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CHAPTER 1  

INTRODUCTION 
 

This chapter provides an overview of the research presented in this thesis and aims 

to introduce the primary topics and objectives of this work. 

 

 The first section of this chapter is dedicated to Software Development Life Cycle 

(SDLC) overview. SDLC refers to the process or methodology followed by software 

development teams to design, develop, test, and maintain software systems. 

  

The second section of this chapter is dedicated to software maintenance, which is 

a critical aspect of software development. It includes various activities such as bug fixing, 

enhancing existing features, and adding new features to the software. 

 

The third section of this chapter discusses change impact analysis, which is a 

technique used to identify the potential effects of changes made to the software. It involves 

analyzing the codebase and determining the areas that might be impacted by a particular 

change. Change impact analysis is essential for reducing the risk of introducing bugs or 

other issues into the software. 

 

The fourth section focuses on continuous integration (CI) / continuous deployment 

(CD), which is a set of practices and tools used to streamline the software development 

process. It involves automating various tasks such as building, testing, and deploying 

software changes.  
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The fifth section introduces the concept of Continuous Testing (CT), which is a 

software development practice where automated tests are continuously executed 

throughout the CI pipeline to provide rapid and continuous feedback on the quality of the 

software. The main goal of continuous testing is to ensure that defects and issues are 

detected early, which reduces the cost of fixing them and minimizes the risk of delays in 

software delivery. 

 

The sixth section introduces test impact analysis, which is a technique used to 

determine the impact of changes made to the software on the test suite. It involves 

identifying the subset of test cases that need to be executed to verify the changes made to 

the software. 

 

The seventh section explains the concept of dependency graph in the context of 

software which typically represents the relationships between code components such as 

classes, functions, or modules in a codebase. Nodes in the graph signify individual 

elements, and edges between nodes indicate dependencies. A high-degree dependency 

graph has many interconnected nodes, while a low-degree dependency graph has fewer 

connections.  

 

Finally, the last section covers the objectives and scope of this work. 

1.1 Software Development Life Cycle (SDLC)  
Software Development Life Cycle (SDLC) is a systematic process followed by 

software development teams to design, develop, test, deploy, and maintain software 

applications [58]. SDLC provides a structured approach to ensure that software projects 

are completed efficiently, within budget, and meet the specified requirements and 

typically consists of the following phases: 

● Analysis: This initial phase involves gathering and analyzing the requirements of 

the software application. This includes identifying the needs of the end-users, 
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understanding business objectives, and defining functional and non-functional 

requirements. 

● Design: In this phase, the software architecture and system design are created 

based on the gathered requirements. It includes defining the software components, 

modules, and their interactions, as well as specifying the database structure, user 

interfaces, and overall system architecture. 

● Development: The implementation phase involves translating the system design 

into actual software codes. Programmers write codes based on the design 

specifications using programming languages, frameworks, and tools. 

● Testing: Once the code is developed, the software undergoes rigorous testing to 

ensure its quality and reliability. Different testing techniques, such as unit testing, 

integration testing, system testing, and user acceptance testing, are employed to 

identify and fix bugs, errors, and usability issues. 

● Deployment: After successful testing, the software is deployed to the production 

environment or made available to end-users. This phase involves installation, 

configuration, and setting up the software in the target environment. 

● Maintenance: Once the software is deployed, it enters the maintenance phase. 

During this phase, updates, bug fixes, and enhancements are made based on user 

feedbacks and changing requirements. Ongoing support and maintenance 

activities are performed to ensure the software remains functional and up to date. 

 

Software maintenance is the process of making modifications and improvements 

to software after its initial release, to keep it functional, up-to-date, and compatible with 

the latest hardware and software environments. It is a crucial aspect of software 

development that ensures the software continues to meet its intended purpose and delivers 

value to its users. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 

 

1.2 Software Maintenance 
Software maintenance over time can be divided into several stages, which typically 

include the following [57]: 

● Corrective Maintenance: This involves fixing defects or bugs that have been 

discovered in the software after its release. Corrective maintenance is usually 

necessary because the software was not thoroughly tested before release or 

because new bugs were introduced during the maintenance process. 

● Adaptive Maintenance: This involves making changes to the software to adapt it 

to new or changing user requirements, hardware or software environments, or 

business rules. Adaptive maintenance is necessary because user needs or external 

factors may change over time, requiring updates to the software. 

● Perfective Maintenance: This involves making enhancements to the software to 

improve its functionality, performance, or usability. Perfective maintenance is 

necessary to ensure that the software remains competitive and delivers the best 

user experience. 

● Preventive Maintenance: This involves making changes to the software to prevent 

problems from occurring in the future. Preventive maintenance can include 

activities such as optimizing code, refactoring, or updating documentation. 

 
During the various phases of software development, maintenance is commonly 

recognized as the most demanding, expensive, and labor-intensive task [1], [2]. To meet 

user demands, software products undergo inherent adjustments and alterations to 

accommodate evolving system prerequisites. In their work, Lehman and Belady [3] 

presented a set of laws that delineate the patterns of software evolution. Their first law 

asserts that a software system must continuously evolve, lest it become increasingly 

obsolete over time, while their second law posits that the complexity of a software system 

increases as it evolves, rendering it more challenging to comprehend, modify, and 

maintain. 
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According to estimates [48], more than 70% of the overall expenses of software 

development are incurred during the maintenance phase following the delivery of the 

software. This cost is strongly linked to the complexity of the software. Furthermore, 

research has shown that the cost of fixing defects during the maintenance stage far exceeds 

the combined cost of all other stages in SDLC. Figure 1 illustrates the cost linked with 

resolving defects at different stages of SDLC. 

 

 
Figure 1. Defects fix cost during software development life cycle (SDLC) [48]. 

 

Moreover, the cost of software maintenance can be influenced by both technical 

and non-technical factors. Non-technical factors include the level of experience in the 

application area, staff stability, application time, external environment, and user 

requirements. Technical factors include software complexity, development of human 

capacity, documentation quality, configuration management technology, modern 

programming specifications, and database size. Factors such as complicated software 

structure, poor documentations, and larger database size can result in increased 

maintenance costs, while factors such as good programming style, effective testing 

methods, and detailed documentation can help reduce maintenance costs [49]. 
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Software modifications can stem from various factors, such as emerging demands, 

rectifying defects, addressing change appeals, and more. As adjustments are implemented 

in the software, unforeseen repercussions are prone to emerge, potentially leading to 

discrepancies with other elements of the initial software. Below are several instances of 

different types of modifications that can be applied to software: 

● New requirements: Adding new features or functionalities to the software [51]. 

For example, adding a payment gateway to an e-commerce website or adding 

support for new file formats to a media player. 

● Defect resolutions: Fixing bugs or errors in the software [52]. For example, fixing 

a login issue or addressing a crash that occurs when certain actions are performed. 

● Change requests: Modifying existing features or functionalities [51]. For example, 

changing the color scheme of a user interface or adjusting the sorting algorithm 

used for search results.  

● Security updates: Implementing security fixes to protect against vulnerabilities or 

exploits [53]. For example, updating the software to address a known security flaw 

or implementing better encryption methods. 

● Performance improvements: Optimizing the software for better performance [54]. 

For example, improving the speed of a search algorithm or optimizing the code to 

reduce memory usage. 

● Compatibility updates: Ensuring that the software works with other programs or 

systems [55]. For example, updating the software to work with a new version of 

an operating system or adding support for a new database. 

● Regulatory compliance: Making changes to comply with legal or regulatory 

requirements [56]. For example, updating the software to comply with GDPR 

regulations or adding accessibility features to comply with disability laws. 

1.3 Change Impact Analysis 
Change impact analysis (CIA) is a process that evaluates the potential effects of a 

proposed change to a software system. It involves identifying and analyzing the 
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relationships and dependencies between different components of the software system and 

assessing the potential impact of the change on these components. The goal of change 

impact analysis is to determine the potential risks, costs, and benefits associated with 

implementing a change, and to inform decision-making regarding whether to proceed with 

the change or not. By conducting change impact analysis, software developers can better 

understand the potential consequences of changes to the software system and make 

informed decisions about how to proceed with modifications while minimizing the risk of 

unintended negative impacts on the system. 

 

To assess the potential influence of proposed alterations on various aspects of the 

software, software change impact analysis (CIA) employs diverse techniques such as 

dependency analysis, data flow analysis, test coverage analysis, etc [4]. These techniques 

play a crucial role in software development, maintenance, and regression testing [4]-[7]. 

CIA can be performed both prior to and after the implementation of a change. Before 

making modifications, CIA can assist in comprehending the program, forecasting the 

impact of the alteration, and estimating the associated expenses [4], [5]. Conversely, after 

implementing changes, CIA can be employed to trace the cascading effects, select 

appropriate test scenarios, and carry out change propagation [6]-[9]. Bixin Li et al. [45] 

conducted research on techniques for analyzing the impact of code changes and presented 

a variety of 23 techniques as listed in Table 1. 

 

Table 1. Code Base Change Impact Analysis Techniques. 

Technique Description 

T1 Use object-oriented coupling measurement to identify the impact set 

T2 Use the coverage information of the field data collected from users to support 
dynamic CIA 

T3 Provide a technique for dynamic CIA based on whole path profiling 

T4 Apply data mining to version histories to extract the co-change coupling between 
the files for CIA 
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T5 Use the execute after relation between entities to support dynamic CIA 

T6 Use the control call graph to perform static CIA 

T7 Use dynamic programming on instrumented traces of different programmed 
binaries to compute the impact set 

T8 Analyze influence mechanisms of scoping function signatures and global 
variable access to support CIA 

T9 Use textual similarity to retrieve past change request in the software repositories 
for CIA 

T10 Perform dependency analysis in object-oriented programs for CIA 

T11 Use the measure of dynamic function coupling between two functions for CIA 

T12 Create cluster of closely associated software program files in the software 
repository for CIA 

T13 Apply two different data mining algorithms APRIORI and DAR in the software 
repository for CIA 

T14 Analyze change records through singular value decomposition to produce cluster 
of co-change files for CIA 

T15 Use call graph to compute the impact set 

T16 Use conceptual coupling measurement for CIA 

T17 Use a hierarchical model to interactively compute the impact set 

T18 Blend conceptual and evolutionary couplings to support CIA  

T19 Use source code comments and changelogs in software repository to support CIA 

T20 Use multivariate time series analysis and association rules to perform CIA 

T21 Analyze impact mechanisms of different change types for CIA  

T22 Use relational topic-based coupling to capture topics in classes and relationships 
among them for CIA  

T23 Use single and multi-labeled machine learning classification for CIA 
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Here are a few instances demonstrating the utilization of change impact analysis: 

● Planning software changes: Change impact analysis can help software 

development teams plan and prepare for changes to a software system by 

identifying potential risks, dependencies, and impacts associated with the 

proposed changes. 

● Estimating project scope and cost: By analyzing the impact of a change on 

different components of the software system, change impact analysis can help 

developers estimate the scope and cost of a project more accurately. 

● Prioritizing changes: Change impact analysis can help prioritize proposed changes 

based on their potential impact and the resources required to implement them. This 

can help ensure that changes with the most significant impact are given the higher 

priority. 

● Identifying potential issues: Change impact analysis can help identify potential 

issues that may arise because of a change, such as compatibility issues, conflicts 

with other software components, or performance problems. 

● Evaluating risks: Change impact analysis can help evaluate the potential risks 

associated with a change and develop strategies to mitigate those risks. 

● Streamlining testing: By identifying the components of the software system that 

are likely to be impacted by a change, change impact analysis can help streamline 

the testing process by allowing developers to focus testing efforts on the most 

critical areas. 

● Enhancing communication: Change impact analysis can enhance communication 

among team members and stakeholders by providing a clear understanding of the 

potential impact of changes and the steps needed to address any issues that may 

arise. 
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1.4 Continuous Integration / Continuous Deployment 
Continuous Integration/Continuous Deployment (CI/CD) is a software 

development practice that aims to automate and streamline the process of building, testing, 

and deploying code changes. 

 

Continuous Integration is the practice of regularly merging code changes from 

multiple developers into a shared repository. This process is automated, and each merge 

triggers a build and automated testing process to ensure that the code changes integrate 

successfully with the existing codebase. 

 

Continuous Deployment is the practice of automatically deploying the 

successfully built and tested code changes to production servers or environments. This 

process involves the automation of the deployment pipeline and can include additional 

testing, such as integration and acceptance testing, before deployment. 

 

CI/CD helps reduce the risk of introducing errors into the production environment, 

speeds up the software development process, and enables organizations to deliver software 

updates more frequently and reliably. 

 

Modern software development commonly employs continuous 

integration/continuous deployment (CI/CD) to facilitate software maintenance. The 

delivery of a new software version requires a series of tasks referred to as a "pipeline" in 

the continuous integration and continuous deployment (CI/CD) process. A traditional 

CI/CD pipeline typically involves the following processes and illustrated in Figure 2 [46]: 

● Code changes: Developers make changes to the codebase and push them to the 

source code repository. 

● Build: The CI/CD system automatically checks out the latest code changes, 

compiles the code, and builds the application. 
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● Test: Automated testing is performed to verify the functionality and quality of the 

application. This can include unit tests, integration tests, and acceptance tests. 

● Review and feedback: If issues are found during the testing process, feedback is 

provided to the developer, who then makes the necessary changes and pushes them 

back to the repository. 

● Deployment: Once the code changes pass all the tests and reviews, the CI/CD 

system automatically deploys the application to a staging or production 

environment. 

● Monitoring and feedback: The application is monitored in the production 

environment to identify any issues or errors, which are then fed back into the 

CI/CD pipeline to trigger the necessary actions. 

● Notification: The CI pipeline notifies the team of the build and test results and 

provides feedback on the quality of the code changes. 

 

 
Figure 2. Continuous Integration/Continuous Deployment (CI/CD) pipeline illustration. 

 

By automating these processes, a traditional CI/CD pipeline helps to ensure that 

code changes are thoroughly tested and validated before being released to production. This 

reduces the risk of introducing errors or breaking the application and enables faster and 

more reliable software releases. 

 

In other words, the use of CI/CD pipelines is geared towards enhancing software 

delivery by automating various stages of the software development life cycle. Automation 
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of CI/CD across development, testing, production, and monitoring phases allows 

organizations to develop better-quality code more quickly. While it is feasible to manually 

execute each step of a CI/CD pipeline, the actual advantage of CI/CD pipelines lies in 

their automation.  

1.5 Continuous Testing 
Continuous Testing (CT) is a software testing approach that integrates automated 

testing throughout the software development lifecycle (SDLC), from planning and 

development to deployment and maintenance and it is a critical component of the 

Continuous Integration/Continuous Deployment (CI/CD) process. 

 

In the CI/CD process, developers make changes to the codebase, which are 

automatically checked out, compiled, built, and tested in the CI pipeline. The CI pipeline 

integrates CT by continuously executing automated tests to ensure that code changes 

integrate well with the existing codebase, and the application functions as expected. 

 

By doing so, CT provides real-time feedback on the business risks associated with 

a software release by continuously running automated tests and providing instant feedback 

to the development team. This helps identify defects and issues early in SDLC, which 

reduces the risk of introducing errors into the production environment and improves the 

quality of the software. 

 

Typically, the Continuous Testing (CT) process involves the following steps: 

● Test planning and design: The CT process begins with planning and designing 

tests that will validate the software requirements. 

● Test automation: Once the tests are designed, they are automated and integrated 

into the CI/CD pipeline. 

● Test execution: The automated tests are run continuously throughout SDLC, from 

development to production. 
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● Test reporting and feedback: Test results are reported in real-time to the 

development team, providing feedback on the quality and stability of the codebase. 

● Test maintenance: Tests are updated and maintained to ensure that they remain 

relevant and effective. 

 
By integrating CT into the CI/CD process, software development teams can build 

and release software quickly and with confidence, ensuring that software is delivered on 

time, on budget, and to the required quality standards. 

 

Nevertheless, in most cases, a CI pipeline involves the integration of modified 

code into a codebase, which may happen several times within a day, with the objective of 

reducing the burden of software maintenance and providing users with the most up-to-

date software version. This involves executing a series of test suites for each integration, 

thereby making the process time-consuming and resource intensive.  

 

In fact, a challenge faced in modern software development is having too many test 

cases [44]. While having automated tests is an essential practice in software development, 

having too many tests can cause problems. One problem with having too many tests is 

that it can slow down the build and test process, which can impact developer productivity 

and the speed at which software updates can be released. 

 

Additionally, when developers have too many tests to run, they may opt to skip 

running them locally on their developer workstation, which can lead to code that has not 

been thoroughly tested. This can result in errors or defects being introduced into the 

codebase, which can be costly to fix later in the software development lifecycle. 

Another issue with having too many tests is that they can become difficult to manage and 

maintain. Over time, as the codebase grows and changes, tests may become outdated or 

redundant, and maintaining them can become challenging. 
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There are several techniques available to accelerate test execution, such as running 

tests in parallel across multiple machines and utilizing test doubles. Test doubles are 

techniques and tools used in software testing to replace real objects or dependencies with 

simulated ones to isolate the code being tested. This umbrella term encompasses fake 

objects, stubs, mocks, and spies, each serving a specific purpose in software testing. Using 

test doubles not only help accelerate test execution, but also enable testing in isolation, 

ensuring expected behavior, and facilitating testing in challenging scenarios. 

 

The focus of this thesis is on Test Impact Analysis (TIA), a technique that has been 

proposed in prior research to reduce testing overhead by minimizing the number of test 

cases that need to be executed [10]-[16]. 

1.6 Test Impact Analysis 
Test Impact Analysis (TIA), a branch of Change Impact Analysis (CIA), is a 

software testing methodology that aims to optimize the testing process by identifying and 

running only the relevant tests for the changes made in the codebase. By focusing on the 

potentially affected parts of the application, TIA helps reduce time and resources spent on 

testing, while maintaining a high level of test coverage and quality assurance. This 

contemporary approach accelerates the test automation stage of a build, consequently 

decreasing testing costs and overhead [44]. 

 

Key concepts in Test Impact Analysis are: 

● Code coverage: This metric measures the extent to which the application's source 

code is tested. A higher code coverage percentage implies that more of the code 

has been executed during testing, increasing the likelihood of discovering defects. 

● Change impact analysis: This process involves analyzing the changes made to a 

codebase, identifying the potentially affected parts of the application, and 

determining which tests are required to ensure that those changes do not introduce 

new defects. 
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● Regression testing: This type of testing is performed to ensure that existing 

functionality is not adversely affected by new changes to the code. TIA helps in 

optimizing regression testing by identifying the most relevant tests to execute 

based on the changes made. 

● Dependency analysis: TIA relies on understanding the dependencies between code 

components, such as functions, classes, and modules, to determine the impact of 

changes on other parts of the application. This helps identify which tests need to 

be executed when changes are made to a particular component. 

● Incremental testing: This approach to testing involves running only the tests that 

are relevant to the code changes, rather than executing the entire test suite. TIA 

supports incremental testing by narrowing down the set of tests to be executed, 

reducing the overall testing time. 

 

Benefits of Test Impact Analysis are: 

● Reduced testing time: By identifying and running only the relevant tests, TIA can 

significantly reduce the time it takes to test a software application. 

● Resource optimization: TIA helps conserve resources, such as CPU and memory, 

by avoiding unnecessary test execution. 

● Faster feedback: TIA enables faster feedback to developers by quickly identifying 

potential issues, allowing them to fix defects more rapidly. 

● Improved test coverage: With a focused approach, TIA can help maintain high test 

coverage and quality, even with a reduced number of tests. 

● Risk mitigation: By targeting the most relevant tests based on code changes, TIA 

helps mitigate the risk of introducing defects in the application. 

● Continuous integration and delivery: TIA is particularly beneficial in continuous 

integration and delivery (CI/CD) environments, where rapid feedback and 

minimized testing time are crucial. 
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Challenges and limitations are: 

● Accurate dependency analysis: Ensuring accurate dependency analysis can be 

challenging, especially in large and complex codebases. 

● Overlooking tests: There is a risk that TIA may overlook some relevant tests, 

leading to reduced test coverage and potential defects. 

● Initial setup and maintenance: Implementing TIA may require additional setup and 

ongoing maintenance efforts, such as updating dependency information and test 

mappings. 

 

The fundamental idea is that not every test interacts with each production source 

file (or the classes/methods derived from that source file). By analyzing the relationship 

(i.e., dependency graph) between source codes and test cases, it becomes possible to 

effectively determine a subset of test cases that are connected to the modified code and, 

as a result, are considered "impacted" [17], [18]. 

 

In other words, TIA examines the call graph of the source code, which is a 

representation that illustrates the flow of function or method calls within a software 

program and shows the relationships and dependencies between different functions or 

methods and how they interact with each other during program execution, to identify the 

relevant tests to run after changes are made to the production code, which results in a 

reduction of testing overhead by executing only the necessary subset of tests. The 

approach employed to achieve this goal is known as test impact analysis (TIA) [19]. An 

example of TIA architecture is shown in Figure 3 [47]. 
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Figure 3. Example of Test Impact Analysis Architecture [47].  

 

TIA can be integrated into the software development workflow, including 

Continuous Integration/Continuous Deployment (CI/CD) pipelines, to provide real-time 

feedback to developers on the impact of their code changes on the test suite. This allows 

developers to focus on fixing defects quickly and efficiently, reducing the time to market 

for software updates. Microsoft is one company that has integrated Test Impact Analysis 

(TIA) features directly into their development tools, such as Visual Studio. When these 

features enabled, they automatically execute impacted unit tests as code is edited [44]. 

 

Nevertheless, regular modifications to code and the increasing intricacy of a 

system can result in a deterioration in the continuous quality assurance of tests. These test 

scenarios may be interconnected with other origins or test codes, which we refer to as the 

level of interconnectedness (i.e., dependencies degree). This degree signifies the number 

of connections (i.e., dependencies) that a test scenario has with the source code.  

An extensive amount of code interdependence can lead to an accumulation of 

testing burdens in CI, particularly when dealing with repetitive code merges and test runs. 
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Furthermore, heightened dependencies have the potential to undermine the efficacy of test 

impact analysis and exacerbate the challenges in test maintenance [16]. 

1.7 Dependency Graph 
In the context of software development, a dependency graph typically shows the 

relationships between different components, classes, functions, or modules within an 

application or codebase [34]. A node in the graph represents the individual element (such 

as a class, a function, or a module), while the edge between the nodes represents the 

dependencies between these elements. A high degree dependency graph will have many 

interconnected nodes, while a low degree dependency graph will have fewer connections. 

 

For example, let us consider two test cases (TC1 and TC2) and two classes (ClassA 

and ClassB) in a codebase. 

● High degree dependency graph: 

In a high dependency graph, both test cases have strong connections to both 

classes. This could be represented as: 

TC1 → ClassA 

TC1 → ClassB 

TC2 → ClassA 

TC2 → ClassB 

 

In this scenario, both test cases depend on both ClassA and ClassB, meaning that 

any change to either class would require running both test cases to ensure continued 

correctness. This high dependency makes it difficult to isolate the effects of code changes 

and increases the number of tests to be executed when changes occur. 

 

● Low degree dependency graph: 

In a low dependency graph, each test case is connected to only one of these classes. 

This could be represented as: 
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TC1 → ClassA 

TC2 → ClassB 

 

In this scenario, TC1 depends only on ClassA, and TC2 depends only on ClassB. 

This means that if a change is made to ClassA, only TC1 needs to be executed, while if a 

change is made to ClassB, only TC2 needs to be executed. This low dependency degree 

allows for a more efficient testing process, as it reduces the number of tests that need to 

be run when changes are made to the codebase. 

 
In Test Impact Analysis, the goal is to identify and create low dependency degree 

graphs, which helps in reducing the number of tests to be executed and optimizes the 

testing process. 

 

In addition, by analyzing the dependency graph, developers can gain insights into 

the structure of their codebases, identify areas of high coupling or tight dependencies, and 

make more informed decisions about refactoring or reorganizing their codes. Dependency 

graphs can also help in understanding the impact of changes to one part of the system on 

the rest of the system, as well as in managing and resolving issues related to circular 

dependencies, which can lead to problems in the build or runtime environments. 

1.8 Objectives and Scope of Work 
The goal is to improve test impact analysis at the code change level (i.e., commit) 

by implementing a new static class-level approach. This approach will involve using the 

abstract syntax tree from program source codes directly to optimize the selection of 

impacted test cases. 

 

In our case study, we analyzed seven Java-based projects, which consisted of one 

private project and six open-source projects. We examined all Java files in each of the 

seven systems to detect the dependency graph among test cases and source codes. To 
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achieve this, we utilized a test impact analysis tool that employed JavaParser [40], a Java-

based open-source library capable of representing a Java source code file as AST and 

compatible with the most recent Java release. 

 

Our first step involved creating a dependency graph that included both test cases 

and source code files. This graph captured data on whether dependency existed between 

a given test case and the source code. To determine if a method was a test case, we checked 

if it employed testing framework APIs such as JUnit or TestNG (i.e., using the @Test 

annotation). Additionally, we excluded binaries and limited our analysis to dependencies 

that corresponded to source code files within the system. In other words, we only 

examined the source code of the subject system and disregarded exterior source codes 

such as Java API and external Jars. 

 

The upcoming background chapter aims to present an overview of pertinent 

research studies in software testing, covering alternative strategies for test automation, 

techniques for impact analysis of tests, continuous integration and continuous testing, test 

case prioritization and selection, as well as considerations for test case dependencies and 

quality. 
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CHAPTER 2 

BACKGROUND 
 

Within this chapter, we explore various alternative methods for Test Impact 

Analysis (TIA) and delve into its different techniques. Moreover, the chapter presents an 

overview of related work and background in areas such as Continuous Integration (CI) 

and Continuous Testing (CT), Test Case Prioritization (TCP), Test Case Selection (TCS), 

Test Case Dependencies and Test Case Quality. 

2.1  Alternative Strategies to Shorten Test Automation 
To reduce the duration of test automation, various alternative strategies to Test 

Impact Analysis (TIA) are widely implemented. Here are some instances to illustrate this 

point: 

● Parallel Test Execution: Running multiple test cases in parallel can significantly 

reduce the overall testing time. This can be achieved by setting up a distributed 

testing environment where tests can run on multiple machines simultaneously. 

● Smarter Test Design: Creating more efficient and effective tests can reduce the 

total number of tests required. Using techniques such as risk-based testing or 

exploratory testing can help identify the most critical areas to focus on. 

● Test Environment Optimization: A well-configured test environment can help 

speed up test automation. Preparing the test environment with appropriate settings, 

data, and dependencies can help avoid delays or issues that can slow down testing. 

● Tagging: By utilizing tagging, test suites can be partitioned into functional and 

logical subgroups, and specific subgroups can be selected for execution at different 

stages of the CI/CD pipeline.  
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The tagging strategy can assist in categorizing tests based on features, user 

journeys, testing types, and other criteria. This strategy typically relies on test frameworks 

such as TestNG and JUnit, as well as build tools such as Maven and Gradle, to execute a 

specific subset of selected tests through configurable settings. A test framework is a 

software tool that provides a structured environment and set of functionalities to automate 

the process of testing software applications. It offers a framework for designing, 

organizing, and executing tests, making it easier for developers and testers to create and 

maintain tests effectively. And a build tool is a software tool or utility that automates the 

process of compiling, packaging, and deploying software applications. It helps streamline 

the build and release process by managing dependencies, executing predefined tasks, and 

organizing the overall build workflow. 

 

Nevertheless, one of the primary obstacles in this strategy is the need for manual 

implementation and maintenance. The approach involves utilizing shared annotations to 

group subsets of tests based on specific criteria, such as feature, testing layer, etc. The idea 

is to execute only the relevant subset of tests by providing the required annotation to the 

build tool as a parameter.  

 

An instance of how the tagging method can be utilized to categorize test cases into 

distinct logical and functional subsets is depicted in Figure 4 [44]. The figure presented in 

this example demonstrates the use of tagging to reduce test execution time. Test cases are 

organized into functional and logical suites, with each suite further divided into different 

layers such as unit tests, service tests, and functional UI tests for functional separation, 

and different features of the application such as shopping-cart, inventory, and express for 

logical separation. This organization enables developers to select and execute only a 

subset of test cases based on their specific changes, resulting in more efficient testing and 

quicker feedback in the development process. 
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Figure 4. Example usage of the tagging approach [44]. 

We can elaborate on this concept further by examining the code snippet example 

presented below, which is based on Figure 4: 

import org.junit.jupiter.api.Tag; 
import org.junit.jupiter.api.Test; 
 
public class TestSuite { 
 
    @Tag("functional") 
    @Tag("shopping-cart") 
    @Test 
    public void testShoppingCartFunctionality() { 
        // test shopping cart functionality 
    } 
 
    @Tag("functional") 
    @Tag("inventory") 
    @Test 
    public void testInventoryFunctionality() { 
        // test inventory functionality 
    } 
 
    @Tag("functional") 
    @Tag("express") 
    @Test 
    public void testExpressFunctionality() { 
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        // test express functionality 
    } 
 
    @Tag("logical") 
    @Tag("unit") 
    @Test 
    public void testUnit() { 
        // test unit level functionality 
    } 
 
    @Tag("logical") 
    @Tag("service") 
    @Test 
    public void testService() { 
        // test service level functionality 
    } 
 
    @Tag("logical") 
    @Tag("ui") 
    @Test 
    public void testUI() { 
        // test functional UI level functionality 
    } 
} 

In this example, we have defined different test cases with specific tags that indicate 

the logical and functional subsets they belong to. We can run specific subsets of tests by 

using the @Tag annotation to filter tests based on the tags assigned to them. For example, 

we can run only the functional tests related to the shopping-cart feature by executing the 

following Gradle [22] command: 

./gradlew test --tests "TestSuite --tags functional --tags shopping-cart" 
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Which will execute only the testShoppingCartFunctionality() test case. Similarly, we can 

run only the logical tests related to the service layer by running: 

./gradlew test --tests "TestSuite --tags logical --tags service" 

This will execute only the testService() test case. In this example, Gradle is used 

as the build automation tool to run the tests. By executing Gradle commands, we can filter 

and run specific subsets of tests based on the tags assigned to them using the @Tag 

annotation. Gradle is a build automation tool for software development that supports 

multiple programming languages and platforms. It uses a Groovy-based domain-specific 

language to define build scripts, which can be customized and extended. Gradle also 

provides features like dependency management, caching, and parallel execution to 

improve build performance. 

2.2  Tests Impact Analysis Techniques  
Test Impact Analysis (TIA) techniques are methods used to determine the subset 

of tests that are relevant to the changes made in the codebase, thereby optimizing the 

testing process. In general, these methods can be classified into two primary categories 

[50]. The first is based on source code analysis, while the second is based on Artificial 

Intelligence/Machine Learning (AI/ML) models. 

2.2.1 Source Code Analysis 
In software testing, source code analysis is often utilized in impact analysis 

approaches to construct dependency graphs between codes and tests.  

 

Some typical TIA techniques based on source code analysis include: 

● Dependency analysis: This method analyzes the dependencies between different 

modules, classes, or methods within the source code. By understanding these 

dependencies, it is possible to identify the tests that are impacted by a particular 

code modification. 
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● Call graph analysis: This technique examines the call graph of the source code to 

determine the relationships between functions or methods. It helps identify the 

relevant tests to run after making changes to the production code. 

● Static analysis: This method involves analyzing the source code without executing 

it. Static analysis can help to identify potential issues, such as syntax errors or 

security vulnerabilities, which may require additional testing. 

● Dynamic analysis: In contrast to static analysis, dynamic analysis involves 

executing the code to observe its behavior during runtime. This method can help 

to identify issues, such as memory leaks or performance bottlenecks, that may not 

be detectable through static analysis alone. 

● Risk-based analysis: This technique prioritizes tests based on the perceived risk 

associated with each code change. High-risk changes, such as those affecting 

critical functionality, may require more thorough testing, whereas low-risk 

changes may require fewer tests to be executed. 

● Code coverage analysis: This technique involves identifying the parts of the code 

that are executed by each test case. By analyzing code coverage, it is possible to 

determine which tests are affected by a specific code change. 

 

Paul Hammant, in his article "The Rise of Test Impact Analysis" [44], discusses 

how code coverage or instrumentation can be used during test runs to establish a map 

between tests and production code. The concept is to execute a single test, observe which 

code is exercised, and then add these references to a map. This process is repeated for all 

tests in the suite. Once the map is constructed, a small program runs every time a developer 

pushes code that examines modified files and determines which tests need to be executed. 

This list is then passed to the test runner for execution. Additionally, the program 

periodically performs map updates to maintain an accurate dependency graph as code 

changes. 
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However, the code coverage-based approach presents a challenge as the data can 

rapidly become very large. Furthermore, it is difficult to demonstrate reliably that a change 

in one area will not impact the code execution path in another area. Just because a test 

previously did not exercise certain parts of the code does not necessarily mean that it will 

remain the same in subsequent runs. 

2.2.2 Predictive Test Selection 
Predictive Test Selection is an approach in software testing that utilizes machine 

learning algorithms to predict which tests are most likely to fail based on past testing data. 

The technique involves analyzing historical test data, identifying patterns and trends, and 

then using this information to predict which tests are most likely to fail in future testing 

cycles. 

 

This approach can help reduce the time and effort required for testing by 

identifying the most critical test cases to run, rather than running the entire suite of tests. 

Predictive test selection can also help improve the overall quality of testing by identifying 

tests that are more likely to catch defects and issues, which can help ensure that critical 

bugs are caught and fixed in a timely manner. 

 

Traditionally, most TIA techniques have relied on source code analysis to 

construct dependency graphs between code and tests. However, some companies use 

newer approaches such as the predictive test selection. Google [25] and Facebook [37] 

have developed systems that utilize both machine learning and code analysis. The high-

level architecture of Facebook's predictive test selection model is illustrated in Figure 5 

[37]. 
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Figure 5. High level of Facebook's predictive test selection model [37]. 

2.3 Continuous Integration (CI) and Continuous Testing 
(CT) 

The process of (continuous integration) CI entails the frequent merging of code 

modifications conducted by software developers into a centralized source code 

management system. Automation platforms like GitLab [20] are widely used to 

automatically incorporate, compile, and test the code, thereby streamlining the CI 

workflow. These platforms can trigger the CI process based on a personalized timetable 

that includes the most recent code changes.  

 

Continuous testing (CT) plays a vital role in the CI workflow as it encompasses 

the automated running of test scenarios to assess the caliber of modified code. According 

to recent research [21], the adoption of CI enhances efficiency in software development 

and aids in identifying a higher quantity of defects. Developers often rely on diverse build 

utilities like Gradle [22] to handle test execution. With each build execution, Gradle 
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automatically runs all test scenarios specified within the build scope and generates 

relevant reports.  

 

The objective of CT is to enable the prompt identification of regression failures 

and reduce development inefficiencies [23]. Another study emphasized the benefits of 

employing CT to detect system errors resulting from erroneous data. Their research 

showcased the effectiveness of continuous data testing in addressing significant data 

debugging challenges [24]. Google conducted a comprehensive examination outlining 

their strategies for expanding CT, which encompassed the management of 2 billion lines 

of code and the daily execution of 150 million tests [25].  

 

In a recent study, researchers examined the effectiveness of test impact analysis 

(TIA) within a continuous testing environment and evaluated the impact of code 

interdependence on TIA performance. The study revealed that numerous test scenarios are 

designed to assess the overall functionality of the system being tested (i.e., integration 

tests), which inherently involve a higher degree of dependencies that can potentially 

impede the efficacy of TIA [16].  

2.4  Test Case Prioritization (TCP) and Test Case Selection 
(TCS) 

A multitude of research studies have been conducted on test case prioritization 

(TCP) and test case selection (TCS) techniques.  

 

Test Case Prioritization (TCP) is a technique used to order test cases based on 

specific criteria, such as the likelihood of detecting faults, the criticality of the 

functionality, or the potential impact of a code change. By prioritizing test cases, 

developers can focus on executing the most relevant tests first, which helps to identify and 

fix defects more quickly. Several studies, including [26]-[33], have investigated this 

approach.  
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On the other hand, Test Case Selection (TCS) is the process of identifying a subset 

of test cases from the entire test suite that are relevant to a particular code change. The 

goal of TCS is to reduce the number of tests that need to be executed while still 

maintaining high levels of test coverage and quality assurance. Techniques such as code 

coverage analysis, dependency analysis, and risk-based analysis can be employed to 

achieve effective TCS. Multiple studies, including [10]-[15], have explored this method. 

Researchers have suggested the implementation of TCP and TCS to improve continuous 

testing efficiency. Legunsen et al. [18] compared class-level and method-level static TCS 

techniques on 985 revisions of 22 Java systems, and class-level static TCS techniques 

exhibited promising results.  

 

Elbaum et al. [34] combines both TCP and TCS techniques to make continuous 

testing more cost-effective. Memon et al. [25] proposed an approach that utilizes test 

breakages or fixes to improve test case prioritization and decrease developer waiting time 

for feedback from continuous testing following a commit. Luo et al. [35] evaluated four 

static TCP techniques against a dynamic-based approach and found static techniques to 

be highly effective in terms of fault detection and cost reduction.  

 

Engström et al. [36] classified 28 TCS techniques based on properties such as 

software language and granularity and found no technique to be superior to others. Zhu et 

al. [37] suggested re-prioritizing test cases based on historical failures. And companies 

such as Microsoft [19] and Facebook [38] use predictive test selection and test impact 

analysis to execute only impacted test cases, minimizing test execution overhead and 

scaling continuous testing for large codebases. 

2.5  Test Case Dependencies and Test Case Quality 
Understanding the dependencies between test cases and the codebase is essential 

for optimizing the testing process. Analyzing test case dependencies can help identify 
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redundant tests or tests that may have been missed. Ensuring high-quality test cases – that 

is, those that are effective in detecting defects and validating the functionality – is crucial 

for maintaining the overall quality of the software. 

 

Several research studies analyze the interdependencies of test scenarios from 

various perspectives. In an examination of 58 Java systems, Luo et al. [35] compared four 

static TCP techniques with a state-of-the-art dynamic-based approach. Their findings 

indicated that static techniques could exhibit exceptional efficiency in terms of fault 

detection and cost reduction.  

 

In an alternative study, Gambi et al. [38] presented a structured and data-oriented 

technique named PRADET for detecting test dependencies. In separate research, the 

researchers examined the evolution of test scenarios and uncovered that software 

developers frequently restructured and repaired test cases. The study unveiled that 

developers commonly employ mocking to replicate external dependencies, such as web 

services, and the maintenance of mock codes can lead to heightened overhead [39]. 

 

Test case quality, particularly regarding flaky tests, is another area that is currently 

receiving attention from researchers. As per the findings of Palomba et al. [41], more than 

50% of unstable tests exhibit indicators of suboptimal test practices, and addressing these 

issues can result in improved software design and reduced test instability. In their 

empirical study, Vahabzadeh et al. [42] explored defects within test code and identified 

that instability, semantic flaws, and environment-related issues are commonly 

encountered problems. Luo et al. [43] identified the causes of unstable tests, highlighting 

that test execution order, concurrent operations, and asynchronous waits are the main 

factors contributing to test flakiness. 
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The next chapter, Experimental Settings, delves into the details of the studied 

systems, the methodology for constructing dependency graphs, and the way we define 

impacted test cases. 
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CHAPTER 3 

EXPERIMENTAL SETTINGS 

 

In this chapter, we explore our experimental settings and describe the systems 

being investigated, the methodology for detecting and constructing dependency graphs, 

and the guidelines for identifying affected test cases. 

3.1 Studied Systems 
Our study was conducted on seven Java projects and extends earlier research 

endeavors by focusing on TIA. The research investigates the effectiveness of a new TIA 

method that at the core maps test cases to classes by extracting the data from ASTs and 

compares it with the previous static class-level test impact techniques. 

 

Based on prior research, our research presents a new technique for performing 

static test impact analysis at the class level and assesses its efficacy by evaluating it with 

state-of-the-art techniques. Our findings suggest that while the extent of code 

modifications in each change (i.e., commit) is typically limited, a considerable proportion 

of test cases are still impacted. 

 

The studied systems consist of six open-source projects and one private project. 

Table 2 provides an overview of these systems and some insights into the relative size of 

the codebase and the test code. The table displays the subsequent columns: 

● System contains name of the software system or project.  

● Source files record the number of source files in the system. These are the primary 

files containing the code that makes up the system's functionality and include only 

the Java files. 
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● Test files record the number of test files in the system. These files contain the test 

code that verifies the functionality and correctness of the system. Same as the 

source files, we count only the Java files. 

● LoC in source is the number of lines of code (LoC) in the source files. This metric 

provides a rough estimate of the system's size and complexity. 

● LoC in test is the number of lines of code in the test files. This metric gives an 

indication of the testing effort put into the system.  

● Source methods record the number of methods (or functions) in the source code. 

This metric provides insight into the modular structure of the code. A higher 

number of methods might indicate that the code is more modular, with small, 

focused methods handling specific tasks, which can make the code easier to 

understand and maintain. 

● Test methods record the number of test cases. This metric shows the granularity 

of the testing effort, as each test method typically targets a specific functionality 

or behavior of the system. A higher number of test cases might suggest a more 

thorough testing effort, which can help uncover potential issues and improve the 

system's overall quality. 

 

Figure 6 provides a visual representation of their comparative sizes. The projects 

encompass various domains, such as databases, distributed computing, cloud computing, 

and web services. To carry out our analysis, we thoroughly investigate all Java files within 

the seven systems. These projects were selected primarily due to their adherence to 

continuous testing methodologies, ongoing maintenance efforts, and previous 

examination in related research studies [16]. The studied systems strictly adhere to 

continuous integration (CI) practices and utilizes Jenkins, TravisCI, or GitLab as 

automation tools for code integration and test execution [20].  
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Table 2. Studied Systems Overview. 

System Source 
files 

Test 
files 

LoC in 
source 

LoC in 
test 

Source 
methods 

Test 
methods 

bookkeeper 1656 656 221359 139972 6828 3171 

cucumber-jvm 449 358 25475 29368 2658 1257 

hbase 2569 2234 633376 439158 22851 6734 

hive 1167 658 215637 1665185 8911 3798 

kafka 2422 1339 345014 343064 19558 10195 

zookeeper 519 400 88304 71124 3880 1398 

api-clients 870 53 52611 6203 400 303 
 

 
Figure 6. Comparison of the studied systems. 
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3.2 Dependency Graph Detection 
To identify the dependency graph between test cases and source code in the 

examined systems, we employ JavaParser [41], an open-source Java library designed for 

static analysis. JavaParser is compatible with the latest Java version and allows for the 

representation of Java source code files as Abstract Syntax Trees (ASTs). Our objective 

is to create a tests-to-classes dependency graph that encompasses both test cases and 

source code files. This graph contains information regarding the presence or absence of 

dependencies between specific test cases and the corresponding source code. As an 

illustration, consider the "testModifyValue" test case example taken from the Kafka 

project: 

  @Test 
    public void testModifyValue() { 
        SnapshotRegistry registry = new SnapshotRegistry(new LogContext()); 
        TimelineObject<String> object = new TimelineObject<>(registry, "default"); 
        assertEquals("default", object.get()); 
        assertEquals("default", object.get(Long.MAX_VALUE)); 
        object.set("1"); 
        object.set("2"); 
        assertEquals("2", object.get()); 
        assertEquals("2", object.get(Long.MAX_VALUE)); 
    } 

 

This test case resulted in a test-to-classes dependency graph as follows: 

org.apache.kafka.timeline.TimelineObjectTest#testModifyValue: 
[org.apache.kafka.timeline.Snapshot, org.apache.kafka.timeline.TimelineObject, 
org.apache.kafka.common.utils.LogContext, org.apache.kafka.timeline.Revertable,  
org.apache.kafka.timeline.Delta, org.apache.kafka.timeline.SnapshotRegistry] 

 

This indicates that the "testModifyValue" test case is dependent on six classes, 

namely Snapshot, TimelineObject, LogContext, Revertable, Delta, and SnapshotRegistry, 

from the Kafka codebase. In the approach section under chapter 4, we will provide a 
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detailed explanation of the steps involved in creating this tests-to-classes dependency 

graph. 

 

To determine whether a method is a test case, we check if it employs testing 

framework APIs like JUnit or TestNG (i.e., utilizing the @Test annotation). For instance, 

in Kafka, the method 'testNoPort' is classified as a test case because it uses JUnit's @Test 

annotation, as shown below: 

@Test 
public void testNoPort() { 
assertThrows(ConfigException.class, () -> checkWithoutLookup("127.0.0.1")); 
} 

 

Furthermore, we exclude binaries and restrict our analysis to dependencies that 

correspond to source code files within the system (i.e., we solely examine the subject 

system source code while disregard exterior source codes such as Java API and external 

Jars). 

3.3 Impacted Test Cases 
In line with previous studies [10], [11], [17], [18], we define a test scenario as 

impacted by a specific code modification (i.e., change in commit) if it necessitates 

execution due to its reliance on the modified code. Prior research [8] have shown that 

static techniques for test impact analysis are equally effective when compared to dynamic-

based techniques. 

 

Hence, our research presents a new technique for test impact analysis, which can 

be considered as static coverage analysis performed at the class level. In our evaluation, 

we compare the efficacy of this technique with existing state-of-the-art approach. Our 

proposed approach for TIA differs from the technique examined in previous studies [16], 

[17] in two primary aspects.  
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First, we construct a tests-to-class dependency graph that establishes connections 

between test cases and the classes they depend on, instead of associating test files with 

dependent classes. This ensures that each test case includes precise information regarding 

the relevant dependent classes. Considering that a test file can contain multiple test cases 

with varying dependent classes, a code modification may solely impact specific test cases 

within the file. Meaning that in our approach, we identify the subset of impacted test cases 

by creating a dependency graph that directly links each test case to its corresponding 

dependent classes, rather than assuming that all test cases within a file are impacted.  

 

Secondly, we acquire pertinent data on dependent classes by examining distinct 

node types during the construction of the dependency graph. This approach enhances the 

accuracy and inclusiveness of the dependency graph linking test cases with their 

respective dependent classes. To do so, we extract specific node types (such as 

ClassOrInterfaceType, FieldAccessExpr, and MethodCallExpr), resolve them to get 

classes qualified names (i.e., the complete name of a class, including the package name 

and the class name itself), and filter only the dependent classes that belong to the project 

scope (i.e., part of the project's source code). We then recursively examine the usage of 

these classes for each test case, enabling us to filter out irrelevant information and focus 

on the pertinent dependencies.  

 

The ClassOrInterface node type is mainly used to locate dependent classes by 

finding all corresponding nodes and filtering out those that are not within the project 

scope, meaning their resolved name does not start with the base project package. For 

instance, consider the following LazyDownConversionRecords constructor from the 

Kafka project: 
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package org.apache.kafka.common.record; 
 
import ... 
 
public class LazyDownConversionRecords implements BaseRecords { 
    ... 
 
    public LazyDownConversionRecords(TopicPartition topicPartition, Records 
records, byte toMagic, long firstOffset, Time time) { 
        this.topicPartition = Objects.requireNonNull(topicPartition); 
        this.records = Objects.requireNonNull(records); 
        this.toMagic = toMagic; 
        this.firstOffset = firstOffset; 
        this.time = Objects.requireNonNull(time); 
        ... 
    } 
    ... 
} 

 

The class-to-classes dependency graph for the LazyDownConversionRecords 

class includes the following ClassOrInterface nodes that were located and resolved from 

the LazyDownConversionRecords constructor: 

org.apache.kafka.common.record.LazyDownConversionRecords: 
[org.apache.kafka.common.record.Records, 
org.apache.kafka.common.TopicPartition,  
org.apache.kafka.common.utils.Time, ...] 

 

However, the 'Objects' ClassOrInterface node was filtered out and not included in 

the dependency graph since it belongs to the java.util package and its resolved name, 

java.util.Objects, does not match the base project package criteria, which in the case of 

Kafka is 'org.apache.kafka'. 
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In some cases, the ClassOrInterface node may not identify all dependent classes, 

so additional node types are included. To locate dependent classes that are accessed from 

static methods, we use the MethodCallExpr node type by locating and filtering static 

methods. For instance, in the LazyDownConversionRecords class mentioned previously, 

we identify ConvertedRecords as a dependent class by locating and resolving the 

downConvert static method's class name as shown below: 

package org.apache.kafka.common.record; 
 
import ... 
 
public class LazyDownConversionRecords implements BaseRecords { 
    ... 
    private class Iterator extends AbstractIterator<ConvertedRecords<?>> { 
        ... 
        @Override 
        protected ConvertedRecords makeNext() { 
            ... 
            while (batchIterator.hasNext()) { 
                ... 
                ConvertedRecords convertedRecords = RecordsUtil.downConvert(batches, 
toMagic, firstOffset, time);  
                ... 
            } 
            return allDone(); 
        } 
    } 
} 

 

Therefore, we also include it in the class-to-classes dependency graph as follows: 

org.apache.kafka.common.record.LazyDownConversionRecords: 
[org.apache.kafka.common.record.RecordsUtil, ...] 

 

To locate dependent classes that are accessed via their static fields or enum 

constants, we use the FieldAccessExpr node type to locate and resolve corresponding 
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nodes. Then, we include only nodes that are part of the project scope and are of type 

ResolvedEnumConstantDeclaration or ResolvedFieldDeclaration. If the node is of type 

ResolvedFieldDeclaration, we additionally filter only the static field declarations. For 

example, in the following AlterPartitionReassignmentsResponse class: 

package org.apache.kafka.common.requests; 
 
import ... 
 
public class AlterPartitionReassignmentsResponse extends AbstractResponse { 
    ... 
    public 
AlterPartitionReassignmentsResponse(AlterPartitionReassignmentsResponseData 
data) { 
        super(ApiKeys.ALTER_PARTITION_REASSIGNMENTS); 
        this.data = data; 
    } 
    ... 
} 

 

We identified the ALTER_PARTITION_REASSIGNMENTS FieldAccessExpr node, 

which was resolved into a ResolvedEnumConstantDeclaration type. We then extracted 

the qualified name of the ApiKeys class and included it as a dependent class in the class-

to-classes dependency graph as follow: 

org.apache.kafka.common.requests.AlterPartitionReassignmentsResponse: 
[org.apache.kafka.common.protocol.ApiKeys, ...] 
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Similarity, in the following ScramExtensions class: 

package org.apache.kafka.common.security.scram.internals; 
 
import ... 
 
public class ScramExtensions extends SaslExtensions { 
    ... 
    public boolean tokenAuthenticated() { 
        return 
Boolean.parseBoolean(map().get(ScramLoginModule.TOKEN_AUTH_CONFIG)); 
    } 
} 

 

After identifying the TOKEN_AUTH_CONFIG FieldAccessExpr node, we 

resolved it into a ResolvedFieldDeclaration type. We then verified that this field has static 

access and extracted the qualified name of the ScramLoginModule class. Finally, we 

included it as a dependent class in the class-to-classes dependency graph as follows: 

org.apache.kafka.common.security.scram.internals.ScramExtensions: 
[org.apache.kafka.common.security.scram.ScramLoginModule, ...] 

3.4 Compared Approach 
To explain in more detail, the compared approach [16], involves constructing a 

graph that represents the dependencies between test files and the code under test. In this 

approach, a node in the graph represents a class, and an edge between two nodes represents 

a dependency between them. 

 

To identify the test cases impacted by code changes, the technique introduces the 

notions of ancestor and descendant. A node_A is considered an ancestor of node_B if 

there exists a path from node_A to node_B, indicating that node_A directly or indirectly 

invokes node_B. Leveraging the dependency graph, the approach initially gathers all the 
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ancestor nodes of the nodes representing the modified files within a commit, which are 

referred to as "all_ancestors". 

 

Next, the set of "all_descendants" is derived by merging the descendant nodes 

from each node within "all_ancestors". Ultimately, the approach identifies only the nodes 

representing test cases within "all_descendants" as the impacted test cases with 

dependencies on the modified files. This means that only test files that depend on the 

changed code, either directly or indirectly, are considered as impacted, while all other test 

files are ignored. 

 

To put it differently, the compared approach begins by identifying the nodes in the 

dependency graph that represent the changed source code files. It then proceeds to find all 

ancestor nodes of these changed files, followed by identifying all their descendant nodes. 

The next step is to combine all descendant nodes into a single set, which is referred to as 

"all_descendants". Finally, the approach identifies the nodes in "all_descendants" that 

represent test cases, as these are the ones that depend on the changed files and are therefore 

impacted. 

 

For instance, consider a system with four source code files (A, B, C, D) and four 

test files (T1, T2, T3, T4) with the following dependency graph shows the relationships 

between them: 

A → B → C → T1 
D → T2 
B → T3  

 

Suppose a change is made to source code class B. The changed files would be the source 

code class B, and its ancestor node would be A. The descendant nodes of A are B, C, and 

T1, while the descendant nodes of C are T1, and the descendant nodes of B are T3. The 

union of all descendant nodes is {B, C, T1, T3}. The impacted test files are T3 (because 
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it depends on B) and T1 (because it depends on C). Consequently, the approach determines 

that test files T1 and T3 are impacted and should be executed to verify that the changes to 

source code class B do not affect any functionality. 

 

To demonstrate the first contrast in constructing dependency graphs between our 

approach and the comparative method, we can analyze the StripedReplicaPlacerTest file 

from the Kafka project. Instead of constructing the dependency graphs on the test file 

level, we do it on the test case level. This test file comprises of 14 test cases as following: 

package org.apache.kafka.metadata.placement; 
 
import ... 
 
@Timeout(value = 40) 
public class StripedReplicaPlacerTest { 
 
    private TopicAssignment place(ReplicaPlacer placer, int startPartition, int 
numPartitions, short replicationFactor, List<UsableBroker> brokers) { 
        ... 
    } 
 
    @Test 
    public void testBrokerList() { 
        ... 
    } 
 
    @Test 
    public void testAvoidFencedReplicaIfPossibleOnSingleRack() { 
        ... 
    } 
 
    @Test 
    public void testMultiPartitionTopicPlacementOnSingleUnfencedBroker() { 
        ... 
    } 
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    @Test 
    public void testPlacementOnFencedReplicaOnSingleRack() { 
        ... 
    } 
 
    @Test 
    public void testRackListWithMultipleRacks() { 
        ... 
    } 
 
    @Test 
    public void testRackListWithInvalidRacks() { 
        ... 
    } 
 
    @Test 
    public void testAllBrokersFenced() { 
        ... 
    } 
 
    @Test 
    public void testNotEnoughBrokers() { 
        ... 
    } 
 
    @Test 
    public void testNonPositiveReplicationFactor() { 
        ... 
    } 
 
    @Test 
    public void testSuccessfulPlacement() { 
        ... 
    } 
 
    @Test 
    public void testEvenDistribution() { 
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        ... 
    } 
 
    @Test 
    public void testRackListAllBrokersFenced() { 
        ... 
    } 
 
    @Test 
    public void testRackListNotEnoughBrokers() { 
        ... 
    } 
 
    @Test 
    public void testRackListNonPositiveReplicationFactor() { 
        ... 
    } 
} 

 

The generated dependency graph includes the test file name and 10 depended on classes 

(i.e., direct and indirect classes that referenced from the test code in the file) as follow: 

org.apache.kafka.metadata.placement.StripedReplicaPlacerTest: 
[org.apache.kafka.metadata.placement.StripedReplicaPlacer, 
org.apache.kafka.metadata.placement.UsableBroker, 
org.apache.kafka.server.util.MockRandom, 
org.apache.kafka.metadata.placement.ReplicaPlacer, 
org.apache.kafka.metadata.placement.TopicAssignment, 
org.apache.kafka.metadata.placement.StripedReplicaPlacer.BrokerList, 
org.apache.kafka.common.errors.InvalidReplicationFactorException, 
org.apache.kafka.metadata.placement.PlacementSpec, 
org.apache.kafka.metadata.placement.PartitionAssignment, 
org.apache.kafka.metadata.placement.StripedReplicaPlacer.RackList] 

 

However, in our case, based on the same test file we generated 14 distinct graphs 

illustrating the dependency between each test case and its associated dependent classes. 
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For instance, the testRackListWithInvalidRacks test case produced the following test-to-

classes dependency graph: 

org.apache.kafka.metadata.placement.StripedReplicaPlacerTest#testRackListWithInval
idRacks: 
[org.apache.kafka.metadata.placement.ClusterDescriber, 
org.apache.kafka.metadata.placement.UsableBroker, 
org.apache.kafka.metadata.placement.TopicAssignment, 
org.apache.kafka.server.util.MockRandom, 
org.apache.kafka.metadata.placement.PlacementSpec, 
org.apache.kafka.common.KafkaException, 
org.apache.kafka.metadata.placement.StripedReplicaPlacer.RackList, 
org.apache.kafka.common.errors.InvalidReplicationFactorException, 
org.apache.kafka.metadata.placement.PartitionAssignment, 
org.apache.kafka.metadata.placement.ReplicaPlacer, 
org.apache.kafka.common.errors.ApiException] 

 

To explain the second difference between our approach and the comparative 

method in constructing dependency graphs, we can examine the 

testMultiPartitionTopicPlacementOnSingleUnfencedBroker test case from the same 

StripedReplicaPlacerTest test file: 

@Test 
public void testMultiPartitionTopicPlacementOnSingleUnfencedBroker() { 
    MockRandom random = new MockRandom(); 
    StripedReplicaPlacer placer = new StripedReplicaPlacer(random); 
    ... 
} 

 

This test case resulted in the following dependency graph: 

org.apache.kafka.metadata.placement.StripedReplicaPlacerTest#testMultiPartitionTopi
cPlacementOnSingleUnfencedBroker: 
[org.apache.kafka.metadata.placement.ClusterDescriber,  
org.apache.kafka.metadata.placement.TopicAssignment,  
org.apache.kafka.metadata.placement.UsableBroker,  
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org.apache.kafka.metadata.OptionalStringComparator,  
org.apache.kafka.server.util.MockRandom,  
org.apache.kafka.metadata.placement.PlacementSpec,  
org.apache.kafka.common.KafkaException,  
org.apache.kafka.metadata.placement.StripedReplicaPlacer,  
org.apache.kafka.common.errors.InvalidReplicationFactorException,  
org.apache.kafka.metadata.placement.PartitionAssignment,  
org.apache.kafka.metadata.placement.ReplicaPlacer,  
org.apache.kafka.common.errors.ApiException] 

 

We included the ClusterDescriber class in our dependency graph to account for additional 

node types, such as MethodCallExpr, and expose dependencies. This revealed a 

dependency from the StripedReplicaPlacer class to the ClusterDescriber class, as it is used 

as an injected dependency in the “place” method, as shown below: 

package org.apache.kafka.metadata.placement; 
 
import ... 
 
public class StripedReplicaPlacer implements ReplicaPlacer { 
    ... 
 
    @Override 
    public TopicAssignment place(PlacementSpec placement, ClusterDescriber cluster) 
throws InvalidReplicationFactorException { 
        ... 
    } 
} 

 

Comparable to the approach, our test impact analysis inspecting class-level static 

dependencies among the changed source codes and test cases (i.e., test methods) and 

identify impacted test cases if they directly or indirectly invoke the modified code. 
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Having discussed the methodology and findings in the previous chapter, the 

upcoming section will provide a comprehensive summary of the research and results 

obtained from the study.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50 

 

CHAPTER 4 

 RESEARCH AND RESULTS 
 

In this chapter, we aim to provide a comprehensive overview of our study, 

highlighting the key aspects of our research approach, the research question we seek to 

address, the Test Impact Analysis (TIA) configurations utilized, and the findings derived 

from our investigation. This chapter serves as a pivotal point, connecting the theoretical 

underpinnings and practical applications of our research. 

4.1 Approach 
To establish a dependency graph linking test cases and classes, we commence by 

compiling a set of all-classes, comprising solely the Java source code files found within 

the designated source code path. Subsequently, we represent these files as a set of 

compilation units, extracting the qualified name of each CompilationUnit. Within the 

JavaParser framework, CompilationUnit serves as a class that portrays the complete Java 

file as an Abstract Syntax Tree (AST) (refer to Figure 7 for a visual representation). 
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Figure 7. An example of a CompilationUnit instance in JavaParser. 

 
Next, we construct a dependency graph connecting classes with their respective 

dependent classes by traversing AST and gathering significant node types (e.g., 

ClassOrInterfaceType, FieldAccessExpr, and MethodCallExpr). By employing the 

JavaParser JavaSymbolSolver, we resolve each node, obtaining the qualified name of the 

corresponding class. We then filter out only the nodes that belong to the project scope 

(i.e., are presented in the all-classes set). The JavaSymbolSolver is a package integrated 

with JavaParser, enabling the examination of the AST and identification of declarations 

associated with each element. For example, for the following ‘Callback’ interface in 

Kafka: 
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package org.apache.kafka.clients.producer; 
 
    public interface Callback { 
        void onCompletion(RecordMetadata metadata, Exception exception); 
    } 

 
Even though the CompilationUnit that corresponds to this interface contains two 

ClassOrInterface nodes, namely RecordMetadata and Exception (as seen in Figure 8), we 

exclude the Exception node from the final class-to-classes dependency graph for the 

Callback interface since it is not within the project's scope. Therefore, the dependency of 

the Callback interface will only be with the RecordMetadata class: 

org.apache.kafka.clients.producer.Callback: 
[org.apache.kafka.clients.producer.RecordMetadata] 

 

 
Figure 8. The representation of the Callback interface in Kafka as a CompilationUnit. 

 
Upon completion of this stage, we obtain a dependencies map of class-to-classes. 

To derive the desired dependency graph between test cases and classes, we begin by 

aggregating all the test methods (i.e., test cases) by filtering out methods within the 

designated test path that include the @Test annotation. For each test method, we extract 

the qualified names of the relevant nodes using a similar approach as in the preceding step. 

Furthermore, considering that test cases often utilize shared resources like test fixture 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

53 

 

methods (e.g., @Before, @BeforeClass), we iterate through the process of extracting class 

names for all non-test codes (i.e., code excluding methods annotated with the @Test 

annotation) within each test file.  
 

To illustrate this point, we can consider the following 

TestRackawareEnsemblePlacementPolicy test class: 

package org.apache.bookkeeper.client; 
 
public class TestRackawareEnsemblePlacementPolicy extends TestCase { 
 
    ... 
 
    @Override 
    protected void setUp() throws Exception { 
        ... 
        timer = new HashedWheelTimer(new 
ThreadFactoryBuilder().setNameFormat("TestTimer-%d").build(), 
                conf.getTimeoutTimerTickDurationMs(), TimeUnit.MILLISECONDS, 
conf.getTimeoutTimerNumTicks()); 
        ... 
    } 
 
    @Test 
    public void testInitalize() throws Exception { 
        String dnsResolverName = conf.getString(REPP_DNS_RESOLVER_CLASS, 
ScriptBasedMapping.class.getName()); 
        DNSToSwitchMapping dnsResolver = 
ReflectionUtils.newInstance(dnsResolverName, DNSToSwitchMapping.class); 
        AbstractDNSToSwitchMapping tmp = (AbstractDNSToSwitchMapping) 
dnsResolver; 
        assertNull(tmp.getBookieAddressResolver()); 
        dnsResolver.setBookieAddressResolver(repp.bookieAddressResolver); 
        assertNotNull(tmp.getBookieAddressResolver()); 
    } 
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    ... 
} 

 
When considering only the dependent classes in the testInitalize test case only the 

following classes will be included: ScriptBasedMapping, DNSToSwitchMapping, and 

AbstractDNSToSwitchMapping. However, because we extract class names from all the 

non-test methods as well, we also include the HashedWheelTimer class. Therefore, the 

final test-to-classes dependency graph of the testInitalize test case will also include the 

class names collected from the setUp method and will be presented as following: 

org.apache.bookkeeper.client#testInitalize: [ScriptBasedMapping, 
DNSToSwitchMapping, AbstractDNSToSwitchMapping, HashedWheelTimer, …] 

 
Finally, we build the test-to-classes dependency graph by iteratively traversing 

class names and their associated class dependencies for each test case, leading to the 

formation of the test-to-classes dependency graph. To illustrate this point, we can consider 

the following simplified example: 

// ClassC.java 
public class ClassC { 
    public String getMessage() { 
        return "Hello from ClassC"; 
    } 
} 
 
// ClassB.java 
public class ClassB { 
    private ClassC classC; 
 
    public ClassB() { 
        classC = new ClassC(); 
    } 
 
    public String getMessage() { 
        return "Hello from ClassB and " + classC.getMessage(); 
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    } 
} 
 
// ClassA.java 
public class ClassA { 
    private ClassB classB; 
 
    public ClassA() { 
        classB = new ClassB(); 
    } 
 
    public String getMessage() { 
        return "Hello from ClassA and " + classB.getMessage(); 
    } 
} 
 
// TestClass1.java 
import org.junit.jupiter.api.Test; 
import static org.junit.jupiter.api.Assertions.assertEquals; 
 
public class TestClass1 { 
    @Test 
    public void testCase1() { 
        ClassA classA = new ClassA(); 
        String expectedMessage = "Hello from ClassA and Hello from ClassB and Hello 
from ClassC"; 
        assertEquals(expectedMessage, classA.getMessage()); 
    } 
} 

 
It is evident that while testCase1 has a direct dependency solely on ClassA, the ultimate 

test-to-classes dependency graph encompasses ClassB and ClassC as well, due to the 

dependency between ClassA and ClassB, and the subsequent dependency between ClassB 

and ClassC. Consequently, the final test-to-classes dependency graph for testCase1 is 

represented as follows: testClass1: [ClassA, ClassB, ClassC]. This approach allows us to 
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account for testCase1 as impacted if there is a code change in any of the dependent classes, 

rather than only considering its direct dependency. 

 

To carry out test impact analysis (TIA) based on the test-to-classes dependency 

graph in the context of code changes, our research involves experimenting with two 

separate configurations: 

● Source file level 

● Class token level 

4.1.1 Test Impact Analysis - Source File Level 
In this configuration we collected the source code files that had changed from 

commits (see Table 3), filtering only those commits that had made some code changes to 

at least one Java source file. We then retrieved the corresponding qualified names for each 

source file in a similar manner to the previous steps (i.e., generation of the test-to-classes 

dependency graph). Using the test-to-classes dependency graph, we filtered the 

"impacted" test cases that contained the changed classes, resulting in a subset of 

"impacted" test cases for a given commit. 
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Table 3. Number of Commits, Mean Changed Files, and Median Percentage of Impacted 

Test Cases Using Test-to-Classes Dependency Graph (Changed Source Files 

Configuration). 

System Commits Changed files (median) Percentage of impacted 
tests (median) 

bookkeeper 57 10.912 39.51% 

cucumber-jvm 14 1.571 6.96% 

hbase 45 3.511 44.85% 

hive 24 4.125 26.20% 

kafka 52 3.057 22.41% 

zookeeper 48 3.312 62.39% 

api-clients 67 2.761 43.77% 
 

To accomplish this, we utilize the GitHub and GitLab APIs to obtain commit data 

and extract the modified Java source code files. For instance, if the system source code is 

hosted on GitHub, we initially use the following API to retrieve a list of commits: 

curl -L \ 
  -H "Accept: application/vnd.github+json" \ 
  -H "Authorization: Bearer <YOUR-TOKEN>"\ 
  -H "X-GitHub-Api-Version: 2022-11-28" \ 
  https://api.github.com/repos/OWNER/REPO/commits 

 
Subsequently, for each commit, we acquire the data for modified source code Java 

files by making the following API call and providing the commit SHA as a reference: 

curl -L \ 
  -H "Accept: application/vnd.github+json" \ 
  -H "Authorization: Bearer <YOUR-TOKEN>"\ 
  -H "X-GitHub-Api-Version: 2022-11-28" \ 
  https://api.github.com/repos/OWNER/REPO/commits/REF 
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For instance, in the case of the following Kafka commit: 

0bb05d8679b684ad8fbb2eb40dfc00066186a75a, we identified three qualified names of 

modified source code files:  

[org.apache.kafka.controller.ClusterControlManager, 
org.apache.kafka.common.requests.BrokerRegistrationRequest, 
org.apache.kafka.metadata.BrokerRegistration] 

 

which led to 6557 impacted test cases after filtering from the Kafka test-to-classes 

dependency graph. 

 

From end-to-end high-level overview (see Figure 9), the source file level 

configuration can be described as follow: 

● Construct test-to-classes dependency graphs: 

○ Collect source code files - Gather all the relevant source code files from a 

given software project. 

○ Transform source code files to Abstract Syntax Trees (ASTs) - Convert the 

source code files into ASTs, which represent the structure of the code in 

hierarchical manner. 

○ Build class-to-classes dependency graph for each AST - Analyze each AST 

to identify dependent classes. 

○ Construct dependency graphs that represent the relationships between root 

classes and their dependent classes. 

○ Collect all test cases - Gather a list of all the test cases from the same given 

software project. 

○ Collect common classes for each test case - Analyze common dependent 

classes in each test file and add them to the relevant test cases. 

○ Build test-to-classes dependency graph for each test case - Using the class-

to-classes dependency graphs, construct a graph that represents the 
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dependencies between the test case and the classes it interacts with directly 

or indirectly. 

● Identify impacted test cases per code change: 

○ Collect changed source files from commit - Identify specific source code 

files that have been modified in a commit. 

○ Lookup each changed source file (i.e., changed class) in the test-to-class 

dependency graph - Examine each changed class and check if any test case 

depends on it in the test-to-class dependency graph. 

○ Add the test case to a set of impacted test cases if a changed class is found 

- If a dependency between a test case and a modified class is identified, 

add that test case to a set of impacted test cases. 

○ Return the set of impacted test cases per commit - After analyzing all the 

modified classes and their dependencies, return the set of test cases that are 

impacted by the code change (i.e., commit). 
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Figure 9. End-to-end diagram of source file level and class token level Test Impact 

Analysis approaches. 

4.1.2 Test Impact Analysis - Class Tokens Level 
We employed a configuration like the previous method, where we utilized the 

same filtered commits that involved modifications to at least one Java source file (as 

shown in Table 3). However, rather than acquiring the qualified names of each changed 

source file from the collected commits, we extracted all the modified class tokens within 

the changed source files. The rationale for this approach was to determine if we could 

optimize the selection of impacted test cases even further by narrowing the scope of 
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changes. To achieve this goal, we first simplified the test-to-classes dependency graph by 

modifying the qualified names to only include the names of the test cases and classes, 

without their respective packages. Consider the following test-to-classes dependency 

graph: 

org.apache.kafka.timeline.TimelineObjectTest#testModifyValue: 
[org.apache.kafka.timeline.Snapshot, 
org.apache.kafka.timeline.TimelineObject, 
org.apache.kafka.common.utils.LogContext, org.apache.kafka.timeline.Revertable, 
org.apache.kafka.timeline.Delta, 
org.apache.kafka.timeline.SnapshotRegistry] 

 
After modification, it becomes: 

testModifyValue: [Snapshot, TimelineObject, LogContext, Revertable, Delta, 
SnapshotRegistry] 

 
In the modified version, we removed the package information from the class names to 

simplify the test-to-classes dependency graph. As a result, only the class names are listed 

as dependencies for the test case "testModifyValue". 

 

Afterward, we obtained changed lines of code by utilizing the "Git diff" command. 

Git diff is a command-line tool used in the Git version control system that compares two 

sets of code changes, typically between different versions of files or directories. The tool 

provides a summary of the differences between the two sets of codes, highlighting the 

lines that were added, modified, or deleted.  

 

Subsequently, we processed the collected lines of code with changes, removing 

comments and imports, dividing the lines into individual tokens, and gathering only those 

tokens that belong to the project's scope (i.e., present in the all-classes set) (refer to Table 

4). In the end, like the previous configuration, we employed the simplified test-to-classes 

dependency graph to identify the "impacted" test cases containing the altered token 

classes, resulting in a subset of "impacted" test cases for a given commit. 
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Table 4. Number of Commits, Mean Changed Class Tokens, And Median Percentage of 

Impacted Test Cases Using Simplified Test-to-Classes Dependency Graph (Changed 

Class Tokens Configuration). 

System Commits Changed class tokens 
(median) 

Percentage of impacted 
tests (median) 

bookkeeper 57 3.142  53.470% 

cucumber-jvm 14 5.692  27.850% 

hbase 45 6.083  69.362% 

hive 24 7.571  28.768% 

kafka 52 8.295  63.235% 

zookeeper 48 5.320  68.988% 

api-clients  67 5.571 65.448% 
 

For example, in the case of the following Kafka commit: 

700947aa5a64a707264caac8959fe2dc6b7e7fd0, we identified two qualified names of 

modified source code files under the first source files configuration: 

[org.apache.kafka.coordinator.group.GroupCoordinator, 

org.apache.kafka.common.requests.OffsetDeleteResponse], resulting in 6653 impacted 

test cases. However, using the class tokens configuration, we identified five class tokens: 

[Errors, OffsetDeleteRequest, OffsetDeleteResponse, RequestContext, BufferSupplier], 

leading to 7399 impacted tests. 

 

Although we managed to reduce the scope of changes from 9 classes to 5, which 

represents a 64.29% improvement when comparing the corresponding class-to-classes 

dependency graphs: 

org.apache.kafka.coordinator.group.GroupCoordinator: 
[org.apache.kafka.common.requests.RequestContext, 
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org.apache.kafka.common.TopicPartition, 
org.apache.kafka.common.utils.BufferSupplier, 
org.apache.kafka.common.requests.TransactionResult] 
 
org.apache.kafka.common.requests.OffsetDeleteResponse: 
[org.apache.kafka.common.requests.AbstractResponse, 
org.apache.kafka.common.requests.OffsetDeleteRequest, 
org.apache.kafka.common.protocol.ByteBufferAccessor, 
org.apache.kafka.common.protocol.Errors, 
org.apache.kafka.common.protocol.ApiKeys] 

 
The resulting impacted test cases still increased from 6653 to 7399, representing 

an 11.21% decrease in the efficiency of the test impact analysis technique (i.e., an increase 

in selected impacted test cases) when comparing the class tokens configuration with the 

source files configuration. The rationale behind this will be elaborated further in the 

subsequent results section. 

 

From end-to-end high-level overview (see Figure 9), the class tokens level 

configuration can be described as follow: 

● Construct test-to-classes dependency graphs: 

○ Collect source code files - Gather all the relevant source code files from a 

given software project. 

○ Transform source code files to Abstract Syntax Trees (ASTs) - Convert the 

source code files into ASTs, which represent the structure of the code in a 

hierarchical manner. 

○ Build class-to-classes dependency graph for each AST - Analyze each AST 

to identify dependent classes. 

○ Construct dependency graphs that represent the relationships between root 

classes and their dependent classes. 

○ Collect all test cases - Gather a list of all the test cases from the same given 

software project. 
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○ Collect common classes for each test case - Analyze common dependent 

classes in each test file and add them to the relevant test cases. 

○ Build test-to-classes dependency graph for each test case - Using the class-

to-classes dependency graphs, construct a graph that represents the 

dependencies between the test case and the classes it interacts with directly 

or indirectly. 

● Identify impacted test cases per code change: 

○ Collect changed source files from commit - Identify the specific source 

code files that have been modified in a commit. 

○ Transform changed source code files to ASTs - Convert the changed source 

code files into ASTs. 

○ Build class-to-classes dependency graph for each AST (i.e., changed 

source file) - Analyze the ASTs of the modified classes, determine their 

dependencies and construct a graph that represents the relationships 

between the modified source files and their dependent classes. 

○ Build a list of changed source files dependent classes - Create a list that 

includes all the classes that the modified source files depend on. 

○ Lookup each element of the list of changed source files dependent classes 

in the test-to-class dependency graph - Examine each class in the list of 

dependent classes, check if any test case depends on it and search in the 

test-to-class dependency graph for these dependencies. 

○ Add the test case to a set of impacted test cases if an element (i.e., 

dependent class) is found - If a dependency between a test case and a 

modified class is identified, add that test case to a set of impacted test cases. 

○ Return the set of impacted test cases per commit - After analyzing all the 

modified classes and their dependencies, return the set of test cases that are 

impacted by the code change (i.e., commit). 
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4.2 Results 
In order to evaluate the effectiveness of our proposed technique, we assess the 

efficacy of our proposed technique by addressing the following research question (RQ). 

 

RQ: How does our proposed static class-level test impact analysis technique perform 

compared to the state-of-the-art static class-level test impact analysis technique? 
 

To address this question, we examine the techniques performance in terms of 

impacted test case selection. This approach allows us to identify any potential advantages 

or drawbacks associated with our proposed method, as well as to highlight its strengths 

and weaknesses in relation to the current state-of-the-art technique.  

4.2.1 Test Impact Analysis - Source File Level 
In most of the assessed systems, the average number of modified files remains 

below 4. However, the average proportion of impacted test cases can soar up to 62%. 

Table 3 provides insights into the number of commits, the median quantity of modified 

files, and the average percentage of impacted test cases for each system. The data reveals 

that in 5 out of the 7 scrutinized systems, the median count of modified files remains below 

4. Considering the overall volume of source code and test files within the examined 

systems (depicted in Table 3), it becomes evident that, on average, developers modify less 

than 0.5% of the files daily. 

 

Figure 10 showcases the distribution of impacted test cases based on code changes. 

The data demonstrates that, on average, the proportion of impacted test cases can soar as 

high as 62%. Across six of the seven analyzed systems, the average percentage of 

impacted test cases ranges from 22% to 62%. Notably, our findings indicate that 

cucumber-jvm exhibits a comparatively lower number of impacted test cases, with a 

median percentage of merely 6.96%. Further investigation reveals that this disparity can 
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be attributed to the relatively modest median number of modified files in cucumber-jvm, 

standing at just 1.5, in contrast to the other systems examined.  
 

 
Figure 10. Distributions by percentage of impacted test cases using test to classes 

dependency graph (1st configuration - changed source files). 
 

To enhance our comprehension of the findings, we undertook an additional 

examination of the interdependencies between classes (i.e., the number of references each 

class has to other classes) and the dependencies between test cases and classes (as 

indicated by the test-to-class dependency graph). Figure 11 illustrates the correlation 

between the percentage of classes and the distribution of dependent classes within various 

ranges.  

 

Evidently, within the examined systems, the proportion of classes without any 

dependencies on other classes exceeds 15%, with the highest recorded value of 51.1% 
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observed in the api-clients system. Furthermore, our analysis unveiled that a relatively 

minor fraction of classes (averaging less than 5%) exhibit 20-40 dependencies on other 

classes. 

 

Figure 12 depicts the association between test cases and their respective dependent 

classes, represented as a percentage. Across all systems analyzed, a minimum of 20% of 

test cases exhibit a dependency of less than 10% on the total number of classes within the 

system. However, in the case of hive, this percentage surpasses 70%. 

 

Based on the findings, we can deduce that there exists a correlation between the 

percentage of dependent classes and the percentage of impacted test cases. The highest 

median percentage of impacted test outcomes (as indicated in Table 3), observed in 

zookeeper and hbase, is linked to the proportion of dependent classes. For instance, in the 

case of zookeeper, over 75% of test cases rely on 50%-70% of the total classes, while in 

hbase, more than 50% of test cases have a dependency on 60%-70% of the total classes. 

These results demonstrate that despite the minimal number of modified files in code 

modifications within the analyzed systems, the proportion of impacted test cases can be 

considerably high (with a median of approximately 47% of impacted test cases detected 

in four out of the seven systems investigated).  

 

Nevertheless, simultaneously, the results also indicate that our static class-level 

test impact analysis technique holds promise in reducing the testing overhead by an 

average of approximately 60%. To establish a benchmark against the current state-of-the-

art static class-level approach [16], we compared our results on commonly studied systems 

(as presented in Table 5). Our proposed approach demonstrated an average improvement 

of approximately 13% (represented by a reduction of roughly 13% in the selection of 

impacted test cases). 
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Yet, it is worth highlighting that none of the studies assessed the false negative 

ratio, which involves evaluating how many test cases influenced the modified code but 

were disregarded by the test impact analysis technique and can be another future research 

topic. Also, it should be noted that the median percentage of test results affected by the 

compared technique were estimated from a graph and thus may be slightly different. 

 
 

 
Figure 11. The percentage of classes with the distribution of dependent classes 

by range. 
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Figure 12. The percentage of test cases with the distribution of dependent classes 

by percentage. 
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Table 5. Comparison of Median Percentage of Impacted Tests Between Static Class-

Level Techniques. 

System Proposed technique - 
1st configuration 
(changed source files)  

Proposed technique 
- 2nd configuration 
(changed class 
tokens)  

Percentage of 
impacted tests 
(median) - 
compared state-of-
the-art approach 

bookkeeper 39.51% 53.47% ~40% 

cucumber-jvm 6.96% 27.85% ~15% 

hbase 44.85% 69.32% ~72% 

hive 26.20% 28.76% ~48% 

kafka 22.41% 63.23% ~33% 
 

4.2.2 Test Impact Analysis - Class Tokens Level 
In most systems examined, the average number of altered class tokens extracted is 

between 5 and 8 and the average percentage of impacted test cases can be as high as 69%. 

Table 4 displays the number of commits, the median number of modified class tokens 

extracted, and the average percentage of impacted tests for each system. The data reveals 

that for 6 out of 7 systems analyzed, the median count of class tokens modified is greater 

than 5. 

 

The distribution of the proportion of impacted test cases resulting from code 

changes is presented in Figure 13. The results demonstrate that, on average, the percentage 

of impacted test cases can go up to 69%. In five of the seven systems analyzed, the 

percentage of impacted test cases ranges from 53% to 69%. Our findings further suggest 

that cucumber-jvm still has the lowest number of impacted test cases when compared to 

other systems. However, the median percentage of impacted test cases has significantly 

increased from 6.96% to 27.85% when compared to the configuration involving changed 

source files. 
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Table 4 displays that the highest median percentage of impacted test cases was still 

observed in Zookeeper and HBase, like the previous configuration. However, the median 

percentage of impacted test cases increased from 62.39% to 68.99% in Zookeeper and 

from 44.85% to 69.36% in HBase. Additionally, the average percentage of impacted test 

cases across all analyzed systems increased from 35.16% to 53.87%. These findings 

suggest that this setup is less effective in terms of selecting impacted tests compared to 

the previous configuration involving changed source files. 

 

We conducted further analysis to better comprehend the outcomes. Our findings 

indicate that while the second configuration, involving changed class tokens, can aid in 

narrowing down the changed scope, there are drawbacks to this approach. This is because 

we removed the full identification of classes in the tests-to-classes dependency graph, 

which leads to a higher degree of dependency graph due to common class names. For 

example, we observed that in the Kafka project, the class name 'Builder' was repeated 93 

times, and 'StatusData' was repeated 7 times. Similarly, in the HBase project, the 'Builder' 

class name was repeated 26 times, and 'Writer' was repeated 5 times. 

 

Similarly, to the previous configuration (i.e., source code files level test impact 

analysis), we compared our findings to the current state-of-the-art static class-level 

approach [16] by examining commonly studied systems (as depicted in Table 5). Our 

proposed method using the class tokens configuration yielded poorer results, with an 

average increase of around 6.5% in selected impacted tests. Nonetheless, our results 

indicate that our static class-level test impact analysis approach using the class tokens 

configuration still has the potential to decrease test overhead by an average of 

approximately 42%. 

 

As before, there are two important points to note. First, none of the studies 

evaluated the false negative ratio, which involves determining the number of test cases 
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that affected the modified code but were not considered by the test impact analysis 

technique. This can be a potential topic for future research. Second, it is important to 

mention that the median percentage of impacted test results in the compared technique 

was estimated from a graph, and thus there may be slight differences. 
 

 
Figure 13. Distributions by percentage of impacted test cases using test to classes 

dependency graph (second configuration - changed class tokens). 
 

The following chapter will encapsulate our conclusion and delve into the 

constraints of the current research, while accentuating potential avenues for future 

research. 
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CHAPTER 5 

 FUTURE WORK AND CONCLUSION 
 

In this final chapter we aim to consolidate the key insights and findings of our 

research as well as reflecting on the implications of our study. We begin by revisiting 

limitations of our study, acknowledging any shortcomings or constraints that may have 

influenced the outcomes of our research. By addressing these limitations, we aim to 

provide a balanced and transparent account of our work. Next, we summarize the key 

outcomes and present our concluding thoughts. 

5.1 Future Work 
Our analysis encompassed seven Java-based systems spanning various domains, 

and we observed consistent results across all systems. However, it is important to note 

that since our study focused exclusively on Java implementations, the findings may not 

directly translate to software projects developed in different programming languages. To 

enhance the applicability of our results to other coding languages, future research should 

investigate their generalizability. 

 

Moreover, our investigation was limited to a subset of code modifications (i.e., 

commits) and did not encompass the entirety of the initial stages of software system 

development. To overcome this constraint, future studies could undertake more 

comprehensive test impact analysis, expanding the scope to encompass the complete 

software history.  

 

Our study relies on static analysis for identifying the dependency graph. However, 

it is important to acknowledge that static analysis may have inherent limitations in terms 

of accuracy, such as the resolution of nodes from abstract syntax trees, which could 
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potentially lead to inaccuracies in the results. Although we did not encounter such 

instances in our research, it is recommended that future studies validate our findings by 

applying them to different systems. 

 

In this study, we employ static analysis to uncover the relationships between test 

cases and other source code elements. Our manual examination did not uncover any false 

positives resulting from our static analysis approach. However, it is crucial for future 

research to evaluate our proposed approach, as well as other static methods for test impact 

analysis, in terms of false positives. False positives refer to impacted test cases that are 

erroneously excluded by the test impact analysis implementation. 

 

We opted for static analysis over dynamic analysis to capture class-level 

dependencies based on prior research [35], [37], which demonstrated comparable 

performance between static and dynamic test impact analysis methods. Moreover, the 

class-level dependency graph exhibited superior results when compared to the method-

level dependency graph. To reassess our conclusions, future studies could explore the use 

of dynamic analysis or investigate method-level dependencies.  

 

We classify a method as a test case when it contains invocations to testing libraries 

such as JUnit or TestNG, identified by the presence of the "@Test" annotation. Although 

we did not encounter any false detections during our examination, it is possible that certain 

test cases may be disregarded during execution due to annotations like "@Ignore" or 

"@Test(enabled=false)". Additional research is necessary to validate the accuracy of our 

method in identifying test cases. 

 

This research primarily focuses on analyzing Java source code and its associated 

test cases. While most of the systems we examine are implemented in Java, there are cases 

where other programming languages are utilized. For example, in Kafka, Scala and Python 

constitute 21.8% and 2.5% of the code, respectively, while in Hbase, Perl and Ruby 
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contribute 0.9% and 1.8% of the code, respectively. Therefore, additional research is 

necessary to explore how different programming languages can impact the outcomes of 

TIA.  

 

Based on our analysis, we observe a limited positive correlation between the 

number of modified files and the proportion of impacted test cases. This indicates that 

certain modified files may have a more substantial impact compared to others. To enhance 

the effectiveness of TIA, future research could explore various characteristics of modified 

files, including their susceptibility to change and significance within the dependency 

graph. 

5.2 Conclusion 
Numerous techniques have been suggested and assessed to minimize the overhead 

of test execution, including traditional software development settings incorporating TIA. 

This study investigates the efficacy of employing static class-level test impact analysis on 

seven Java systems under two distinct configurations within the framework of continuous 

testing. Our findings indicate that even with a limited quantity of changed files under the 

1st configuration and limited changed class tokens in the 2nd configuration, a significant 

number of test cases (40% or more) are still impacted by code changes. 

 

However, our results also suggest that implementing the proposed approach could 

potentially reduce accumulated testing overhead in continuous integration (CI) setups. 

Across all the systems we studied, we found that approximately 60% of tests could be 

excluded (i.e., not impacted by code changes) with the 1st configuration (i.e., changed 

source files), which shows promise for reducing testing overhead. To benchmark our 

results against the current state-of-the-art static class-level approach [16], we compared 

our findings and observed an average improvement of approximately 13% in the number 

of impacted tests with the 1st configuration (i.e., changed source files) and deterioration 
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of approximately 6.5% in the number of impacted tests when applied the 2nd 

configuration (i.e., changed class tokens).  

 

In summary, our study's results suggest that integrating test impact analysis (TIA) 

into the development life cycle can bring benefits even with the current setup, considering 

the growing test frequency and associated overhead.
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APPENDIX 
BookKeeper test-to-classes Dependency Graph (with qualified names): 
https://drive.google.com/file/d/1YRMLLTR6_2ozfbE6d-tnImXJ1Sz-
Ejml/view?usp=sharing 
 
BookKeeper test-to-class-tokens Dependency Graph (with simplified class names): 
https://drive.google.com/file/d/1383B6v25bjVKTZlecXIMbWU_5rCa223x/view?usp=s
haring 
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