

CLASS-LEVEL AND TOKEN-LEVEL APPROACHES FOR

TEST IMPACT ANALYSIS

Mr. Alon Basin

A Thesis Proposal Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Computer Science and Information

Technology

 Department of Mathematics and Computer Science

 FACULTY OF SCIENCE

Chulalongkorn University

Academic Year 2022

Copyright of Chulalongkorn University

วธีิระดบัคลาสและระดบัโทเคน็สาํหรับการวเิคราะห์ผลกระทบจากการทดสอบ

นายอลอน บาซิน

วทิยานิพนธ์นี> เป็นส่วนหนึBงของการศึกษาตามหลกัสูตรปริญญาวทิยาศาสตรมหาบณัฑิต

สาขาวชิาวทิยาการคอมพิวเตอร์และเทคโนโลยสีารสนเทศ

ภาควชิาคณิตศาสตร์และวทิยาการคอมพิวเตอร์

คณะวทิยาศาสตร์ จุฬาลงกรณ์มหาวทิยาลยั

ปีการศึกษา 2565

ลิขสิทธิT ของจุฬาลงกรณ์มหาวทิยาลยั

Thesis Title CLASS-LEVEL AND TOKEN-LEVEL APPROACHES FOR

TEST IMPACT ANALYSIS

By Mr. Alon Basin

Field of Study Computer Science and Information Technology

Thesis Advisor Assistant Professor ARTHORN LUANGSODSAI, Ph.D.

Thesis Co-advisor Associate Professor KRUNG SINAPIROMSARAN, Ph.D.

__

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of

the Requirements for the Master of Science

………………………………………….. Dean of the Faculty of Science
 (Professor POLKIT SANGVANICH, Ph.D.)

THESIS COMMITTEE

 ………………………………………….. Chairman

 (THAP PANITANARAK, Ph.D.)

………………………………………….. Thesis Advisor

(Assistant Professor ARTHORN LUANGSODSAI, Ph.D.)

………………………………………….. Thesis Co-Advisor

(Associate Professor KRUNG SINAPIROMSARAN, Ph.D.)

………………………………………….. External Examiner

(Associate Professor PERAPHON SOPHATSATHIT, Ph.D.)

ⅳ

อลอน บาซิน: วธีิระดบัคลาสและระดบัโทเคน็สาํหรับการวเิคราะห์ผลกระทบจากการทดสอบ

(CLASS-LEVEL AND TOKEN-LEVEL APPROACHES FOR TEST IMPACT

ANALYSIS) อ. ทีBปรึกษาหลกั : ผศ.ดร.อาธร เหลืองสดใส, อ.ทีBปรึกษาร่วม : รศ.ดร.กรุง

สินอภิรมยส์ราญ

สาขาวชิา วทิยาการคอมพิวเตอร์และ ลายมือชืBอนิสิต...

 เทคโนโลยสีารสนเทศ ลายมือชืBอ อ.ทีBปรึกษาหลกั

 ปีการศึกษา 2565. ลายมือชืBอ อ.ทีBปรึกษาร่วม

ⅴ

6278507823 : MAJOR COMPUTER SCIENCE AND INFORMATION
TECHNOLOGY
KEYWORD: test impact analysis, javaparser, abstract syntax tree, test case selection,
continuous testing.

Alon Basin : CLASS-LEVEL AND TOKEN-LEVEL APPROACHES FOR TEST
IMPACT ANALYSIS. Advisor: Asst. Prof. ARTHORN LUANGSODSAI, Ph.D. Co-
advisor: Assoc. Prof. KRUNG SINAPIROMSARAN, Ph.D.

The objective of the thesis is to examine the efficacy of test impact analysis in a
setting of continuous testing, where automated test cases are routinely run to guarantee
the integration of high-quality codes. While continuous testing can enhance code quality
and minimize maintenance workload, it also leads to a notable rise in overhead for test
execution. In our study on test impact analysis, we developed a novel static class level
technique that utilizes JavaParser to create a dependency graph between test cases and
source code classes based on abstract syntax trees. We applied this technique to seven
Java systems and evaluated it against two configurations and discovered a correlation
between the effectiveness of test impact analysis and the degree of interdependence
between test cases and source code classes. Our study confirmed previous research
indicating that even with minimal code changes in commits, roughly 40% of test cases
were impacted and required execution on average in the first configuration (changed
source files), while approximately 58% of test cases were impacted on average in the
second configuration (changed class tokens). Nevertheless, despite these findings, we
assert that test impact analysis is an effective tool for reducing test overhead. Moreover,
we compared our proposed test impact analysis (TIA) technique with a state-of-the-art
static class-level technique on commonly studied systems and observed that our approach
achieved an improvement of approximately 13% in selecting impacted tests in the changed
source files configuration, while it underperformed by about 6.5% in the changed class
tokens configuration.

Field of Study: Computer Science and Information Student's Signature

 Technology
Academic Year: 2022 Advisor's Signature

 Co-advisor's Signature

ⅵ

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Assistant Professor Dr.

Arthorn Luangsodsai, and co-advisor, Associate Professor Dr. Krung Sinapiromsaran, for

their invaluable guidance and support throughout my master's thesis. I am also grateful to

the Department of Mathematics and Computer Science at Chulalongkorn University for

providing me with all the necessary resources and facilities during my graduate studies.

I would like to extend my thanks to my dissertation committee members, Associate

Prof. Dr. Peraphon Sophatsathit and Dr. Thap Panitanarak, for their valuable advice and

contributions to the completion of my research.

Finally, I would like to express my heartfelt appreciation to my wife and family

for their constant support and motivation throughout my work. Without you, I could not

have achieved this.

Mr. Alon Basin

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... ⅵ	

TABLE OF CONTENTS .. ⅶ	

LIST OF TABLES .. ⅸ	

LIST OF FIGURES .. ⅹ	

CHAPTER 1: INTRODUCtiON ... 1	
1.1 Software Development Life Cycle (SDLC) .. 2	
1.2 Software Maintenance ... 4	
1.3 Change Impact Analysis .. 6	
1.4 Continuous Integration / Continuous Deployment .. 10	
1.5 Continuous Testing .. 12	
1.6 Test Impact Analysis .. 14	
1.7 Dependency Graph .. 18	
1.8 Objectives and Scope of Work ... 19	

CHAPTER 2: BACKGROUND .. 21	
2.1 	 Alternative Strategies to Shorten Test Automation .. 21	
2.2 	 Tests Impact Analysis Techniques ... 25	

2.2.1 Source Code Analysis .. 25	
2.2.2 Predictive Test Selection .. 27	

2.3	 Continuous Integration (CI) and Continuous Testing (CT) 28	
2.4 	 Test Case Prioritization (TCP) and Test Case Selection (TCS) 29	
2.5 	 Test Case Dependencies and Test Case Quality .. 30

CHAPTER 3: EXPERIMENTAL SETTINGS .. 33	
3.1	 Studied Systems .. 33	
3.2	 Dependency Graph Detection .. 36	
3.3	 Impacted Test Cases .. 37	
3.4	 Compared Approach ... 42	

CHAPTER 4: RESEARCH AND RESULTS ... 50	

ⅷ

4.1	 Approach .. 50	
4.1.1 Test Impact Analysis - Source File Level .. 56
4.1.2 Test Impact Analysis - Class Tokens Level ... 60	

4.2	 Results .. 65	
4.2.1 Test Impact Analysis - Source File Level .. 65	
4.2.2 Test Impact Analysis - Class Tokens Level ... 70	

CHAPTER 5: FUTURE WORK AND CONCLUSION ... 73	
5.1	 Future Work ... 73	
5.2	 Conclusion .. 75	

REFERENCES ... 77	
APPENDIX .. 84	
VITA .. 85	

ⅸ

LIST OF TABLES

Table 1: Code Base Change Impact Analysis Techniques .. 7

Table 2: Studied Systems Overview .. 35

Table 3: Number of Commits, Mean Changed Files, And Median Percentage of

Impacted Test Cases Using Test-to-Classes Dependency Graph

(Changed Source Files Configuration) .. 57

Table 4: Number of Commits, Mean Changed Class Tokens, And Median Percentage of

Impacted Test Cases Using Simplified Test-to-Classes Dependency Graph

(Changed Class Tokens Configuration) ... 62

Table 5: Comparison of Median Percentage of Impacted Tests Between Static

Class-Level Techniques ... 70

ⅹ

LIST OF FIGURES

Figure 1: Defects fix cost during software development life cycle 4

Figure 2: Continuous Integration/Continuous Deployment pipeline illustration 11

Figure 3: Example for Test Impact Analysis Architecture .. 17

Figure 4: Example usage of the tagging approach ... 23

Figure 5: High level of Facebook's predictive test selection model 28

Figure 6: Comparison of the studied systems .. 35

Figure 7: An example of a CompilationUnit in JavaParser ... 51

Figure 8: The representation of the Callback interface in Kafka as a CompilationUnit . 52

Figure 9: End-to-end diagram of source file level and class token level Test Impact

Analysis approaches .. 60

Figure 10: Distributions by percentage of impacted test cases using test to classes

dependency graph (1st configuration - changed source files) ... 66

Figure 11: The percentage of classes with the distribution of dependent classes 68

Figure 12: The percentage of test cases with the distribution of dependent classes by

Percentage .. 69

Figure 13: Distributions by percentage of impacted test cases using test to classes

dependency graph (2nd configuration - changed class tokens) 72

CHAPTER 1

INTRODUCTION

This chapter provides an overview of the research presented in this thesis and aims

to introduce the primary topics and objectives of this work.

 The first section of this chapter is dedicated to Software Development Life Cycle

(SDLC) overview. SDLC refers to the process or methodology followed by software

development teams to design, develop, test, and maintain software systems.

The second section of this chapter is dedicated to software maintenance, which is

a critical aspect of software development. It includes various activities such as bug fixing,

enhancing existing features, and adding new features to the software.

The third section of this chapter discusses change impact analysis, which is a

technique used to identify the potential effects of changes made to the software. It involves

analyzing the codebase and determining the areas that might be impacted by a particular

change. Change impact analysis is essential for reducing the risk of introducing bugs or

other issues into the software.

The fourth section focuses on continuous integration (CI) / continuous deployment

(CD), which is a set of practices and tools used to streamline the software development

process. It involves automating various tasks such as building, testing, and deploying

software changes.

2

The fifth section introduces the concept of Continuous Testing (CT), which is a

software development practice where automated tests are continuously executed

throughout the CI pipeline to provide rapid and continuous feedback on the quality of the

software. The main goal of continuous testing is to ensure that defects and issues are

detected early, which reduces the cost of fixing them and minimizes the risk of delays in

software delivery.

The sixth section introduces test impact analysis, which is a technique used to

determine the impact of changes made to the software on the test suite. It involves

identifying the subset of test cases that need to be executed to verify the changes made to

the software.

The seventh section explains the concept of dependency graph in the context of

software which typically represents the relationships between code components such as

classes, functions, or modules in a codebase. Nodes in the graph signify individual

elements, and edges between nodes indicate dependencies. A high-degree dependency

graph has many interconnected nodes, while a low-degree dependency graph has fewer

connections.

Finally, the last section covers the objectives and scope of this work.

1.1 Software Development Life Cycle (SDLC)
Software Development Life Cycle (SDLC) is a systematic process followed by

software development teams to design, develop, test, deploy, and maintain software

applications [58]. SDLC provides a structured approach to ensure that software projects

are completed efficiently, within budget, and meet the specified requirements and

typically consists of the following phases:

● Analysis: This initial phase involves gathering and analyzing the requirements of

the software application. This includes identifying the needs of the end-users,

3

understanding business objectives, and defining functional and non-functional

requirements.

● Design: In this phase, the software architecture and system design are created

based on the gathered requirements. It includes defining the software components,

modules, and their interactions, as well as specifying the database structure, user

interfaces, and overall system architecture.

● Development: The implementation phase involves translating the system design

into actual software codes. Programmers write codes based on the design

specifications using programming languages, frameworks, and tools.

● Testing: Once the code is developed, the software undergoes rigorous testing to

ensure its quality and reliability. Different testing techniques, such as unit testing,

integration testing, system testing, and user acceptance testing, are employed to

identify and fix bugs, errors, and usability issues.

● Deployment: After successful testing, the software is deployed to the production

environment or made available to end-users. This phase involves installation,

configuration, and setting up the software in the target environment.

● Maintenance: Once the software is deployed, it enters the maintenance phase.

During this phase, updates, bug fixes, and enhancements are made based on user

feedbacks and changing requirements. Ongoing support and maintenance

activities are performed to ensure the software remains functional and up to date.

Software maintenance is the process of making modifications and improvements

to software after its initial release, to keep it functional, up-to-date, and compatible with

the latest hardware and software environments. It is a crucial aspect of software

development that ensures the software continues to meet its intended purpose and delivers

value to its users.

4

1.2 Software Maintenance
Software maintenance over time can be divided into several stages, which typically

include the following [57]:

● Corrective Maintenance: This involves fixing defects or bugs that have been

discovered in the software after its release. Corrective maintenance is usually

necessary because the software was not thoroughly tested before release or

because new bugs were introduced during the maintenance process.

● Adaptive Maintenance: This involves making changes to the software to adapt it

to new or changing user requirements, hardware or software environments, or

business rules. Adaptive maintenance is necessary because user needs or external

factors may change over time, requiring updates to the software.

● Perfective Maintenance: This involves making enhancements to the software to

improve its functionality, performance, or usability. Perfective maintenance is

necessary to ensure that the software remains competitive and delivers the best

user experience.

● Preventive Maintenance: This involves making changes to the software to prevent

problems from occurring in the future. Preventive maintenance can include

activities such as optimizing code, refactoring, or updating documentation.

During the various phases of software development, maintenance is commonly

recognized as the most demanding, expensive, and labor-intensive task [1], [2]. To meet

user demands, software products undergo inherent adjustments and alterations to

accommodate evolving system prerequisites. In their work, Lehman and Belady [3]

presented a set of laws that delineate the patterns of software evolution. Their first law

asserts that a software system must continuously evolve, lest it become increasingly

obsolete over time, while their second law posits that the complexity of a software system

increases as it evolves, rendering it more challenging to comprehend, modify, and

maintain.

5

According to estimates [48], more than 70% of the overall expenses of software

development are incurred during the maintenance phase following the delivery of the

software. This cost is strongly linked to the complexity of the software. Furthermore,

research has shown that the cost of fixing defects during the maintenance stage far exceeds

the combined cost of all other stages in SDLC. Figure 1 illustrates the cost linked with

resolving defects at different stages of SDLC.

Figure 1. Defects fix cost during software development life cycle (SDLC) [48].

Moreover, the cost of software maintenance can be influenced by both technical

and non-technical factors. Non-technical factors include the level of experience in the

application area, staff stability, application time, external environment, and user

requirements. Technical factors include software complexity, development of human

capacity, documentation quality, configuration management technology, modern

programming specifications, and database size. Factors such as complicated software

structure, poor documentations, and larger database size can result in increased

maintenance costs, while factors such as good programming style, effective testing

methods, and detailed documentation can help reduce maintenance costs [49].

6

Software modifications can stem from various factors, such as emerging demands,

rectifying defects, addressing change appeals, and more. As adjustments are implemented

in the software, unforeseen repercussions are prone to emerge, potentially leading to

discrepancies with other elements of the initial software. Below are several instances of

different types of modifications that can be applied to software:

● New requirements: Adding new features or functionalities to the software [51].

For example, adding a payment gateway to an e-commerce website or adding

support for new file formats to a media player.

● Defect resolutions: Fixing bugs or errors in the software [52]. For example, fixing

a login issue or addressing a crash that occurs when certain actions are performed.

● Change requests: Modifying existing features or functionalities [51]. For example,

changing the color scheme of a user interface or adjusting the sorting algorithm

used for search results.

● Security updates: Implementing security fixes to protect against vulnerabilities or

exploits [53]. For example, updating the software to address a known security flaw

or implementing better encryption methods.

● Performance improvements: Optimizing the software for better performance [54].

For example, improving the speed of a search algorithm or optimizing the code to

reduce memory usage.

● Compatibility updates: Ensuring that the software works with other programs or

systems [55]. For example, updating the software to work with a new version of

an operating system or adding support for a new database.

● Regulatory compliance: Making changes to comply with legal or regulatory

requirements [56]. For example, updating the software to comply with GDPR

regulations or adding accessibility features to comply with disability laws.

1.3 Change Impact Analysis
Change impact analysis (CIA) is a process that evaluates the potential effects of a

proposed change to a software system. It involves identifying and analyzing the

7

relationships and dependencies between different components of the software system and

assessing the potential impact of the change on these components. The goal of change

impact analysis is to determine the potential risks, costs, and benefits associated with

implementing a change, and to inform decision-making regarding whether to proceed with

the change or not. By conducting change impact analysis, software developers can better

understand the potential consequences of changes to the software system and make

informed decisions about how to proceed with modifications while minimizing the risk of

unintended negative impacts on the system.

To assess the potential influence of proposed alterations on various aspects of the

software, software change impact analysis (CIA) employs diverse techniques such as

dependency analysis, data flow analysis, test coverage analysis, etc [4]. These techniques

play a crucial role in software development, maintenance, and regression testing [4]-[7].

CIA can be performed both prior to and after the implementation of a change. Before

making modifications, CIA can assist in comprehending the program, forecasting the

impact of the alteration, and estimating the associated expenses [4], [5]. Conversely, after

implementing changes, CIA can be employed to trace the cascading effects, select

appropriate test scenarios, and carry out change propagation [6]-[9]. Bixin Li et al. [45]

conducted research on techniques for analyzing the impact of code changes and presented

a variety of 23 techniques as listed in Table 1.

Table 1. Code Base Change Impact Analysis Techniques.

Technique Description

T1 Use object-oriented coupling measurement to identify the impact set

T2 Use the coverage information of the field data collected from users to support
dynamic CIA

T3 Provide a technique for dynamic CIA based on whole path profiling

T4 Apply data mining to version histories to extract the co-change coupling between
the files for CIA

8

T5 Use the execute after relation between entities to support dynamic CIA

T6 Use the control call graph to perform static CIA

T7 Use dynamic programming on instrumented traces of different programmed
binaries to compute the impact set

T8 Analyze influence mechanisms of scoping function signatures and global
variable access to support CIA

T9 Use textual similarity to retrieve past change request in the software repositories
for CIA

T10 Perform dependency analysis in object-oriented programs for CIA

T11 Use the measure of dynamic function coupling between two functions for CIA

T12 Create cluster of closely associated software program files in the software
repository for CIA

T13 Apply two different data mining algorithms APRIORI and DAR in the software
repository for CIA

T14 Analyze change records through singular value decomposition to produce cluster
of co-change files for CIA

T15 Use call graph to compute the impact set

T16 Use conceptual coupling measurement for CIA

T17 Use a hierarchical model to interactively compute the impact set

T18 Blend conceptual and evolutionary couplings to support CIA

T19 Use source code comments and changelogs in software repository to support CIA

T20 Use multivariate time series analysis and association rules to perform CIA

T21 Analyze impact mechanisms of different change types for CIA

T22 Use relational topic-based coupling to capture topics in classes and relationships
among them for CIA

T23 Use single and multi-labeled machine learning classification for CIA

9

Here are a few instances demonstrating the utilization of change impact analysis:

● Planning software changes: Change impact analysis can help software

development teams plan and prepare for changes to a software system by

identifying potential risks, dependencies, and impacts associated with the

proposed changes.

● Estimating project scope and cost: By analyzing the impact of a change on

different components of the software system, change impact analysis can help

developers estimate the scope and cost of a project more accurately.

● Prioritizing changes: Change impact analysis can help prioritize proposed changes

based on their potential impact and the resources required to implement them. This

can help ensure that changes with the most significant impact are given the higher

priority.

● Identifying potential issues: Change impact analysis can help identify potential

issues that may arise because of a change, such as compatibility issues, conflicts

with other software components, or performance problems.

● Evaluating risks: Change impact analysis can help evaluate the potential risks

associated with a change and develop strategies to mitigate those risks.

● Streamlining testing: By identifying the components of the software system that

are likely to be impacted by a change, change impact analysis can help streamline

the testing process by allowing developers to focus testing efforts on the most

critical areas.

● Enhancing communication: Change impact analysis can enhance communication

among team members and stakeholders by providing a clear understanding of the

potential impact of changes and the steps needed to address any issues that may

arise.

10

1.4 Continuous Integration / Continuous Deployment
Continuous Integration/Continuous Deployment (CI/CD) is a software

development practice that aims to automate and streamline the process of building, testing,

and deploying code changes.

Continuous Integration is the practice of regularly merging code changes from

multiple developers into a shared repository. This process is automated, and each merge

triggers a build and automated testing process to ensure that the code changes integrate

successfully with the existing codebase.

Continuous Deployment is the practice of automatically deploying the

successfully built and tested code changes to production servers or environments. This

process involves the automation of the deployment pipeline and can include additional

testing, such as integration and acceptance testing, before deployment.

CI/CD helps reduce the risk of introducing errors into the production environment,

speeds up the software development process, and enables organizations to deliver software

updates more frequently and reliably.

Modern software development commonly employs continuous

integration/continuous deployment (CI/CD) to facilitate software maintenance. The

delivery of a new software version requires a series of tasks referred to as a "pipeline" in

the continuous integration and continuous deployment (CI/CD) process. A traditional

CI/CD pipeline typically involves the following processes and illustrated in Figure 2 [46]:

● Code changes: Developers make changes to the codebase and push them to the

source code repository.

● Build: The CI/CD system automatically checks out the latest code changes,

compiles the code, and builds the application.

11

● Test: Automated testing is performed to verify the functionality and quality of the

application. This can include unit tests, integration tests, and acceptance tests.

● Review and feedback: If issues are found during the testing process, feedback is

provided to the developer, who then makes the necessary changes and pushes them

back to the repository.

● Deployment: Once the code changes pass all the tests and reviews, the CI/CD

system automatically deploys the application to a staging or production

environment.

● Monitoring and feedback: The application is monitored in the production

environment to identify any issues or errors, which are then fed back into the

CI/CD pipeline to trigger the necessary actions.

● Notification: The CI pipeline notifies the team of the build and test results and

provides feedback on the quality of the code changes.

Figure 2. Continuous Integration/Continuous Deployment (CI/CD) pipeline illustration.

By automating these processes, a traditional CI/CD pipeline helps to ensure that

code changes are thoroughly tested and validated before being released to production. This

reduces the risk of introducing errors or breaking the application and enables faster and

more reliable software releases.

In other words, the use of CI/CD pipelines is geared towards enhancing software

delivery by automating various stages of the software development life cycle. Automation

12

of CI/CD across development, testing, production, and monitoring phases allows

organizations to develop better-quality code more quickly. While it is feasible to manually

execute each step of a CI/CD pipeline, the actual advantage of CI/CD pipelines lies in

their automation.

1.5 Continuous Testing
Continuous Testing (CT) is a software testing approach that integrates automated

testing throughout the software development lifecycle (SDLC), from planning and

development to deployment and maintenance and it is a critical component of the

Continuous Integration/Continuous Deployment (CI/CD) process.

In the CI/CD process, developers make changes to the codebase, which are

automatically checked out, compiled, built, and tested in the CI pipeline. The CI pipeline

integrates CT by continuously executing automated tests to ensure that code changes

integrate well with the existing codebase, and the application functions as expected.

By doing so, CT provides real-time feedback on the business risks associated with

a software release by continuously running automated tests and providing instant feedback

to the development team. This helps identify defects and issues early in SDLC, which

reduces the risk of introducing errors into the production environment and improves the

quality of the software.

Typically, the Continuous Testing (CT) process involves the following steps:

● Test planning and design: The CT process begins with planning and designing

tests that will validate the software requirements.

● Test automation: Once the tests are designed, they are automated and integrated

into the CI/CD pipeline.

● Test execution: The automated tests are run continuously throughout SDLC, from

development to production.

13

● Test reporting and feedback: Test results are reported in real-time to the

development team, providing feedback on the quality and stability of the codebase.

● Test maintenance: Tests are updated and maintained to ensure that they remain

relevant and effective.

By integrating CT into the CI/CD process, software development teams can build

and release software quickly and with confidence, ensuring that software is delivered on

time, on budget, and to the required quality standards.

Nevertheless, in most cases, a CI pipeline involves the integration of modified

code into a codebase, which may happen several times within a day, with the objective of

reducing the burden of software maintenance and providing users with the most up-to-

date software version. This involves executing a series of test suites for each integration,

thereby making the process time-consuming and resource intensive.

In fact, a challenge faced in modern software development is having too many test

cases [44]. While having automated tests is an essential practice in software development,

having too many tests can cause problems. One problem with having too many tests is

that it can slow down the build and test process, which can impact developer productivity

and the speed at which software updates can be released.

Additionally, when developers have too many tests to run, they may opt to skip

running them locally on their developer workstation, which can lead to code that has not

been thoroughly tested. This can result in errors or defects being introduced into the

codebase, which can be costly to fix later in the software development lifecycle.

Another issue with having too many tests is that they can become difficult to manage and

maintain. Over time, as the codebase grows and changes, tests may become outdated or

redundant, and maintaining them can become challenging.

14

There are several techniques available to accelerate test execution, such as running

tests in parallel across multiple machines and utilizing test doubles. Test doubles are

techniques and tools used in software testing to replace real objects or dependencies with

simulated ones to isolate the code being tested. This umbrella term encompasses fake

objects, stubs, mocks, and spies, each serving a specific purpose in software testing. Using

test doubles not only help accelerate test execution, but also enable testing in isolation,

ensuring expected behavior, and facilitating testing in challenging scenarios.

The focus of this thesis is on Test Impact Analysis (TIA), a technique that has been

proposed in prior research to reduce testing overhead by minimizing the number of test

cases that need to be executed [10]-[16].

1.6 Test Impact Analysis
Test Impact Analysis (TIA), a branch of Change Impact Analysis (CIA), is a

software testing methodology that aims to optimize the testing process by identifying and

running only the relevant tests for the changes made in the codebase. By focusing on the

potentially affected parts of the application, TIA helps reduce time and resources spent on

testing, while maintaining a high level of test coverage and quality assurance. This

contemporary approach accelerates the test automation stage of a build, consequently

decreasing testing costs and overhead [44].

Key concepts in Test Impact Analysis are:

● Code coverage: This metric measures the extent to which the application's source

code is tested. A higher code coverage percentage implies that more of the code

has been executed during testing, increasing the likelihood of discovering defects.

● Change impact analysis: This process involves analyzing the changes made to a

codebase, identifying the potentially affected parts of the application, and

determining which tests are required to ensure that those changes do not introduce

new defects.

15

● Regression testing: This type of testing is performed to ensure that existing

functionality is not adversely affected by new changes to the code. TIA helps in

optimizing regression testing by identifying the most relevant tests to execute

based on the changes made.

● Dependency analysis: TIA relies on understanding the dependencies between code

components, such as functions, classes, and modules, to determine the impact of

changes on other parts of the application. This helps identify which tests need to

be executed when changes are made to a particular component.

● Incremental testing: This approach to testing involves running only the tests that

are relevant to the code changes, rather than executing the entire test suite. TIA

supports incremental testing by narrowing down the set of tests to be executed,

reducing the overall testing time.

Benefits of Test Impact Analysis are:

● Reduced testing time: By identifying and running only the relevant tests, TIA can

significantly reduce the time it takes to test a software application.

● Resource optimization: TIA helps conserve resources, such as CPU and memory,

by avoiding unnecessary test execution.

● Faster feedback: TIA enables faster feedback to developers by quickly identifying

potential issues, allowing them to fix defects more rapidly.

● Improved test coverage: With a focused approach, TIA can help maintain high test

coverage and quality, even with a reduced number of tests.

● Risk mitigation: By targeting the most relevant tests based on code changes, TIA

helps mitigate the risk of introducing defects in the application.

● Continuous integration and delivery: TIA is particularly beneficial in continuous

integration and delivery (CI/CD) environments, where rapid feedback and

minimized testing time are crucial.

16

Challenges and limitations are:

● Accurate dependency analysis: Ensuring accurate dependency analysis can be

challenging, especially in large and complex codebases.

● Overlooking tests: There is a risk that TIA may overlook some relevant tests,

leading to reduced test coverage and potential defects.

● Initial setup and maintenance: Implementing TIA may require additional setup and

ongoing maintenance efforts, such as updating dependency information and test

mappings.

The fundamental idea is that not every test interacts with each production source

file (or the classes/methods derived from that source file). By analyzing the relationship

(i.e., dependency graph) between source codes and test cases, it becomes possible to

effectively determine a subset of test cases that are connected to the modified code and,

as a result, are considered "impacted" [17], [18].

In other words, TIA examines the call graph of the source code, which is a

representation that illustrates the flow of function or method calls within a software

program and shows the relationships and dependencies between different functions or

methods and how they interact with each other during program execution, to identify the

relevant tests to run after changes are made to the production code, which results in a

reduction of testing overhead by executing only the necessary subset of tests. The

approach employed to achieve this goal is known as test impact analysis (TIA) [19]. An

example of TIA architecture is shown in Figure 3 [47].

17

Figure 3. Example of Test Impact Analysis Architecture [47].

TIA can be integrated into the software development workflow, including

Continuous Integration/Continuous Deployment (CI/CD) pipelines, to provide real-time

feedback to developers on the impact of their code changes on the test suite. This allows

developers to focus on fixing defects quickly and efficiently, reducing the time to market

for software updates. Microsoft is one company that has integrated Test Impact Analysis

(TIA) features directly into their development tools, such as Visual Studio. When these

features enabled, they automatically execute impacted unit tests as code is edited [44].

Nevertheless, regular modifications to code and the increasing intricacy of a

system can result in a deterioration in the continuous quality assurance of tests. These test

scenarios may be interconnected with other origins or test codes, which we refer to as the

level of interconnectedness (i.e., dependencies degree). This degree signifies the number

of connections (i.e., dependencies) that a test scenario has with the source code.

An extensive amount of code interdependence can lead to an accumulation of

testing burdens in CI, particularly when dealing with repetitive code merges and test runs.

18

Furthermore, heightened dependencies have the potential to undermine the efficacy of test

impact analysis and exacerbate the challenges in test maintenance [16].

1.7 Dependency Graph
In the context of software development, a dependency graph typically shows the

relationships between different components, classes, functions, or modules within an

application or codebase [34]. A node in the graph represents the individual element (such

as a class, a function, or a module), while the edge between the nodes represents the

dependencies between these elements. A high degree dependency graph will have many

interconnected nodes, while a low degree dependency graph will have fewer connections.

For example, let us consider two test cases (TC1 and TC2) and two classes (ClassA

and ClassB) in a codebase.

● High degree dependency graph:

In a high dependency graph, both test cases have strong connections to both

classes. This could be represented as:

TC1 → ClassA

TC1 → ClassB

TC2 → ClassA

TC2 → ClassB

In this scenario, both test cases depend on both ClassA and ClassB, meaning that

any change to either class would require running both test cases to ensure continued

correctness. This high dependency makes it difficult to isolate the effects of code changes

and increases the number of tests to be executed when changes occur.

● Low degree dependency graph:

In a low dependency graph, each test case is connected to only one of these classes.

This could be represented as:

19

TC1 → ClassA

TC2 → ClassB

In this scenario, TC1 depends only on ClassA, and TC2 depends only on ClassB.

This means that if a change is made to ClassA, only TC1 needs to be executed, while if a

change is made to ClassB, only TC2 needs to be executed. This low dependency degree

allows for a more efficient testing process, as it reduces the number of tests that need to

be run when changes are made to the codebase.

In Test Impact Analysis, the goal is to identify and create low dependency degree

graphs, which helps in reducing the number of tests to be executed and optimizes the

testing process.

In addition, by analyzing the dependency graph, developers can gain insights into

the structure of their codebases, identify areas of high coupling or tight dependencies, and

make more informed decisions about refactoring or reorganizing their codes. Dependency

graphs can also help in understanding the impact of changes to one part of the system on

the rest of the system, as well as in managing and resolving issues related to circular

dependencies, which can lead to problems in the build or runtime environments.

1.8 Objectives and Scope of Work
The goal is to improve test impact analysis at the code change level (i.e., commit)

by implementing a new static class-level approach. This approach will involve using the

abstract syntax tree from program source codes directly to optimize the selection of

impacted test cases.

In our case study, we analyzed seven Java-based projects, which consisted of one

private project and six open-source projects. We examined all Java files in each of the

seven systems to detect the dependency graph among test cases and source codes. To

20

achieve this, we utilized a test impact analysis tool that employed JavaParser [40], a Java-

based open-source library capable of representing a Java source code file as AST and

compatible with the most recent Java release.

Our first step involved creating a dependency graph that included both test cases

and source code files. This graph captured data on whether dependency existed between

a given test case and the source code. To determine if a method was a test case, we checked

if it employed testing framework APIs such as JUnit or TestNG (i.e., using the @Test

annotation). Additionally, we excluded binaries and limited our analysis to dependencies

that corresponded to source code files within the system. In other words, we only

examined the source code of the subject system and disregarded exterior source codes

such as Java API and external Jars.

The upcoming background chapter aims to present an overview of pertinent

research studies in software testing, covering alternative strategies for test automation,

techniques for impact analysis of tests, continuous integration and continuous testing, test

case prioritization and selection, as well as considerations for test case dependencies and

quality.

21

CHAPTER 2

BACKGROUND

Within this chapter, we explore various alternative methods for Test Impact

Analysis (TIA) and delve into its different techniques. Moreover, the chapter presents an

overview of related work and background in areas such as Continuous Integration (CI)

and Continuous Testing (CT), Test Case Prioritization (TCP), Test Case Selection (TCS),

Test Case Dependencies and Test Case Quality.

2.1 Alternative Strategies to Shorten Test Automation
To reduce the duration of test automation, various alternative strategies to Test

Impact Analysis (TIA) are widely implemented. Here are some instances to illustrate this

point:

● Parallel Test Execution: Running multiple test cases in parallel can significantly

reduce the overall testing time. This can be achieved by setting up a distributed

testing environment where tests can run on multiple machines simultaneously.

● Smarter Test Design: Creating more efficient and effective tests can reduce the

total number of tests required. Using techniques such as risk-based testing or

exploratory testing can help identify the most critical areas to focus on.

● Test Environment Optimization: A well-configured test environment can help

speed up test automation. Preparing the test environment with appropriate settings,

data, and dependencies can help avoid delays or issues that can slow down testing.

● Tagging: By utilizing tagging, test suites can be partitioned into functional and

logical subgroups, and specific subgroups can be selected for execution at different

stages of the CI/CD pipeline.

22

The tagging strategy can assist in categorizing tests based on features, user

journeys, testing types, and other criteria. This strategy typically relies on test frameworks

such as TestNG and JUnit, as well as build tools such as Maven and Gradle, to execute a

specific subset of selected tests through configurable settings. A test framework is a

software tool that provides a structured environment and set of functionalities to automate

the process of testing software applications. It offers a framework for designing,

organizing, and executing tests, making it easier for developers and testers to create and

maintain tests effectively. And a build tool is a software tool or utility that automates the

process of compiling, packaging, and deploying software applications. It helps streamline

the build and release process by managing dependencies, executing predefined tasks, and

organizing the overall build workflow.

Nevertheless, one of the primary obstacles in this strategy is the need for manual

implementation and maintenance. The approach involves utilizing shared annotations to

group subsets of tests based on specific criteria, such as feature, testing layer, etc. The idea

is to execute only the relevant subset of tests by providing the required annotation to the

build tool as a parameter.

An instance of how the tagging method can be utilized to categorize test cases into

distinct logical and functional subsets is depicted in Figure 4 [44]. The figure presented in

this example demonstrates the use of tagging to reduce test execution time. Test cases are

organized into functional and logical suites, with each suite further divided into different

layers such as unit tests, service tests, and functional UI tests for functional separation,

and different features of the application such as shopping-cart, inventory, and express for

logical separation. This organization enables developers to select and execute only a

subset of test cases based on their specific changes, resulting in more efficient testing and

quicker feedback in the development process.

23

Figure 4. Example usage of the tagging approach [44].

We can elaborate on this concept further by examining the code snippet example

presented below, which is based on Figure 4:

import org.junit.jupiter.api.Tag;
import org.junit.jupiter.api.Test;

public class TestSuite {

 @Tag("functional")
 @Tag("shopping-cart")
 @Test
 public void testShoppingCartFunctionality() {
 // test shopping cart functionality
 }

 @Tag("functional")
 @Tag("inventory")
 @Test
 public void testInventoryFunctionality() {
 // test inventory functionality
 }

 @Tag("functional")
 @Tag("express")
 @Test
 public void testExpressFunctionality() {

24

 // test express functionality
 }

 @Tag("logical")
 @Tag("unit")
 @Test
 public void testUnit() {
 // test unit level functionality
 }

 @Tag("logical")
 @Tag("service")
 @Test
 public void testService() {
 // test service level functionality
 }

 @Tag("logical")
 @Tag("ui")
 @Test
 public void testUI() {
 // test functional UI level functionality
 }
}

In this example, we have defined different test cases with specific tags that indicate

the logical and functional subsets they belong to. We can run specific subsets of tests by

using the @Tag annotation to filter tests based on the tags assigned to them. For example,

we can run only the functional tests related to the shopping-cart feature by executing the

following Gradle [22] command:

./gradlew test --tests "TestSuite --tags functional --tags shopping-cart"

25

Which will execute only the testShoppingCartFunctionality() test case. Similarly, we can

run only the logical tests related to the service layer by running:

./gradlew test --tests "TestSuite --tags logical --tags service"

This will execute only the testService() test case. In this example, Gradle is used

as the build automation tool to run the tests. By executing Gradle commands, we can filter

and run specific subsets of tests based on the tags assigned to them using the @Tag

annotation. Gradle is a build automation tool for software development that supports

multiple programming languages and platforms. It uses a Groovy-based domain-specific

language to define build scripts, which can be customized and extended. Gradle also

provides features like dependency management, caching, and parallel execution to

improve build performance.

2.2 Tests Impact Analysis Techniques
Test Impact Analysis (TIA) techniques are methods used to determine the subset

of tests that are relevant to the changes made in the codebase, thereby optimizing the

testing process. In general, these methods can be classified into two primary categories

[50]. The first is based on source code analysis, while the second is based on Artificial

Intelligence/Machine Learning (AI/ML) models.

2.2.1 Source Code Analysis
In software testing, source code analysis is often utilized in impact analysis

approaches to construct dependency graphs between codes and tests.

Some typical TIA techniques based on source code analysis include:

● Dependency analysis: This method analyzes the dependencies between different

modules, classes, or methods within the source code. By understanding these

dependencies, it is possible to identify the tests that are impacted by a particular

code modification.

26

● Call graph analysis: This technique examines the call graph of the source code to

determine the relationships between functions or methods. It helps identify the

relevant tests to run after making changes to the production code.

● Static analysis: This method involves analyzing the source code without executing

it. Static analysis can help to identify potential issues, such as syntax errors or

security vulnerabilities, which may require additional testing.

● Dynamic analysis: In contrast to static analysis, dynamic analysis involves

executing the code to observe its behavior during runtime. This method can help

to identify issues, such as memory leaks or performance bottlenecks, that may not

be detectable through static analysis alone.

● Risk-based analysis: This technique prioritizes tests based on the perceived risk

associated with each code change. High-risk changes, such as those affecting

critical functionality, may require more thorough testing, whereas low-risk

changes may require fewer tests to be executed.

● Code coverage analysis: This technique involves identifying the parts of the code

that are executed by each test case. By analyzing code coverage, it is possible to

determine which tests are affected by a specific code change.

Paul Hammant, in his article "The Rise of Test Impact Analysis" [44], discusses

how code coverage or instrumentation can be used during test runs to establish a map

between tests and production code. The concept is to execute a single test, observe which

code is exercised, and then add these references to a map. This process is repeated for all

tests in the suite. Once the map is constructed, a small program runs every time a developer

pushes code that examines modified files and determines which tests need to be executed.

This list is then passed to the test runner for execution. Additionally, the program

periodically performs map updates to maintain an accurate dependency graph as code

changes.

27

However, the code coverage-based approach presents a challenge as the data can

rapidly become very large. Furthermore, it is difficult to demonstrate reliably that a change

in one area will not impact the code execution path in another area. Just because a test

previously did not exercise certain parts of the code does not necessarily mean that it will

remain the same in subsequent runs.

2.2.2 Predictive Test Selection
Predictive Test Selection is an approach in software testing that utilizes machine

learning algorithms to predict which tests are most likely to fail based on past testing data.

The technique involves analyzing historical test data, identifying patterns and trends, and

then using this information to predict which tests are most likely to fail in future testing

cycles.

This approach can help reduce the time and effort required for testing by

identifying the most critical test cases to run, rather than running the entire suite of tests.

Predictive test selection can also help improve the overall quality of testing by identifying

tests that are more likely to catch defects and issues, which can help ensure that critical

bugs are caught and fixed in a timely manner.

Traditionally, most TIA techniques have relied on source code analysis to

construct dependency graphs between code and tests. However, some companies use

newer approaches such as the predictive test selection. Google [25] and Facebook [37]

have developed systems that utilize both machine learning and code analysis. The high-

level architecture of Facebook's predictive test selection model is illustrated in Figure 5

[37].

28

Figure 5. High level of Facebook's predictive test selection model [37].

2.3 Continuous Integration (CI) and Continuous Testing
(CT)

The process of (continuous integration) CI entails the frequent merging of code

modifications conducted by software developers into a centralized source code

management system. Automation platforms like GitLab [20] are widely used to

automatically incorporate, compile, and test the code, thereby streamlining the CI

workflow. These platforms can trigger the CI process based on a personalized timetable

that includes the most recent code changes.

Continuous testing (CT) plays a vital role in the CI workflow as it encompasses

the automated running of test scenarios to assess the caliber of modified code. According

to recent research [21], the adoption of CI enhances efficiency in software development

and aids in identifying a higher quantity of defects. Developers often rely on diverse build

utilities like Gradle [22] to handle test execution. With each build execution, Gradle

29

automatically runs all test scenarios specified within the build scope and generates

relevant reports.

The objective of CT is to enable the prompt identification of regression failures

and reduce development inefficiencies [23]. Another study emphasized the benefits of

employing CT to detect system errors resulting from erroneous data. Their research

showcased the effectiveness of continuous data testing in addressing significant data

debugging challenges [24]. Google conducted a comprehensive examination outlining

their strategies for expanding CT, which encompassed the management of 2 billion lines

of code and the daily execution of 150 million tests [25].

In a recent study, researchers examined the effectiveness of test impact analysis

(TIA) within a continuous testing environment and evaluated the impact of code

interdependence on TIA performance. The study revealed that numerous test scenarios are

designed to assess the overall functionality of the system being tested (i.e., integration

tests), which inherently involve a higher degree of dependencies that can potentially

impede the efficacy of TIA [16].

2.4 Test Case Prioritization (TCP) and Test Case Selection
(TCS)

A multitude of research studies have been conducted on test case prioritization

(TCP) and test case selection (TCS) techniques.

Test Case Prioritization (TCP) is a technique used to order test cases based on

specific criteria, such as the likelihood of detecting faults, the criticality of the

functionality, or the potential impact of a code change. By prioritizing test cases,

developers can focus on executing the most relevant tests first, which helps to identify and

fix defects more quickly. Several studies, including [26]-[33], have investigated this

approach.

30

On the other hand, Test Case Selection (TCS) is the process of identifying a subset

of test cases from the entire test suite that are relevant to a particular code change. The

goal of TCS is to reduce the number of tests that need to be executed while still

maintaining high levels of test coverage and quality assurance. Techniques such as code

coverage analysis, dependency analysis, and risk-based analysis can be employed to

achieve effective TCS. Multiple studies, including [10]-[15], have explored this method.

Researchers have suggested the implementation of TCP and TCS to improve continuous

testing efficiency. Legunsen et al. [18] compared class-level and method-level static TCS

techniques on 985 revisions of 22 Java systems, and class-level static TCS techniques

exhibited promising results.

Elbaum et al. [34] combines both TCP and TCS techniques to make continuous

testing more cost-effective. Memon et al. [25] proposed an approach that utilizes test

breakages or fixes to improve test case prioritization and decrease developer waiting time

for feedback from continuous testing following a commit. Luo et al. [35] evaluated four

static TCP techniques against a dynamic-based approach and found static techniques to

be highly effective in terms of fault detection and cost reduction.

Engström et al. [36] classified 28 TCS techniques based on properties such as

software language and granularity and found no technique to be superior to others. Zhu et

al. [37] suggested re-prioritizing test cases based on historical failures. And companies

such as Microsoft [19] and Facebook [38] use predictive test selection and test impact

analysis to execute only impacted test cases, minimizing test execution overhead and

scaling continuous testing for large codebases.

2.5 Test Case Dependencies and Test Case Quality
Understanding the dependencies between test cases and the codebase is essential

for optimizing the testing process. Analyzing test case dependencies can help identify

31

redundant tests or tests that may have been missed. Ensuring high-quality test cases – that

is, those that are effective in detecting defects and validating the functionality – is crucial

for maintaining the overall quality of the software.

Several research studies analyze the interdependencies of test scenarios from

various perspectives. In an examination of 58 Java systems, Luo et al. [35] compared four

static TCP techniques with a state-of-the-art dynamic-based approach. Their findings

indicated that static techniques could exhibit exceptional efficiency in terms of fault

detection and cost reduction.

In an alternative study, Gambi et al. [38] presented a structured and data-oriented

technique named PRADET for detecting test dependencies. In separate research, the

researchers examined the evolution of test scenarios and uncovered that software

developers frequently restructured and repaired test cases. The study unveiled that

developers commonly employ mocking to replicate external dependencies, such as web

services, and the maintenance of mock codes can lead to heightened overhead [39].

Test case quality, particularly regarding flaky tests, is another area that is currently

receiving attention from researchers. As per the findings of Palomba et al. [41], more than

50% of unstable tests exhibit indicators of suboptimal test practices, and addressing these

issues can result in improved software design and reduced test instability. In their

empirical study, Vahabzadeh et al. [42] explored defects within test code and identified

that instability, semantic flaws, and environment-related issues are commonly

encountered problems. Luo et al. [43] identified the causes of unstable tests, highlighting

that test execution order, concurrent operations, and asynchronous waits are the main

factors contributing to test flakiness.

32

The next chapter, Experimental Settings, delves into the details of the studied

systems, the methodology for constructing dependency graphs, and the way we define

impacted test cases.

33

CHAPTER 3

EXPERIMENTAL SETTINGS

In this chapter, we explore our experimental settings and describe the systems

being investigated, the methodology for detecting and constructing dependency graphs,

and the guidelines for identifying affected test cases.

3.1 Studied Systems
Our study was conducted on seven Java projects and extends earlier research

endeavors by focusing on TIA. The research investigates the effectiveness of a new TIA

method that at the core maps test cases to classes by extracting the data from ASTs and

compares it with the previous static class-level test impact techniques.

Based on prior research, our research presents a new technique for performing

static test impact analysis at the class level and assesses its efficacy by evaluating it with

state-of-the-art techniques. Our findings suggest that while the extent of code

modifications in each change (i.e., commit) is typically limited, a considerable proportion

of test cases are still impacted.

The studied systems consist of six open-source projects and one private project.

Table 2 provides an overview of these systems and some insights into the relative size of

the codebase and the test code. The table displays the subsequent columns:

● System contains name of the software system or project.

● Source files record the number of source files in the system. These are the primary

files containing the code that makes up the system's functionality and include only

the Java files.

34

● Test files record the number of test files in the system. These files contain the test

code that verifies the functionality and correctness of the system. Same as the

source files, we count only the Java files.

● LoC in source is the number of lines of code (LoC) in the source files. This metric

provides a rough estimate of the system's size and complexity.

● LoC in test is the number of lines of code in the test files. This metric gives an

indication of the testing effort put into the system.

● Source methods record the number of methods (or functions) in the source code.

This metric provides insight into the modular structure of the code. A higher

number of methods might indicate that the code is more modular, with small,

focused methods handling specific tasks, which can make the code easier to

understand and maintain.

● Test methods record the number of test cases. This metric shows the granularity

of the testing effort, as each test method typically targets a specific functionality

or behavior of the system. A higher number of test cases might suggest a more

thorough testing effort, which can help uncover potential issues and improve the

system's overall quality.

Figure 6 provides a visual representation of their comparative sizes. The projects

encompass various domains, such as databases, distributed computing, cloud computing,

and web services. To carry out our analysis, we thoroughly investigate all Java files within

the seven systems. These projects were selected primarily due to their adherence to

continuous testing methodologies, ongoing maintenance efforts, and previous

examination in related research studies [16]. The studied systems strictly adhere to

continuous integration (CI) practices and utilizes Jenkins, TravisCI, or GitLab as

automation tools for code integration and test execution [20].

35

Table 2. Studied Systems Overview.

System Source
files

Test
files

LoC in
source

LoC in
test

Source
methods

Test
methods

bookkeeper 1656 656 221359 139972 6828 3171

cucumber-jvm 449 358 25475 29368 2658 1257

hbase 2569 2234 633376 439158 22851 6734

hive 1167 658 215637 1665185 8911 3798

kafka 2422 1339 345014 343064 19558 10195

zookeeper 519 400 88304 71124 3880 1398

api-clients 870 53 52611 6203 400 303

Figure 6. Comparison of the studied systems.

36

3.2 Dependency Graph Detection
To identify the dependency graph between test cases and source code in the

examined systems, we employ JavaParser [41], an open-source Java library designed for

static analysis. JavaParser is compatible with the latest Java version and allows for the

representation of Java source code files as Abstract Syntax Trees (ASTs). Our objective

is to create a tests-to-classes dependency graph that encompasses both test cases and

source code files. This graph contains information regarding the presence or absence of

dependencies between specific test cases and the corresponding source code. As an

illustration, consider the "testModifyValue" test case example taken from the Kafka

project:

 @Test
 public void testModifyValue() {
 SnapshotRegistry registry = new SnapshotRegistry(new LogContext());
 TimelineObject<String> object = new TimelineObject<>(registry, "default");
 assertEquals("default", object.get());
 assertEquals("default", object.get(Long.MAX_VALUE));
 object.set("1");
 object.set("2");
 assertEquals("2", object.get());
 assertEquals("2", object.get(Long.MAX_VALUE));
 }

This test case resulted in a test-to-classes dependency graph as follows:

org.apache.kafka.timeline.TimelineObjectTest#testModifyValue:
[org.apache.kafka.timeline.Snapshot, org.apache.kafka.timeline.TimelineObject,
org.apache.kafka.common.utils.LogContext, org.apache.kafka.timeline.Revertable,
org.apache.kafka.timeline.Delta, org.apache.kafka.timeline.SnapshotRegistry]

This indicates that the "testModifyValue" test case is dependent on six classes,

namely Snapshot, TimelineObject, LogContext, Revertable, Delta, and SnapshotRegistry,

from the Kafka codebase. In the approach section under chapter 4, we will provide a

37

detailed explanation of the steps involved in creating this tests-to-classes dependency

graph.

To determine whether a method is a test case, we check if it employs testing

framework APIs like JUnit or TestNG (i.e., utilizing the @Test annotation). For instance,

in Kafka, the method 'testNoPort' is classified as a test case because it uses JUnit's @Test

annotation, as shown below:

@Test
public void testNoPort() {
assertThrows(ConfigException.class, () -> checkWithoutLookup("127.0.0.1"));
}

Furthermore, we exclude binaries and restrict our analysis to dependencies that

correspond to source code files within the system (i.e., we solely examine the subject

system source code while disregard exterior source codes such as Java API and external

Jars).

3.3 Impacted Test Cases
In line with previous studies [10], [11], [17], [18], we define a test scenario as

impacted by a specific code modification (i.e., change in commit) if it necessitates

execution due to its reliance on the modified code. Prior research [8] have shown that

static techniques for test impact analysis are equally effective when compared to dynamic-

based techniques.

Hence, our research presents a new technique for test impact analysis, which can

be considered as static coverage analysis performed at the class level. In our evaluation,

we compare the efficacy of this technique with existing state-of-the-art approach. Our

proposed approach for TIA differs from the technique examined in previous studies [16],

[17] in two primary aspects.

38

First, we construct a tests-to-class dependency graph that establishes connections

between test cases and the classes they depend on, instead of associating test files with

dependent classes. This ensures that each test case includes precise information regarding

the relevant dependent classes. Considering that a test file can contain multiple test cases

with varying dependent classes, a code modification may solely impact specific test cases

within the file. Meaning that in our approach, we identify the subset of impacted test cases

by creating a dependency graph that directly links each test case to its corresponding

dependent classes, rather than assuming that all test cases within a file are impacted.

Secondly, we acquire pertinent data on dependent classes by examining distinct

node types during the construction of the dependency graph. This approach enhances the

accuracy and inclusiveness of the dependency graph linking test cases with their

respective dependent classes. To do so, we extract specific node types (such as

ClassOrInterfaceType, FieldAccessExpr, and MethodCallExpr), resolve them to get

classes qualified names (i.e., the complete name of a class, including the package name

and the class name itself), and filter only the dependent classes that belong to the project

scope (i.e., part of the project's source code). We then recursively examine the usage of

these classes for each test case, enabling us to filter out irrelevant information and focus

on the pertinent dependencies.

The ClassOrInterface node type is mainly used to locate dependent classes by

finding all corresponding nodes and filtering out those that are not within the project

scope, meaning their resolved name does not start with the base project package. For

instance, consider the following LazyDownConversionRecords constructor from the

Kafka project:

39

package org.apache.kafka.common.record;

import ...

public class LazyDownConversionRecords implements BaseRecords {
 ...

 public LazyDownConversionRecords(TopicPartition topicPartition, Records
records, byte toMagic, long firstOffset, Time time) {
 this.topicPartition = Objects.requireNonNull(topicPartition);
 this.records = Objects.requireNonNull(records);
 this.toMagic = toMagic;
 this.firstOffset = firstOffset;
 this.time = Objects.requireNonNull(time);
 ...
 }
 ...
}

The class-to-classes dependency graph for the LazyDownConversionRecords

class includes the following ClassOrInterface nodes that were located and resolved from

the LazyDownConversionRecords constructor:

org.apache.kafka.common.record.LazyDownConversionRecords:
[org.apache.kafka.common.record.Records,
org.apache.kafka.common.TopicPartition,
org.apache.kafka.common.utils.Time, ...]

However, the 'Objects' ClassOrInterface node was filtered out and not included in

the dependency graph since it belongs to the java.util package and its resolved name,

java.util.Objects, does not match the base project package criteria, which in the case of

Kafka is 'org.apache.kafka'.

40

In some cases, the ClassOrInterface node may not identify all dependent classes,

so additional node types are included. To locate dependent classes that are accessed from

static methods, we use the MethodCallExpr node type by locating and filtering static

methods. For instance, in the LazyDownConversionRecords class mentioned previously,

we identify ConvertedRecords as a dependent class by locating and resolving the

downConvert static method's class name as shown below:

package org.apache.kafka.common.record;

import ...

public class LazyDownConversionRecords implements BaseRecords {
 ...
 private class Iterator extends AbstractIterator<ConvertedRecords<?>> {
 ...
 @Override
 protected ConvertedRecords makeNext() {
 ...
 while (batchIterator.hasNext()) {
 ...
 ConvertedRecords convertedRecords = RecordsUtil.downConvert(batches,
toMagic, firstOffset, time);
 ...
 }
 return allDone();
 }
 }
}

Therefore, we also include it in the class-to-classes dependency graph as follows:

org.apache.kafka.common.record.LazyDownConversionRecords:
[org.apache.kafka.common.record.RecordsUtil, ...]

To locate dependent classes that are accessed via their static fields or enum

constants, we use the FieldAccessExpr node type to locate and resolve corresponding

41

nodes. Then, we include only nodes that are part of the project scope and are of type

ResolvedEnumConstantDeclaration or ResolvedFieldDeclaration. If the node is of type

ResolvedFieldDeclaration, we additionally filter only the static field declarations. For

example, in the following AlterPartitionReassignmentsResponse class:

package org.apache.kafka.common.requests;

import ...

public class AlterPartitionReassignmentsResponse extends AbstractResponse {
 ...
 public
AlterPartitionReassignmentsResponse(AlterPartitionReassignmentsResponseData
data) {
 super(ApiKeys.ALTER_PARTITION_REASSIGNMENTS);
 this.data = data;
 }
 ...
}

We identified the ALTER_PARTITION_REASSIGNMENTS FieldAccessExpr node,

which was resolved into a ResolvedEnumConstantDeclaration type. We then extracted

the qualified name of the ApiKeys class and included it as a dependent class in the class-

to-classes dependency graph as follow:

org.apache.kafka.common.requests.AlterPartitionReassignmentsResponse:
[org.apache.kafka.common.protocol.ApiKeys, ...]

42

Similarity, in the following ScramExtensions class:

package org.apache.kafka.common.security.scram.internals;

import ...

public class ScramExtensions extends SaslExtensions {
 ...
 public boolean tokenAuthenticated() {
 return
Boolean.parseBoolean(map().get(ScramLoginModule.TOKEN_AUTH_CONFIG));
 }
}

After identifying the TOKEN_AUTH_CONFIG FieldAccessExpr node, we

resolved it into a ResolvedFieldDeclaration type. We then verified that this field has static

access and extracted the qualified name of the ScramLoginModule class. Finally, we

included it as a dependent class in the class-to-classes dependency graph as follows:

org.apache.kafka.common.security.scram.internals.ScramExtensions:
[org.apache.kafka.common.security.scram.ScramLoginModule, ...]

3.4 Compared Approach
To explain in more detail, the compared approach [16], involves constructing a

graph that represents the dependencies between test files and the code under test. In this

approach, a node in the graph represents a class, and an edge between two nodes represents

a dependency between them.

To identify the test cases impacted by code changes, the technique introduces the

notions of ancestor and descendant. A node_A is considered an ancestor of node_B if

there exists a path from node_A to node_B, indicating that node_A directly or indirectly

invokes node_B. Leveraging the dependency graph, the approach initially gathers all the

43

ancestor nodes of the nodes representing the modified files within a commit, which are

referred to as "all_ancestors".

Next, the set of "all_descendants" is derived by merging the descendant nodes

from each node within "all_ancestors". Ultimately, the approach identifies only the nodes

representing test cases within "all_descendants" as the impacted test cases with

dependencies on the modified files. This means that only test files that depend on the

changed code, either directly or indirectly, are considered as impacted, while all other test

files are ignored.

To put it differently, the compared approach begins by identifying the nodes in the

dependency graph that represent the changed source code files. It then proceeds to find all

ancestor nodes of these changed files, followed by identifying all their descendant nodes.

The next step is to combine all descendant nodes into a single set, which is referred to as

"all_descendants". Finally, the approach identifies the nodes in "all_descendants" that

represent test cases, as these are the ones that depend on the changed files and are therefore

impacted.

For instance, consider a system with four source code files (A, B, C, D) and four

test files (T1, T2, T3, T4) with the following dependency graph shows the relationships

between them:

A → B → C → T1
D → T2
B → T3

Suppose a change is made to source code class B. The changed files would be the source

code class B, and its ancestor node would be A. The descendant nodes of A are B, C, and

T1, while the descendant nodes of C are T1, and the descendant nodes of B are T3. The

union of all descendant nodes is {B, C, T1, T3}. The impacted test files are T3 (because

44

it depends on B) and T1 (because it depends on C). Consequently, the approach determines

that test files T1 and T3 are impacted and should be executed to verify that the changes to

source code class B do not affect any functionality.

To demonstrate the first contrast in constructing dependency graphs between our

approach and the comparative method, we can analyze the StripedReplicaPlacerTest file

from the Kafka project. Instead of constructing the dependency graphs on the test file

level, we do it on the test case level. This test file comprises of 14 test cases as following:

package org.apache.kafka.metadata.placement;

import ...

@Timeout(value = 40)
public class StripedReplicaPlacerTest {

 private TopicAssignment place(ReplicaPlacer placer, int startPartition, int
numPartitions, short replicationFactor, List<UsableBroker> brokers) {
 ...
 }

 @Test
 public void testBrokerList() {
 ...
 }

 @Test
 public void testAvoidFencedReplicaIfPossibleOnSingleRack() {
 ...
 }

 @Test
 public void testMultiPartitionTopicPlacementOnSingleUnfencedBroker() {
 ...
 }

45

 @Test
 public void testPlacementOnFencedReplicaOnSingleRack() {
 ...
 }

 @Test
 public void testRackListWithMultipleRacks() {
 ...
 }

 @Test
 public void testRackListWithInvalidRacks() {
 ...
 }

 @Test
 public void testAllBrokersFenced() {
 ...
 }

 @Test
 public void testNotEnoughBrokers() {
 ...
 }

 @Test
 public void testNonPositiveReplicationFactor() {
 ...
 }

 @Test
 public void testSuccessfulPlacement() {
 ...
 }

 @Test
 public void testEvenDistribution() {

46

 ...
 }

 @Test
 public void testRackListAllBrokersFenced() {
 ...
 }

 @Test
 public void testRackListNotEnoughBrokers() {
 ...
 }

 @Test
 public void testRackListNonPositiveReplicationFactor() {
 ...
 }
}

The generated dependency graph includes the test file name and 10 depended on classes

(i.e., direct and indirect classes that referenced from the test code in the file) as follow:

org.apache.kafka.metadata.placement.StripedReplicaPlacerTest:
[org.apache.kafka.metadata.placement.StripedReplicaPlacer,
org.apache.kafka.metadata.placement.UsableBroker,
org.apache.kafka.server.util.MockRandom,
org.apache.kafka.metadata.placement.ReplicaPlacer,
org.apache.kafka.metadata.placement.TopicAssignment,
org.apache.kafka.metadata.placement.StripedReplicaPlacer.BrokerList,
org.apache.kafka.common.errors.InvalidReplicationFactorException,
org.apache.kafka.metadata.placement.PlacementSpec,
org.apache.kafka.metadata.placement.PartitionAssignment,
org.apache.kafka.metadata.placement.StripedReplicaPlacer.RackList]

However, in our case, based on the same test file we generated 14 distinct graphs

illustrating the dependency between each test case and its associated dependent classes.

47

For instance, the testRackListWithInvalidRacks test case produced the following test-to-

classes dependency graph:

org.apache.kafka.metadata.placement.StripedReplicaPlacerTest#testRackListWithInval
idRacks:
[org.apache.kafka.metadata.placement.ClusterDescriber,
org.apache.kafka.metadata.placement.UsableBroker,
org.apache.kafka.metadata.placement.TopicAssignment,
org.apache.kafka.server.util.MockRandom,
org.apache.kafka.metadata.placement.PlacementSpec,
org.apache.kafka.common.KafkaException,
org.apache.kafka.metadata.placement.StripedReplicaPlacer.RackList,
org.apache.kafka.common.errors.InvalidReplicationFactorException,
org.apache.kafka.metadata.placement.PartitionAssignment,
org.apache.kafka.metadata.placement.ReplicaPlacer,
org.apache.kafka.common.errors.ApiException]

To explain the second difference between our approach and the comparative

method in constructing dependency graphs, we can examine the

testMultiPartitionTopicPlacementOnSingleUnfencedBroker test case from the same

StripedReplicaPlacerTest test file:

@Test
public void testMultiPartitionTopicPlacementOnSingleUnfencedBroker() {
 MockRandom random = new MockRandom();
 StripedReplicaPlacer placer = new StripedReplicaPlacer(random);
 ...
}

This test case resulted in the following dependency graph:

org.apache.kafka.metadata.placement.StripedReplicaPlacerTest#testMultiPartitionTopi
cPlacementOnSingleUnfencedBroker:
[org.apache.kafka.metadata.placement.ClusterDescriber,
org.apache.kafka.metadata.placement.TopicAssignment,
org.apache.kafka.metadata.placement.UsableBroker,

48

org.apache.kafka.metadata.OptionalStringComparator,
org.apache.kafka.server.util.MockRandom,
org.apache.kafka.metadata.placement.PlacementSpec,
org.apache.kafka.common.KafkaException,
org.apache.kafka.metadata.placement.StripedReplicaPlacer,
org.apache.kafka.common.errors.InvalidReplicationFactorException,
org.apache.kafka.metadata.placement.PartitionAssignment,
org.apache.kafka.metadata.placement.ReplicaPlacer,
org.apache.kafka.common.errors.ApiException]

We included the ClusterDescriber class in our dependency graph to account for additional

node types, such as MethodCallExpr, and expose dependencies. This revealed a

dependency from the StripedReplicaPlacer class to the ClusterDescriber class, as it is used

as an injected dependency in the “place” method, as shown below:

package org.apache.kafka.metadata.placement;

import ...

public class StripedReplicaPlacer implements ReplicaPlacer {
 ...

 @Override
 public TopicAssignment place(PlacementSpec placement, ClusterDescriber cluster)
throws InvalidReplicationFactorException {
 ...
 }
}

Comparable to the approach, our test impact analysis inspecting class-level static

dependencies among the changed source codes and test cases (i.e., test methods) and

identify impacted test cases if they directly or indirectly invoke the modified code.

49

Having discussed the methodology and findings in the previous chapter, the

upcoming section will provide a comprehensive summary of the research and results

obtained from the study.

50

CHAPTER 4

 RESEARCH AND RESULTS

In this chapter, we aim to provide a comprehensive overview of our study,

highlighting the key aspects of our research approach, the research question we seek to

address, the Test Impact Analysis (TIA) configurations utilized, and the findings derived

from our investigation. This chapter serves as a pivotal point, connecting the theoretical

underpinnings and practical applications of our research.

4.1 Approach
To establish a dependency graph linking test cases and classes, we commence by

compiling a set of all-classes, comprising solely the Java source code files found within

the designated source code path. Subsequently, we represent these files as a set of

compilation units, extracting the qualified name of each CompilationUnit. Within the

JavaParser framework, CompilationUnit serves as a class that portrays the complete Java

file as an Abstract Syntax Tree (AST) (refer to Figure 7 for a visual representation).

51

Figure 7. An example of a CompilationUnit instance in JavaParser.

Next, we construct a dependency graph connecting classes with their respective

dependent classes by traversing AST and gathering significant node types (e.g.,

ClassOrInterfaceType, FieldAccessExpr, and MethodCallExpr). By employing the

JavaParser JavaSymbolSolver, we resolve each node, obtaining the qualified name of the

corresponding class. We then filter out only the nodes that belong to the project scope

(i.e., are presented in the all-classes set). The JavaSymbolSolver is a package integrated

with JavaParser, enabling the examination of the AST and identification of declarations

associated with each element. For example, for the following ‘Callback’ interface in

Kafka:

52

package org.apache.kafka.clients.producer;

 public interface Callback {
 void onCompletion(RecordMetadata metadata, Exception exception);
 }

Even though the CompilationUnit that corresponds to this interface contains two

ClassOrInterface nodes, namely RecordMetadata and Exception (as seen in Figure 8), we

exclude the Exception node from the final class-to-classes dependency graph for the

Callback interface since it is not within the project's scope. Therefore, the dependency of

the Callback interface will only be with the RecordMetadata class:

org.apache.kafka.clients.producer.Callback:
[org.apache.kafka.clients.producer.RecordMetadata]

Figure 8. The representation of the Callback interface in Kafka as a CompilationUnit.

Upon completion of this stage, we obtain a dependencies map of class-to-classes.

To derive the desired dependency graph between test cases and classes, we begin by

aggregating all the test methods (i.e., test cases) by filtering out methods within the

designated test path that include the @Test annotation. For each test method, we extract

the qualified names of the relevant nodes using a similar approach as in the preceding step.

Furthermore, considering that test cases often utilize shared resources like test fixture

53

methods (e.g., @Before, @BeforeClass), we iterate through the process of extracting class

names for all non-test codes (i.e., code excluding methods annotated with the @Test

annotation) within each test file.

To illustrate this point, we can consider the following

TestRackawareEnsemblePlacementPolicy test class:

package org.apache.bookkeeper.client;

public class TestRackawareEnsemblePlacementPolicy extends TestCase {

 ...

 @Override
 protected void setUp() throws Exception {
 ...
 timer = new HashedWheelTimer(new
ThreadFactoryBuilder().setNameFormat("TestTimer-%d").build(),
 conf.getTimeoutTimerTickDurationMs(), TimeUnit.MILLISECONDS,
conf.getTimeoutTimerNumTicks());
 ...
 }

 @Test
 public void testInitalize() throws Exception {
 String dnsResolverName = conf.getString(REPP_DNS_RESOLVER_CLASS,
ScriptBasedMapping.class.getName());
 DNSToSwitchMapping dnsResolver =
ReflectionUtils.newInstance(dnsResolverName, DNSToSwitchMapping.class);
 AbstractDNSToSwitchMapping tmp = (AbstractDNSToSwitchMapping)
dnsResolver;
 assertNull(tmp.getBookieAddressResolver());
 dnsResolver.setBookieAddressResolver(repp.bookieAddressResolver);
 assertNotNull(tmp.getBookieAddressResolver());
 }

54

 ...
}

When considering only the dependent classes in the testInitalize test case only the

following classes will be included: ScriptBasedMapping, DNSToSwitchMapping, and

AbstractDNSToSwitchMapping. However, because we extract class names from all the

non-test methods as well, we also include the HashedWheelTimer class. Therefore, the

final test-to-classes dependency graph of the testInitalize test case will also include the

class names collected from the setUp method and will be presented as following:

org.apache.bookkeeper.client#testInitalize: [ScriptBasedMapping,
DNSToSwitchMapping, AbstractDNSToSwitchMapping, HashedWheelTimer, …]

Finally, we build the test-to-classes dependency graph by iteratively traversing

class names and their associated class dependencies for each test case, leading to the

formation of the test-to-classes dependency graph. To illustrate this point, we can consider

the following simplified example:

// ClassC.java
public class ClassC {
 public String getMessage() {
 return "Hello from ClassC";
 }
}

// ClassB.java
public class ClassB {
 private ClassC classC;

 public ClassB() {
 classC = new ClassC();
 }

 public String getMessage() {
 return "Hello from ClassB and " + classC.getMessage();

55

 }
}

// ClassA.java
public class ClassA {
 private ClassB classB;

 public ClassA() {
 classB = new ClassB();
 }

 public String getMessage() {
 return "Hello from ClassA and " + classB.getMessage();
 }
}

// TestClass1.java
import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.assertEquals;

public class TestClass1 {
 @Test
 public void testCase1() {
 ClassA classA = new ClassA();
 String expectedMessage = "Hello from ClassA and Hello from ClassB and Hello
from ClassC";
 assertEquals(expectedMessage, classA.getMessage());
 }
}

It is evident that while testCase1 has a direct dependency solely on ClassA, the ultimate

test-to-classes dependency graph encompasses ClassB and ClassC as well, due to the

dependency between ClassA and ClassB, and the subsequent dependency between ClassB

and ClassC. Consequently, the final test-to-classes dependency graph for testCase1 is

represented as follows: testClass1: [ClassA, ClassB, ClassC]. This approach allows us to

56

account for testCase1 as impacted if there is a code change in any of the dependent classes,

rather than only considering its direct dependency.

To carry out test impact analysis (TIA) based on the test-to-classes dependency

graph in the context of code changes, our research involves experimenting with two

separate configurations:

● Source file level

● Class token level

4.1.1 Test Impact Analysis - Source File Level
In this configuration we collected the source code files that had changed from

commits (see Table 3), filtering only those commits that had made some code changes to

at least one Java source file. We then retrieved the corresponding qualified names for each

source file in a similar manner to the previous steps (i.e., generation of the test-to-classes

dependency graph). Using the test-to-classes dependency graph, we filtered the

"impacted" test cases that contained the changed classes, resulting in a subset of

"impacted" test cases for a given commit.

57

Table 3. Number of Commits, Mean Changed Files, and Median Percentage of Impacted

Test Cases Using Test-to-Classes Dependency Graph (Changed Source Files

Configuration).

System Commits Changed files (median) Percentage of impacted
tests (median)

bookkeeper 57 10.912 39.51%

cucumber-jvm 14 1.571 6.96%

hbase 45 3.511 44.85%

hive 24 4.125 26.20%

kafka 52 3.057 22.41%

zookeeper 48 3.312 62.39%

api-clients 67 2.761 43.77%

To accomplish this, we utilize the GitHub and GitLab APIs to obtain commit data

and extract the modified Java source code files. For instance, if the system source code is

hosted on GitHub, we initially use the following API to retrieve a list of commits:

curl -L \
 -H "Accept: application/vnd.github+json" \
 -H "Authorization: Bearer <YOUR-TOKEN>"\
 -H "X-GitHub-Api-Version: 2022-11-28" \
 https://api.github.com/repos/OWNER/REPO/commits

Subsequently, for each commit, we acquire the data for modified source code Java

files by making the following API call and providing the commit SHA as a reference:

curl -L \
 -H "Accept: application/vnd.github+json" \
 -H "Authorization: Bearer <YOUR-TOKEN>"\
 -H "X-GitHub-Api-Version: 2022-11-28" \
 https://api.github.com/repos/OWNER/REPO/commits/REF

58

For instance, in the case of the following Kafka commit:

0bb05d8679b684ad8fbb2eb40dfc00066186a75a, we identified three qualified names of

modified source code files:

[org.apache.kafka.controller.ClusterControlManager,
org.apache.kafka.common.requests.BrokerRegistrationRequest,
org.apache.kafka.metadata.BrokerRegistration]

which led to 6557 impacted test cases after filtering from the Kafka test-to-classes

dependency graph.

From end-to-end high-level overview (see Figure 9), the source file level

configuration can be described as follow:

● Construct test-to-classes dependency graphs:

○ Collect source code files - Gather all the relevant source code files from a

given software project.

○ Transform source code files to Abstract Syntax Trees (ASTs) - Convert the

source code files into ASTs, which represent the structure of the code in

hierarchical manner.

○ Build class-to-classes dependency graph for each AST - Analyze each AST

to identify dependent classes.

○ Construct dependency graphs that represent the relationships between root

classes and their dependent classes.

○ Collect all test cases - Gather a list of all the test cases from the same given

software project.

○ Collect common classes for each test case - Analyze common dependent

classes in each test file and add them to the relevant test cases.

○ Build test-to-classes dependency graph for each test case - Using the class-

to-classes dependency graphs, construct a graph that represents the

59

dependencies between the test case and the classes it interacts with directly

or indirectly.

● Identify impacted test cases per code change:

○ Collect changed source files from commit - Identify specific source code

files that have been modified in a commit.

○ Lookup each changed source file (i.e., changed class) in the test-to-class

dependency graph - Examine each changed class and check if any test case

depends on it in the test-to-class dependency graph.

○ Add the test case to a set of impacted test cases if a changed class is found

- If a dependency between a test case and a modified class is identified,

add that test case to a set of impacted test cases.

○ Return the set of impacted test cases per commit - After analyzing all the

modified classes and their dependencies, return the set of test cases that are

impacted by the code change (i.e., commit).

60

Figure 9. End-to-end diagram of source file level and class token level Test Impact

Analysis approaches.

4.1.2 Test Impact Analysis - Class Tokens Level
We employed a configuration like the previous method, where we utilized the

same filtered commits that involved modifications to at least one Java source file (as

shown in Table 3). However, rather than acquiring the qualified names of each changed

source file from the collected commits, we extracted all the modified class tokens within

the changed source files. The rationale for this approach was to determine if we could

optimize the selection of impacted test cases even further by narrowing the scope of

61

changes. To achieve this goal, we first simplified the test-to-classes dependency graph by

modifying the qualified names to only include the names of the test cases and classes,

without their respective packages. Consider the following test-to-classes dependency

graph:

org.apache.kafka.timeline.TimelineObjectTest#testModifyValue:
[org.apache.kafka.timeline.Snapshot,
org.apache.kafka.timeline.TimelineObject,
org.apache.kafka.common.utils.LogContext, org.apache.kafka.timeline.Revertable,
org.apache.kafka.timeline.Delta,
org.apache.kafka.timeline.SnapshotRegistry]

After modification, it becomes:

testModifyValue: [Snapshot, TimelineObject, LogContext, Revertable, Delta,
SnapshotRegistry]

In the modified version, we removed the package information from the class names to

simplify the test-to-classes dependency graph. As a result, only the class names are listed

as dependencies for the test case "testModifyValue".

Afterward, we obtained changed lines of code by utilizing the "Git diff" command.

Git diff is a command-line tool used in the Git version control system that compares two

sets of code changes, typically between different versions of files or directories. The tool

provides a summary of the differences between the two sets of codes, highlighting the

lines that were added, modified, or deleted.

Subsequently, we processed the collected lines of code with changes, removing

comments and imports, dividing the lines into individual tokens, and gathering only those

tokens that belong to the project's scope (i.e., present in the all-classes set) (refer to Table

4). In the end, like the previous configuration, we employed the simplified test-to-classes

dependency graph to identify the "impacted" test cases containing the altered token

classes, resulting in a subset of "impacted" test cases for a given commit.

62

Table 4. Number of Commits, Mean Changed Class Tokens, And Median Percentage of

Impacted Test Cases Using Simplified Test-to-Classes Dependency Graph (Changed

Class Tokens Configuration).

System Commits Changed class tokens
(median)

Percentage of impacted
tests (median)

bookkeeper 57 3.142 53.470%

cucumber-jvm 14 5.692 27.850%

hbase 45 6.083 69.362%

hive 24 7.571 28.768%

kafka 52 8.295 63.235%

zookeeper 48 5.320 68.988%

api-clients 67 5.571 65.448%

For example, in the case of the following Kafka commit:

700947aa5a64a707264caac8959fe2dc6b7e7fd0, we identified two qualified names of

modified source code files under the first source files configuration:

[org.apache.kafka.coordinator.group.GroupCoordinator,

org.apache.kafka.common.requests.OffsetDeleteResponse], resulting in 6653 impacted

test cases. However, using the class tokens configuration, we identified five class tokens:

[Errors, OffsetDeleteRequest, OffsetDeleteResponse, RequestContext, BufferSupplier],

leading to 7399 impacted tests.

Although we managed to reduce the scope of changes from 9 classes to 5, which

represents a 64.29% improvement when comparing the corresponding class-to-classes

dependency graphs:

org.apache.kafka.coordinator.group.GroupCoordinator:
[org.apache.kafka.common.requests.RequestContext,

63

org.apache.kafka.common.TopicPartition,
org.apache.kafka.common.utils.BufferSupplier,
org.apache.kafka.common.requests.TransactionResult]

org.apache.kafka.common.requests.OffsetDeleteResponse:
[org.apache.kafka.common.requests.AbstractResponse,
org.apache.kafka.common.requests.OffsetDeleteRequest,
org.apache.kafka.common.protocol.ByteBufferAccessor,
org.apache.kafka.common.protocol.Errors,
org.apache.kafka.common.protocol.ApiKeys]

The resulting impacted test cases still increased from 6653 to 7399, representing

an 11.21% decrease in the efficiency of the test impact analysis technique (i.e., an increase

in selected impacted test cases) when comparing the class tokens configuration with the

source files configuration. The rationale behind this will be elaborated further in the

subsequent results section.

From end-to-end high-level overview (see Figure 9), the class tokens level

configuration can be described as follow:

● Construct test-to-classes dependency graphs:

○ Collect source code files - Gather all the relevant source code files from a

given software project.

○ Transform source code files to Abstract Syntax Trees (ASTs) - Convert the

source code files into ASTs, which represent the structure of the code in a

hierarchical manner.

○ Build class-to-classes dependency graph for each AST - Analyze each AST

to identify dependent classes.

○ Construct dependency graphs that represent the relationships between root

classes and their dependent classes.

○ Collect all test cases - Gather a list of all the test cases from the same given

software project.

64

○ Collect common classes for each test case - Analyze common dependent

classes in each test file and add them to the relevant test cases.

○ Build test-to-classes dependency graph for each test case - Using the class-

to-classes dependency graphs, construct a graph that represents the

dependencies between the test case and the classes it interacts with directly

or indirectly.

● Identify impacted test cases per code change:

○ Collect changed source files from commit - Identify the specific source

code files that have been modified in a commit.

○ Transform changed source code files to ASTs - Convert the changed source

code files into ASTs.

○ Build class-to-classes dependency graph for each AST (i.e., changed

source file) - Analyze the ASTs of the modified classes, determine their

dependencies and construct a graph that represents the relationships

between the modified source files and their dependent classes.

○ Build a list of changed source files dependent classes - Create a list that

includes all the classes that the modified source files depend on.

○ Lookup each element of the list of changed source files dependent classes

in the test-to-class dependency graph - Examine each class in the list of

dependent classes, check if any test case depends on it and search in the

test-to-class dependency graph for these dependencies.

○ Add the test case to a set of impacted test cases if an element (i.e.,

dependent class) is found - If a dependency between a test case and a

modified class is identified, add that test case to a set of impacted test cases.

○ Return the set of impacted test cases per commit - After analyzing all the

modified classes and their dependencies, return the set of test cases that are

impacted by the code change (i.e., commit).

65

4.2 Results
In order to evaluate the effectiveness of our proposed technique, we assess the

efficacy of our proposed technique by addressing the following research question (RQ).

RQ: How does our proposed static class-level test impact analysis technique perform

compared to the state-of-the-art static class-level test impact analysis technique?

To address this question, we examine the techniques performance in terms of

impacted test case selection. This approach allows us to identify any potential advantages

or drawbacks associated with our proposed method, as well as to highlight its strengths

and weaknesses in relation to the current state-of-the-art technique.

4.2.1 Test Impact Analysis - Source File Level
In most of the assessed systems, the average number of modified files remains

below 4. However, the average proportion of impacted test cases can soar up to 62%.

Table 3 provides insights into the number of commits, the median quantity of modified

files, and the average percentage of impacted test cases for each system. The data reveals

that in 5 out of the 7 scrutinized systems, the median count of modified files remains below

4. Considering the overall volume of source code and test files within the examined

systems (depicted in Table 3), it becomes evident that, on average, developers modify less

than 0.5% of the files daily.

Figure 10 showcases the distribution of impacted test cases based on code changes.

The data demonstrates that, on average, the proportion of impacted test cases can soar as

high as 62%. Across six of the seven analyzed systems, the average percentage of

impacted test cases ranges from 22% to 62%. Notably, our findings indicate that

cucumber-jvm exhibits a comparatively lower number of impacted test cases, with a

median percentage of merely 6.96%. Further investigation reveals that this disparity can

66

be attributed to the relatively modest median number of modified files in cucumber-jvm,

standing at just 1.5, in contrast to the other systems examined.

Figure 10. Distributions by percentage of impacted test cases using test to classes

dependency graph (1st configuration - changed source files).

To enhance our comprehension of the findings, we undertook an additional

examination of the interdependencies between classes (i.e., the number of references each

class has to other classes) and the dependencies between test cases and classes (as

indicated by the test-to-class dependency graph). Figure 11 illustrates the correlation

between the percentage of classes and the distribution of dependent classes within various

ranges.

Evidently, within the examined systems, the proportion of classes without any

dependencies on other classes exceeds 15%, with the highest recorded value of 51.1%

67

observed in the api-clients system. Furthermore, our analysis unveiled that a relatively

minor fraction of classes (averaging less than 5%) exhibit 20-40 dependencies on other

classes.

Figure 12 depicts the association between test cases and their respective dependent

classes, represented as a percentage. Across all systems analyzed, a minimum of 20% of

test cases exhibit a dependency of less than 10% on the total number of classes within the

system. However, in the case of hive, this percentage surpasses 70%.

Based on the findings, we can deduce that there exists a correlation between the

percentage of dependent classes and the percentage of impacted test cases. The highest

median percentage of impacted test outcomes (as indicated in Table 3), observed in

zookeeper and hbase, is linked to the proportion of dependent classes. For instance, in the

case of zookeeper, over 75% of test cases rely on 50%-70% of the total classes, while in

hbase, more than 50% of test cases have a dependency on 60%-70% of the total classes.

These results demonstrate that despite the minimal number of modified files in code

modifications within the analyzed systems, the proportion of impacted test cases can be

considerably high (with a median of approximately 47% of impacted test cases detected

in four out of the seven systems investigated).

Nevertheless, simultaneously, the results also indicate that our static class-level

test impact analysis technique holds promise in reducing the testing overhead by an

average of approximately 60%. To establish a benchmark against the current state-of-the-

art static class-level approach [16], we compared our results on commonly studied systems

(as presented in Table 5). Our proposed approach demonstrated an average improvement

of approximately 13% (represented by a reduction of roughly 13% in the selection of

impacted test cases).

68

Yet, it is worth highlighting that none of the studies assessed the false negative

ratio, which involves evaluating how many test cases influenced the modified code but

were disregarded by the test impact analysis technique and can be another future research

topic. Also, it should be noted that the median percentage of test results affected by the

compared technique were estimated from a graph and thus may be slightly different.

Figure 11. The percentage of classes with the distribution of dependent classes

by range.

69

Figure 12. The percentage of test cases with the distribution of dependent classes

by percentage.

70

Table 5. Comparison of Median Percentage of Impacted Tests Between Static Class-

Level Techniques.

System Proposed technique -
1st configuration
(changed source files)

Proposed technique
- 2nd configuration
(changed class
tokens)

Percentage of
impacted tests
(median) -
compared state-of-
the-art approach

bookkeeper 39.51% 53.47% ~40%

cucumber-jvm 6.96% 27.85% ~15%

hbase 44.85% 69.32% ~72%

hive 26.20% 28.76% ~48%

kafka 22.41% 63.23% ~33%

4.2.2 Test Impact Analysis - Class Tokens Level
In most systems examined, the average number of altered class tokens extracted is

between 5 and 8 and the average percentage of impacted test cases can be as high as 69%.

Table 4 displays the number of commits, the median number of modified class tokens

extracted, and the average percentage of impacted tests for each system. The data reveals

that for 6 out of 7 systems analyzed, the median count of class tokens modified is greater

than 5.

The distribution of the proportion of impacted test cases resulting from code

changes is presented in Figure 13. The results demonstrate that, on average, the percentage

of impacted test cases can go up to 69%. In five of the seven systems analyzed, the

percentage of impacted test cases ranges from 53% to 69%. Our findings further suggest

that cucumber-jvm still has the lowest number of impacted test cases when compared to

other systems. However, the median percentage of impacted test cases has significantly

increased from 6.96% to 27.85% when compared to the configuration involving changed

source files.

71

Table 4 displays that the highest median percentage of impacted test cases was still

observed in Zookeeper and HBase, like the previous configuration. However, the median

percentage of impacted test cases increased from 62.39% to 68.99% in Zookeeper and

from 44.85% to 69.36% in HBase. Additionally, the average percentage of impacted test

cases across all analyzed systems increased from 35.16% to 53.87%. These findings

suggest that this setup is less effective in terms of selecting impacted tests compared to

the previous configuration involving changed source files.

We conducted further analysis to better comprehend the outcomes. Our findings

indicate that while the second configuration, involving changed class tokens, can aid in

narrowing down the changed scope, there are drawbacks to this approach. This is because

we removed the full identification of classes in the tests-to-classes dependency graph,

which leads to a higher degree of dependency graph due to common class names. For

example, we observed that in the Kafka project, the class name 'Builder' was repeated 93

times, and 'StatusData' was repeated 7 times. Similarly, in the HBase project, the 'Builder'

class name was repeated 26 times, and 'Writer' was repeated 5 times.

Similarly, to the previous configuration (i.e., source code files level test impact

analysis), we compared our findings to the current state-of-the-art static class-level

approach [16] by examining commonly studied systems (as depicted in Table 5). Our

proposed method using the class tokens configuration yielded poorer results, with an

average increase of around 6.5% in selected impacted tests. Nonetheless, our results

indicate that our static class-level test impact analysis approach using the class tokens

configuration still has the potential to decrease test overhead by an average of

approximately 42%.

As before, there are two important points to note. First, none of the studies

evaluated the false negative ratio, which involves determining the number of test cases

72

that affected the modified code but were not considered by the test impact analysis

technique. This can be a potential topic for future research. Second, it is important to

mention that the median percentage of impacted test results in the compared technique

was estimated from a graph, and thus there may be slight differences.

Figure 13. Distributions by percentage of impacted test cases using test to classes

dependency graph (second configuration - changed class tokens).

The following chapter will encapsulate our conclusion and delve into the

constraints of the current research, while accentuating potential avenues for future

research.

73

CHAPTER 5

 FUTURE WORK AND CONCLUSION

In this final chapter we aim to consolidate the key insights and findings of our

research as well as reflecting on the implications of our study. We begin by revisiting

limitations of our study, acknowledging any shortcomings or constraints that may have

influenced the outcomes of our research. By addressing these limitations, we aim to

provide a balanced and transparent account of our work. Next, we summarize the key

outcomes and present our concluding thoughts.

5.1 Future Work
Our analysis encompassed seven Java-based systems spanning various domains,

and we observed consistent results across all systems. However, it is important to note

that since our study focused exclusively on Java implementations, the findings may not

directly translate to software projects developed in different programming languages. To

enhance the applicability of our results to other coding languages, future research should

investigate their generalizability.

Moreover, our investigation was limited to a subset of code modifications (i.e.,

commits) and did not encompass the entirety of the initial stages of software system

development. To overcome this constraint, future studies could undertake more

comprehensive test impact analysis, expanding the scope to encompass the complete

software history.

Our study relies on static analysis for identifying the dependency graph. However,

it is important to acknowledge that static analysis may have inherent limitations in terms

of accuracy, such as the resolution of nodes from abstract syntax trees, which could

74

potentially lead to inaccuracies in the results. Although we did not encounter such

instances in our research, it is recommended that future studies validate our findings by

applying them to different systems.

In this study, we employ static analysis to uncover the relationships between test

cases and other source code elements. Our manual examination did not uncover any false

positives resulting from our static analysis approach. However, it is crucial for future

research to evaluate our proposed approach, as well as other static methods for test impact

analysis, in terms of false positives. False positives refer to impacted test cases that are

erroneously excluded by the test impact analysis implementation.

We opted for static analysis over dynamic analysis to capture class-level

dependencies based on prior research [35], [37], which demonstrated comparable

performance between static and dynamic test impact analysis methods. Moreover, the

class-level dependency graph exhibited superior results when compared to the method-

level dependency graph. To reassess our conclusions, future studies could explore the use

of dynamic analysis or investigate method-level dependencies.

We classify a method as a test case when it contains invocations to testing libraries

such as JUnit or TestNG, identified by the presence of the "@Test" annotation. Although

we did not encounter any false detections during our examination, it is possible that certain

test cases may be disregarded during execution due to annotations like "@Ignore" or

"@Test(enabled=false)". Additional research is necessary to validate the accuracy of our

method in identifying test cases.

This research primarily focuses on analyzing Java source code and its associated

test cases. While most of the systems we examine are implemented in Java, there are cases

where other programming languages are utilized. For example, in Kafka, Scala and Python

constitute 21.8% and 2.5% of the code, respectively, while in Hbase, Perl and Ruby

75

contribute 0.9% and 1.8% of the code, respectively. Therefore, additional research is

necessary to explore how different programming languages can impact the outcomes of

TIA.

Based on our analysis, we observe a limited positive correlation between the

number of modified files and the proportion of impacted test cases. This indicates that

certain modified files may have a more substantial impact compared to others. To enhance

the effectiveness of TIA, future research could explore various characteristics of modified

files, including their susceptibility to change and significance within the dependency

graph.

5.2 Conclusion
Numerous techniques have been suggested and assessed to minimize the overhead

of test execution, including traditional software development settings incorporating TIA.

This study investigates the efficacy of employing static class-level test impact analysis on

seven Java systems under two distinct configurations within the framework of continuous

testing. Our findings indicate that even with a limited quantity of changed files under the

1st configuration and limited changed class tokens in the 2nd configuration, a significant

number of test cases (40% or more) are still impacted by code changes.

However, our results also suggest that implementing the proposed approach could

potentially reduce accumulated testing overhead in continuous integration (CI) setups.

Across all the systems we studied, we found that approximately 60% of tests could be

excluded (i.e., not impacted by code changes) with the 1st configuration (i.e., changed

source files), which shows promise for reducing testing overhead. To benchmark our

results against the current state-of-the-art static class-level approach [16], we compared

our findings and observed an average improvement of approximately 13% in the number

of impacted tests with the 1st configuration (i.e., changed source files) and deterioration

76

of approximately 6.5% in the number of impacted tests when applied the 2nd

configuration (i.e., changed class tokens).

In summary, our study's results suggest that integrating test impact analysis (TIA)

into the development life cycle can bring benefits even with the current setup, considering

the growing test frequency and associated overhead.

77

REFERENCES
[1] Li W, Henry S. “Maintenance support for object-oriented programs”. Journal of

Software Maintenance: Research and Practice 1995, 7(2), pp. 131–147.

[2] N. F. Schneidewind, "The State of Software Maintenance," in IEEE Transactions on

Software Engineering, vol. SE-13, no. 3, pp. 303-310, March 1987, doi:

10.1109/TSE.1987.233161.

[3] M. M. Lehman and L. A. Belady. 1985. Program evolution: processes of software

change. Academic Press Professional, Inc., USA.

[4] Bohner, Shawn A., and Robert S. Arnold. Software Change Impact Analysis / Shawn

A. Bohner, Robert S. Arnold. IEEE Computer Society Press, 1996.

[5] Bohner, "Impact analysis in the software change process: a year 2000 perspective,"

1996 Proceedings of International Conference on Software Maintenance, Monterey, CA,

USA, 1996, pp. 42-51, doi: 10.1109/ICSM.1996.564987.

[6] P. Rovegård, L. Angelis and C. Wohlin, "An Empirical Study on Views of

Importance of Change Impact Analysis Issues," in IEEE Transactions on Software

Engineering, vol. 34, no. 4, pp. 516-530, July-Aug. 2008, doi: 10.1109/TSE.2008.32.

[7] Turver, R.J. and Munro, M. (1994), An early impact analysis technique for software

maintenance. J. Softw. Maint: Res. Pract., 6: 35-52.

https://doi.org/10.1002/smr.4360060104.

[8] Sue Black, Deriving an approximation algorithm for automatic computation of ripple

effect measures, Information and Software Technology, Volume 50, Issues 7–8, 2008,

pp. 723-736, ISSN 0950-5849, https://doi.org/10.1016/j.infsof.2007.07.008.

[9] Xiaoxia Ren, B. G. Ryder, M. Stoerzer and F. Tip, "Chianti: a change impact

analysis tool for Java programs," Proceedings. 27th International Conference on

Software Engineering, 2005. ICSE 2005., St. Louis, MO, USA, 2005, pp. 664-665, doi:

10.1109/ICSE.2005.1553643.

[10] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Practical regression test

selection with dynamic file dependencies. In Proceedings of the 2015 International

78

Symposium on Software Testing and Analysis (ISSTA 2015). Association for

Computing Machinery, New York, NY, USA, 211–222.

https://doi.org/10.1145/2771783.2771784.

[11] August Shi, Tifany Yung, Alex Gyori, and Darko Marinov. 2015. Comparing and

combining test-suite reduction and regression test selection. In Proceedings of the 2015

10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015).

Association for Computing Machinery, New York, NY, USA, pp. 237–247.

https://doi.org/10.1145/2786805.2786878.

[12] Gregg Rothermel and Mary Jean Harrold. 1997. A safe, efficient regression test

selection technique. ACM Trans. Softw. Eng. Methodol. 6, 2 (April 1997), pp. 173–210.

https://doi.org/10.1145/248233.248262.

[13] Zhang, Lingming & Marinov, Darko & Zhang, Lu & Khurshid, Sarfraz. (2011). An

Empirical Study of JUnit Test-Suite Reduction. Proceedings - International Symposium

on Software Reliability Engineering, pp. 170-179. 10.1109/ISSRE.2011.26.

[14] A. Vahabzadeh, A. Stocco and A. Mesbah, "Fine-Grained Test Minimization,"

2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE),

Gothenburg, Sweden, 2018, pp. 210-221, doi: 10.1145/3180155.3180203.

[15] Yoo, Shin & Harman, Mark. (2012). Regression testing minimization, selection and

prioritization: A survey. Software Testing, Verification and Reliability. 22.

10.1002/stvr.430.

[16] Z. Peng, T. -H. Chen and J. Yang, "Revisiting Test Impact Analysis in Continuous

Testing from the Perspective of Code Dependencies," in IEEE Transactions on Software

Engineering, vol. 48, no. 6, pp. 1979-1993, 1 June 2022, doi:

10.1109/TSE.2020.3045914.

[17] Alessandro Orso, Nanjuan Shi, and Mary Jean Harrold. 2004. Scaling regression

testing to large software systems. SIGSOFT Softw. Eng. Notes 29, 6 (November 2004),

pp. 241–251. https://doi.org/10.1145/1041685.1029928.

[18] Owolabi Legunsen, Farah Hariri, August Shi, Yafeng Lu, Lingming Zhang, and

Darko Marinov. 2016. An extensive study of static regression test selection in modern

79

software evolution. In Proceedings of the 2016 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering (FSE 2016). Association for

Computing Machinery, New York, NY, USA, pp. 583–594.

https://doi.org/10.1145/2950290.2950361.

[19] Microsoft, “Test impact analysis in visual studio test” [Online].

https://learn.microsoft.com/en-us/azure/devops/pipelines/test/test-impact-

analysis?view=azure-devops, 14/7/2023.

[20] Gitlab, “Continuous Integration and Delivery”, [Online].

https://about.gitlab.com/features/continuous-integration/, 14/7/2023.

[21] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir

Filkov. 2015. Quality and productivity outcomes relating to continuous integration in

GitHub. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering (ESEC/FSE 2015). Association for Computing Machinery, New York, NY,

USA, pp. 805–816. https://doi.org/10.1145/2786805.2786850.

[22] Gradle, “Gradle Build Tool”, [Online]. https://gradle.org/, 14/7/2023.

[23] D. Saff and M. D. Ernst, "Reducing wasted development time via continuous

testing," 14th International Symposium on Software Reliability Engineering, 2003.

ISSRE 2003., Denver, CO, USA, 2003, pp. 281-292, doi:

10.1109/ISSRE.2003.1251050.

[24] Kıvanç Muşlu, Yuriy Brun, and Alexandra Meliou. 2013. Data debugging with

continuous testing. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering (ESEC/FSE 2013). Association for Computing Machinery, New

York, NY, USA, pp. 631–634. https://doi.org/10.1145/2491411.2494580.

[25] Memon, Atif & Gao, Zebao & Nguyen, Bao & Dhanda, Sanjeev & Nickell, Eric &

Siemborski, Rob & Micco, John. (2017). Taming Google-Scale Continuous Testing.

233-242. 10.1109/ICSE-SEIP.2017.16.

[26] Junjie Chen, Yanwei Bai, Dan Hao, Yingfei Xiong, Hongyu Zhang, and Bing Xie.

2017. Learning to prioritize test programs for compiler testing. In Proceedings of the

80

39th International Conference on Software Engineering (ICSE '17). IEEE Press, pp.

700–711. https://doi.org/10.1109/ICSE.2017.70.

[27] Z. Li, M. Harman and R. M. Hierons, "Search Algorithms for Regression Test Case

Prioritization," in IEEE Transactions on Software Engineering, vol. 33, no. 4, pp. 225-

237, April 2007, doi: 10.1109/TSE.2007.38.

[28] Mei, Hong & Hao, Dan & Zhang, Lingming & Zhang, Lu & Zhou, Ji & Rothermel,

Gregg. (2012). A Static Approach to Prioritizing JUnit Test Cases. Software

Engineering, IEEE Transactions on. 38. pp. 1258-1275. 10.1109/TSE.2011.106.

[29] Rothermel, Gregg & Untch, Roland & Chu, Chengyun & Harrold, Mary. (2000).

Prioritizing Test Cases for Regression Testing. Software Engineering, IEEE

Transactions on. 27.

[30] Ripon K. Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E. Perry. 2015.

An information retrieval approach for regression test prioritization based on program

changes. In Proceedings of the 37th International Conference on Software Engineering -

Volume 1 (ICSE '15). IEEE Press, pp. 268–279.

[31] Thomas, Stephen & Hemmati, Hadi & Hassan, Ahmed E. & Blostein, Dorothea.

(2014). Static test case prioritization using topic models. Empirical Software

Engineering. 19. 10.1007/s10664-012-9219-7.

[32] Shin Yoo, Mark Harman, and David Clark. 2013. Fault localization prioritization:

Comparing information-theoretic and coverage-based approaches. ACM Trans. Softw.

Eng. Methodol. 22, 3, Article 19 (July 2013), 29 pages.

https://doi.org/10.1145/2491509.2491513.

[33] Lingming Zhang, Dan Hao, Lu Zhang, Gregg Rothermel, and Hong Mei. 2013.

Bridging the gap between the total and additional test-case prioritization strategies. In

Proceedings of the 2013 International Conference on Software Engineering (ICSE '13).

IEEE Press, pp. 192–201.

[34] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for

improving regression testing in continuous integration development environments. In

Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of

81

Software Engineering (FSE 2014). Association for Computing Machinery, New York,

NY, USA, pp. 235–245. https://doi.org/10.1145/2635868.2635910.

[35] Q. Luo, K. Moran, L. Zhang and D. Poshyvanyk, "How Do Static and Dynamic

Test Case Prioritization Techniques Perform on Modern Software Systems? An

Extensive Study on GitHub Projects," in IEEE Transactions on Software Engineering,

vol. 45, no. 11, pp. 1054-1080, 1 Nov. 2019, doi: 10.1109/TSE.2018.2822270.

[36] Y. Zhu, E. Shihab and P. C. Rigby, "Test Re-Prioritization in Continuous Testing

Environments," 2018 IEEE International Conference on Software Maintenance and

Evolution (ICSME), Madrid, Spain, 2018, pp. 69-79, doi: 10.1109/ICSME.2018.00016.

[37] Machalica, Mateusz & Samylkin, Alex & Porth, Meredith & Chandra, Satish.

(2019). Predictive Test Selection. 91-100. 10.1109/ICSE-SEIP.2019.00018.

[38] Gambi, Alessio & Bell, Jonathan & Zeller, Andreas. (2018). Practical Test

Dependency Detection. pp. 1-11. 10.1109/ICST.2018.00011.

[39] Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. 2012. Understanding

myths and realities of test-suite evolution. In Proceedings of the ACM SIGSOFT 20th

International Symposium on the Foundations of Software Engineering (FSE '12).

Association for Computing Machinery, New York, NY, USA, Article 33, pp. 1–11.

https://doi.org/10.1145/2393596.2393634.

[40] JavaParser, [Online]. https://javapar.org, 14/7/2023.

[41] F. Palomba and A. Zaidman, "Notice of Retraction: Does Refactoring of Test

Smells Induce Fixing Flaky Tests?," 2017 IEEE International Conference on Software

Maintenance and Evolution (ICSME), Shanghai, China, 2017, pp. 1-12, doi:

10.1109/ICSME.2017.12.

[42] A. Vahabzadeh, A. M. Fard and A. Mesbah, "An empirical study of bugs in test

code," 2015 IEEE International Conference on Software Maintenance and Evolution

(ICSME), Bremen, Germany, 2015, pp. 101-110, doi: 10.1109/ICSM.2015.7332456.

[43] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An

empirical analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering (FSE 2014).

82

Association for Computing Machinery, New York, NY, USA, 643–653.

https://doi.org/10.1145/2635868.2635920.

[44] “The Rise of Test Impact Analysis” [Online]. https://martinfowler.com/articles/rise-

test-impact-analysis.html, 14/7/2023.

[45] Li, Bixin & Sun, Xiaobing & Leung, Hareton & Zhang, Sai. (2013). A survey of

code-based change impact analysis techniques. Software Testing, Verification and

Reliability. 23. 10.1002/stvr.1475.

[46] “CI/CD: Continuous Integration and Continuous Delivery”, [Online].

https://www.geeksforgeeks.org/ci-cd-continuous-integration-and-continuous-delivery/,

14/7/2023.

[47] “Improving Test Execution Efficiency with Test Impact Analysis”, [Online].

https://docs.teamscale.com/tutorial/improving-test-efficiency/#setting-up-the-test-

impact-analysis, 14/7/2023.

[48] Ogheneovo, Edward. (2014). On the Relationship between Software Complexity

and Maintenance Costs. Journal of Computer and Communications. 02. pp. 1-16.

10.4236/jcc.2014.214001.

[49] Ren, Yongchang & Xing, Tao & Chen, Xiaoji & Chai, Xuguang. (2011). Research

on Software Maintenance Cost of Influence Factor Analysis and Estimation Method.

Intelligent System and Applications (ISA. 10.1109/ISA.2011.5873461.

[50] “What is Test Impact Analysis?”. [Online].

https://www.launchableinc.com/blog/what-is-test-impact-analysis/, 14/7/2023.

[51] Sommerville, I. (2011). Software engineering (9th ed.). Addison-Wesley.

[52] Pressman, R. S., & Maxim, B. R. (2015). Software engineering: A practitioner's

approach (8th ed.). McGraw-Hill Education.

[53] Bishop, M. (2003). Computer security: Art and science. Addison-Wesley

Professional.

[54] Fogel, K., & Wilson, B. (2018). Producing open-source software: How to run a

successful free software project. O'Reilly Media, Inc.

83

[55] Laudon, K. C., & Laudon, J. P. (2016). Management information systems:

Managing the digital firm (14th ed.). Pearson Education.

[56] Swanson, M., Bowen, P., Phillips, A., & Snyder, B. (2014). Computer security

handbook (6th ed.). John Wiley & Sons.

[57] Lientz, B. P., & Swanson, E. B. (2015). Software maintenance management:

Evaluation and continuous improvement. John Wiley & Sons.

[58] Roger S. P., & Bruce M. (2019). Software Engineering: A Practitioner's Approach.

McGraw-Hill Education.

84

APPENDIX
BookKeeper test-to-classes Dependency Graph (with qualified names):
https://drive.google.com/file/d/1YRMLLTR6_2ozfbE6d-tnImXJ1Sz-
Ejml/view?usp=sharing

BookKeeper test-to-class-tokens Dependency Graph (with simplified class names):
https://drive.google.com/file/d/1383B6v25bjVKTZlecXIMbWU_5rCa223x/view?usp=s
haring

85

VITA

NAME : Alon Basin
DATE OF BIRTH : 2/9/1986
PLACE OF BIRTH : Israel
INSTITUTIONS ATTENDED : Bachelor of Economics, Ben Gurion University of

the Negev

