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CHAPTER I

INTRODUCTION

1.1 Background on graph theory

Throughout this thesis, a graph G consists of a set of vertices, denoted by V (G),

and a set of edges that connect pairs of vertices, denoted by E(G). Moreover, we write

e(G) for the number of edges of graph G. We only consider simple graphs in this thesis.

For example, let G be a graph in Figure 1.1. Then V (G) = {v1, v2, v3, v4} and

E(G) = {v1v2, v1v3}.

Figure 1.1: The graph G.

There are many types of graphs, however, in this thesis, we will focus on the fol-

lowing basic graphs.

A path of order n, denoted by Pn, is a graph with V (Pn) = {v1, v2, . . . , vn} and

E(Pn) = {v1v2, v2v3, . . . , vn−1vn}. A cycle of order n, denoted by Cn, is a graph with

V (Cn) = {v1, v2, 4 . . . , vn} and E(Cn) = {v1v2, v2v3, . . . , vn−1vn, vnv1}.

For example, the path P4 and the cycle C5 are shown in Figures 1.2 and 1.3.
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Figure 1.2: The path P4.

Figure 1.3: The cycle C5.

A complete graph, denoted by Kn, is a graph consisting of n vertices such that any

two vertices are adjacent. A graph G is said to be bipartite if its vertices can be partitioned

into two parts so that all edges are between the two parts. A complete bipartite graph,

denoted by Km,n, is a bipartite graph with two parts {u1, u2, . . . , um} and {v1, v2, . . . , vn}

where ui and vj are adjacent for all i ∈ [m] and j ∈ [n].

For example, the complete graph K4, the graph G, and the complete bipartite graph

K3,2 are shown in Figures 1.4, 1.5, and 1.6, respectively.

Figure 1.4: The complete graph K4.
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Figure 1.5: The bipartite graph G.

Figure 1.6: The complete bipartite graph K3,2.

A matching of size n, denoted by nK2, is a graph consisting of 2n vertices and n

edges such that no two edges share common vertices. For example, the matching 4K2 is

shown in Figure 1.7. In general, we write nG for a graph consisting of n disjoint copies

of a graph G.

Figure 1.7: The matching 4K2.

A graph is said to be connected if for any two vertices, there exists a path between

them. Observe that a path and a cycle are connected, while the graphs in Figures 1.1

and 1.7 are disconnected.
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Interested readers can further investigate basic definitions and results in graph

theory in West [1].

1.2 Ramsey number

Ramsey theory is a branch in graph theory concerning colorings on the edges of

complete graphs.

We define R(m,n) to be the minimum positive integer r such that for any red-blue

edge-coloring of Kr, there exists a red copy of Km or a blue copy of Kn. This number is

called a Ramsey number. Ramsey [2] showed that the Ramsey numbers R(m,n) are well

defined.

First, we start with some trivial facts about the Ramsey numbers. Observe that,

for any positive integers m and n, we have R(m,n) = R(n,m) and R(2, n) = n.

The easiest non-trivial value of the Ramsey numbers is R(3, 3) = 6. Indeed, we can

color the edges of the K5 as shown in Figure 1.8. The edge-coloring contains neither red

copies of K3 nor blue copies of K3, thus R(3, 3) > 5. Conversely, it can be shown by the

pigeonhole principle that for any red-blue edge-coloring on K6, there exists a red copy of

K3 or a blue copy of K3.

Figure 1.8: The edge-coloring of K5 containing neither red copies of K3 nor blue copies
of K3.

Currently, we only know the exact values of the Ramsey numbers for some small m

and n. For example, R(3, 4) = 9, R(3, 5) = 14, R(4, 4) = 18 and R(4, 5) = 25 (see [3–7]).
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It is extremely difficult to compute the Ramsey numbers exactly for the remaining cases,

so we only have lower and upper bounds.

1.3 Size Ramsey number

Ramsey number has been studied intensively by many mathematicians (see, for

example, [8–10]) who decided to generalize this concept in various ways, one of which is

replacing complete graphs with arbitrary graphs. We start by introducing the following

notation.

Given graphs F , G and H, the notation F → (G,H) means for any red-blue edge-

coloring of F , there exists a red copy of G or a blue copy of H. It can be easily seen that

R(m,n) in the previous section can also be defined as the smallest positive integer r such

that Kr → (Km,Kn).

Burr, Erdős, Faudree and Rousseau [11] defined the size Ramsey numbers of graphs

G and H, denoted by r̂(G,H), to be the smallest positive integer k such that there

exists a graph F with k edges and F → (G,H). Observe that, for any graphs G and H,

r̂(G,H) ≤
(R(|V (G)|,|V (H)|)

2

)
. Then r̂(G,H) is well-defined.

We give an example of the size Ramsey numbers. We will determine the value

of r̂(2K2,K3). First, the upper bound can be found by constructing a graph G with

G → (2K2,K3). A graph G in Figure 1.9 has such a property and G has 6 edges. This

implies that r̂(2K2,K3) ≤ 6.

Conversely, we want to show that for any graph H with 5 edges, there exists a red-

blue edge-coloring containing neither red copies of 2K2 nor blue copies of K3. This can

be shown by checking all cases as follows. We separate the cases by considering whether

H contains a copy of K3. If H contains no copies of K3, we color all edges of H by blue.

If H contains a copy of K3, we color the edges of K3 by red, and the remaining edges are

colored by blue. This implies that r̂(2K2,K3) ≥ 6. Hence r̂(2K2,K3) = 6.
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Figure 1.9: The graph G with G → (2K2,K3).

The size Ramsey numbers of many pairs of graphs are already determined, e.g, Km

versus Kn and Km versus K1,n. The size Ramsey numbers involving a matching was first

considered by Burr, Erdős, Faudree, Rousseau and Schelp [12] in 1978. They showed that

r̂(mK1,s, nK1,t) = (m+ n− 1)(s+ t− 1) for all natural numbers m,n, s and t. In 1981,

Erdős and Faudree [13] determined the size Ramsey numbers of a matching versus several

classic graphs including a path, a cycle, a complete graph and a complete bipartite graph.

For instance, they proved that r̂(nK2, P4) =
⌈
5n
2

⌉
and r̂(nK2, P5) = 3n+ ln where ln = 0

if n is even and ln = 1 if n is odd.

1.4 Connected size Ramsey number

The size Ramsey numbers was modified by adding connectedness to F by Assiyatun,

Baskoro and Rahadjeng [14]. They defined the connected size Ramsey number of G and

H, denoted by r̂c(G,H), to be the smallest natural number k such that there exists a

connected graph F with k edges and F → (G,H). Using the same bound as r̂(G,H), we

have that r̂c(G,H) is well-defined.

We illustrate concept for the value of r̂c(2K2,K3). We cannot apply the graph in

Figure 1.9 because that graph is not connected. Therefore, we use the connected graph

in Figure 1.10. This implies that r̂c(2K2,K3) ≤ 7.

Conversely, let H be a connected graph with 6 edges. We separate the cases by

considering whether H contains a copy of K3. If H contains no copies of K3, we color all

edges of H by blue. Suppose H contains a copy of K3 and we let H ′ = H − E(K3). If

H ′ does not contain copies of K3, we color the edges of K3 by red and the edges of H ′
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by blue. If H ′ contains a copy of K3, then H must be the graph in Figure 1.11 and we

can color as shown. This implies that r̂c(2K2,K3) ≥ 7. Hence, r̂c(2K2,K3) = 7.

Figure 1.10: The connected graph G with G → (2K2,K3).

Figure 1.11: The edge-coloring of H containing neither red copies of 2K2 nor blue
copies of K3.

Assiyatun, Baskoro and Rahadjeng [14–17] determined upper bounds for r̂c (nK2, P3),

r̂c (nK2, P4), r̂c (nK2, P5), r̂c (nK2, 2P3), and proved that they are sharp for small n. We

are interested in the upper bound r̂c (nK2, P3) ≤
⌊
5n−1

2

⌋
. Recently, Wang, Song, Zhang,

and Zhang [18] proved that this upper bound matches the exact value. In this thesis, we

give an alternative proof of this result.

Theorem 1.1. r̂c (nK2, P3) =
⌊
5n−1

2

⌋
for all n ∈ N.

The rest of this thesis is organized as follows. In Chapter 2, we prove the main

theorem. We discuss some questions regarding generalizations of the main theorem in

Chapter 3.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

PROOF OF THE MAIN THEOREM

It suffices to show that r̂c(nK2, P3) ≥
⌊
5n−1

2

⌋
, i.e., for any connected graph F with

at most
⌊
5n−1

2

⌋
− 1 edges, we have F ! (nK2, P3). In the other words, there exists a

red-blue edge-coloring of F such that F contains neither red copies of nK2 nor blue copies

of P3.

Recall that the matching number of G, denoted by ν(G), is the size of a maximum

matching of a graph G. In this thesis, given a red-blue coloring c on G, we define the red

matching number of G, denoted by νcr(G), to be the size of a maximum red matching of

a graph G. We use the notation ∆(G) for the maximum degree of G.

If H is a subgraph of G, G − H denotes the graph with V (G − H) = V (G),

E(G−H) = E(G)− E(H). If A is a subset of V (G), G−A denotes the graph resulted

by removing all vertices in A and all edges involving vertices in A. This notations will be

used in our proof.

Before we begin to prove the main theorem, we give a required coloring for a path

or a cycle.

Lemma 2.1. If F is a path or a cycle with k edges, then there exists a coloring c on F

containing no blue copies of P3 with νcr(F ) ≤
⌈
k
3

⌉
, i.e., F !

(
(
⌈
k
3

⌉
+ 1)K2, P3

)
.

For example, the path P6 and the cycle C6 can be colored c as in Figures 2.1 and

2.2, respectively, containing no blue copies of P3 with νcr(H) ≤
⌈
5
3

⌉
= 2 for H = P6, C6.
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Figure 2.1: The edge-coloring of P6 in Lemma 2.1.

4

Figure 2.2: The edge-coloring of C6 in Lemma 2.1.

Proof of Lemma 2.1. Suppose F is a path or a cycle with k edges. Starting from an

edge incident to a leaf if F is a path, we color all edges as we walk along F by red,

red, blue, red, red, blue and so on along all edges of F . Observe that F contains no

blue copies of P3 and the size of a maximum red matching of F is at most
⌈
k
3

⌉
. Then

F !
(
(
⌈
k
3

⌉
+ 1)K2, P3

)
.

We will introduce three lemmas that simplify the main proof as follows.

Lemma 2.2. Let G be a connected graph. Then G contains a copy of P3 such that G−P3

has one non-trivial component.

Proof of Lemma 2.2. By considering a longest path v1v2 . . . vt in G, we let G1 be the

graph consisting of the edges v1v2 and v2v3 if N(v2) = {v1, v3} and let G1 be the graph

consisting of the edges v1v2 and v2u for some u ∈ N(v2) \ {v1, v3} if N(v2) &= {v1, v3}.

Note that G1 is a copy of P3. We will show that G2, the graph obtained from G by

deleting the edges of G1 and isolated vertices, is connected.
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Claim. Let H be a connected graph with a longest path u1u2 . . . um. If d(u1) ≥ 2, then

H − u1u2 is connected.

Proof. Suppose d(u1) ≥ 2. Since u1u2 . . . um is a longest path, there exists an edge

between u1 and ui for some i ∈ {3, 4, . . . , t} and so we can walk from u1 to any vertex in

H − u1u2 through ui. Hence H − u1u2 is connected.

Case 1. N(v2) = {v1, v3}.

If d(v1) = 1, then G2 = G− {v1, v2} is connected. We may assume that d(v1) ≥ 2.

We may assume that d(v1) ≥ 2. Since v1v2 . . . vt is a longest path, there exists an edge

between v1 and vi for some i ∈ {3, 4, . . . , t} and so we can walk from v1 to any vertex in

G2 = G− v2 through vi. Hence G2 is connected.

Case 2. N(v2) &= {v1, v3}.

Case 2.1. d(v1) = 1 = d(u).

Then G2 = G− {v1, u} is connected.

Case 2.2. d(v1) ≥ 2 and d(u) = 1.

By applying the claim with G− u and a longest path v1v2 . . . vt with d(v1) ≥ 2, we

have that G2 = G− u− v1v2 is connected.

Case 2.3. d(v1) = 1 and d(u) ≥ 2.

Similar to the Case 2.2.

Case 2.4. d(v1) ≥ 2 and d(u) ≥ 2.

By applying the claim with G and a longest path v1v2 . . . vt with d(v1) ≥ 2, we

have that G − v1v2 is connected. By applying the claim with G − v1v2 and the longest

path uv2 . . . vt with d(u) ≥ 2, we have that G2 = G− v1v2 − uv2 is connected.
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Lemma 2.3. Let n ∈ N. Let G be a connected graph with e(G) = 5m+ l ≤
⌊
5n−1

2

⌋
− 4

where 0 ≤ l ≤ 4. Suppose that for all k < n and any connected graph H with at most
⌊
5k−1
2

⌋
− 1 edges, H ! (kK2, P3). Then G !

(
(2m+

⌊
l
2

⌋
+ 1)K2, P3

)
.

Proof of Lemma 2.3. The statement that for all k < n and any connected graph H with

at most
⌊
5k−1
2

⌋
− 1 edges, H ! (kK2, P3) is equivalent to r̂c(kK2, P3) >

⌊
5k−1
2

⌋
− 1.

Since

2m+

⌊
l

2

⌋
+ 1 ≤ 2

5

(
5n− 9

2
− l

)
+

l

2
+ 1 = n+

l

10
− 4

5
< n,

we have

r̂c

((
2m+ 1 +

⌊
l

2

⌋)
K2, P3

)
≥
⌊
5(2m+ 1 +

⌊
l
2

⌋
)− 1

2

⌋

=

⌊
5m+

4

2
+

5

2

⌊
l

2

⌋⌋

= 5m+ 2 +
3

4
l

> 5m+ l

for all l = 0, 1, 2, 3, 4. Therefore, there exists a coloring c on G containing no blue copies

of P3 with νcr(G) ≤ 2m+
⌊
l
2

⌋
.

Lemma 2.4. Let n ∈ N. Let G be a connected graph with an edge uv where v is a leaf

and e(G) = 5m + 5 ≤
⌊
5n−1

2

⌋
− 2. Suppose that for all k < n and any connected graph

H with at most
⌊
5k−1
2

⌋
− 1 edges, H ! (kK2, P3). Then G ! ((2m+ 3)K2, P3) and uv

is colored by red.

Proof of Lemma 2.4. We will induct on m.

For m = 0, let G be a connected graph with an edge uv where v is a leaf and

e(G) = 5. Clearly, ν(G) ≤ 3. If ν(G) ≤ 2, all edges are colored by red and so the size

of a maximum red matching of G is at most 2. We may assume that ν(G) = 3 with a
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matching {e1, e2, e3}. By connectedness, the two remaining edges connect between e1,

e2, and e3. Then uv ∈ {e1, e2, e3}. Thus we color e ∈ {e1, e2, e3} \ {uv} by blue and the

remaining edges by red. Hence there exists a coloring c containing no blue copies of P3

with νcr(G) ≤ 2.

For m ≥ 1, let G be a connected graph with an edge uv where v is a leaf and

e(G) = 5m + 5. Let u′ ∈ N(u) \ {v}. We will consider the graph G′ = G − {uu′, uv}

ignoring any isolated vertices. Then G′ contains at most two components. Note that G′

has 5m+ 3 edges.

Case A. G′ is connected.

Since e(G′) = e(G) − 2 ≤
⌊
5n−1

2

⌋
− 4, by Lemma 2.3, there exists a coloring c′ on

G′ containing no blue copies of P3 with νc
′

r (G
′) ≤ 2m + 1. Coloring uu′ and uv by red

gives the coloring c containing no blue copies of P3 with νcr(G) ≤ 2m+ 2.

Case B. G′ contains two components.

Let C1, C2 be the components in G′ with e(Ci) = 5mi + li for all i = 1, 2 where

4 ≥ l1 ≥ l2 ≥ 0. Then 5m+ 3 = e(G′) = e(C1) + e(C2) = 5(m1 +m2) + (l1 + l2). Thus,

there are two possibilities for l1 + l2 as follows.

Case B1. l1 + l2 = 3.

In this case, we have m1+m2 = m. There are only two subcases, l1 = 3, l2 = 0 and

l1 = 2, l2 = 1. Since e(Ci) = 5mi + li ≤ e(G)− 3 ≤
⌊
5n−1

2

⌋
− 4 for i = 1, 2, by applying

Lemma 2.3 to C1 and C2, there exist colorings c1 and c2 on C1 and C2 containing no blue

copies of P3 with νc1r (C1) ≤ 2m1 + 1 and νc2r (C2) ≤ 2m2, respectively. Therefore, there

exists a coloring c containing no blue copies of P3 with νcr(G
′) ≤ 2m1+1+2m2 = 2m+1

and so we are done as in Case A.

Case B2. l1 + l2 = 8.
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We have l1 = l2 = 4 since 4 ≥ l1 ≥ l2, and so m1 + m2 = m − 1. Without loss

of generality, let u′ ∈ V (C1) and u ∈ V (C2). By applying the induction hypothesis to

C1 ∪ {uu′} and C2 ∪ {uv}, there exist colorings c1 and c2 on C1 ∪ {uu′} and C2 ∪ {uv},

respectively, containing no blue copies of P3 with νc1r (C1) ≤ 2m1 + 2 and νc2r (C2) ≤

2m2 + 2, and uu′, uv are colored by red. Hence there exists a coloring c containing no

blue copies of P3 with νcr(G) ≤ 2m1+2+2m2+2 = 2m+2 and uv is colored by red.

We are now ready to prove the main theorem.

Proof of Theorem 1.1. We will use induction on n. For n = 1, let F be a connected graph

with one edge. Then we color the edge by blue and so we have F ! (K2, P3).

Let n ≥ 2 be such that, for all k < n and any connected graph G with at most
⌊
5k−1
2

⌋
− 1 edges, we have G ! (kK2, P3). First, we suppose that n is even. Let F be a

connected graph with at most 5n
2 − 2 edges. We need to show that F ! (nK2, P3).

By Lemma 2.2, F contains a copy of P3 such that F − P3 has one non-trivial

component, say F ′ with

e(F ′) ≤ 5n

2
− 4 =

⌊
5(n− 1)− 1

2

⌋
− 1.

Thus, by applying the induction hypothesis to F ′, we have F ′ ! ((n − 1)K2, P3), that

is, there exists a coloring c′ on F ′ containing no blue copies of P3 with νc
′

r (F
′) ≤ n − 2.

We color F ′ by such a coloring and color all edges of the copy of P3 by red. Then there

exists a coloring c on F containing no blue copies of P3 with νcr(F
′) ≤ n − 1. Hence

F ! (nK2, P3).

Now we may assume that n is odd. Let F be a connected graph with at most 5n−3
2

edges. We need to show that F ! (nK2, P3). Without loss of generality, e(F ) = 5n−3
2

since any subgraph F ′ of F will also satisfy F ′ ! (nK2, P3).

We will delete a vertex of F whose degree is at least three, and use the induction
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hypothesis for the remaining edges. If ∆(F ) ≤ 2, then F is a path or a cycle and so we

are done by Lemma 2.1.

So we may assume that ∆(F ) ≥ 3. Let v ∈ V (F ) with d(v) ≥ 3. Suppose that

F − v contains p components, say C1, C2, . . . , Cp with e(Ci) = 5mi + li where 0 ≤ li ≤ 4

for all i ∈ {1, 2, . . . , p}.

Since e(Ci) = 5mi + li ≤ e(F ) − 3 =
⌊
5n−1

2

⌋
− 4, by applying Lemma 2.3 to Ci,

there exists a coloring ci on Ci containing no blue copies of P3 with νcir (Ci) ≤ 2mi +
⌊
li
2

⌋

for all i ∈ {1, 2, . . . , p}. Then these give a coloring c on F containing no blue copies of

P3 with

νcr(F ) ≤
p∑

i=1

(
2mi +

⌊
li
2

⌋)
+ 1 ≤ 2

5

(
e(F )− d(v)−

p∑

i=1

li

)
+

p∑

i=1

⌊
li
2

⌋
+ 1,

= n+
2

5

(
1− d(v)−

p∑

i=1

li

)
+

p∑

i=1

⌊
li
2

⌋
,

since
∑p

i=1(5mi + li) + d(v) = e(F ) = 5n−3
2 .

We have νcr(F ) < n, if 2
5 (1− d(v)−

∑p
i=1 li) +

∑p
i=1

⌊
li
2

⌋
< 0. Equivalently, we

are done if d(v) > 1 +
∑p

i=1

(
5
2

⌊
li
2

⌋
− li

)
.

We may assume that d(v) ≤ 1 +
∑p

i=1

(
5
2

⌊
li
2

⌋
− li

)
. Observe that

5

2

⌊
l

2

⌋
− l =






0 if l = 0,

−1 if l = 1,

1
2 if l = 2,

−1
2 if l = 3,

1 if l = 4.

Then

p ≤ d(v) ≤ 1 +
p∑

i=1

(
5

2

⌊
li
2

⌋
− li

)
≤ 1 + p.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15

Case. d(v) = p+ 1.

This is an equality for the above inequality on the right. This implies that

5

2

⌊
li
2

⌋
− li = 1.

Indeed, li = 4 for all i ∈ {1, 2, . . . , p}. Since p = d(v)−1 ≥ 2, there exists i ∈ {1, 2, . . . , p}

with exactly one edge between v and Ci. Then we are done by the following claim.

Claim. If there exists i ∈ {1, 2, . . . , p} with li = 4 such that there is exactly one edge

e between v and Ci, then there exists a coloring c on F containing no blue copies of P3

with νcr(F ) ≤ n− 1.

Proof of Claim. Since e(Ci ∪ {e}) = 5mi + 5 ≤ e(F ) − 2 =
⌊
5n−1

2

⌋
− 2, by applying

Lemma 2.4 to Ci ∪ {e}, then there exists a coloring ci on Ci ∪ {e} containing no blue

copies of P3 with νcir (Ci ∪ {e}) ≤ 2mi + 2 and e is colored by red. Since

e(F − Ci) = e(F )− (5mi + 5) = 5

(
n− 3

2
−mi

)
− 5 <

⌊
5n− 1

2

⌋
− 4,

by applying Lemma 2.3 to F −Ci, there exists a coloring c′ on F −Ci containing no blue

copies of P3 with νc
′

r (F − Ci) ≤ 2
(
n−3
2 −mi

)
. Thus there exists a coloring c containing

no blue copies of P3 with νcr(F ) ≤ 2
(
n−3
2 −mi

)
+ (2mi + 2) = n− 1.

Case. d(v) = p.

This case means Ci has exactly one edge incident to v for each i ∈ {1, 2, . . . , p}. If

there exists i ∈ {1, 2, . . . , p} with li = 4, we are done by the Claim. We may assume that

li ≤ 3 for all i ∈ {1, 2, . . . , p}. Then d(v) ≤ 1+
∑p

i=1

(
5
2

⌊
li
2

⌋
− li

)
≤ 1+ p

2 ≤ 1+ d(v)
2 and

so d(v) ≤ 2, we get a contradiction.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

CONCLUSIONS

We give an alternative proof of the result that r̂c(nK2, P3) =
⌊
5n−1

2

⌋
for all n ≥ 1,

which was first proved by Wang, Song, Zhang, and Zhang. In contrast to their proof

which used the concept of block along with some techniques in graph theory, our proof

does not require any prerequisite. The problem that we considered can be generalized in

various ways as follows.

First, we may consider r̂c(nK2, Pm). Assiyatun, Baskoro and Rahadjeng [17] proved

that r̂c(nK2, P4) ≤ 3n+ ln where ln = −1 if n is even and ln = 0 if n is odd. They proved

that this upper bound is sharp for some small n. Then they conjecture that the upper

bound matches the exact value as follows.

Conjecture 3.1. For n ≥ 1, r̂c(nK2, P4) = 3n + ln where ln = −1 if n is even, and

ln = 0 if n is odd.

Vito, Nabila, Safitri, and Silaban [19] proved that r̂c(nK2, Pm) ≤
⌊
(m+2)n−1

2

⌋
+ ln

where ln = 0 if n is even, and ln = 1 if n is odd. They proved that the upper bound

is sharp for n = 2. This thesis shows that the upper bound is sharp for m = 3. Thus,

they asked whether all values above match the exact value generalizing Conjecture 3.1 as

follows.

Problem 3.2. For n ≥ 1 and m ≥ 3, is r̂c(nK2, Pm) =
⌊
(m+2)n−1

2

⌋
+ ln where ln = 0 if

n is even, and ln = 1 if n is odd?

On the other hand, if we view P3 as K1,2, we may consider r̂c(nK2,K1,m). As-

siyatun, Baskoro and Rahadjeng [14] proved that r̂c(nK2,K1,m) ≤ nm + n − 1. We

conjecture that the upper bound matches the exact value as follows.

Conjecture 3.3. For n ≥ 1 and m ≥ 3, r̂c(nK2,K1,m) = nm+ n− 1.
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