is the size of a maximum matching of a graph G. In this thesis, given a red-blue coloring c on G, we define the red matching number of G, denoted by $\nu_{r}^{c}(G)$, to be the size of a maximum red matching of a graph G. We use the notation $\Delta(G)$ for the maximum degree of G.

If H is a subgraph of $G, G-H$ denotes the graph with $V(G-H)=V(G)$, $E(G-H)=E(G)-E(H)$. If A is a subset of $V(G), G-A$ denotes the graph resulted by removing all vertices in A and all edges involving vertices in A. This notations will be used in our proof.

Before we begin to prove the main theorem, we give a required coloring for a path or a cycle.

Lemma 2.1. If F is a path or a cycle with k edges, then there exists a coloring c on F containing no blue copies of P_{3} with $\nu_{r}^{c}(F) \leq\left\lceil\frac{k}{3}\right\rceil$, i.e., $F \nrightarrow\left(\left(\left\lceil\frac{k}{3}\right\rceil+1\right) K_{2}, P_{3}\right)$.

For example, the path P_{6} and the cycle C_{6} can be colored c as in Figures 2.1 and 2.2, respectively, containing no blue copies of P_{3} with $\nu_{r}^{c}(H) \leq\left\lceil\frac{5}{3}\right\rceil=2$ for $H=P_{6}, C_{6}$.

N

Figure 2.1: The edge-coloring of P_{6} in Lemma 2.1.

Figure 2.2: The edge-coloring of C_{6} in Lemma 2.1.

Proof of Lemma 2.1. Suppose F is a path or a cycle with k edges. Starting from an edge incident to a leaf if F is a path, we color all edges as we walk along F by red, red, blue, red, red, blue and so on along all edges of F. Observe that F contains no blue copies of P_{3} and the size of a maximum red matching of F is at most $\left\lceil\frac{k}{3}\right\rceil$. Then $F \nrightarrow\left(\left(\left\lceil\frac{k}{3}\right\rceil+1\right) K_{2}, P_{3}\right)$.

We will introduce three lemmas that simplify the main proof as follows.
Lemma 2.2. Let G be a connected graph. Then G contains a copy of P_{3} such that $G-P_{3}$ has one non-trivial component.

Proof of Lemma 2.2. By considering a longest path $v_{1} v_{2} \ldots v_{t}$ in G, we let G_{1} be the graph consisting of the edges $v_{1} v_{2}$ and $v_{2} v_{3}$ if $N\left(v_{2}\right)=\left\{v_{1}, v_{3}\right\}$ and let G_{1} be the graph consisting of the edges $v_{1} v_{2}$ and $v_{2} u$ for some $u \in N\left(v_{2}\right) \backslash\left\{v_{1}, v_{3}\right\}$ if $N\left(v_{2}\right) \neq\left\{v_{1}, v_{3}\right\}$. Note that G_{1} is a copy of P_{3}. We will show that G_{2}, the graph obtained from G by deleting the edges of G_{1} and isolated vertices, is connected.

Claim. Let H be a connected graph with a longest path $u_{1} u_{2} \ldots u_{m}$. If $d\left(u_{1}\right) \geq 2$, then $H-u_{1} u_{2}$ is connected.

Proof. Suppose $d\left(u_{1}\right) \geq 2$. Since $u_{1} u_{2} \ldots u_{m}$ is a longest path, there exists an edge between u_{1} and u_{i} for some $i \in\{3,4, \ldots, t\}$ and so we can walk from u_{1} to any vertex in $H-u_{1} u_{2}$ through u_{i}. Hence $H-u_{1} u_{2}$ is connected.

Case 1. $N\left(v_{2}\right)=\left\{v_{1}, v_{3}\right\}$.

If $d\left(v_{1}\right)=1$, then $G_{2}=G-\left\{v_{1}, v_{2}\right\}$ is connected. We may assume that $d\left(v_{1}\right) \geq 2$. We may assume that $d\left(v_{1}\right) \geq 2$. Since $v_{1} v_{2} \ldots v_{t}$ is a longest path, there exists an edge between v_{1} and v_{i} for some $i \in\{3,4, \ldots, t\}$ and so we can walk from v_{1} to any vertex in $G_{2}=G-v_{2}$ through v_{i}. Hence G_{2} is connected.

Case 2. $N\left(v_{2}\right) \neq\left\{v_{1}, v_{3}\right\}$.

Case 2.1. $d\left(v_{1}\right)=1=d(u)$.

Then $G_{2}=G-\left\{v_{1}, u\right\}$ is connected.

Case 2.2. $d\left(v_{1}\right) \geq 2$ and $d(u)=1$.

By applying the claim with $G-u$ and a longest path $v_{1} v_{2} \ldots v_{t}$ with $d\left(v_{1}\right) \geq 2$, we have that $G_{2}=G-u-v_{1} v_{2}$ is connected.

Case 2.3. $d\left(v_{1}\right)=1$ and $d(u) \geq 2$.

Similar to the Case 2.2.

Case 2.4. $d\left(v_{1}\right) \geq 2$ and $d(u) \geq 2$.

By applying the claim with G and a longest path $v_{1} v_{2} \ldots v_{t}$ with $d\left(v_{1}\right) \geq 2$, we have that $G-v_{1} v_{2}$ is connected. By applying the claim with $G-v_{1} v_{2}$ and the longest path $u v_{2} \ldots v_{t}$ with $d(u) \geq 2$, we have that $G_{2}=G-v_{1} v_{2}-u v_{2}$ is connected.

Lemma 2.3. Let $n \in \mathbb{N}$. Let G be a connected graph with $e(G)=5 m+l \leq\left\lfloor\frac{5 n-1}{2}\right\rfloor-4$ where $0 \leq l \leq 4$. Suppose that for all $k<n$ and any connected graph H with at most $\left\lfloor\frac{5 k-1}{2}\right\rfloor-1$ edges, $H \nrightarrow\left(k K_{2}, P_{3}\right)$. Then $G \nrightarrow\left(\left(2 m+\left\lfloor\frac{l}{2}\right\rfloor+1\right) K_{2}, P_{3}\right)$.

Proof of Lemma 2.3. The statement that for all $k<n$ and any connected graph H with at most $\left\lfloor\frac{5 k-1}{2}\right\rfloor-1$ edges, $H \nrightarrow\left(k K_{2}, P_{3}\right)$ is equivalent to $\hat{r}_{c}\left(k K_{2}, P_{3}\right)>\left\lfloor\frac{5 k-1}{2}\right\rfloor-1$.

Since

$$
2 m+\left\lfloor\frac{l}{2}\right\rfloor+1 \leq \frac{2}{5}\left(\frac{5 n-9}{2}-l\right)+\frac{l}{2}+1=n+\frac{l}{10}-\frac{4}{5}<n
$$

we have

$$
\begin{aligned}
\hat{r}_{c}\left(\left(2 m+1+\left\lfloor\frac{l}{2}\right\rfloor\right) K_{2}, P_{3}\right) & \geq\left\lfloor\frac{5\left(2 m+1+\left\lfloor\frac{l}{2}\right\rfloor\right)-1}{2}\right\rfloor \\
& =\left\lfloor 5 m+\frac{4}{2}+\frac{5}{2}\left\lfloor\frac{l}{2}\right\rfloor\right\rfloor \\
& =5 m+2+\frac{3}{4} l \\
& >5 m+l
\end{aligned}
$$

for all $l=0,1,2,3,4$. Therefore, there exists a coloring c on G containing no blue copies of P_{3} with $\nu_{r}^{c}(G) \leq 2 m+\left\lfloor\frac{l}{2}\right\rfloor$.

Lemma 2.4. Let $n \in \mathbb{N}$. Let G be a connected graph with an edge uv where v is a leaf and $e(G)=5 m+5 \leq\left\lfloor\frac{5 n-1}{2}\right\rfloor-2$. Suppose that for all $k<n$ and any connected graph H with at most $\left\lfloor\frac{5 k-1}{2}\right\rfloor-1$ edges, $H \nrightarrow\left(k K_{2}, P_{3}\right)$. Then $G \nrightarrow\left((2 m+3) K_{2}, P_{3}\right)$ and uv is colored by red.

Proof of Lemma 2.4. We will induct on m.

For $m=0$, let G be a connected graph with an edge $u v$ where v is a leaf and $e(G)=5$. Clearly, $\nu(G) \leq 3$. If $\nu(G) \leq 2$, all edges are colored by red and so the size of a maximum red matching of G is at most 2 . We may assume that $\nu(G)=3$ with a
matching $\left\{e_{1}, e_{2}, e_{3}\right\}$. By connectedness, the two remaining edges connect between e_{1}, e_{2}, and e_{3}. Then $u v \in\left\{e_{1}, e_{2}, e_{3}\right\}$. Thus we color $e \in\left\{e_{1}, e_{2}, e_{3}\right\} \backslash\{u v\}$ by blue and the remaining edges by red. Hence there exists a coloring c containing no blue copies of P_{3} with $\nu_{r}^{c}(G) \leq 2$.

For $m \geq 1$, let G be a connected graph with an edge $u v$ where v is a leaf and $e(G)=5 m+5$. Let $u^{\prime} \in N(u) \backslash\{v\}$. We will consider the graph $G^{\prime}=G-\left\{u u^{\prime}, u v\right\}$ ignoring any isolated vertices. Then G^{\prime} contains at most two components. Note that G^{\prime} has $5 m+3$ edges.

Case A. G^{\prime} is connected.

Since $e\left(G^{\prime}\right)=e(G)-2 \leq\left\lfloor\frac{5 n-1}{2}\right\rfloor-4$, by Lemma 2.3, there exists a coloring c^{\prime} on G^{\prime} containing no blue copies of P_{3} with $\nu_{r}^{c^{\prime}}\left(G^{\prime}\right) \leq 2 m+1$. Coloring $u u^{\prime}$ and $u v$ by red gives the coloring c containing no blue copies of P_{3} with $\nu_{r}^{c}(G) \leq 2 m+2$.

Case B. G^{\prime} contains two components.

Let C_{1}, C_{2} be the components in G^{\prime} with $e\left(C_{i}\right)=5 m_{i}+l_{i}$ for all $i=1,2$ where $4 \geq l_{1} \geq l_{2} \geq 0$. Then $5 m+3=e\left(G^{\prime}\right)=e\left(C_{1}\right)+e\left(C_{2}\right)=5\left(m_{1}+m_{2}\right)+\left(l_{1}+l_{2}\right)$. Thus, there are two possibilities for $l_{1}+l_{2}$ as follows.

Case B1. $l_{1}+l_{2}=3$.

In this case, we have $m_{1}+m_{2}=m$. There are only two subcases, $l_{1}=3, l_{2}=0$ and $l_{1}=2, l_{2}=1$. Since $e\left(C_{i}\right)=5 m_{i}+l_{i} \leq e(G)-3 \leq\left\lfloor\frac{5 n-1}{2}\right\rfloor-4$ for $i=1,2$, by applying Lemma 2.3 to C_{1} and C_{2}, there exist colorings c_{1} and c_{2} on C_{1} and C_{2} containing no blue copies of P_{3} with $\nu_{r}^{c_{1}}\left(C_{1}\right) \leq 2 m_{1}+1$ and $\nu_{r}^{c_{2}}\left(C_{2}\right) \leq 2 m_{2}$, respectively. Therefore, there exists a coloring c containing no blue copies of P_{3} with $\nu_{r}^{c}\left(G^{\prime}\right) \leq 2 m_{1}+1+2 m_{2}=2 m+1$ and so we are done as in Case A.

Case B2. $l_{1}+l_{2}=8$.

We have $l_{1}=l_{2}=4$ since $4 \geq l_{1} \geq l_{2}$, and so $m_{1}+m_{2}=m-1$. Without loss of generality, let $u^{\prime} \in V\left(C_{1}\right)$ and $u \in V\left(C_{2}\right)$. By applying the induction hypothesis to $C_{1} \cup\left\{u u^{\prime}\right\}$ and $C_{2} \cup\{u v\}$, there exist colorings c_{1} and c_{2} on $C_{1} \cup\left\{u u^{\prime}\right\}$ and $C_{2} \cup\{u v\}$, respectively, containing no blue copies of P_{3} with $\nu_{r}^{c_{1}}\left(C_{1}\right) \leq 2 m_{1}+2$ and $\nu_{r}^{c_{2}}\left(C_{2}\right) \leq$ $2 m_{2}+2$, and $u u^{\prime}, u v$ are colored by red. Hence there exists a coloring c containing no blue copies of P_{3} with $\nu_{r}^{c}(G) \leq 2 m_{1}+2+2 m_{2}+2=2 m+2$ and $u v$ is colored by red.

We are now ready to prove the main theorem.

Proof of Theorem 1.1. We will use induction on n. For $n=1$, let F be a connected graph with one edge. Then we color the edge by blue and so we have $F \nrightarrow\left(K_{2}, P_{3}\right)$.

Let $n \geq 2$ be such that, for all $k<n$ and any connected graph G with at most $\left\lfloor\frac{5 k-1}{2}\right\rfloor-1$ edges, we have $G \nrightarrow\left(k K_{2}, P_{3}\right)$. First, we suppose that n is even. Let F be a connected graph with at most $\frac{5 n}{2}-2$ edges. We need to show that $F \nrightarrow\left(n K_{2}, P_{3}\right)$.

By Lemma 2.2, F contains a copy of P_{3} such that $F-P_{3}$ has one non-trivial component, say F^{\prime} with

$$
e\left(F^{\prime}\right) \leq \frac{5 n}{2}-4=\left\lfloor\left.\frac{5(n-1)-1}{2} \right\rvert\,-1 .\right.
$$

Thus, by applying the induction hypothesis to F^{\prime}, we have $F^{\prime} \nrightarrow\left((n-1) K_{2}, P_{3}\right)$, that is, there exists a coloring c^{\prime} on F^{\prime} containing no blue copies of P_{3} with $\nu_{r}^{c^{\prime}}\left(F^{\prime}\right) \leq n-2$. We color F^{\prime} by such a coloring and color all edges of the copy of P_{3} by red. Then there exists a coloring c on F containing no blue copies of P_{3} with $\nu_{r}^{c}\left(F^{\prime}\right) \leq n-1$. Hence $F \nrightarrow\left(n K_{2}, P_{3}\right)$.

Now we may assume that n is odd. Let F be a connected graph with at most $\frac{5 n-3}{2}$ edges. We need to show that $F \nrightarrow\left(n K_{2}, P_{3}\right)$. Without loss of generality, $e(F)=\frac{5 n-3}{2}$ since any subgraph F^{\prime} of F will also satisfy $F^{\prime} \nrightarrow\left(n K_{2}, P_{3}\right)$.

We will delete a vertex of F whose degree is at least three, and use the induction
hypothesis for the remaining edges. If $\Delta(F) \leq 2$, then F is a path or a cycle and so we are done by Lemma 2.1.

So we may assume that $\Delta(F) \geq 3$. Let $v \in V(F)$ with $d(v) \geq 3$. Suppose that $F-v$ contains p components, say $C_{1}, C_{2}, \ldots, C_{p}$ with $e\left(C_{i}\right)=5 m_{i}+l_{i}$ where $0 \leq l_{i} \leq 4$ for all $i \in\{1,2, \ldots, p\}$.

Since $e\left(C_{i}\right)=5 m_{i}+l_{i} \leq e(F)-3=\left\lfloor\frac{5 n-1}{2}\right\rfloor-4$, by applying Lemma 2.3 to C_{i}, there exists a coloring c_{i} on C_{i} containing no blue copies of P_{3} with $\nu_{r}^{c_{i}}\left(C_{i}\right) \leq 2 m_{i}+\left\lfloor\frac{l_{i}}{2}\right\rfloor$ for all $i \in\{1,2, \ldots, p\}$. Then these give a coloring c on F containing no blue copies of P_{3} with

$$
\begin{aligned}
\nu_{r}^{c}(F) \leq \sum_{i=1}^{p}\left(2 m_{i}+\left\lfloor\frac{l_{i}}{2}\right\rfloor\right)+1 & \leq \frac{2}{5}\left(e(F)-d(v)-\sum_{i=1}^{p} l_{i}\right)+\sum_{i=1}^{p}\left\lfloor\frac{l_{i}}{2}\right\rfloor+1, \\
& =n+\frac{2}{5}\left(1-d(v)-\sum_{i=1}^{p} l_{i}\right)+\sum_{i=1}^{p}\left\lfloor\frac{l_{i}}{2}\right\rfloor
\end{aligned}
$$

since $\sum_{i=1}^{p}\left(5 m_{i}+l_{i}\right)+d(v)=e(F)=\frac{5 n-3}{2}$.

We have $\nu_{r}^{c}(F)<n$, if $\frac{2}{5}\left(1-d(v)-\sum_{i=1}^{p} l_{i}\right)+\sum_{i=1}^{p}\left\lfloor\frac{l_{i}}{2}\right\rfloor<0$. Equivalently, we are done if $d(v)>1+\sum_{i=1}^{p}\left(\frac{5}{2}\left\lfloor\frac{l_{i}}{2}\right\rfloor-l_{i}\right)$.

We may assume that $d(v) \leq 1+\sum_{i=1}^{p}\left(\frac{5}{2}\left\lfloor\frac{l_{i}}{2}\right\rfloor-l_{i}\right)$. Observe that

$$
\frac{5}{2}\left\lfloor\frac{l}{2}\right\rfloor-l= \begin{cases}0 & \text { if } l=0 \\ -1 & \text { if } l=1 \\ \frac{1}{2} & \text { if } l=2 \\ -\frac{1}{2} & \text { if } l=3 \\ 1 & \text { if } l=4\end{cases}
$$

Then

$$
p \leq d(v) \leq 1+\sum_{i=1}^{p}\left(\frac{5}{2}\left\lfloor\frac{l_{i}}{2}\right\rfloor-l_{i}\right) \leq 1+p
$$

Case. $d(v)=p+1$.

This is an equality for the above inequality on the right. This implies that

$$
\frac{5}{2}\left\lfloor\frac{l_{i}}{2}\right\rfloor-l_{i}=1 .
$$

Indeed, $l_{i}=4$ for all $i \in\{1,2, \ldots, p\}$. Since $p=d(v)-1 \geq 2$, there exists $i \in\{1,2, \ldots, p\}$ with exactly one edge between v and C_{i}. Then we are done by the following claim.

Claim. If there exists $i \in\{1,2, \ldots, p\}$ with $l_{i}=4$ such that there is exactly one edge e between v and C_{i}, then there exists a coloring c on F containing no blue copies of P_{3} with $\nu_{r}^{c}(F) \leq n-1$.

Proof of Claim. Since $e\left(C_{i} \cup\{e\}\right)=5 m_{i}+5 \leq e(F)-2=\left\lfloor\frac{5 n-1}{2}\right\rfloor-2$, by applying Lemma 2.4 to $C_{i} \cup\{e\}$, then there exists a coloring c_{i} on $C_{i} \cup\{e\}$ containing no blue copies of P_{3} with $\nu_{r}^{c_{i}}\left(C_{i} \cup\{e\}\right) \leq 2 m_{i}+2$ and e is colored by red. Since

$$
e\left(F-C_{i}\right)=e(F)-\left(5 m_{i}+5\right)=5\left(\frac{n-3}{2}-m_{i}\right)-5<\left\lfloor\frac{5 n-1}{2}\right\rfloor-4,
$$

by applying Lemma 2.3 to $F-C_{i}$, there exists a coloring c^{\prime} on $F-C_{i}$ containing no blue copies of P_{3} with $\nu_{r}^{c^{\prime}}\left(F-C_{i}\right) \leq 2\left(\frac{n-3}{2}-m_{i}\right)$. Thus there exists a coloring c containing no blue copies of P_{3} with $\nu_{r}^{c}(F) \leq 2\left(\frac{n-3}{2}-m_{i}\right)+\left(2 m_{i}+2\right)=n-1$.

Case. $d(v)=p$.

This case means C_{i} has exactly one edge incident to v for each $i \in\{1,2, \ldots, p\}$. If there exists $i \in\{1,2, \ldots, p\}$ with $l_{i}=4$, we are done by the Claim. We may assume that $l_{i} \leq 3$ for all $i \in\{1,2, \ldots, p\}$. Then $d(v) \leq 1+\sum_{i=1}^{p}\left(\frac{5}{2}\left\lfloor\frac{l_{i}}{2}\right\rfloor-l_{i}\right) \leq 1+\frac{p}{2} \leq 1+\frac{d(v)}{2}$ and so $d(v) \leq 2$, we get a contradiction.

CHAPTER III

CONCLUSIONS

We give an alternative proof of the result that $\hat{r}_{c}\left(n K_{2}, P_{3}\right)=\left\lfloor\frac{5 n-1}{2}\right\rfloor$ for all $n \geq 1$, which was first proved by Wang, Song, Zhang, and Zhang. In contrast to their proof which used the concept of block along with some techniques in graph theory, our proof does not require any prerequisite. The problem that we considered can be generalized in various ways as follows.

First, we may consider $\hat{r}_{c}\left(n K_{2}, P_{m}\right)$. Assiyatun, Baskoro and Rahadjeng [17] proved that $\hat{r}_{c}\left(n K_{2}, P_{4}\right) \leq 3 n+l_{n}$ where $l_{n}=-1$ if n is even and $l_{n}=0$ if n is odd. They proved that this upper bound is sharp for some small n. Then they conjecture that the upper bound matches the exact value as follows.

Conjecture 3.1. For $n \geq 1, \hat{r}_{c}\left(n K_{2}, P_{4}\right)=3 n+l_{n}$ where $l_{n}=-1$ if n is even, and $l_{n}=0$ if n is odd.

Vito, Nabila, Safitri, and Silaban [19] proved that $\hat{r}_{c}\left(n K_{2}, P_{m}\right) \leq\left\lfloor\frac{(m+2) n-1}{2}\right\rfloor+l_{n}$ where $l_{n}=0$ if n is even, and $l_{n}=1$ if n is odd. They proved that the upper bound is sharp for $n=2$. This thesis shows that the upper bound is sharp for $m=3$. Thus, they asked whether all values above match the exact value generalizing Conjecture 3.1 as follows.

Problem 3.2. For $n \geq 1$ and $m \geq 3$, is $\hat{r}_{c}\left(n K_{2}, P_{m}\right)=\left\lfloor\frac{(m+2) n-1}{2}\right\rfloor+l_{n}$ where $l_{n}=0$ if n is even, and $l_{n}=1$ if n is odd?

On the other hand, if we view P_{3} as $K_{1,2}$, we may consider $\hat{r}_{c}\left(n K_{2}, K_{1, m}\right)$. Assiyatun, Baskoro and Rahadjeng [14] proved that $\hat{r}_{c}\left(n K_{2}, K_{1, m}\right) \leq n m+n-1$. We conjecture that the upper bound matches the exact value as follows.

Conjecture 3.3. For $n \geq 1$ and $m \geq 3, \hat{r}_{c}\left(n K_{2}, K_{1, m}\right)=n m+n-1$.

REFERENCES

[1] D. B. West, Introduction to Graph Theory. Prentice Hall, 2 ed., September 2000.
[2] F. P. Ramsey, "On a problem of formal logic," Classic Papers in Combinatorics, pp. 1-24, 1987.
[3] B. D. McKay and Z. K. Min, "The value of the ramsey number r(3, 8)," Journal of Graph Theory, vol. 16, no. 1, pp. 99-105, 1992.
[4] B. D. McKay and S. P. Radziszowski, "R(4, 5) = 25," Journal of Graph Theory, vol. 19, no. 3, pp. 309-322, 1995.
[5] R. E. Greenwood and A. M. Gleason, "Combinatorial relations and chromatic graphs," Canadian Journal of Mathematics, vol. 7, pp. 1-7, 1955.
[6] P. Gianni and B. Trager, "Square-free algorithms in positive characteristic," Applicable Algebra in Engineering, Communication and Computing, vol. 7, no. 1, pp. 1-14, 1996.
[7] J. Kalbfleisch, "Construction of special edge-chromatic graphs," Canadian Mathematical Bulletin, vol. 8, no. 5, pp. 575-584, 1965.
[8] S. Radziszowski, "Small ramsey numbers," The electronic journal of combinatorics, vol. 1000, pp. DS1-Aug, 2011.
[9] N. Alon, M. Bucić, T. Kalvari, E. Kuperwasser, and T. Szabó, "List ramsey numbers," Journal of Graph Theory, vol. 96, no. 1, pp. 109-128, 2021.
[10] P. Erdös, "Remarks on a theorem of ramsey," Bull. Research Council of Israel, Section F, vol. 7, 1957.
[11] P. Erdös, R. J. Faudree, C. C. Rousseau, and R. H. Schelp, "The size Ramsey number," Periodica Mathematica Hungarica, vol. 9, no. 1-2, pp. 145-161, 1978.
[12] S. Burr, P. Erdös, and R. Schelp, Ramsey-minimal graphs for multiple copies. Department, Univ., 1978.
[13] P. Erdös and R. J. Faudree, "Size Ramsey numbers involving matchings," in Finite and Infinite Sets, pp. 247-264, Elsevier, 1984.
[14] B. Rahadjeng, E. T. Baskoro, and H. Assiyatun, "Connected size Ramsey numbers of matchings and stars," AIP Conference Proceedings, vol. 1707, no. 1, p. 020015, 2016.
[15] H. Assiyatun, B. Rahadjeng, and E. T. Baskoro, "The connected size Ramsey number for matchings versus small disconnected graphs," Electron. J. Graph Theory Appl., vol. 7, no. 1, pp. 113-119, 2019.
[16] B. Rahadjeng, E. T. Baskoro, and H. Assiyatun, "Connected size Ramsey number for matchings vs. small stars or cycles," Proceedings-Mathematical Sciences, vol. 127, pp. 787-792, 2017.
[17] B. Rahadjeng, E. T. Baskoro, and H. Assiyatun, "Connected size ramsey numbers for matchings versus cycles or paths," Procedia Computer Science, vol. 74, pp. 32-37, 2015. "The 2nd International Conference of Graph Theory and Information Security".
[18] S. Wang, R. Song, Y. Zhang, and Y. Zhang, "Connected size Ramsey numbers of matchings versus a small path or cycle," arXiv preprint arXiv:2205.03965, 2022.
[19] V. Vito, A. C. Nabila, E. Safitri, and D. R. Silaban, "The size ramsey and connected size ramsey numbers for matchings versus paths," Journal of Physics: Conference Series, vol. 1725, p. 012098, jan 2021.

BIOGRAPHY

Name	Mr. Jirawat Mungtumklang
Date of Birth	19 November 1996
Place of Birth	Bangkok, Thailand
Educations	B.Sc. (Mathematics), Chulalongkorn University, 2015-2018
Scholarships	M.Sc. (Mathematics), Chulalongkorn University, 2019-Present
Publications	
- Teeradej Kittipassorn and Jirawat Mungtumklang, The connected size Ramsey num-	
ber of a matching versus a path on three vertices, Proceeding of Annual Pure and Applied	
Mathematics (APAM) Conference 2023, pp. 62 - 68. 2023.	

